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1 Introduction

A central question in empirical macroeconomics is the response of the economy to changes in

monetary policy. Going back to Sims (1980), a long literature has tackled this question using

structural vector autoregressions (SVARs), with policy shocks identified through zero restric-

tions on the contemporaneous response of macro aggregates to policy changes. This early

literature suggests that a policy tightening indeed reduces real activity, if only moderately

so and with a delay. Recent work challenges this consensus. Uhlig (2005) casts doubt on the

conventional timing restrictions, proposes a weaker identification procedure based on uncon-

troversial sign restrictions, and finds that, if anything, contractionary monetary shocks boost

output. Yet more recently, refinements of Uhlig’s identification scheme (Arias et al., 2019) or

identification based on external instruments (Gertler & Karadi, 2015) tend to qualitatively

re-store conventional wisdom, and in fact suggest somewhat larger and faster real effects

than previously believed. At the same time, more and more studies have started to outright

question the ability of SVARs to reliably identify shock transmission (e.g. Plagborg-Møller,

2019; Nakamura & Steinsson, 2018b), raising concerns about the informativeness of macroe-

conomic aggregates for hidden structural shocks – the so-called non-invertibility problem.

Evidently, a consensus on the real effects of monetary policy remains elusive.

In this paper I show that, when viewed through the lens of standard structural models,

these apparent inconsistencies across different empirical methods are not at all surprising,

but exactly what we should expect. The argument is simple: I fix a single common structural

model as my data-generating process, characterize the probability limits of various popular

empirical strategies, and show that the estimators disagree in exactly the same fashion as

they do in real data. Sign restrictions, as in Uhlig (2005), are vulnerable to expansionary

demand and supply shocks “masquerading” as contractionary monetary policy shocks, which

then seemingly boost – rather than depress – output. Standard impact zero restrictions on

output impulse responses give classical results because they implicitly safeguard against this

particular form of mis-identification, but at the cost of understating the (short-horizon) real

effects of monetary policy. Direct restrictions on the implied Taylor rule of the monetary

authority (as in Arias et al. (2019)) or external instruments (IVs) instead robustly estimate

the true model-implied aggregate effects of monetary policy shocks. In principle, both ap-

proaches are vulnerable to non-invertibility concerns, but in practice either solution can work

well, as monetary policy shocks are often near -invertible.

My analysis builds on a fully specified structural model of monetary policy transmission
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in the mold of Woodford (2003), Gaĺı (2008) or Smets & Wouters (2007). In line with

empirical practice, I assume that the econometrician observes data on output, inflation and

the policy rate generated from the model, estimates their VAR representation, and identifies

structural shocks using different identification schemes. To avoid conflating estimation and

identification uncertainty, I allow the econometrician to observe an infinitely long sample,

so she is able to perfectly recover the true population reduced-form VAR representation.

Against this reduced-form VAR, I then characterize the probability limits of various popular

estimators of monetary policy transmission. In particular, for each estimator, I am able

to write the identified shocks – what the researcher will call a “monetary policy shock” –

as a linear combination of the true shocks of the underlying model. Perfect identification

corresponds to a coefficient of 1 on the shock of interest, and 0 on all other shocks.

I first address the non-invertibility problem. I show that, for any possible SVAR identifi-

cation scheme, the coefficient on the actual monetary policy shock is bounded above by the

R2 in a regression of that shock on past and current values of the observed macro variables.

Under invertibility (R2 = 1), identification can thus in principle succeed; if instead the R2 is

small, then conventional SVAR identification schemes will invariably fail. My first result is

that, because monetary policy shocks are – at least in my models – the only shock to drive

interest rates and inflation in opposite directions, any VAR that includes these macro aggre-

gates is likely to give a high R2. For example, even for a small VAR in (y, π, i), estimated on

data generated by the model of Smets & Wouters, the R2 is 0.8702. With the invertibility

assumption nearly satisfied, we know that some SVAR identification scheme will at least

approximately recover true impulse responses. In the remainder of the paper, I ask whether

any of the popular standard SVAR estimators attain this near-perfect identification.

I begin with the identification scheme of Uhlig (2005). He defines as a candidate mone-

tary policy shock any shock that moves interest rates and inflation in opposite directions.1

Since different linear combinations of reduced-form forecasting errors are consistent with

these restrictions, his procedure will only provide set identification – it will not identify a

single SVAR, but a set, and thus a set of candidate “monetary policy shocks.” As discussed

above, the true monetary policy shock uniquely moves policy rates and inflation in opposite

directions; appealingly, this not only ensures near-invertibility, but also implies that the ac-

tual true shock will lie in the set of acceptable candidate shocks, while any of the other pure

shocks will not. Troublingly, however, accurate identification is still not guaranteed, as the

1He imposes further restrictions, designed chiefly to disentangle monetary policy shocks from money
demand shocks. My models feature no such shocks, so I abstract from his additional restrictions.
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identified set may contain linear combinations of other structural shocks. I find that this

“masquerading” problem is prominent in my structural models, where many acceptable can-

didate “monetary policy shocks” counterfactually increase aggregate output. Intuitively, the

right linear combination of expansionary demand and supply shocks can also push inflation

and interest rates in opposite directions, but of course boosts output.

In large-sample Bayesian analysis of sign-restricted VARs, posterior uncertainty over the

identified set is exclusively governed by the prior (Baumeister & Hamilton, 2015; Watson,

2019). I show that the Haar prior – the most popular prior in applied work (Uhlig, 2005;

Rubio-Ramı́rez et al., 2010) – automatically puts more mass on more volatile structural

shocks. But since, in my structural models, demand and supply shocks are more volatile than

monetary policy shocks, most posterior mass is automatically put on the “masquerading”

shock combinations that counterfactually increase real output. This conclusion agrees exactly

with posterior uncertainty over identified sets reported in Uhlig’s analysis.2

I next consider the performance of zero or near-zero identifying restrictions. Uhlig (2005),

in his review of the classical zero restriction literature, finds the zero output restriction to be

central to the old conventional wisdom. My model-based analysis reveals that this key role for

the impact output restriction is not an accident, but in fact an economically sensible feature

of identified sets. The logic is simple: In purely sign-identified SVARs, counterfactual positive

output responses are generated by masquerading expansionary supply and demand shocks.

These shocks move interest rates in opposite directions, but output in the same direction,

and thus imply very large impact output multipliers of monetary policy interventions. Even

moderate bounds on these multipliers are enough to eliminate most combinations of positive

demand and supply shocks from the identified set, thus substantially tightening inference

around the truth. Literal zero restrictions of course afford most tightening, but – at least in

models with small, but non-zero impact effects – lead the researcher to robustly understate

the short-horizon real effects of monetary policy shocks.

Two alternative recently proposed identification schemes do not suffer from this defect.

First, Arias et al. (2019) combine the benchmark identification scheme of Uhlig with addi-

tional sign restrictions on implied Taylor rule coefficients, and show that their identification

scheme restores conventional wisdom. Yet again, this finding can be rationalized through

standard structural models: I show that, in regions of the identified set where demand and

2My results should not be taken to imply that the Haar prior is incorrectly imposed in popular work, nor
that the derived Bayesian posterior sets are invalid. I merely clarify the role of this particular choice of prior
in shaping posterior uncertainty over the identified sets implied by sign restrictions alone.
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supply shocks masquerade as contractionary monetary policy shocks, the coefficient on out-

put in the implied mis-identified “Taylor rule” is invariably (and counterfactually) negative.

Restricting the coefficient to be positive thus markedly improves identification. Second, sev-

eral researchers have proposed to identify monetary policy SVARs using external instruments

(e.g. Gertler & Karadi, 2015). Plagborg-Møller & Wolf (2019a) show that, even with a valid

external instrument, the standard SVAR-IV estimator is biased under non-invertibility. The

bias, however, is proportional to the reciprocal of the R2 in a regression of the monetary

policy shock on lags of the macro aggregates, and so, by near-invertibility, likely to be small.

My results have important implications for macro-econometric practice in general, and

the study of monetary policy transmission in particular. The review of the agnostic identifi-

cation scheme in Uhlig (2005) reveals that, for tight and reliable inference, it is not enough to

ensure that the imposed sign restrictions are uniquely satisfied by the shock of interest. Lin-

ear combinations of other structural shocks can masquerade as the shock of interest and thus

lead inference astray. In particular, if these rival shocks are more volatile than the shock of

interest, then the popular Haar prior is likely to focus attention on the mis-identified region

of the identified set. For monetary policy transmission, my results encouragingly suggest

that, first, recent advances in identification effectively address the masquerading problem,

and second, even small sets of macro observables may carry a lot of information about policy

shocks. Viewed in this light, I conclude that existing empirical work quite consistently paints

the picture of significant, medium-sized effects of monetary policy on the real economy.

Literature. My work relates to several strands of literature. First, I provide a unifying

model-based perspective on recent advances in the empirical study of monetary policy trans-

mission. In particular, my results lend support to recent empirical work identifying medium-

sized real effects of monetary policy via a variety of quite different identification schemes: the

narrative evidence reviewed in Coibion (2012), the external SVAR-IV approach of Gertler

& Karadi (2015) and Jarociński & Karadi (2018), the Taylor rule restrictions of Arias et al.

(2019), and heteroskedasticity-based identification of Brunnermeier et al. (2017). In its at-

tempt to reconcile different empirical findings, my work shares similarities with Mertens &

Ravn (2014) and Caldara & Kamps (2017). I show that restrictions on either impact output

responses or on the VAR-implied Taylor rule parameter are robustly sufficient to generate

negative output responses in monetary policy SVARs.

Second, I offer several novel results on the relation between structural macro models and

SVAR representations, in particular for the non-invertible case. The mapping from model
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parameters to VAR coefficients, and from primitive structural shocks to SVAR-identified

shocks, is characterized in detail in Fernández-Villaverde et al. (2007) and Giacomini (2013).

Relative to those papers, I offer additional insights by tying the connection between SVAR

and model shocks to quantitative measures of the degree of invertibility. In particular, and

perhaps somewhat surprisingly, I show that standard macro aggregates can be informative

for monetary policy shocks even if those shocks are largely irrelevant for aggregate business-

cycle fluctuations (Ramey, 2016; Plagborg-Møller & Wolf, 2019a).

Third, I add several cautionary results to the fast-growing literature on sign-based set

identification in empirical macro-econometrics. The sign restrictions methodology for the

identification of SVARs was pioneered by Faust (1998), Canova & De Nicolo (2002) and Uhlig

(2005). A comprehensive algorithm for inference, relying on the Haar prior, is developed in

Rubio-Ramı́rez et al. (2010). Similar to Paustian (2007) and Castelnuovo (2012), my results

reveal the common minimal requirement for sign-based analysis – that only the shock of

interest satisfy all imposed sign restrictions – to be necessary, but not sufficient for reliable

inference (also see Uhlig, 2017). Relative to these earlier contributions, my analysis adds

further insights by explicitly characterizing the model-implied (mis-)identified set in terms

of the underlying true structural disturbances, and then using the “masquerading shocks”

interpretation to rationalize the importance of the Haar prior in shaping posterior uncertainty

over this identified set. Relatedly, Paustian (2007) and Canova & Paustian (2011) emphasize

that sign restrictions are likely to perform well for sufficiently volatile shocks. My analysis

of Bayesian posteriors over identified sets shows that this conclusion is exclusively driven by

the prior: If, in a given model and with a given SVAR identification scheme, the researcher

is unable to sign the response of a variable of interest to a certain shock, then she would be

unable to sign the response even if the shock of interest were arbitrarily volatile. Equivalently,

for a judiciously chosen prior, the Bayesian posterior probability assigned to a positive (say)

impulse response for the variable of interest can always be made arbitrarily large or small,

whatever the underlying relative shock volatilities (also see Giacomini & Kitagawa, 2016).

Outline. Section 2 presents my model laboratories, characterizes the mapping from struc-

tural model to SVAR estimand, and argues for robust (near-)invertibility of conventional

monetary policy shocks. Sections 3 to 5 then interpret recently popular empirical estimators

through the lens of the model laboratories. Finally Section 6 concludes. Appendix A provides

further details and selected proofs, and a supplementary appendix is available online.3

3See https://www.christiankwolf.com/research. My webpage also contains codes for replication.
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2 VAR analysis in structural models

A wide class of popular structural models admits a VAR representation for observable macro

aggregates, and so gives well-defined population estimands for different SVAR estimators of

structural shock transmission. In Section 2.1, I outline two particular model laboratories.

Section 2.2 characterizes the probability limits of generic SVAR estimators applied to arti-

ficial model-generated data. Finally, in Section 2.3, I leverage knowledge of the underlying

data-generating process to link SVAR-estimated “structural” shocks to the true disturbances

of the structural model, and in particular connect my results to SVAR non-invertibility.

This section mostly reviews relatively standard material; in particular, the only result

novel to this paper is my characterization of SVAR estimands under non-invertibility. As

such, the analysis here merely collects the tools necessary for my model-based interpretation

of SVAR-implied identified sets in Sections 3 to 5.

2.1 Model laboratories

For most of this paper, I will study the properties of popular SVAR identification strategies

through the lenses of two structural models. First, I consider a simple variant of the canonical

three-equation New Keynesian model (Gaĺı, 2008; Woodford, 2003). This model is simple

enough to conveniently and transparently provide closed-form illustrations of my results.

Second, I use the quantitatively more realistic model of Smets & Wouters (2007) to show that

all intuitions also survive in a richer environment. In particular, the Smets-Wouters model

allows me to judge the likely importance of VAR mis-specification due to non-invertibility.

Section B.1 of the Online Appendix extends my results to other environments; notably, I

consider a dynamic three-equation model as well as alternative model variants with passive

monetary policy rules (Castelnuovo & Surico, 2010; Leeper & Leith, 2016).

The Three-Equation Model. Detailed derivations of the conventional three-equation

New Keynesian model are offered in Gaĺı (2008) and Woodford (2003). To allow the cleanest

possible study of the various popular SVAR estimators, I consider a particularly simple static

variant of this model, without any exogenous or endogenous persistence:

yt = Et (yt+1)− (it − Et (πt+1)) + σdεdt (IS)

πt = βEt (πt+1) + κyt − σsεst (NKPC)

it = φππt + φyyt + σmεmt (TR)
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where (εdt , ε
s
t , ε

m
t )′ ∼ N(0, I). y is real output, i is the nominal interest rate (the federal funds

rate), and π is inflation. The model has three structural disturbances: a demand shock εd,

a supply shock εs and a monetary policy shock εm. The first equation is a standard IS-

relation (demand block), the second equation is the New Keynesian Phillips curve (supply

block), and the third equation is the monetary policy rule (policy block). For most of my

analysis, I do not rely on any specific assumptions on model parameterization; I only make

the conventional assumptions β ∈ (0, 1), κ > 0, φπ > 1, φy ≥ 0, and σd, σs, σm > 0.

It is straightforward to show that this benchmark model is static and admits the closed-

form solutionytπt
it

 =
1

1 + φy + φπκ

 σd φπσ
s −σm

κσd −(1 + φy)σ
s −κσm

(φy + φπκ)σd −φπσs σm


εdt

εst

εmt

 (1)

For the study of different SVAR estimators, I assume that the econometrician observes data

on output, inflation, and the policy rate. However, she is not aware that the data are actually

generated according to (1), and so does not exploit the structure of the model for inference.

The Smets-Wouters Model. The structural model of Smets & Wouters (2007) is per-

haps the most well-known example of an empirically successful business-cycle model. For

further details, I refer the reader to the original paper. In most of my analysis here, I consider

their posterior mode parameterization; as a further robustness check, Section B.4 in the On-

line Appendix presents results taking into account posterior estimation uncertainty.4 Exactly

as before I assume that the econometrician observes data on aggregate output, inflation, and

the interest rate, but does not know the true underlying model.

2.2 Structural models and VAR analysis

When solved through standard first-order perturbation techniques, my laboratories – as well

as many other business-cycle models – give linear evolution equations for all model variables.

Splitting variables into observables and unobservable states generates a linear state-space

4My implementation of the Smets-Wouters model is based on Dynare replication code kindly provided
by Johannes Pfeifer. The code is available at https://sites.google.com/site/pfeiferecon/dynare.
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model. As is conventional, I restrict attention to Gaussian linear state-space models:5

st = Ast−1 +Bεt (2)

xt = Cst−1 +Dεt (3)

where st is a ns-dimensional vector of state variables, xt is an nx × 1 vector of observables

and εt is an nε×1 vector of structural shocks. The disturbances εt are Gaussian white noise,

with E[εt] = 0, E[εtε
′
t] = I and E[εtε

′
t−j] = 0 for j 6= 0.

Under weak conditions, the state-space system (2) - (3) implies a VAR representation for

the observables xt. As most material in this section is relatively standard, I only state the

main results here, and refer the interested reader to Section B.2 of the Online Appendix and

the literature referenced therein. The implied reduced-form VAR representation is6

xt =
∞∑
j=1

Bjxt−j + ut (4)

where the coefficient matrices Bj, j = 1, 2, . . . are complicated functions of the fundamental

model matrices (A,B,C,D), and the ut are the (Gaussian) forecast errors on observables xt

given information up to time t− 1, with disturbance variance E(utu
′
t) ≡ Σu.

The Computational Experiment. I assume that the econometrician observes macro

aggregates xt, but does not exploit the structure of the model – the matrices (A,B,C,D) –

for inference. Since I allow her to observe an infinitely large sample generated from (2) - (3), I

simply treat the reduced-form VAR representation (4) as known. Details on the computation

of this VAR(∞) representation are presented in Section B.7 of the Online Appendix.

SVAR Identification. Structural VAR analysis posits that the true structural shocks εt

can be obtained as a linear combination of contemporaneous reduced-form disturbances ut.

With et denoting the SVAR-identified “structural” shocks, a structural VAR representation

of the same system is thus

A0xt =
∞∑
j=1

Ajxt−j + et (5)

5The Gaussianity assumption is made for notational simplicity only. Equivalently, I could restrict struc-
tural identification to only come from the second-moment properties of the data.

6Note that I use {Bj}∞j=1 for VAR coefficient matrices and B for the shock impact matrix in the state
equation (2). I do so to be as close as possible to textbook notation.
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where A−10 A−1
′

0 = Σu, et ≡ A0ut is Gaussian white noise with E[et] = 0, E[ete
′
t] = I and

E[etet−j] = 0 for j 6= 0, and Aj ≡ A0Bj.

As is well-known, a continuum of SVARs are consistent with a given reduced-form VAR

representation. It is straightforward to see that, under the Gaussianity assumption, the

SVAR (5) is identified up to orthogonal rotations – pre-multiplying both sides of (5) with a

matrix Q in the space of nx-dimensional orthogonal rotation matrices O(nx) does not change

the likelihood of the model. In other words, SVARs are identified up to nx(nx−1)
2

restrictions

(Rubio-Ramı́rez et al., 2010). Outside identifying information is then used to restrict atten-

tion to a strict subset of the set O(nx), often a singleton. In what follows, I will refer to this

smaller set of SVARs as the identified set, and to outside identifying information as the iden-

tification scheme. A formal definition of identified sets is relegated to Appendix A.1. Given a

model-implied reduced-form VAR representation and a structural identification scheme, it is

straightforward to numerically characterize the (population) identified set of SVARs, as well

as any corresponding impulse response functions, forecast error variance decompositions, or

other objects of interest. Again, further computational details are provided in Section B.7

of the Online Appendix.

2.3 Interpreting SVAR estimands

The analysis in Section 2.2 did little to exploit the structure of the underlying model –

any reduced-form VAR can be mapped into identified sets, both those estimated on actual

data and those derived from fully-specified structural models. A controlled data-generating

process does, however, have one important advantage: It allows us to interpret SVARs by

linking their identified “structural” shocks, et, to the true shocks of the model, εt.

The nature of the link depends on the invertibility (or lack thereof) of the model (2) -

(3). A linear state-space system is said to be invertible for the structural shocks εt if and

only if, given knowledge of the system matrices (A,B,C,D), the infinite past of observables

{xt−`}∞`=0 is sufficient to perfectly identify the hidden shocks εt.
7 A natural quantitative

measure of invertibility is the R2 in an (infeasible) regression of a structural shock εj,t on

current and past macro aggregates {xτ}−∞<τ≤t (Plagborg-Møller & Wolf, 2019a).

7Strictly speaking, for SVAR analysis of a given shock εj,t to work, the system needs to only be invertible
for that shock. In that case, the static relation (6) will apply for shock j, while the richer dynamic relation
(8) will apply to other shocks, with potentially non-zero weights for higher horizons ` > 0.
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The Invertible Case. Under invertibility – that is, if the R2 is 1 for all structural shocks

εt –, the link between SVAR shocks and true disturbances is very simple:

et = P × εt (6)

where P ∈ O(nx) is an orthogonal matrix. In short, with invertibility, the identified shocks

are linear combinations of the true (contemporaneous) underlying structural shocks, with the

weights given by the entries of the rotation matrix P . The right kind of SVAR identification

scheme then identifies P = I as the true rotation, with SVAR-identified structural shocks et

equal to the true structural shocks εt.

It is straightforward to show that, with (yt, πt, it) observable, the three-equation model

of Section 2.1 is invertible. In particular, writing out (6), we see that the identified set

associated with any SVAR identification scheme is simply a collection of unit-length weight

vectors pm = (pmd, pms, pmm)′, with implied “monetary policy shocks”

emt = pmd × εdt + pms × εst + pmm × εmt (7)

Whether or not we are close to the ideal of pm = (0, 0, 1)′ depends, of course, on the details

of the chosen identification scheme.

The Non-Invertible Case. In the general non-invertible case, the link between identi-

fied and true structural shocks is more complicated. Following Fernández-Villaverde et al.

(2007) and Lippi & Reichlin (1994):

et = P (L) × εt =
∞∑
`=0

P` × εt−l (8)

where the entries of the matrix polynomial P (L) are complicated functions of the chosen

identification scheme as well as the fundamental model matrices (A,B,C,D). In a natural

generalization of (6), the (k, j)th entry of P` is now the weight of kth identified SVAR shock

on the `th lag of the jth true underlying structural disturbance.8

Standard small-scale VARs induced by the large Smets-Wouters model are not invertible,

so the more complicated expression (8) applies. Two new results, developed in more detail in

8Since εt and et are both orthonormal white noise, we see immediately, following Lippi & Reichlin (1994),
that P (L) is a Blaschke matrix – that is, the matrix-polynomial generalization of an orthogonal matrix.
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Appendix A.2, clarify when and how non-invertibility threatens SVAR-based identification

of (monetary policy) shock transmission.

First, I tie the weights in the matrix polynomial P (L) of (7) to the R2 in a regression of

shock j on current and lagged macro aggregates xt.

Proposition 1. Let the SVAR (5) be derived from a structural model (2) - (3). The weight

of the kth identified SVAR shock on the jth contemporaneous structural shock, P0(k, j) is

subject to the following upper bound:

P0(k, j) ≤
√
R2
j ≡

√
1− Var (εj,t | {xτ}−∞<τ≤t) (9)

Furthermore, there exists a SVAR, consistent with the model-implied reduced-form VAR (4),

such that this upper bound is attained.

If R2
j is small, then – for any possible SVAR identification scheme – the identified shock

ek,t will bear little relation to the true structural shock εj,t. Conversely, if R2
j is close to

1, then some SVAR identification scheme will (nearly) identify the true shock. Thus, in a

precise sense, SVAR identification can work if and only if R2
j is sufficiently close to 1.

Second, I establish that, in the Smets-Wouters model, the R2
m for monetary policy shocks

in a VAR in (y, π, i) is robustly close to 1. In this model, macro fluctuations are driven by

seven distinct shocks; out of these, monetary policy shocks are among the least important,

as measured by conventional forecast error variance decompositions. It thus seems a priori

unlikely that a small trivariate VAR should contain much information about monetary policy

shocks, casting doubt on the viability of SVAR inference. This simple intuition, however,

turns out to be incorrect. At my benchmark parameterization, the R2
m is 0.8702, so the

maximal attainable weight on the monetary policy shock is
√

0.8702 = 0.9328.9

The intuition underlying this result is subtle: Monetary policy shocks are not important

drivers of any individual macro aggregate, but they induce highly atypical co-movement

patterns. Notably, monetary policy shocks are unique in that they push interest rates and

inflation in opposite directions. Thus, while a divergence of interest rates and inflation is not

definitive proof, it is at least suggestive of monetary policy shocks. I provide further details

for this argument in Appendix A.2. In particular, the appendix discusses an instructive

9As I show in Section B.3 of the Online Appendix, this result is not sensitive to the assumption of infinite
VAR lag lengths. For example, the R2

m is already equal to 0.8662 for a trivariate VAR with four lags.
Furthermore, I also show that a high R2

m is not special to the model’s posterior mode, but is in fact a feature
of most draws from the estimated model posterior.
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illustration using forward guidance shocks: In response to a credible promise of an interest

rate hike tomorrow, interest rates and inflation move in the same direction today. Upon

observing this co-movement, the econometrician initially concludes that the economy was

almost surely hit by a conventional demand shock, and so the monetary policy R2 is small.

As soon as the promised rate hike materializes, however, inflation and policy rate diverge,

the econometrician realizes that actually a forward guidance shock may have occurred, and

the R2 jumps back up.

Outlook. The results in this section establish that, for both model laboratories sketched

in Section 2.1, SVAR-based inference can in principle succeed. Whether any given identi-

fication scheme succeeds is, of course, a different question. In the remainder of this paper,

I will use the structural shock decompositions in (6) and (9) to evaluate and economically

interpret the performance of several popular approaches to SVAR identification.

3 Sign restrictions and masquerading shocks

This section uses the controlled model laboratories of Section 2.1 to judge and economically

interpret the popular agnostic sign identification scheme of Uhlig (2005). In Section 3.1, I

characterize the entire SVAR-implied identified set; in particular, I study the largest and

smallest output responses possibly consistent with the imposed sign-identifying information.

Section 3.2 then analyzes the distribution over this identified set induced by the popular

Bayesian implementation of sign restrictions – that is, the Haar prior.

3.1 The identified set

Uhlig (2005) proposes an agnostic identification scheme. He defines as a monetary policy

shock any shock that, for a pre-specified (often quite large) number of periods, moves in-

terest rates and inflation in opposite directions.10 Notably, the response of output is left

unrestricted, contrary to popular recursive schemes. In my candidate data-generating pro-

cesses, monetary policy shocks indeed are the only shocks to satisfy these restrictions, so the

proposed identification scheme is in principle promising.

10In his benchmark analysis, Uhlig considers a few additional constraints, designed chiefly to disentangle
monetary policy and money demand shocks. As my candidate models feature no such shocks, I ignore these
restrictions. Also, it is well-known that Uhlig’s results continue to hold with my smaller set of restrictions
on estimated three-variable SVARs (e.g Castelnuovo, 2012; Wolf, 2017).
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Static Model. I begin with the simple three-equation model. Since the model is static,

I only restrict the inflation and interest rate responses on impact. It is straightforward to

see that the proposed sign restrictions are not strong enough to uniquely pin down the sign

of the output response. I provide an informal discussion here, and relegate the formal proof

to Section B.4.1 of the Online Appendix.

By construction, the monetary policy shock is the only pure shock to lie in the identified

set. However, linear combinations of (expansionary) demand and supply shocks can do so as

well and thus “masquerade” as contractionary policy shocks. By definition, any candidate

“structural” shock emt ≡ pmdε
d
t + pmsε

s
t + pmmε

m
t , where the unit-length vector of weights

pm = (pmd, pms, pmm)′ is such that

pmd × κσd − pms × (1 + φy)σ
s − pmm × κσm ≤ 0 (10)

pmd × (φy + φπκ)σd − pms × φπσs + pmm × σm ≥ 0, (11)

will lie in the identified set. The corresponding (scaled) output response is

pmd × σd + pms × φπσs − pmm × σm (12)

Clearly, as long as the impact impulse response matrix displayed in (1) is full rank, the two

inequality restrictions cannot possibly be informative about the sign of the impact output re-

sponse. In particular, straightforward algebra shows that, as long as φy > 0, positive weights

on demand and supply shocks are consistent with the imposed identifying restrictions, but

with the obvious incorrect implications for the output response to the identified shock. It is

important to note that this logic works completely independently of relative shock volatilities.

In particular, even if the monetary shock were the overwhelming driver of macro fluctuations

(σm � σd, σs), the sign-restricted identified set would continue to contain incorrect positive

output responses. Thus, at least in this simple model, sign-identifying information alone can

never be enough to pin down the sign of the unrestricted output response.

Smets-Wouters. The previous conclusions may appear particular to the simple model

considered so far. Realistic data-generating processes are not static, and actual applications

of sign-identifying schemes restrict impulse responses for many periods, not just one. I thus

extend the inflation and interest rate restrictions to hold for six quarters, and apply them

to identify structural VARs generated from the more realistic medium-scale DSGE model of

Smets & Wouters (2007). Figure 1 displays identified sets of impulse response functions.
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Identified Set of Impulse Responses: Uhlig (2005) Sign Restrictions

Figure 1: Identified sets of the responses of output, inflation and policy rate to a one standard
deviation shock to the monetary policy rule, identified through sign restrictions on inflation
and policy rate (imposed for six quarters).

Consistent with the intuition from the static model, and similar to the earlier simulation-

based evidence of Castelnuovo (2012), I conclude that the impact output response is not well-

identified; in particular, the identified set again contains both positive and negative values.

To allow an economic interpretation of this identified set, I use the results of Section 2.3

to link the mis-identified SVAR shocks to the true underlying structural shocks. Figure 2

visualizes my results by matching the impact output response of identified shocks to their

decomposition in terms of the underlying disturbances.11

Recall that the Smets-Wouters model features seven shocks; to ease visual interpreta-

tion, I have summed the weights on the three demand and supply shocks, respectively. The

plot reveals that the right tail of positive output responses largely reflects positive demand

and supply shocks masquerading as contractionary monetary policy shocks. The right lin-

ear combination of these shocks also pushes inflation down and interest rates up, but of

course boosts output. Section B.4.5 of the Online Appendix shows that the exact same

masquerading shocks logic features just as prominently in a dynamic three-equation model.

11To ease visual interpretability, I adjust raw shock weights in two ways. First, I only show impact weights,
and ignore any weights on lagged true structural shocks. Appendix A.2 explains why this simplification is
harmless. Second, there is in fact no strict one-to-one mapping between impact output responses and
corresponding shock weights. I thus draw many entries from the model’s identified set, and smooth the
resulting series of shock weights as a function of the impact output response. I show a plot of unsmoothed
sampled weights in Section B.4 of the Online Appendix. Finally, note that the weight vector (0, 0, 1) does
not lie in the identified set, precisely because the model is non-invertible.
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Identified Set of Shock Weights: Uhlig (2005) Sign Restrictions

Figure 2: Identified set of static shock weights as a function of the output response at horizon
0. For the demand and supply shocks I sum all relevant weights, adjusting for the fact that
the cost-push and wage-push shocks are negative supply shocks. I smooth the resulting series
to facilitate interpretation. The true impact response of output is -0.219.

Implications. The analysis in this section has implications for sign-based SVAR inference

in general and for the identification of monetary policy shocks in particular. First, both

model laboratories suggest that the common minimal requirement of sign restrictions – that

they be exclusively satisfied by the shock of interest – is necessary, but not sufficient for

successful identification.12 Monetary policy shocks are arguably unique in having opposite

effects on inflation and interest rates (Uhlig, 2005), but, unfortunately, this is only enough

to ensure that SVAR analysis can in principle succeed (cf. Section 2.3), not that weak sign

restrictions alone give tight identified sets.

Second, the wide identified sets in Uhlig (2005) can be given an economic “masquerading

shocks” interpretation. Through the lens of popular structural models, the large positive

output responses in Uhlig’s identified sets are readily explained as particular linear combina-

tions of positive demand and supply shocks masquerading as contractionary policy shocks. I

also showed that, at least in the static three-equation model, such contamination of identified

12Wolf (2017) studies the identification of technology shocks as a second illustration, and Section B.4.3
shows that even the simultaneous identification of multiple structural shocks does not safeguard against the
masquerading threat. Kilian & Murphy (2012) arrive at a similar conclusion in the context of oil shocks.
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sets will persist even when monetary policy shocks are counterfactually volatile. I further

expand on this point in the next subsection.

3.2 The Haar prior

In addition to its width, a second defining feature of the identified set for output responses

in Uhlig (2005) is that – at least under the Haar prior – most posterior mass is actually put

on positive output responses (see Figure 7 in his paper). The model-based perspective taken

here can also rationalize this finding and offer broader lessons for the role of the Haar prior

in applied macro-econometrics with sign restrictions.

The Haar prior is a uniform prior over orthogonal rotation matrices P ∈ O(nx). Under

invertibility, by (6), we can directly interpret the entries of these rotation matrices as weights

on the underlying true structural shocks.13 For example, in the static model of Section 2.1,

the uniform Haar prior randomly draws shock weights p, spaced uniformly over the unit

sphere. But if all shocks receive equal prior weight, yet some shocks have much larger effects

on macro aggregates than others, then the prior distribution for impulse responses of these

aggregates is automatically dominated by the most volatile shocks. In the remainder of this

section, I show that this observation has two important implications. First, it can rationalize

the substantial posterior mass on positive output responses observed in Uhlig (2005). Second,

it clarifies that earlier results on the promise of sign restrictions for volatile shocks (Paustian,

2007; Canova & Paustian, 2011) are exclusively driven by the imposition of a probabilistic

prior over the identified set, and not by the sign-identifying information itself.

Static Model. I again begin with an illustration in the simple static model, summarized

in Figure 3. Panel (a) shows the top right part of the unit circle, corresponding to candidate

“structural shocks” that assign positive weights to the true demand shock (x-axis) and

the true supply shock (y-axis); the weight on the true monetary policy shock is implicitly

assumed to be positive and then simply recovered residually (recall that the weight vector

p must have unit length). The light grey region – the interior of the unit circle – is the set

of all possible shock vectors with positive weights on true demand and supply shocks. The

orange region shows, for a benchmark parameterization chosen to replicate the relative shock

volatilities in Smets & Wouters (2007), combinations of those shock weights that (i) lie in the

13Formally, this result uses translation-invariance of the Haar prior, ensuring uniformity for any basis
matrix b(Σu) (see the discussion in Appendix A.1).
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identified set and (ii) increase output – that is, the undesirable masquerading shocks. The

dark grey region gives the analogous combinations of masquerading shocks for a different

model parameterization, now with more volatile monetary policy shocks. Finally, panel (b)

shows the posterior probability of a negative output response to identified monetary policy

shocks (under the Haar prior) as a function of relative shock volatilities.

(a) Mis-Identification Regions (b) Probability of Negative Output Response

Figure 3: Identified sets in the static three-equation model, with φπ = 1.5, φy = 0.2, κ = 0.2,
σd = 1, σs = 1. In the benchmark calibration σm = 0.2; in the high-volatility calibration,
σm = 6. Panel (a) shows regions of masquerading shocks giving positive output responses;
panel (b) gives the probability of a negative identified output response as a function of
relative shock volatilities.

Figure 3 illustrates the two main results of this section. First, in the baseline calibration,

the orange region of “masquerading” demand and supply shocks features prominently in

the top right part of the unit circle, and the posterior probability of correctly signing the

output response is small. Intuitively, because demand and supply shocks are much more

volatile than monetary policy shocks, very large weights on monetary policy shocks are

needed to dominate the output response. Such large weights are unlikely according to the

prior, so most posterior mass will instead be put on the large orange area of masquerading

shock combinations. Exactly in line with this intuition, the posterior distribution over the

identified set in Uhlig (2005) is dominated by positive output responses.

Second, as relative shock volatilities are re-scaled, the shape of the posterior over the

identified set changes dramatically. Consider first the two identified sets of masquerading

demand and supply shocks in panel (a), constructed for two different values of monetary

policy shock volatility. From the inequality constraints (10) - (11), we know that there
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exists a simple one-to-one mapping between all points in these two identified sets.14 Their

posterior probabilities, however, are very different. In the benchmark parameterization,

positive demand and supply shocks in the identified set occupy a large region in the unit

circle, and so are regarded as likely by the Haar measure. As the monetary policy shock

becomes more volatile, the associated weights on demand and supply shocks necessarily

become larger – graphically, the orange area maps into a smaller and smaller sliver of the unit

circle, and thus the masquerading shock combinations are regarded as increasingly unlikely.

In the limit, as the monetary policy shock becomes infinitely more volatile than demand

and supply shocks, the orange and dark grey regions actually get mapped into a measure-0

subspace at the boundary of the unit circle, and so receive a posterior probability of 0. Panel

(b) provides an illustration across a large range of possible relative shock volatilities.

My results can also help to rationalize the conclusions in Paustian (2007) and Canova &

Paustian (2011). If the shock of interest is sufficiently volatile, then conventional Bayesian

posteriors over identified sets are likely to put most mass on correctly signed impulse re-

sponses. However, it is also immediate that this conclusion is exclusively driven by the

particular choice of prior. As I show in Appendix A.3, it is always possible to construct an

alternative prior such that, whatever the relative shock volatility, the posterior probability

of a correctly signed impulse response remains arbitrarily small.15

Smets-Wouters. The insights from the simple static model generalize without change to

the environment of Smets & Wouters (2007). Figure 4 provides a graphical illustration.

Since monetary policy shocks are on average relatively small, most posterior mass over the

identified set concentrates on positive output responses, fully consistent with the empirical

findings in Uhlig (2005). As the relative volatility of the monetary policy shock increases,

posterior mass mostly shifts to negative output responses. Nevertheless, even for an extreme

counterfactual increase of monetary policy shock volatility, the identified set itself continues

to include strictly positive output responses, so any conclusions about statistical significance

14Let p be a weight vector in the original identified set, giving a positive output response. Now let

p̃∗i = pi× σi

σ̃i
(i ∈ (d, s,m), and where σ and σ̃ are the old and new shock volatilities, respectively). Then the

vector p̃ ≡ p̃∗

||p̃∗|| lies in the identified set for the rescaled model, and also gives a positive output response.
15Finally, my results are also informative about the role played by the uniform Haar prior in allowing sign-

restricted inference to be informative about quantities. For example, as the monetary policy shock becomes
dominant relative to other shocks, the identified set for the output response converges to [− 1

1+φy+φπκ
σm, 0],

and the distribution over this identified set can be derived following the steps in Baumeister & Hamilton
(2015). The quantity information contained in pure sign restrictions is thus simply that the impulse response
is somewhere between zero and the truth; all further information comes from the prior.
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(a) Benchmark Model (b) Scaled Volatilities

Figure 4: Identified set of the output response, with identifying restrictions as in Figure 1.
Posterior uncertainty via imposition of the uniform Haar prior; the solid and dotted lines
give 16th, 50th and 84th percentile bands. In the model with scaled volatilities, the relative
volatility of the monetary policy shock is scaled up by a factor of 30.

of a negative output response are necessarily exclusively driven by the prior.

Implications. Large-sample Bayes inference over identified sets is dominated by the prior

(Moon & Schorfheide, 2012; Baumeister & Hamilton, 2015; Watson, 2019). Taking a popula-

tion perspective, my analysis precisely characterizes the additional probabilistic identifying

information embedded in the popular Haar prior. In particular, I show that this flat prior

over orthogonal rotation matrices can equivalently be interpreted as a flat prior over hidden

shock weights, thus automatically over-weighting particularly volatile macro shocks.

Whether or not the Haar prior is a sensible prior is invariably an application-dependent

question. In my analysis of monetary policy shock identification, I find that, due to the

relatively low volatility of policy shocks, researchers relying on the Haar prior are likely

to mis-characterize the sign of the aggregate output response. Since pure sign-identifying

information is also consistent with (correct) negative output responses, any conclusions about

statistical significance of positive responses are exclusively driven by the prior.16

16In actual empirical practice, such identification uncertainty is further conflated with reduced-form pa-
rameter estimation uncertainty. My analysis is exclusively concerned with population limits, and so only
speaks to one part of the inference problem. Nevertheless, the larger Monte Carlo exercise in Section B.4.4
suggests that identification uncertainty is, in relevant applications, large relative to estimation uncertainty.
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4 Zero restrictions

The classical approach to monetary policy shock identification is the imposition of zero

impact response restrictions on output and inflation. Uhlig (2005) shows that the zero output

restriction is central to recovering the conventional negative – if small – output effects of a

contractionary monetary shock. In this section I provide a rationale for this centrality of the

zero output restriction, but also show that, at least at short horizons, the estimated output

response is likely to understate the policy’s true aggregate effects.

The impact output restriction. Uhlig (2005) shows that conventional wisdom (e.g.

Christiano et al., 1996) relies sensitively on the impact zero output restriction – in his words

a “rather spurious identification restriction.” Expanding on the analysis of Section 3, I will

now show that the strong bite of the impact output restriction is not an accident, but an

intuitively sensible feature of identified sets.

In my structural models, the large positive output responses identified by the pure sign-

restricting scheme of Uhlig (2005) correspond to large weights on positive demand and supply

shocks. These shocks both push output up, but move interest rates in opposite directions, and

so necessarily imply a large ratio (or multiplier) |dy0
di0
|. Restricting this impact multiplier thus

promises to chop off the right tail of mis-identified masquerading shocks displayed in Figure 2;

as Figure 5 shows, this is exactly what happens in the model of Smets & Wouters. Panel (a)

shows the identified set for the output response if the baseline sign restrictions of Uhlig (2005)

were to be complemented with a hard zero restriction on the impact response of output.

Consistent with the intuition given above, the identified set is now tight around the familiar

hump-shaped negative response of output to an identified monetary policy shock. The plot

of shock weights in panel (b) confirms that the large mis-identified region of masquerading

expansionary demand and supply shocks is eliminated. Section B.4.6 of the Online Appendix

further shows that, even with moderate bounds on the impact multiplier |dy0
di0
|, identified sets

tighten significantly around negative output responses.17

My analysis suggests that the centrality of a zero impact output restriction – or of weaker

bounds – to the sign of the identified output response path should not come as a surprise.

However, to the extent that the true impact output restriction is not literally zero, monetary

policy shocks will still be mis-identified. In particular, for the first few quarters, real effects

will mechanically be understated. Panel (a) in Figure 5 shows exactly this. At the same time,

17The same happens in actual data, as shown in Wolf (2017).
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(a) Output Response (b) Shock Weights

Figure 5: Identified sets of output and shock weights. Inflation and interest rates are re-
stricted to move in opposite directions for six quarters; additionally, the impact output
response is restricted to be 0. Panel (a) also shows the point-identified recursive impulse
responses (with the policy shock ordered last) as well as the true impulse response. Panel
(b) shows shock weights as a function of the average output response over the first year.

farther-out dynamics may be mis-identified in other less obvious ways; in the model of Smets

& Wouters, the identified sets indicate greater persistence of policy shocks than is actually

the case. As it turns out, the economics underlying this long-horizon mis-identification are

particularly transparent for standard recursive identification schemes.

Recursive identification and shock persistence. Recursive identification of mon-

etary policy shocks complements the impact zero output restriction with an impact zero

inflation restriction. Together, these two pieces of identifying information are enough to

provide point identification. The corresponding output impulse response is also displayed

in panel (a) of Figure 5.18 Recursively identified monetary policy shocks appear to depress

output, but, relative to the true model-implied impulse response, real effects are understated

at short horizons and overstated at long horizons. In fact, recursive identification distorts

long-horizon impulse responses more than any other SVAR in the identified set of Figure 5.

As before, understatement at short horizons is simply a mechanical implication of the

18Since this paper is chiefly concerned with the real effects of monetary policy shocks, I do not further
discuss the “price puzzle” – another well-known anomaly of recursively identified monetary policy SVARs.
In Section B.6 I study the identified inflation response and discuss the extent to which the model-based
perspective taken here can also rationalize the price puzzle.
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impact zero restriction. The subsequent pattern of dynamic mis-identification is more subtle

and intimately related to the relative persistence of the underlying structural shocks. In Sec-

tion B.5 of the Online Appendix I show that, if all true model shocks had equally persistent

effects on macro aggregates, then the recursively identified “monetary policy” impulse re-

sponses for output and inflation would be exactly 0 at all times. Intuitively, if a given linear

combination of shocks – all with equally persistent dynamic effects – implies a zero response

on impact, then it will necessarily imply a zero response forever. This simple logic can help

clarify the dynamics displayed in Figure 5: Relative to all other SVARs in that identified

set, a recursive SVAR gives the largest possible (i.e., zero) inflation impact response, and it

achieves this zero impact response through a large positive weight on contractionary supply

shocks. Crucially, in the structural model of Smets & Wouters, technology shocks – which

account for most low-frequency variation in macroeconomic aggregates – are extremely per-

sistent. These persistent supply shocks then dominate long-run dynamics, and in particular

result in the displayed substantial overstatement of the output drop at long horizons.

Implications. The theory presented here rationalizes the centrality of zero impact output

restrictions to conventional wisdom, but cautions against interpretation of the resulting

estimates as accurate representations of the economy’s true shock propagation. Recursively

identified shocks are likely to understate the true aggregate effects of policy interventions at

short horizons, and their implied long-horizon dynamics are sensitive to the persistence of the

various other underlying macro shocks.19 The next section considers alternative identification

schemes that are less vulnerable to such criticisms.

5 Recent advances in identification

Following the concerns expressed in Uhlig (2005), the past few years have seen a flurry of

research trying to identify the real effects of monetary policy without any direct restrictions

on the response of output. Two particularly prominent examples are sign restrictions on the

VAR-implied Taylor rule, as in Arias et al. (2019), and the use of external instruments, as

in Gertler & Karadi (2015) or Jarociński & Karadi (2018). Most of these methods indicate

somewhat larger effects of policy shocks on real outcomes, in particular at short horizons. In

this section, I argue that, first, these results are again not at all surprising through a model

19Of course, these concerns would be less acute in models like Christiano et al. (2005), which have been
explicitly constructed to ensure consistency of the usual recursive estimators.
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lens, and second, the resulting identified sets are likely to be quite informative about the

true real effects of monetary policy disturbances.

5.1 Taylor rule restrictions

Arias et al. (2019) show that restrictions on the output coefficient in an implied Taylor rule

substantially tighten Uhlig’s identified set around negative effects of monetary policy shocks;

equivalently, their analysis suggests that many of the candidate “monetary policy shocks” in

Uhlig (2005) must imply Taylor rules with a negative output response. This section makes

two observations. First, I show that the long tail of masquerading supply and demand shocks

in my structural models also induces implied Taylor rules with negative output coefficients.

It is thus not surprising that, just like in the data, an additional restriction on implied Taylor

rule coefficients materially tightens identified sets in my models. Second, I show that this

conclusion is a robust implication of basic properties of New Keynesian models.

Figure 6 displays the identified set under the identification scheme of Arias et al. (2019).

Building on the baseline sign restrictions of Uhlig (2005) – but then additionally imposing

that the output and inflation coefficients in the SVAR-implied Taylor rule are strictly positive

– leads to a substantial tightening of the identified set around significant negative output

responses. Exactly as in Arias et al. (2019), I find that this tightening is almost exclusively

driven by the restriction on the implied Taylor rule output coefficient.20

The results of Figure 6 indicate that restrictions on implied Taylor rule coefficients con-

tain substantial additional identifying information. The intuition is as follows. As shown in

Figure 2, most of the mis-identified “masquerading” shock combinations that counterfactu-

ally increase aggregate output are in fact mixtures of positive demand and supply shocks.

Equivalently, the mis-identified monetary policy shocks are linear combinations of residuals

in the model’s IS and NKPC curves. But if the shocks are a linear combination of these resid-

uals, then the implied Taylor rule itself is a linear combination of those same IS and NKPC

equations. For example, in the static three-equation model of Section 2.1, straightforward

manipulations show that the implied (mis-identified) Taylor rule is

it =
pmmφπ + pms
pmd + pmm︸ ︷︷ ︸

φ̃π

× πt +
pmmφy − pmd − pmsκ

pmd + pmm︸ ︷︷ ︸
φ̃y

× yt + emt

20Differently from their analysis, and consistent with the discussion in Section 3.2, I do not impose the
uniform Haar prior, but instead display entire identified sets.
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(a) Output Response (b) Shock Weights

Figure 6: Identified sets of output and shock weights. Inflation and interest rates are re-
stricted to move in opposite directions for six quarters; additionally, the implied Taylor rule
coefficients on inflation and output are restricted to be positive.

Importantly, for mis-identified masquerading shocks with pmm ≈ 0 and pmd, pms > 0, the

SVAR-implied Taylor rule coefficient φ̃y is necessarily negative. It is thus unsurprising that

the additional restriction φ̃y > 0 substantially tightens identified sets and largely removes

masquerading supply and demand shocks.

5.2 External instruments

A popular alternative to the use of direct identifying restrictions – “internal instruments,”

in the language of Stock & Watson (2017) – is the use of instrumental variables, or “external

instruments.” An external instrument is a variable correlated with the shock of interest, and

uncorrelated with any other structural shocks. For the study of monetary policy shocks, the

most popular instrument is that of Gertler & Karadi (2015).

In this section I study the performance of the popular SVAR-IV estimator (Stock, 2008;

Stock & Watson, 2012; Mertens & Ravn, 2013) in the structural model of Smets & Wouters

(2007). Specifically, I assume that, in addition to the usual macro aggregates xt, the econo-

metrician now also observes an artificially generated external instrument zt satisfying

zt =
∞∑
`=1

(Ψ`zt−` + Λ`xt−`) + αεm,t + σvvt, (13)

where (i) all roots of the lag polynomial 1−
∑∞

`=1 Ψ`L
` are outside the unit circle, (ii) {Λ`}`
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is absolutely summable, and (iii) vt is uncorrelated at all leads and lags with the structural

shocks εt. The econometrician then implements the SVAR-IV estimator using the linear

projection z̃t ≡ zt − E [zt | {zτ , xτ}−∞<τ<t] = αεm,t + σvvt as an external instrument.21

Even with a valid instrument, however, non-invertibility can threaten the consistency of

the SVAR-IV estimator. In Plagborg-Møller & Wolf (2019a), we prove two related results.

First, we show that, under non-invertibility, the weight of identified on true contemporaneous

monetary policy shock is

P0(k,m) =
√
R2
m =

√
1− Var (εm,t | {xτ}−∞<τ≤t) (14)

Thus, the SVAR-IV estimator attains the theoretical bound in (9), and so – in a very

particular sense – provides the best possible approximation to the true unknown monetary

policy shock. Of course, with a low R2
m, this approximation could still be quite poor. Second,

we partially characterize the resulting bias. In particular, we show that impact impulse

response estimates are biased up (in absolute value) by a factor of 1/
√
R2
m.

Taken together, these theoretical results as well as my earlier conclusions about likely

near-invertibility of monetary policy shocks imply that SVAR-IV estimators of monetary

policy transmission are likely to perform reasonably well. Figure 7 shows that this is exactly

what happens in the model of Smets & Wouters (2007). Even with only three macro ob-

servables, the impact bias is small, and the dynamics of output and inflation are captured

adequately, at least at short horizons. If anything, the real effects of policy shocks are some-

what overstated. With an augmented set of observables, identification obviously improves

further; for example, if the researcher were to additionally include investment and a mea-

sure of total labor, then the R2
0,m would rise to 0.9302, and the weight on the true shock

would increase to 0.9645. If the researcher were to go even further and include measures of

consumption and real wages, then the system becomes invertible and identification is perfect.

6 Conclusion

In this paper I interpret various different empirical approaches to the study of monetary

policy transmission through the lens of fully specified structural models. This model-based

perspective suggests two important conclusions. First, theory and empirics are internally

21Note that the probability limit of the SVAR-IV estimator is independent of the particular numerical
values of α and σv (as long as α 6= 0). I thus do not need to take a stand on what those values actually are.
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Identified Set of Impulse Responses

Figure 7: Impulse response functions identified via valid external instruments. The small-
scale VAR contains output, inflation and the interest rate; the large-scale VAR adds invest-
ment and hours worked.

consistent. I find that different estimators, all applied to the same standard structural

model, can give estimates of impulse responses that look as disparate as those estimated on

actual data. I conclude that the data are consistent with monetary policy having significant

real effects, and in fact somewhat larger and somewhat less persistent than often estimated.

Second, pure sign restrictions are quite weak identifying information. Because of what I call

masquerading shocks, the common minimal requirement for sign-based inference – that the

shock of interest be the only one to simultaneously satisfy all imposed sign restrictions –

is not sufficient. The masquerading shock problem is particularly acute when the shock of

interest is not very volatile, as then the uniform Haar prior will concentrate most posterior

mass on rival large masquerading shocks.

The identification of monetary policy transmission can, of course, be improved further.

A valid external instrument is clearly the ideal solution, implemented either using LP-IV

or SVAR-IV methods (Stock & Watson, 2017; Plagborg-Møller & Wolf, 2019b). Existing

high-frequency instruments, however, may fail to adequately disentangle true policy shocks

and information effects (Jarociński & Karadi, 2018; Nakamura & Steinsson, 2018a). Alter-

natively, model-consistent set-identifying information in the spirit of Uhlig (2005) and Arias

et al. (2019) promises to be robust and, in the latter case, informative across a wide range of

structural models, but may not yield tight enough inference. Further identifying restrictions

may thus be needed.
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A Appendix

A.1 Identified sets

Throughout the paper I informally refer to identified sets of SVARs and impulse response

functions. A proper definition of identified sets requires a formal treatment of identifying

information. Following Rubio-Ramı́rez et al. (2010), I allow identifying information to take

the form of linear restrictions on transformations of the structural parameter space into

q × nx matrices, where q > 0. Denote the transformation by f(·). Linear restrictions on the

transformation can then be represented via q×q matrices Zj and Sj, with j = 1, . . . , nx. Here

the Zj allow us to impose exact linear restrictions on f(·) through the requirement Zjf(·)ej =

0, and the Sj allow us to impose linear sign restrictions through the requirement Sjf(·)ej ≥ 0.

In the SVAR literature, most identifying restrictions take the form of restrictions on impulse

response functions. Formally, the impulse response of variable i to shock j at horizon h is

defined recursively as the (i, j)th element of the matrix

IRFh =

A−10 if h = 0∑h
`=1A

−1
0 A`IRFh−` if h > 0

Transformation functions f(·) are then typically of the following form:

f({Aj}) =

 . . .

IRFh

. . .


where {Aj} collects the structural VAR matrices (A0, A1, . . .). The matrices Zj and Sj simply

consist of 0’s, 1’s and −1’s, placed so as to ensure that the desired zero and sign restrictions

are imposed. Simple examples of such matrices are provided, for example, in Rubio-Ramı́rez

et al. (2010) or Arias et al. (2019). Finally, covariance restrictions and outside information

are appended by sign normalizations on A0: We require the diagonal elements of A0 to be

non-negative, which just means that a unit positive change in the ith structural shock is

interpreted as a one standard deviation positive innovation to the ith variable in the VAR.

Definition 1. Consider the reduced-form VAR ({Bj},Σu), and let b(Σu) denote an invertible

nx× nx matrix such that b(Σu)b(Σu)
′ = Σu. Let R be an identifying restriction, defined by a

transformation function f(·) and a set of restriction matrices Zj, Sj, j = 1, . . . , n. Then the
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identified set of rotation matrices with respect to the basis b(Σu), QbR, is defined as the set of

orthogonal rotation matrices Q ∈ O(nx) such that A0 ≡ Q × b(Σu)
−1 is consistent with the

reduced-form covariance matrix, the normalization rule and the identifying restriction R:

QbR ≡ {Q | Q ∈ O(nx), A0 ≡ Qb(Σu)
−1, A−10 A−1

′

0 = Σu, diag(A0) > 0, and

Zjf({Aj})ej = 0, Sjf(A)ej ≥ 0 for 1 ≤ j ≤ nx}

Identified sets can be empty, have a single member, or they can have multiple members.

Generically, sign restrictions are set-identifying, and the identified set of rotation matrices

has strictly positive Haar measure (independent of basis). It is now straightforward to define

the identified set of impulse responses:22

Definition 2. Consider the reduced-form VAR ({Bj},Σu). Let R be an identifying restric-

tion, defined by a transformation f(·) and a set of restriction matrices Zj, Sj, j = 1, . . . , nx.

Then the identified set of impulse responses for variable i in response to shock j at horizon

h, ISi,j,h, is defined as the set of impulse responses generated by some rotation matrix Q in

the identified set of SVARs:

ISi,j,h ≡ {a ∈ R | a = IRFi,j,h({Aj}({Bj},Σu, Q)), Q ∈ QbR}

The upper bound of the identified set of impulse responses for variable i in response to shock

j at horizon h is defined as follows:

ISi,j,h ≡ sup
Q∈QbR

IRFi,j,h({Aj}({Bj},Σu, Q))

The lower bound ISi,j,h is defined analogously.

The bounds can be obtained using the closed-form expressions provided in Gafarov et al.

(2017). Strictly speaking, an exclusive focus on bounds is, of course, only justified if the

identified set is convex. In almost all applications considered in this paper, this is easy to

establish using Lemma 5.1 in Giacomini & Kitagawa (2016). The sole exception is the case

of multiple simultaneously identified structural shocks, considered in Section B.4.3; even in

that case, numerical explorations suggest convexity of the identified set.

22It is trivial to show that identified set and in particular boundaries are independent of the chosen basis
b(Σu). No further reference to the basis is thus needed.

32



A.2 Supplementary results on invertibility

This appendix complements the discussion of Section 2.3. First, I prove Proposition 1.

Second, I discuss in more detail why the R2
m in the structural model of Smets & Wouters

(2007) is high. And third I conclude that, by near-invertibility, we can, without much loss

of generality, restrict attention to the first entry (P0) of the matrix polynomial P (L).

Shock Weights & Non-Invertibility. I will prove a slightly generalized version of

Proposition 1, in fact asserting that

|P`(k, j)| ≤
√
R2
`,j −R2

`−1,j

where R2
`,j = 1 − Var (εj,t | {xτ}−∞<τ≤t+`). At ` = 0, this statement is identical to that of

Proposition 1 (since R2
−1,j is trivially 0).

Proof. By Lemma B.1 and Lemma B.2

R2
0,j = Var (E (εj,t | {xτ}−∞<τ≤t))

= Cov (ut, εj,t)
′Σ−1u Cov (ut, εj,t)

= M ′
•,j,0Σ

−1
u M•,j,0

Similarly, it can be established that

R2
`,j = R2

`−1,j +M ′
•,j,`Σ

−1
u M•,j,` ∀` ≥ 2

Next, we know from Lemma B.1 and the definition of the VAR structural shocks et that

et = Q× Σ−1/2u ×
∞∑
`=0

M`εt−` ≡
∞∑
`=0

P`εt−`

where Q ∈ O(nx) is an orthogonal matrix. Summing over all identified shocks k at some

given horizon `, the total squared weights on shock j are given as the (j, j)th element of

M ′
`Σ
−1
u M`

But this is just R2
`,j − R2

`−1,j. Any individual squared weight is thus bounded above by the

difference in R2’s.
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To assign this maximal weight to a single identified shock, it suffices to have the jth

column of P0 be proportional to the standard basis vector ej. We can ensure this by setting

qj, the jth row of Q, proportional to M ′
•,j,0Σ

−1/2
u (with normalization to ensure unit length),

and the other nx − 1 rows orthogonal to qj and to each other, again with unit length.

By linking shock weights to a quantitative measure of the degree of invertibility, Propo-

sition 1 formalizes the notion that SVAR inference can succeed if and only if the R2
0,j is

sufficiently close to 1.

Near-Invertibility in Smets & Wouters (2007). I find that, in a trivariate VAR in

(yt, πt, it) induced by the structural model of Smets & Wouters (2007), the R2
0,m for monetary

policy shocks is robustly close to 1. It is equal to 0.8702 at my benchmark parameterization,

and it remains high for most draws from the model’s posterior, as well as for much shorter

VAR(p) representations (see Section B.3 in the Online Appendix).

To understand why the R2
0,m is so robustly high, it will prove useful to re-write it in a

slightly more interpretable fashion. Following Forni et al. (2019) and Plagborg-Møller &

Wolf (2019a), we can equivalently re-write the R2
0,j as follows:

R2
0,j = Cov(ut, εj,t)

′ × Var(ut)
−1 × Cov(ut, εj,t) (A.1)

In words, the R2
0,j is large if and only if the true structural shock εj,t is responsible for a lot

of the variation in the reduced-form VAR forecasting error ut made by the econometrician.

Equivalently, the system is invertible for shock εj,t if and only if

Var(ut)− Cov(ut, εj,t) Cov(ut, εj,t)
′︸ ︷︷ ︸

≡Varj(ut)

(A.2)

is reduced-rank. To interpret (A.1) and (A.2), suppose first that the econometrician only

observes a single macro aggregate. In that case, the R2
0,j for a shock j would be high if and

only if that shock accounts for almost all forecasting uncertainty in that single aggregate xt.

Formally, if shock j drives all of the forecasting uncertainty in xt, then the unconditional

variance Var(ut) is equal to the variance induced only by shock j, Varj(ut). Thus, by (A.2),

we have invertibility. Of course, since monetary policy shocks are arguably unimportant for

the evolution of most macro aggregates, the R2
0,m in univariate ARs is invariably small.

Matters are much more subtle in the multivariate case, however. Here, macro data can be

very (in fact even fully) informative about a quite unimportant shock, if that shock induces
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an atypical covariance pattern, in the sense that the induced conditional variance Varj(ut)

is far from being proportional to Var(ut). For example, if unconditionally two entries in ut

co-move, but conditional on shock j they diverge, then intuitively the data should be quite

informative about j; formally, the residual covariance matrix should become nearly singular.

This logic explains the robustly high R2
0,m in Smets & Wouters (2007). If the econome-

trician observes a negative forecast error in nominal interest rates and a positive forecast

error in inflation, then – because only monetary policy shocks induce such conditional co-

movement – she concludes that a contractionary monetary policy shock is reasonably likely

to have occurred. Consistent with this intuition, the R2
0,m is already large in a bivariate VAR

in (πt, it) (it is equal to 0.7800, so the maximal weight is 0.8832), but remains stubbornly

low in VARs that omit either macro aggregate, in particular the policy rate.23

Another way to see this logic is to study monetary policy R2’s in a variant of the Smets-

Wouters model with forward guidance shocks, as done in Plagborg-Møller & Wolf (2019a).

R2 for Forward Guidance Shock

Figure A.1: I take the benchmark model of Smets & Wouters (2007), but delay the monetary
policy shock by two periods. The figure shows the implied R2

`,FG with the conventional small
set of macro observables: output, inflation, and interest rates.

Figure A.1 (which is taken straight from that paper) shows various R2’s for a forward

guidance shock two quarters ahead. In addition to the R2
0,FG relevant for SVAR inference, I

additionally consider the implied R2’s using current, past and some future values of macro

aggregates – that is, the more general R2
`,j terms of Proposition 1. The x-axis in Figure A.1

23For example, in a four-variable VAR in consumption, investment, output and inflation, the R2
0,m at my

benchmark parameterization of Smets & Wouters (2007) is equal to 0.0934.
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varies the number of periods ` that the econometrician is allowed to look into the future.

At horizon 0, the R2 is very low, for two reasons. First, forward guidance shocks do not

drive much of the variation in aggregate data (just like conventional policy shocks), and

second, they move inflation and interest rates in the same direction (unlike conventional

policy shocks). As a result, any econometrician observing the conventional small set of macro

aggregates hit by a forward guidance shock would presumably conclude that a demand shock

must have occurred. Two periods out, however, when the shock materializes, interest rates

and inflation are untied, so the econometrician realizes that the economy was presumably

hit by a forward guidance shock – accordingly, the R2 jumps to the high level familiar for

conventional monetary policy shocks.

Weight Decay. Since the structural model of Smets & Wouters (2007) does not feature

news shocks, the incremental information in future realizations of macro aggregates – that

is, R2
`,j − R2

`−1,j – is generically small. For example, for monetary policy shocks, we have

R2
0,m = 0.8702 and R2

∞,m = 0.8763. Consistent with this intuition, the coefficients in the

higher-order entries of the lag polynomial P (L) in (9) are generically small.

Figure B.3 in Section B.3 provides an illustration for dynamic shock weights under the

identification scheme of Uhlig (2005), studied in Section 3. Given the displayed extremely

fast decay of weights, it is nearly sufficient to just look at the coefficients in the first entry

P0, as done for most of the plots displayed in Sections 3 to 5.

A.3 Shock volatility and Bayesian posteriors

I first provide a formalization of the limit results displayed in panel (b) of Figure 3.

Proposition A.1. In the sign-identified three-equation model, impose the uniform Haar

prior µ over the set of orthogonal matrices O(nx). Denote by λ = λ(σm) the induced posterior

probability of a negative output response as a function of the monetary policy shock volatility

σm. Then, if φy > 0,

lim
σm→0

λ(σ) = 0

lim
σm→∞

λ(σ) = 1

Proof. The boundaries of the identified set of rotation vectors p are defined as the solution
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to the following optimization problems:

max\minp∈S(3)
1

1 + φy + φπκ

(
σdpmd + φπσ

spms − σmpmm
)

such that

κσdpmd − (1 + φy)σ
spms − κσmpmm ≤ 0

(φy + φπκ)σdpmd − φπσspms + σmpmm ≥ 0

where S(n) denotes the n-dimensional unit sphere. Now let σd, σs → 0, and fix σm.24 It is

then easy to see that

lim
σd,σs→0

ISy,m,0 = 0

The Haar prior assigns strictly positive mass to the sign-identified set, since pmm ∈ [0, 1]

and the weights on the demand and supply shocks are unrestricted. But the upper bound is

only attained for a weight of 0 on the monetary policy shock, which maps into a measure-0

subset of the unit sphere under the Haar prior.

Next, as σm → 0, the identifying restrictions simplify to

κσdpmd − (1 + φy)σ
spms ≤ 0

(φy + φπκ)σdpmd − φπσspms ≥ 0

Thus pmd and pms must both be of the same sign. Re-arranging the inequalities, we see that,

if φy > 0, then pmd, pms must both be positive and, whenever pmd, pms > 0, we require that

pmd
pms
∈
[

φπ
φy + φπκ

,
1 + φy
κ

]
× σs

σd

where the interval has strictly positive length precisely because φy > 0. With the relative

demand and supply weights in this interval, and pmm unrestricted, we see again that the

posterior mass of the identified set is strictly positive. Since pmd, pms ≥ 0, we conclude that

the lower bound of the identified set is 0, attained with a weight of 1 on the monetary policy

shock. Again this maps into a measure-0 subset of the unit sphere under the uniform Haar

24With σm → ∞, the upper bound would remain finite and strictly positive, but the weight on the
monetary policy shock corresponding to any strictly positive output response would also be vanishingly
small, so the argument is unchanged.
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prior.

Proposition A.1 provides a formal rationalization of the results in Paustian (2007) and

Canova & Paustian (2011): For more volatile structural shocks, the Haar-implied posterior

probability of a correctly signed impulse response increases.

However, it is also straightforward to use the constructive logic of the proof to find

alternative measures µ̃ that, for any finite set of variances σ = (σd, σs, σm), give arbitrary

posterior probabilities for either positive or negative output responses. By the discussion

in Section 3.1, the identified set of the static three-equation model always contains strictly

positive and strictly negative output responses. For example, for a given set of variances

σ = (σd, σs, σm), let P+ denote the set of weight vectors that give a strictly positive output

response. For any alternative set of volatilities σ̃ = (σ̃d, σ̃s, σ̃m), and for any p ∈ P+, let

p̃∗i = pi× σi

σ̃i
, i ∈ (d, s,m), and p̃ ≡ p̃∗

||p̃∗|| . All weight vectors p̃ in the thus defined set P̃+ give

strictly positive output responses in the rescaled model. It remains to simply pick a measure

µ̃ that assigns arbitrarily large prior probability to P̃+.25

25Since my results rely on statements about relative shock volatilities, it is unsurprising that the conclusions
of Section 3 apply just as well to structural models estimated on different sample periods. For example, in a
variant of Smets & Wouters (2007) estimated on pre-Great Moderation samples, all shocks are more volatile,
but again demand and supply shocks are more prominent than monetary policy shocks, so the shape of
posterior distributions over identified sets is largely unchanged.
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