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Indirect reciprocity is a foundational mechanism of human cooper-
ation. Existing models of indirect reciprocity fail to robustly sup-
port social cooperation: image scoring models fail to provide robust
incentives, while social standing models are not informationally ro-
bust. Here we provide a new model of indirect reciprocity based on
simple, decentralized records: each individual’s record depends on
their own past behavior alone, and not on their partners’ past behav-
ior or their partners’ partners’ past behavior. When social dilemmas
exhibit a coordination motive (or strategic complementarity), toler-
ant trigger strategies based on simple records can robustly support
positive social cooperation and exhibit strong stability properties. In
the opposite case of strategic substitutability, positive social cooper-
ation cannot be robustly supported. Thus, the strength of short-run
coordination motives in social dilemmas determines the prospects
for robust long-run cooperation.
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People (and perhaps also other animals) often trust each1

other to cooperate even when they know they will never2

meet again. Such indirect reciprocity relies on individuals3

having some information about how their partners have be-4

haved in the past. Existing models of indirect reciprocity fall5

into two paradigms. In the image scoring paradigm, each6

individual carries an image that improves when they help7

others, and (at least some) individuals help only those with8

good images (1, 2). In the standing paradigm, each individual9

carries a standing that typically improves when they help10

others with good standing, but not when they help those with11

bad standing, and individuals with good standing help only12

other good-standing individuals (3, 4).13

Neither of these paradigms provides a robust explanation14

for social cooperation. In image-scoring models, there is no15

reason for an individual to only help partners with good im-16

ages: since the partner’s image does not affect one’s future17

payoff, helping some partners and not others is optimal only18

if one is completely indifferent between helping and not help-19

ing. In game-theoretic terms, individuals never have strict20

incentives to follow image-scoring strategies, and hence such21

strategies can form at best a weak equilibrium. Closely related22

to this point, image-scoring equilibria are unstable in several23

environments (5, 6). Standing models do yield strict, stable24

equilibria, but they fail to be informationally robust: an in-25

dividual’s standing is a function of not only their own past26

behavior, but also their past partners’ behavior, their partners’27

partners’ behavior, and so on ad infinitum. In the absence of28

centralized record-keeping or some way of physically marking29

bad-standing individuals, computing such a function requires30

information that is likely unavailable in many groups (7).31

We develop a new theoretical paradigm for modeling indi-32

rect reciprocity that supports positive social cooperation as a33

strict, stable equilibrium while relying only on simple, individ-34

ualistic information: when two players meet, they observe each35

other’s records and nothing else, and each individual’s record 36

depends only on their own past behavior. (Individualistic 37

information is also called “first-order” (8–10).) 38

As our model of individual interaction, we use the classic 39

prisoner’s dilemma (“PD”) with actions C,D (“Cooperate,” 40

“Defect”) and a standard payoff normalization, where the 41

gain from unilateral defection, g, and the loss from unilateral 42

cooperation, l, are both positive and satisfy the condition 43

g < l + 1, which means that joint payoffs are maximized by 44

mutual cooperation—see the leftmost matrices in Fig. 1. This 45

canonical game can capture many two-sided interactions, such 46

as business partnerships (11), management of public resources 47

(12, 13), and risk-sharing in developing societies (14), as well 48

as many well-documented animal behaviors (15). 49
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Fig. 1. The prisoner’s dilemma. The matrices on the left show how any prisoner’s
dilemma can be represented by the standard normalization with g = (T −R)/(R−
P ) and l = (P−S)/(R−P ), where T > R > P > S. The matrices on the right
illustrate this normalization for “donation games” in which choosing G (Give) instead
of S (Shirk) incurs a personal cost c and gives benefit b > c to the opponent.

A critical feature of the PD is whether it exhibits strategic 50

complementarity or strategic substitutability. Strategic comple- 51

mentarity means that the gain from playing D is greater when 52
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the opponent also plays D. In the PD payoff matrix displayed53

in Fig. 1, this corresponds to the condition54

g < l. [Strategic Complementarity]55

The opposite case of strategic substitutability arises when the56

gain from playing D is greater when the opponent plays C:57

mathematically, this occurs when58

g > l. [Strategic Substitutability]59

Many previous studies of indirect reciprocity restrict at-60

tention to the “donation game” instance of the PD where61

g = l, as in the rightmost matrices in Fig. 1 (16).∗ Our62

analysis reveals this to be a knife-edge case that obscures the63

distinction between strategic complementarity (g < l) and64

substitutability (g > l). This distinction has long been known65

to be of critical importance in economics (18, 19), while its im-66

plications for cooperation in the repeated prisoner’s dilemma67

have been noted more recently (8, 9). When a player’s record68

depends only on their own past actions, the future reward for69

cooperation (or future penalty for defection) is independent70

of their current opponent’s record. Therefore, to obtain an71

equilibrium where a player has a strict incentive to cooper-72

ate if and only if the opponent’s record is good, the cost of73

cooperation must be lower against an opponent with a good74

record (who cooperates) than against one with a bad record75

(who defects): that is, cooperation requires g < l.76

Strategic complementarity is a common case in realistic77

social dilemmas. It implies that although D is always selfishly78

optimal (a defining feature of the PD), the social dilemma79

nonetheless retains some aspect of a coordination game, so80

that playing C is less costly when one’s partner also plays C.81

For example, mobbing a predator is always risky (hence costly)82

for each individual, but it is much less risky when others also83

mob (20).84

In our model, each player’s record is an integer, which85

evolves as a function of their history of plays of C and D. We86

assume the system is subject to some noise, so that, whenever87

an individual plays C, with probability ε their record updates88

as if they had played D instead.† Here the level of noise89

ε ∈ (0, 1) can reflect either errors in recording or errors in90

executing the intended action.91

A simple example of such a record system is the “Counting92

D’s” system where a player’s record is just a count of the93

number of times they have defected (or cooperated and were94

hit by noise). More complicated record systems could also95

count the number of times a player cooperated, and could also96

keep track of the time path of plays of C and D. We will97

analyze a fairly broad class of strategies, with the following98

three defining properties: (i) The set of all possible records99

can be partitioned into two classes, “good records” and “bad100

records.” (ii) When two players with good records meet each101

other, they cooperate; if instead either partner has a bad102

record, both players defect. (iii) The class of bad records is103

absorbing: once a player obtains a bad record, their record104

remains bad forever. We refer to this as the class of trigger105

strategies.106

Examples of trigger strategies include strategies where a107

player’s record becomes bad once the absolute number of108

∗However, the g 6= l case has also received significant attention: for example, the seminal article
of Axelrod and Hamilton (17) took g = 1 and l = 1/2.

† It would not substantively affect our results to assume that there is also noise when an individual
plays D, so we exclude this possibility for simplicity.

times they have defected crosses a threshold K, as well as 109

strategies where their record becomes bad the first time the 110

fraction of times they have defected crosses a threshold. We 111

call strategies of the former type tolerant grim trigger strategies 112

or GrimK, as they are a form of the well-known grim trigger 113

strategies (21) with a “tolerance” of K recorded plays of D. 114

We will see that GrimK strategies succeed in supporting 115

cooperation for a broad range of payoff parameters. Moreover, 116

if the payoff parameters preclude cooperation under GrimK 117

strategies, they also preclude cooperation under any other 118

trigger strategy. 119

We analyze the steady-state equilibria of a system where 120

the total population size is constant, but each individual has 121

a geometrically distributed lifetime with survival probability 122

γ ∈ (0, 1). Players play the PD with random rematching 123

every period, and receive no information about their current 124

partner other than their record. To ensure robustness, we 125

insist that equilibrium behavior is strictly optimal at every 126

record; in classical (normal-form) games, this implies that the 127

equilibrium is evolutionarily stable (22, 23). 128

Results 129

Steady-State Cooperation. We show that GrimK strategies 130

can form a strict steady-state equilibrium if and only if the 131

PD exhibits substantial strategic complementarity, in that 132

the gain from playing D rather than C is significantly greater 133

when the opponent plays D: the precise condition required in 134

the PD payoff matrix displayed in Fig. 1 is 135

g <
l

1 + l
. 136

Under this condition, the tolerance level K can be tuned so 137

that GrimK strategies support positive social cooperation in 138

a steady-state equilibrium. 139

To see how to tune the threshold K, note that since even in- 140

dividuals who always try to cooperate are sometimes recorded 141

as playing D due to noise, K must be large enough that 142

the steady-state share of the population with good records 143

is sufficiently high: with any fixed value of K, a population 144

of sufficiently long-lived players would almost all have bad 145

records. However, K also cannot be too high, as otherwise an 146

individual with a very good record (that is, with a very low 147

number of D’s) can safely play D until their record approaches 148

the threshold. Another constraint is that an individual with 149

record K − 1 who meets a partner with a bad record must not 150

be tempted to deviate to C to preserve their own good record. 151

These constraints lead to an upper bound on the maximum 152

share of cooperators in equilibrium. As lifetimes become long 153

and noise becomes small, this upper bound converges to 0 154

whenever g > l/(1+l), and to l/(1+l) whenever g < l/(1+l)— 155

see Figure 2—and we show that this share of cooperators can 156

in fact be attained in equilibrium in the (γ, ε)→ (1, 0) limit. 157

Thus, greater strategic complementarity (higher l and lower 158

g) not only helps support some cooperation; it also increases 159

the maximum level of cooperation in the limit, as shown in 160

Fig. 3. 161

We also show that, in the (γ, ε)→ (1, 0) limit, no trigger 162

strategies can support a positive equilibrium share of cooper- 163

ators if g > l/(1 + l), and no trigger strategies can support 164

an equilibrium share of cooperations greater than l/(1 + l) if 165

g < l/(1 + l). Thus, when lifetimes are long and noise is small, 166
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GrimK strategies attain optimum equilibrium cooperation167

within the class of trigger strategies. The logic of this result is168

that the constraints on the performance of GrimK strategies169

imposed by players’ incentives and the presence of noise apply170

equally to any strategy in the trigger class.171
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Fig. 2. Upper bounds on cooperation. The entries are upper bounds on the share
of cooperators possible in a GrimK equilibrium for various γ and ε values when
g = 0.5 and l = 2.5, with a darker shade indicating a higher value as shown in
the scale at right. As we move to the bottom right, the upper bound converges to
l/(1 + l) ≈ .7143, which is the maximum share of cooperators sustainable in the
limit, but away from the limit the upper bound can be different (the values in this table
are all higher, but this is not the case for small γ or large ε).

Stability, Convergence, and Evolutionary Properties.GrimK172

strategies also satisfy desirable stability and convergence prop-173

erties. These derive from an important monotonicity property174

of GrimK strategies: when the distribution of individual175

records is more favorable today, the same will be true tomor-176

row, because players with better records both behave more177

cooperatively and induce more cooperative behavior from their178

partners. (See Methods for a precise statement.) From this179

observation it can be shown that, whenever the initial distri-180

bution of records is more favorable than the best steady-state181

record distribution, the record distribution converges to the182

best steady state. Similarly, whenever the initial distribution183

is less favorable than the worst steady state, convergence to184

the worst steady state obtains. See Fig. 4. These additional185

robustness properties are not shared by more complicated, non-186

monotone strategies that can sometimes support cooperation187

for a wider range of parameters than GrimK.188

We also analyze evolutionary properties of GrimK equi-189

libria. When g < l/(1 + l), there is a sequence of GrimK190

equilibria that are “steady-state robust to mutants” and at-191

tains the maximum limit cooperation share of l/(1 + l). By192

this we mean that, when a small fraction of players adopt some193

mutant GrimK′ strategy where K′ 6= K, there is a steady-194

state distribution of records where it remains strictly optimal195

to play according to GrimK. We also perform simulations of196

dynamic evolution when a population playing a GrimK equi-197

librium is infected by a mutant population playing GrimK′198

for some K′ 6= K. (See Supplementary Information and199

Supplementary Fig. 1.)200

Multiplayer Public Goods Games. Although our main analysis201

takes the basic unit of social interaction to be the standard202

2-player PD, many social interactions involve multiple players:203

the management of the commons and other public resources204

is a leading example (12, 13). In the Supplementary Infor-205

mation we establish that, when strategic complementarity206
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Fig. 3. Limit performance of GrimK strategies. a, In the green region (l >
g/(1− g)), GrimK strategies sustain a positive limit share of cooperators, which
increases with l, as indicated by a deeper shade of green. In the orange region
(g < l < g/(1 − g)), the limit share of cooperators with GrimK is 0, but other
strategies may sustain positive cooperation in the limit. In the red region (l ≤ g),
individualistic records preclude cooperation. b, The limit share of cooperators as a
function of l when g = 1/2. At l = 1, there is a discontinuity; as l→∞, the limit
share of cooperators approaches 1.
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a

b

Fig. 4. Convergence of the share of cooperators. a depicts trajectories for the
share of cooperators when γ = 0.8, ε = 0.02, and players use theGrim1 strategy;
b does the same for the Grim2 strategy. a, All trajectories converge to the unique
steady state; b, there are three steady states. Here “high” trajectories converge
to the most cooperative steady state, while “low” trajectories converge to the least
cooperative steady state. See Methods for details.

is sufficiently strong, robust cooperation in the multiplayer 207

public goods game can be supported by a simple variant of 208

GrimK strategies, wherein a player contributes to the public 209

good if and only if all of their current partners have good 210

records. In contrast, with strategic substitutability the unique 211

strict equilibrium involves zero contribution. As the n-player 212

public good game is a generalization of the PD, this implies 213

that individualistic records preclude cooperation in the PD 214

with strategic substitutability, as indicated in the red region 215

in Fig. 3a. 216

Discussion 217

We have shown how individualistic records robustly support 218

indirect reciprocity in supermodular PD and multiplayer public 219

goods games. To place our results in context, recall that 220

scoring models do not provide robust incentives, while standing 221

models compute records as a recursive function of a player’s 222

partners’ past actions and standing, their partners’ actions 223

and standing, and so on, and thus require more information 224

than may typically be available. The simplicity and power 225

of individualistic records suggests that they may be usefully 226

adapted to specific settings where cooperation is based on 227

indirect reciprocity, such as online rating systems (24, 25), 228

credit ratings (10, 26), decentralized currencies (27, 28), and 229

monitoring systems for conflict resolution (29). Individualistic 230

records may also prove useful in modeling the role of costly 231

punishment in the evolution of cooperation (30–33). 232

We interpret individualistic records and GrimK strategies 233

as both a theoretical demonstration that simple strategies 234

can sometimes support cooperation using only first-order in- 235

formation and as an approximation of human behavior in a 236

range of environments. For example, when meeting a potential 237

business partner for the first time, it is common to contact 238

their past partners and inquire about the potential partner’s 239

past behavior, typically without delving into the past partners’ 240

own past behavior or the past partners’ partners’ behavior. 241

Similarly, in online marketplaces such as Ebay or AirBnB, one 242

typically rates one’s current partner’s behavior in the absence 243

of any information about their own past partners’ behavior. 244

Users then observe summary statistics that depend only on 245

their current partner’s own past behavior, which is an exam- 246

ple of individualistic (first-order) records. Moreover, if users 247

behave honestly only with partners who have not received too 248

many negative reviews, their behavior can be approximated 249

by GrimK strategies. 250

We conclude by discussing possible extensions of our anal- 251

ysis. 252

First, while we have analyzed the evolutionary stability 253

of the GrimK equilibrium, we have not analyzed how this 254

equilibrium could first arise. In our model, it is a strict 255

equilibrium for all agents to always defect, so that equilibrium 256

is also an ESS. To explain how society might move from such 257

a state to a more cooperative equilibrium such as GrimK, 258

we could appeal to random mutations. Given our continuum 259

population, this could be modeled as a deterministic drift as 260

in (34), but we do not develop that argument here. 261

We have also assumed that everyone shares the same as- 262

sessment of each individual’s record. This “public information” 263

assumption is known to be critical in some prior models of 264

indirect reciprocity. In our model, allowing heterogeneous 265

assessments of a player’s record would not change the analysis 266
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very much, so long as both partners learn their opponents’267

assessments of their records before taking actions (35–37). The268

more complex situation where each partner’s assessment of269

the other’s record is private information would be interesting270

to study in future research.271

Methods272

Here we summarize the model and mathematical results; fur-273

ther details are provided in the Supplementary Informa-274

tion.275

A Model of Social Cooperation with Individualis-276

tic Records. Time is discrete and doubly infinite:277

t ∈ {. . . ,−2,−1, 0, 1, 2, . . .}. There is a population of278

individuals of unit mass, each with survival probability279

γ ∈ (0, 1), so each individual’s lifespan is geometrically280

distributed with mean 1/(1− γ). An inflow of 1− γ newborn281

players each period keeps the total population size constant.282

We thus have an infinite-horizon dynamic model with283

overlapping generations of players (38).284

Every period, individuals randomly match in pairs to play285

the PD (Fig. 1). Each individual carries a record k ∈ N :=286

{0, 1, 2, ...}. Newborns have record 0. Under the Counting287

D’s record system, whenever an individual plays D, their288

record increases by 1, while whenever an individual plays289

C, their record remains constant with probability 1− ε and290

increases by 1 with probability ε; thus, ε ∈ (0, 1) measures291

the amount of noise in the system (39–43). More generally, a292

record system specifies an arbitrary next-period record as a293

function of the current-period record and the current-period294

recorded action, which equals D if the individual plays D, and295

equals C with probability 1− ε and equals D with probability296

ε if the individual plays C.297

When two players meet, they observe each other’s records298

and nothing else. A strategy is a mapping s : N×N→ {C,D},299

with the convention that the first component of the domain is300

a player’s own record and the second component is the current301

opponent’s record. We assume that all players use the same302

strategy, noting that this must be the case in every strict303

equilibrium in a symmetric, continuum-agent model like ours.304

(Of course, players who have different records and/or meet305

opponents with different records may take different actions.)306

The state of the system µ ∈ ∆(N) describes the share of307

the population with each record, where µk ∈ [0, 1] denotes308

the share with record k. When all players use strategy s, let309

fs : ∆(N) → ∆(N) denote the resulting update map govern-310

ing the evolution of the state. (The formula for fs(µ) is in311

the Supplementary Information.) A steady state under312

strategy s is a state µ such that fs(µ) = µ.313

Given a strategy s and state µ, the expected flow payoff of a314

player with record k is πk(s, µ) =
∑

k′ µk′u(s(k, k′), s(k′, k)),315

where u is the PD payoff function. Denote the probabil-316

ity that a player with current record k has record k′ t317

periods in the future by φk(s, µ)t(k′). The continuation318

payoff of a player with record k is then Vk(s, µ) = (1 −319

γ)
∑∞

t=0 γ
t
∑

k′ φk(s, µ)t(k′)πk′ (s, µ). Note that we have nor-320

malized continuation payoffs by (1 − γ) to express them in321

per-period terms. A player’s objective is to maximize their322

expected lifetime payoff.323

A pair (s, µ) is an equilibrium if µ is a steady-state un-324

der s and, for each own record k and opponent’s record k′,325

the prescribed action s(k, k′) ∈ {C,D} maximizes the ex- 326

pected lifetime payoff from the current period onward, given 327

by (1 − γ)u(a, s(k′, k)) + γ
∑

k′′ (ρ(k, a)[k′′])Vk′′(s, µ), over 328

a ∈ {C,D}, where ρ(k, a)[k′′] denotes the probability that a 329

player with record k who takes action a acquires next-period 330

record k′′. Note that this expression depends on the opponent’s 331

record only through the predicted current-period opponent 332

action, s(k′, k). In addition, the ratio (1− γ)/γ captures the 333

weight that players place on their current payoff relative to 334

their continuation payoff from tomorrow on. We study limits 335

where this ratio converges to 0, as opposed to time-average 336

payoffs which give exactly 0 weight to any one period’s payoff, 337

because in the latter case optimization and equilibrium impose 338

unduly weak restrictions (44). An equilibrium is strict if the 339

maximizer is unique for all pairs (k, k′), i.e. the optimal action 340

is always unique. Note that this equilibrium definition allows 341

agents to maximize over all possible strategies, as opposed 342

to only strategies from some pre-selected set. We focus on 343

strict equilibria because they are robust: they remain equi- 344

libria under “small” perturbations of the model. Note that 345

the strategy Always Defect, i.e. s(k, k′) = D for all (k, k′), 346

together with any steady state is always a strict equilibrium. 347

Lemma 2 in the Supplementary Information character- 348

izes the steady states for any GrimK strategy, as well as the 349

γ, ε, g, l parameters for which the steady states are equilibria. 350

Limit Cooperation under GrimK Strategies. Under GrimK 351

strategies, a matched pair of players cooperate if and only 352

if both records are below a pre-specified cutoff K: that 353

is, s(k, k′) = C if max{k, k′} < K, and s(k, k′) = D if 354

max{k, k′} ≥ K. 355

We call an individual a cooperator if their record is below 356

K and a defector otherwise. Note that each individual may be 357

a cooperator for some periods of their life and a defector for 358

other periods, rather than being pre-programmed to cooperate 359

or defect for their entire life. 360

Given an equilibrium strategy GrimK, let µC =
∑K−1

k=0 µk 361

denote the corresponding steady-state share of cooperators. 362

Note that, in a steady state with cooperator share µC , mutual 363

cooperation is played in share (µC)2 of all matches. Let 364

µC(γ, ε) be the maximal share of cooperators in any tolerant 365

grim trigger equilibrium (allowing for every possible K) when 366

the survival probability is γ and the noise level is ε. 367

Theorem 1 in the Supplementary Information charac- 368

terizes the performance of equilibria in GrimK strategies in 369

the double limit where the survival probability approaches 1— 370

so that players expect to live a long time and the “shadow of 371

the future” looms large—and the noise level approaches 0—so 372

that records are reliable enough to form the basis for incentives. 373

(This long-lifespan/low-noise limit is the leading case of inter- 374

est in theoretical analyses of indirect reciprocity (8, 45–49).) 375

The theorem shows that, in the double limit (γ, ε) → (1, 0), 376

µ̄C(γ, ε) converges to l/(1+l) when g < l/(1+l), and converges 377

to 0 when g > l/(1+l). The formal statement and proof of this 378

result are contained in the Supplementary Information. 379

Barring knife-edge cases, tolerant grim trigger strategies can 380

thus robustly support positive cooperation in the double limit 381

(γ, ε)→ (1, 0) if and only if the gain from defecting against a 382

partner who cooperates is significantly smaller than the loss 383

from cooperating against a partner who defects: g < l/(1 + l). 384

Moreover, the maximum level of cooperation in this case is 385

l/(1 + l). Here we explain the logic of this result. 386

Clark et al. PNAS | March 10, 2020 | vol. XXX | no. XX | 5



DRAFT

We first show that g < µC in any GrimK equilibrium.
Newborn individuals have continuation payoff equal to the
average payoff in the population, which is

(
µC
)2. Thus, since

a newborn player plays C if and only if matched with a cooper-
ator,

(
µC
)2 = (1− γ)µC + γµCV C

0 + γ(1−µC)V D
0 , where V C

0

and V D
0 are the expected continuation payoffs of a newborn

player after playing C and D, respectively. Newborn play-
ers have the highest continuation payoff in the population, so
V C

0 ≤ V0 =
(
µC
)2. For a newborn player to prefer not to cheat

a cooperative partner, it must be that V D
0 < V C

0 − (1− γ)g/γ,
so when µC < 1 (as is necessarily the case with any noise),(

µC
)2
< (1− γ)µC + γ

(
µC
)2 − (1− γ)(1− µC)g.

This inequality can hold only if g < µC .387

We next show that γ(1− ε)µC < l/(1 + l) in any GrimK388

equilibrium. The continuation payoff VK−1 of an individual389

with recordK−1 satisfies VK−1 = (1−γ)µC +γ(1−ε)µCVK−1,390

or VK−1 = (1− γ)µC/(1− γ(1− ε)µC). A necessary condition391

for an individual with record K−1 to prefer to play D against392

a defector partner is (1 − γ)(−l) + γ(1 − ε)VK−1 < 0, or393

l > γ(1− ε)VK−1/(1− γ). Combining this inequality with the394

expression for VK−1 yields γ(1 − ε)µC < l/(1 + l), which in395

the (γ, ε)→ (1, 0) limit gives µC ≤ l/(1 + l).396

We have established that tolerant grim trigger strategies397

can support positive cooperation in the (γ, ε) → (1, 0) limit398

only if g ≤ l/(1 + l), and that the maximum cooperation share399

cannot exceed l/(1 + l). The proof of Theorem 1 is completed400

by showing that when g < l/(1 + l), by carefully choosing401

the tolerance level K, GrimK can support cooperation shares402

arbitrarily close to any value between g and l/(1 + l) in equi-403

librium when the survival probability is close to 1 and the404

noise level is close to 0.405

Limit Cooperation under General Trigger Strategies.GrimK406

strategies are an instance of the more general class of trigger407

strategies, which are defined by the following properties: (i)408

The set of all possible records can be partitioned into two409

classes, “good records” G and “bad records” B. (ii) Partners410

cooperate if and only if they both have good records: s(k, k′) =411

C for all pairs (k, k′) ∈ G×G, and s(k, k′) = D for all other412

pairs (k, k′). (iii) The class B is absorbing: if k ∈ B, then413

every record k′ that can be reached starting at record k is also414

in B.415

Theorem 9 in the Supplementary Information shows416

that, in the (γ, ε)→ (1, 0) double limit, the maximum steady-417

state share of good-record players that can be supported in any418

trigger strategy equilibrium converges to zero if g > l/(1 + l),419

and converges to l/(1 + l) if g < l/(1 + l). Thus, in this420

double limit, tolerant grim trigger strategies attain the most421

equilibrium cooperation that any trigger strategy can support.422

The intuition for this result is that the necessary conditions423

g < µC and γ(1− ε)µC < l/(1 + l) derived above for GrimK424

strategies apply equally to any trigger strategy. The argument425

to establish the necessity of g < µC is similar to that for426

GrimK strategies, except we must now consider the incen-427

tives of a player with whichever record k yields the greatest428

equilibrium continuation payoff, which is no longer necessarily429

a newborn (i.e., we may now have k 6= 0). The argument to430

establish necessity of γ(1− ε)µC < l/(1 + l) is also similar to431

that for GrimK strategies, but now we consider the incentives432

of any player with a “marginal” good record that will become 433

bad if the player is recorded as playing one additional D, which 434

is no longer necessarily a player who has been recorded as 435

playing K − 1 D’s for some fixed cutoff K. 436

Convergence of GrimK Strategies. Fix an arbitrary initial
record distribution µ0 ∈ ∆(N). When all individuals use
GrimK strategies, the population share with record k at time
t, µt

k, evolves according to

µt+1
0 = 1− γ + γ(1− ε)µC,tµt

0,

µt+1
k = γ(1− (1− ε)µC,t)µt

k−1 + γ(1− ε)µC,tµt
k for 0 < k < K,

where µC,t =
∑K−1

k=0 µt
k. 437

Fixing K, we say that distribution µ dominates (or is more 438

favorable than) distribution µ̃ if, for every k < K,
∑k

k̃=0 µk̃ ≥ 439∑k

k̃=0 µ̃k̃; that is, if for every k < K the share of the population 440

with record no worse than k is greater under distribution µ 441

than under distribution µ̃. Under the GrimK strategy, let µ̄ 442

denote the steady state with the largest share of cooperators, 443

and let µ denote the steady state with the smallest share of 444

cooperators. 445

Theorem 12 in the Supplementary Information shows 446

that, if the initial record distribution is more favorable than 447

µ̄, then the record distribution converges to µ̄; similarly, if the 448

initial record distribution is less favorable that µ, then the 449

record distribution converges to µ. Formally, if µ0 dominates 450

µ̄, then limt→∞ µ
t = µ̄; similarly, if µ0 is dominated by µ, 451

then limt→∞ µ
t = µ. 452

In Fig. 4a the blue trajectory corresponds to the initial 453

distribution where all players have record 0, the red trajectory 454

is constant at the unique steady-state value µC ≈ .2484, and 455

the yellow trajectory corresponds to the initial distribution 456

where all players have defector records. Here all the trajectories 457

converge to the unique steady state. In Fig. 4b, the red 458

trajectory is constant at the largest steady-state value µC ≈ 459

.9855, the yellow trajectory is constant at the intermediate 460

steady-state value µC ≈ .9184, and the purple trajectory is 461

constant at the smallest steady-state value µC ≈ .6471. The 462

blue trajectory corresponds to the initial distribution where all 463

players have record 0 and converges to the largest steady-state 464

share of cooperators. The green trajectory corresponds to the 465

initial distribution where all players have defector records and 466

converges to the smallest steady-state share of cooperators. 467

Code availability. All simulations and numerical calculations 468

have been performed with MATLAB R2017b and Wolfram 469

Mathematica 11.3.0.0. In the Appendix of the Supplemen- 470

tary Information, we provide the MATLAB scripts used 471

to generate Fig. 4 as well as those to simulate evolutionary 472

dynamics and generate Supplementary Fig. 1. 473
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Figure Legends 571

Legend for Figure 1. The prisoner’s dilemma. The matrices 572

on the left show how any prisoner’s dilemma can be represented 573

by the standard normalization with g = (T − R)/(R − P ) and 574

l = (P − S)/(R− P ), where T > R > P > S. The matrices on the 575

right illustrate this normalization for “donation games” in which 576

choosing G (Give) instead of S (Shirk) incurs a personal cost c 577

and gives benefit b > c to the opponent. 578

Legend for Figure 2. Upper bounds on cooperation. 579

The entries are upper bounds on the share of cooperators possible 580

in a GrimK equilibrium for various γ and ε values when g = 0.5 581

and l = 2.5, with a darker shade indicating a higher value as shown 582

in the scale at right. As we move to the bottom right, the upper 583

bound converges to l/(1 + l) ≈ .7143, which is the maximum share 584

of cooperators sustainable in the limit, but away from the limit the 585

upper bound can be different (the values in this table are all higher, 586

but this is not the case for small γ or large ε). 587

Legend for Figure 3. Limit performance of GrimK 588

strategies. a, In the green region (l > g/(1− g)), GrimK strate- 589

gies sustain a positive limit share of cooperators, which increases 590

with l, as indicated by a deeper shade of green. In the orange region 591

(g < l < g/(1 − g)), the limit share of cooperators with GrimK 592

is 0, but other strategies may sustain positive cooperation in the 593

limit. In the red region (l ≤ g), individualistic records preclude 594

cooperation. b, The limit share of cooperators as a function of l 595

when g = 1/2. At l = 1, there is a discontinuity; as l → ∞, the 596

limit share of cooperators approaches 1. 597

Legend for Figure 4. Convergence of the share of coop- 598

erators. a depicts trajectories for the share of cooperators when 599

γ = 0.8, ε = 0.02, and players use the Grim1 strategy; b does the 600

same for the Grim2 strategy. a, All trajectories converge to the 601

unique steady state; b, there are three steady states. Here “high” 602

trajectories converge to the most cooperative steady state, while 603

“low” trajectories converge to the least cooperative steady state. See 604

Methods for details. 605
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