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In recent years, game theoretic ideas have been used to study the design of markets. Auctions 
have been employed to allocate radio spectrum, timber, electricity, and natural gas involving 
hundreds of billions of dollars worldwide (Paul R. Milgrom 2004). Matching procedures have 
found practical applications in centralized labor markets as well as school assignment systems 
in New York City and Boston.1 Connections between auctions and matching have been explored 
and extended (Alexander Kelso and Vincent Crawford 1982; John Hatfield and Milgrom 2005;  
and Robert Day and Milgrom 2008).

The practical aspects of market design have led to an enrichment of the theory of market 
design. This paper investigates a theoretical problem motivated by the use of stable matching 
mechanisms in large markets, inspired by a practical issue first investigated by Roth and Peranson 
(1999).2 A matching is stable if there is no individual agent who prefers to become unmatched 
or pair of agents who prefer to be assigned to each other to being assigned their allocation in the 
matching. In real-world applications, empirical studies have shown that stable mechanisms often 
succeed, whereas unstable ones often fail.3

1 For a survey of this theory, see Alvin E. Roth and Marilda A. Oliveira Sotomayor (1990). For applications to labor 
markets, see Roth (1984a) and Roth and Elliot Peranson (1999). For applications to student assignment, see for example 
Atila Abdulkadiro  ̆    g lu and Tayfun Sönmez (2003), Abdulkadiro  ̆    g lu et al. (2005), and Abdulkadiro  ̆    g lu, Pathak, and Roth 
(2005).

2 A recent paper by Jeremy Bulow and Jon Levin (2006) theoretically investigates a matching market with price 
competition, motivated by an antitrust case against the National Residency Matching Program. See also Muriel Niederle 
(2007).

3 For a summary of this evidence, see Roth (2002).
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Although stable mechanisms have a number of virtues, they are susceptible to various types 
of strategic behavior before and during the match. Roth (1982) shows that any stable mechanism 
is manipulable via preference lists: for some participants, reporting a true preference list (ordinal 
ranking over potential matches) may not be a best response to reported preferences of others. 
In many-to-one markets such as matching markets between colleges and students, where some 
colleges have more than one position, Sönmez (1997b, 1999) shows that there are additional stra-
tegic concerns. First, any stable mechanism is manipulable via capacities; that is, colleges may 
sometimes benefit by underreporting their quotas. Second, any stable mechanism is manipulable 
via prearranged matches; that is, a college and a student may benefit by agreeing to match before 
receiving their allocations from the centralized matching mechanism.

Concerns about the potential for these types of manipulation are often present in real markets. 
For instance, in New York City (NYC) where the Department of Education has recently adopted 
a stable mechanism, the deputy chancellor of schools described principals concealing capacity as 
a major issue with their previous unstable mechanism: “Before you might have a situation where 
a school was going to take 100 new children for ninth grade, they might have declared only 
40 seats, and then placed the other 60 outside of the process” (New York times, November 19, 
2004).4 Roth and Uriel G. Rothblum (1999) discuss similar anecdotes about preference manipu-
lation from the National Resident Matching Program (NRMP), which is an entry-level matching 
market for hospitals and medical school graduates in the United States.

The aim of this paper is to understand why, despite these negative results, many stable mecha-
nisms appear to work well in practice. We focus on the student-optimal stable mechanism, which 
forms the basis of many matching mechanisms used in the field, such as in NYC and the NRMP. 
Lester E. Dubins and David A. Freedman (1981) and Roth (1982) show that students do not have 
incentives to manipulate markets with the student-optimal stable mechanism, though colleges 
do have incentives to do so. Our results show that the mechanism is immune to various kinds 
of manipulations by colleges when the market is large. In real-world two-sided matching mar-
kets, there are often a large number of applicants and institutions, and each applicant submits a 
preference list containing only a small fraction of institutions in the market. For instance, in the 
NRMP, the length of the applicant preference list is about 15, while the number of hospital pro-
grams is between 3,000 and 4,000 and the number of students is over 20,000 per year. In NYC, 
about 75 percent of students submit preference lists of fewer than 12 schools, and there are about 
500 school programs and over 90,000 students per year.5 Motivated by these features, we study 
how the scope for manipulations changes when the number of market participants grows but the 
length of the preference lists does not.

We consider many-to-one matching markets with the student-optimal stable mechanism, 
where colleges have arbitrary preferences such that every student is acceptable, and students have 
random preferences of fixed length drawn iteratively from an arbitrary distribution. We show 
that the expected proportion of colleges that have incentives to manipulate the student-optimal 
stable mechanism when every other college is truth-telling converges to zero as the number of 
colleges approaches infinity. The key step of the proof involves showing that, when there are a 

4 A careful reader may recognize that this quote is not about a stable mechanism but about an unstable one. We 
present this quote just to suggest that strategic behavior may be a realistic problem in general. Indeed, concern about 
strategic behavior motivated New York City’s recent adoption of a stable mechanism, and this paper suggests that scope 
for manipulations may be limited under the current stable mechanism despite theoretical possibility of manipulation.

5 For data regarding the NRMP, see http://www.nrmp.org/2006advdata.pdf. For data regarding New York City high 
school match, see Abdulkadiro  ̆    g lu et al. (2008).
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large number of colleges, the chain reaction caused by a college’s strategic rejection of a student 
is unlikely to make another, preferred student apply to that college.6

This result does not necessarily mean that agents report true preferences in equilibrium. Thus, 
we also conduct equilibrium analysis in the large market. We introduce an additional condition, 
called sufficient thickness, and show that truthful reporting is an approximate equilibrium in a 
large market that is sufficiently thick.

A. Related Literature

Our paper is most closely related to Roth and Peranson (1999) and Nicole Immorlica and 
Mohammed Mahdian (2005). Roth and Peranson (1999) conduct a series of simulations on data 
from the NRMP and on randomly generated data. In their simulations, very few agents could 
have benefited by submitting false preference lists or by manipulating capacity in large markets 
when every other agent is truthful. These simulations lead them to conjecture that the fraction of 
participants with preference lists of limited length who can manipulate tends to zero as the size 
of the market grows.7

Immorlica and Mahdian (2005), which this paper builds upon, theoretically investigate one-
to-one matching markets where each college has only one position and show that as the size of 
the market becomes large, the proportion of colleges that are matched to the same student in all 
stable matchings approaches one. Since a college does not have incentives to manipulate via pref-
erence lists if and only if it is matched to the same student in all stable matchings (see David Gale 
and Sotomayor 1985 and Gabrielle Demange, Gale, and Sotomayor 1987), this result implies that 
most colleges cannot manipulate via preference lists when the market is large.

While this paper is motivated by these previous studies, there are a number of crucial differ-
ences. First, our focus in this paper is on many-to-one markets, which include several real-world 
markets such as the NRMP and the school choice program in NYC. In such markets a college 
can sometimes manipulate via preference lists even if the college is matched to the same set 
of students in all stable matchings.8 Moreover, in many-to-one markets there exists the addi-
tional possibilities of capacity manipulation and manipulation via pre-arrangement (unraveling) 
which are not present in a one-to-one market.9 We introduce new techniques to overcome these 
complications.

Second, previous research mostly focuses on counting the average number of participants that 
can manipulate the student-optimal stable mechanism, assuming that others report their prefer-
ences truthfully. This leaves open the question of whether participants will behave truthfully in 
equilibrium. A substantial part of this paper investigates this question and shows that truthful 
reporting is an approximate equilibrium in a large market that is sufficiently thick.10

6 Throughout the paper we focus on the SOSM. The college-optimal stable mechanism can be similarly defined by 
letting colleges propose to students. By making complementary assumptions about the model, we can derive results 
concerning incentives of students under the college-optimal stable mechanism similar to those in the current paper. 
However, additional assumptions may be needed for analyzing the incentives of colleges in this case, since truth-telling 
is not a dominant strategy for colleges with a quota larger than one in the college-optimal stable mechanism.

7 The property that in large matching problems the size of the set of stable matchings has also been documented 
using data from Boston Public School’s assignment system. Pathak and Sönmez (2008) report that in Boston, for the 
first two years of data from SOSM, in elementary school, the student-optimal stable matching and college-optimal 
stable matching coincide, while for middle school, at most three students are assigned to different schools in the two 
matchings.

8 For instance, see the example in Theorem 5.10 of Roth and Sotomayor (1990).
9 Indeed, Roth and Peranson (1999) explicitly investigate the potential for capacity manipulation in their 

simulations.
10 Immorlica and Mahdian (2005) claim that truth-telling is an approximate equilibrium in a one-to-one market even 

without sufficient thickness. In Section IV, we present an example to show that this is not the case, but truth-telling is 
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Incentive properties in large markets are studied in other areas of economics. For example, in 
the context of double auctions, Thomas Gresik and Mark Satterthwaite (1989), Aldo Rustichini, 
Sattherwaite, and Steven Williams (1994), Wolfgang Pesendorfer and Jeroen Swinkels (2000), 
Swinkels (2001), Drew Fudenberg, Markus Mobius, and Adam Szeidl (2005), and Martin Cripps 
and Swinkels (2006) show that the equilibrium behavior converges to truth-telling as the number 
of traders increases under various informational structures. Papers more closely related to ours 
are discussed in Section IV.

There is a literature that analyzes the consequences of manipulations via preference lists and 
capacities in complete information finite matching markets. See Roth (1984b), Roth (1985), and 
Sönmez (1997a) for games involving preference manipulation and Hideo Konishi and Utku 
Ünver (2005) and Kojima (2006) for games of capacity manipulation. Some of the papers most 
relevant to ours are discussed in Section IV.

The paper proceeds as follows. Section I presents the model and introduces a lemma which 
is key to our analysis. Section II defines a large market and presents our main result. Section 
III conducts equilibrium analysis. Section IV concludes. All proofs are in the online Appendix 
(available at http://www.aeaweb.org/articles.php?doi=10.1257/aer.99.3.608).

I. Model

A. Preliminary definitions

Let there be a set of students S and a set of colleges c. Each student s has a strict preference 
relation Ps over the set of colleges and being unmatched (being unmatched is denoted by s). 
Each college c has a strict preference relation ≻c over the set of subsets of students. If s ≻c ~, 
then s is said to be acceptable to c. Similarly, c is acceptable to s if c P  s  s. A market is tuple Γ  
= (S, c,  P  S , ≻c) where  P  S  = (Ps)s∈S, and ≻c = (≻c)c∈c.

Since only rankings of acceptable mates matter for our analysis, we often write only accept-
able mates to denote preferences. For example,

  P  s : c1, c2,

means that student s prefers college c1 most, then c2, and c1 and c2 are the only acceptable 
colleges.

For each college c ∈ c and any positive integer qc, its preference relation ≻c is responsive 
with quota qc if the ranking of a student is independent of her colleagues, and any set of students 
exceeding quota qc is unacceptable (see Roth 1985 for a formal definition).11 We will assume that 
all preferences are responsive throughout the paper.

Let Pc be the corresponding preference list of college c, which is the preference relation over 
individual students and ~. Sometimes only the preference list structure and quotas are relevant 
for the analysis. Therefore at times we abuse notation and denote by Γ = (S, c, P, q) an arbitrary 
market in which the preferences induce preference lists P = (Pi)i∈S∪c and quotas q = (qc)c∈c. 
We say that (S, c, PS, ≻c) induces (S, c, P, q) in such a case. We also use the following notation: 
P−i = (Pj)j∈S∪c \i and q−c = ( q c′  )c′∈c\c.

an approximate equilibrium under an additional assumption of sufficient thickness.
11 Note that, given a responsive preference with quota ≻c, we can always find a utility function uc : S → ℝ with the 

property that for all S′, S″ ⊆ S such that | S′ |, | S″ | ≤ qc , S′ ≻c S″ if and only if ∑s∈S′ uc(s) > ∑s∈S″ uc(s). In Section III, 
we will use a particular additive representation of responsive preferences.
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A matching μ is a mapping from c ∪ S to itself such that: (i) for every s, | μ(s) | = 1, and μ(s) 
= s if μ(s) ∉ c; (ii) μ(c) ⊆ S for every c ∈ c; and (iii) μ(s) = c if and only if s ∈ μ(c). That 
is, a matching simply specifies the college where each student is assigned or if the student is 
unmatched, and the set of students assigned to each college, if any.

We say a matching μ is blocked by a pair of student s and college c if s strictly prefers c to 
μ(s) and either (i) c strictly prefers s to some s′ ∈ μ(c) or (ii) | μ(c) | < qc and s is acceptable to c. 
In other words, the student s in the pair prefers college c over her assignment in μ, and college c 
prefers s either because it has a vacant seat or s is more preferred than another student assigned 
to c under μ. A matching μ is individually rational if for each student s ∈ S, μ(s)Ps~ or μ(s) = ~, 
and for each c ∈ c, (i) | μ(c) | ≤ qc and (ii) s ≻c ~ for every s ∈ μ(c). A matching μ is stable if it is 
individually rational and is not blocked. A mechanism is a systematic way of assigning students 
to colleges. A stable mechanism is a mechanism that yields a stable matching with respect to 
reported preferences for every market.

We consider the SOSM, denoted by φ, which is analyzed by Gale and Lloyd Shapley 
(1962).12

•	 Step 1: Each student applies to her first-choice college. Each college rejects the lowest-
ranking students in excess of its capacity and all unacceptable students among those who 
applied to it, keeping the rest of the students temporarily (so students not rejected at this step 
may be rejected in later steps).

In general, 
•	 Step t: Each student who was rejected in Step (t − 1) applies to her next highest choice (if 

any). Each college considers these students and students who are temporarily held from 
the previous step together, and rejects the lowest-ranking students in excess of its capacity 
and all unacceptable students, keeping the rest of the students temporarily (so students not 
rejected at this step may be rejected in later steps).

The algorithm terminates either when every student is matched to a college or every unmatched 
student has been rejected by every acceptable college. The algorithm always terminates in a 
finite number of steps. Gale and Shapley (1962) show that the resulting matching is stable. For 
two preference relations that induce the same pair of preference lists and quotas, the outcome of 
the algorithm is the same. Thus, we sometimes write the resulting matching by φ(S, c, P, q). We 
denote by φ(S, c, P, q)(i) the assignment given to i ∈ S ∪ c under matching φ(S, c, P, q).

B. manipulating the Student-Optimal Stable mechanism

We illustrate two ways that the SOSM can be manipulated through a simple example.

ExAMPLE 1: consider the following market with two colleges c1 and c2, and five students 
s1, … , s5. Suppose  q  c 1   = 3 and  q  c 2   = 1, and the preference lists of colleges are

  P   c 1   : s1, s2, s3, s4, s5,

  P   c 2   : s3, s2, s1, s4, s5,

12 The SOSM is known to produce a stable matching that is unanimously most preferred by every student among all 
stable matchings (Gale and Shapley 1962).
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and student preferences are

  P   s 1   : c2, c1,

  P   s 2   : c1, c2,

  P   s 3   : c1, c2,

  P   s 4   : c1, c2,

  P   s 5   : c1, c2.

The matching produced by the SOSM is

 μ =  ( s2  s3  s4  s1   c1  c1  c1  c2
 ) ,

which means that c1 is matched to s2, s3, and s4, c2 is matched to s1, and s5 is unmatched.13

The first type of manipulation we will focus on is a preference manipulation (manipulation 
via preference lists), first identified by Dubins and Freedman (1981). Suppose college c1 submit-
ted the following preference list:

  P′  c1
  : s1, s2, s5, s4, s3,

while reporting its true quota, 3. Then the SOSM produces the following matching:

 μ′ =  ( s1  s2  s5  s3    c1  c1  c1  c2
 ) .

If c1 prefers {s1, s2, s5} to {s2, s3, s4}, say because student s1 is particularly desirable, then it can 
benefit by misreporting its preferences.14

Another way a stable mechanism can be manipulated, identified by Sönmez (1997b), is by 
capacity manipulation (manipulation via capacities). Suppose that college c1 states its quota as  
q′  c 1   = 1, while reporting its preference list  P   c 1   truthfully. Then the SOSM produces the following 
matching:

 μ″ =  ( s1 s3   c1 c2
 ) .

If s1 is more desirable than {s2, s3, s4}, then college c1 can benefit by reporting  q′  c 1   = 1.15

These two cases illustrate how the SOSM can be manipulated. We will consider both prefer-
ence and capacity manipulations and their combination, and refer to this as a manipulation:

13 Similar notation is used throughout the paper.
14 Note that relation {s1, s2, s5}  ≻ c1

  {s2, s3, s4} is consistent with the assumption that ≻c is responsive.
15 We note that, in this example, capacity manipulation may not benefit c1 for some responsive preferences consistent 

with a fixed preference list  P   c 1  . Both s1  ≻ c1
  {s2, s3, s4} and {s2, s3, s4}  ≻ c1

  s1 are consistent with  P   c 1  , and capacity manipula-
tion  q′  c 1   benefits c1 in the former but not in the latter. Konishi and Ünver (2006) and Kojima (2007b) characterize the 
subclass of responsive preferences under which capacity manipulations benefit manipulating colleges under stable 
mechanisms. For preference manipulations, on the contrary, there may exist manipulations that benefit the manipulat-
ing college for all responsive preferences that are consistent with a given preference list. In the current example, for 
instance, if c1 declares    ˜ 

 
 P    c 1   : s1, s2, s4, s5, then c1 is matched to {s1, s2, s4}. This is unambiguously preferred by c1 to the 

match under truth-telling {s2, s3, s4} for any responsive preferences consistent with  P  c 1  .
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DEFINITION 1: A college c can manipulate the SOSM if there exists a pair of a preference list 
and a quota (P′c , q′c) with q′c ∈ {1, … , qc} such that

 φ(S, c, (P′c , P−c), (q′c, q−c))(c) ≻c φ(S, c, P, q)(c).

We assume q′c ≤ qc because it is easily seen that reporting a quota larger than its true quota is 
never profitable.

C. dropping Strategies

The previous section presented an example illustrating preference and capacity manipulations. 
To study how likely it is that manipulations are successful, one way to begin may be to consider 
all possible strategies of a particular college. For a college with a preference list of five students 
and a quota of three as in Example 1, this would involve considering all possible combinations of 
preference lists and quotas, which is 975 possible strategies, and verifying whether any of these 
strategies benefits the college.16

Fortunately, there is a general property of the manipulations we have discussed that allows 
us to greatly simplify the analysis and is one of the main building blocks of the analysis that 
follows. A reported pair of a preference list and a quota is said to be a dropping strategy if it 
simply declares some students who are acceptable under the true preference list as unacceptable. 
In particular, it does not misreport quotas, change the relative ordering of acceptable students, or 
declare unacceptable students as acceptable.17

Returning to our example before, the outcome of the previous preference manipulation  P′  c 1    can 
be achieved by the dropping strategy  P″   c 1   : s1, s2, s5, which simply drops students s3 and s4 from the 
true preference list. In the case of the previous capacity manipulation, if the college just dropped 
all students except s1, then it would receive the same outcome as reducing the quota to one. Note 
that in both of these cases, the original ordering of students is unchanged and only students on 
the original preference list are dropped.

The observation above turns out to be general for any stable mechanism. The following lemma, 
which is formally stated and proved in Appendix B, shows that the outcome of any manipulation 
can be replicated or improved upon by some dropping strategy.

LEMMA 1 (Dropping strategies are exhaustive): consider an arbitrary stable mechanism. Fix 
preferences of colleges other than c. Suppose the mechanism produces μ under some report of 
c. then there exists a dropping strategy that produces a matching that c weakly prefers to μ 
according to its true preferences.

Some intuition for this result can be seen in the example above. Consider a preference manipu-
lation  P′  c 1  , which demoted s3 to the bottom of the list of acceptable students. At one step of the 
SOSM, s3 is rejected by  P′  c 1   because three other students applied to c1, and s3 is declared to be the 
least desirable. Then s3 applies to c2, which rejects s1. Then s1 applies to c1 which accepts her, 
which benefits c1. A similar chain of rejection and acceptances can be initiated if c1 declares just 
s3 as unacceptable. Similarly, additional chains of rejections and acceptances produced by under-
reporting of quotas can be replicated by declaring some students as unacceptable instead.

16 All possible combinations are calculated by observing that there are 5! + 5 × 4 × 3 × 2 + 5 × 4 × 3 + 5 × 4 + 5 
ways to submit preference lists and 3 ways to report capacities.

17 Let (Pc, qc) be a pair of the true preference list and true quota of college c. Formally, a dropping strategy is a report 
(P′c, qc) such that (i) sPc s′ and sP′c~ imply sP′c s′, and (ii) ~Pc s implies ~P′c s.
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There are a few remarks about this lemma. First, while most of our analysis focuses on the 
SOSM, the lemma identifies a general property of any stable matching mechanism, which may 
be of independent interest. Second, a truncation strategy that drops students only from the end 
of its preference list can replicate any profitable manipulation in a simpler one-to-one matching 
market (Roth and John H. Vande Vate 1991), and our lemma offers its counterpart in a more 
general many-to-one matching market.18 Finally, and most important in the context of our work, 
the lemma allows us to focus on a particular class of strategies to investigate manipulations. In 
the previous example, we need only consider 2|S| = 25 = 32 possible dropping strategies instead 
of all 975 strategies. In addition to being small in number, the class of dropping strategies turns 
out to be conceptually simple and analytically tractable.

II. Large Markets

A. Regular markets

We have seen that a finite many-to-one matching market can be manipulated. To investigate 
how likely a college can manipulate the SOSM in large markets, we introduce the following ran-
dom environment. A random market is a tuple   ̃  

   
 Γ  = (c, S, ≻c, k, ), where k is a positive integer 

and  = (pc)c∈c is a probability distribution on c. We assume that pc > 0 for each c ∈ c.19 Each 
random market induces a market by randomly generating preferences of each student s as follows 
(Immorlica and Mahdian 2005):

•	 Step 1: Select a college independently from distribution . List this college as the top ranked 
college of student s.

In general,
•	 Step t ≤ k: Select a college independently from distribution  until a college is drawn that 

has not been previously drawn in steps 1 through t − 1. List this college as the t th most pre-
ferred college of student s.

Student s finds these k colleges acceptable, and all other colleges unacceptable. For example, 
if  is the uniform distribution on c, then the preference list is drawn from the uniform distribu-
tion over the set of all preference lists of length k. For each realization of student preferences, a 
market with perfect information is obtained.

In the main text of the paper, we focus on the procedure above for distribution  to generate 
preferences of students for the sake of simplicity. For readers interested in how this can be gener-
alized, we refer to the discussion in Section IV and Appendix A.5, where we describe additional 
results under weaker assumptions.

A sequence of random markets is denoted by (  ̃    Γ 1,   ̃    Γ 2, …), where   ̃    Γ n = (c n, S n ,  ≻  c   n  , k n,   n) is a 
random market in which | c n | = n is the number of colleges.20 Consider the following regularity 
conditions.

18 Truncation strategies have found use in subsequent work, such as Roth and Peranson (1999), Roth and Rothblum 
(1999), Jinpeng Ma (2002), and Lars Ehlers (2004). Truncation strategies may not be exhaustive when colleges may 
have a quota larger than one. For instance, in Example 1 we have seen that c1 can be matched with {s1, s2, s5} by a drop-
ping strategy  P″  c 1  , but such a matching or anything better for c1 cannot be attained by a truncation strategy.

19 We impose this assumption to compare our analysis with existing literature. Our analysis remains unchanged 
when one allows for probabilities to be zero.

20 Unless specified otherwise, our convention is that superscripts are used for the number of colleges present in the 
market, whereas subscripts are used for agents.
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DEFINITION 2: A sequence of random markets (  ̃    Γ 1,   ̃    Γ 2, …) is regular if there exist positive 
integers k and  

__
 q   such that

(1) k  n = k for all n,

(2) qc ≤  
__
 q   for c ∈ c n and all n,

(3) | S n | ≤  
__
 q  n for all n,21 and

(4) for all n and c ∈ c n, every s ∈ S n is acceptable to c.

Condition (1) assumes that the length of students’ preference lists does not grow when the 
number of market participants grows. Condition (2) requires that the number of positions of 
each college is bounded across colleges and markets. Condition (3) requires that the number of 
students does not grow much faster than that of colleges. Condition (4) requires colleges to find 
any student acceptable, but preferences are otherwise arbitrary.22 This paper focuses on regular 
sequences of random markets and makes use of each condition in our arguments. In the last sec-
tion, we will discuss directions in which these conditions can be weakened.

B. main Result

Consider the expected number of colleges that can manipulate the SOSM when others are 
truthful. Formally, such a number is defined as

 α(n) = E[#{c ∈ c | φ(S, c, (P′c, P−c), (q′c, q−c))(c) ≻c φ(S, c, P, q)(c)

 for some (P′c, q′c) in the induced market} |   ̃    Γ n].

The expectation is taken with respect to random student preferences, given the random mar-
ket   ̃    Γ n. Note that we consider the possibility of manipulations under complete information, that 
is, we investigate for colleges’ incentives to manipulate when they know the preferences of every 
agent. The randomness of student preferences is used only to assess the frequency of situations 
in which colleges have incentives to manipulate.

THEOREM 1: Suppose that the sequence of random markets is regular. then the expected pro-
portion of colleges that can manipulate the SOSm when others are truthful, α(n)/n, goes to zero 
as the number of colleges goes to infinity.

This theorem suggests that manipulation of any sort within the matching mechanism becomes 
unprofitable to most colleges, as the number of participating colleges becomes large. In Appendix 
A, we show that a manipulation that involves unraveling outside the  centralized  mechanism,

21 As mentioned later, this condition can be relaxed to state: there exists   ̃     q  such that | S n | ≤   ̃     q n for any n (in other 
words, here we are assuming  

__
 q   =   ̃     q  just for expositional simplicity). In particular, the model allows situations in which 

there are more students than the total number of available positions in colleges.
22 Condition (4) ensures that our economy has a large number of individually rational matchings, so potentially there 

is nontrivial scope for manipulations. It is possible to weaken this condition such that many, but not all, colleges find 
all students to be acceptable.
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 named manipulation via pre-arranged matches (Sönmez 1999), also becomes unprofitable as the 
market becomes large.

A limitation of Theorem 1 is that it does not imply that most colleges report true preferences 
in equilibrium. Equilibrium analysis is conducted in the next section.

The theorem has an implication about the structure of the set of stable matchings. It is well-
known that if a college does not have incentives to manipulate the SOSM, then it is matched to 
the same set of students in all stable matchings. Therefore the following is an immediate corol-
lary of Theorem 1.

COROLLARY 1: Suppose that the sequence of random markets is regular. then the expected 
proportion of colleges that are matched to the same set of students in all stable matchings goes 
to one as the number of colleges goes to infinity.

Corollary 1 is referred to as a “core convergence” result by Roth and Peranson (1999). The 
main theorem of Immorlica and Mahdian (2005) shows Corollary 1 for one-to-one matching, in 
which each college has a quota of one.

The formal proof of Theorem 1 is in Appendix B. For the main text, we give an outline of 
the argument. We begin the proof by recalling that if a college can manipulate the SOSM, then 
it can do so by a dropping strategy. Therefore, when considering manipulations, we can restrict 
attention to a particular class of strategies that simply reject students who are acceptable under 
the true preferences.

The next step involves determining the outcome of dropping strategies. One approach might 
be to consider all possible dropping strategies and determine which ones are profitable for a col-
lege. While the set of dropping strategies is smaller than the set of all possible manipulations, 
this task is still daunting because the number of possible dropping strategies is large when there 
is a large number of students.

Thus, we consider an alternative approach. We start with the student-optimal stable matching 
under the true preferences, and examine whether a college might benefit by dropping some stu-
dent assigned in the student-optimal matching. Specifically, we consider a process where begin-
ning with the student-optimal matching under true preferences, we drop some students from a 
particular college’s preference list and continue the SOSM procedure starting with the original 
students rejected by the college because of the dropping. We refer to this process as rejection 
chains.23

For instance, in Example 1, starting with the student-optimal stable matching, if college c1 
dropped students {s3, s4}, let us first consider what happens to the least preferred student in this 
set, student s4. If we examine the continuation of the SOSM, when s4 is rejected, this student will 
propose to c2, but c2 is assigned to s1 whom it prefers, so s4 will be left unassigned. Thus, college 
c1 does not benefit by rejecting student s4 in this process, because this rejection does not spur 
another more preferred student to propose to c1. On the other hand, consider what happens when 
college c1 rejects student s3. This student will propose to college c2, who will reject s1, freeing 
s1 up to propose to c1. By dropping s3, college c1 has created a new proposal which did not take 
place in the original SOSM procedure.

Our rejection chains procedure results in two cases: (i) a rejection never leads to a new pro-
posal at the manipulating college as in the case of s4, and (ii) a rejection leads to a new student 
proposal at the college as in the case of s3. The example above suggests that case (i) is never 
beneficial for the manipulating college, whereas case (ii) may benefit the college. In Lemma 3 in 

23 This process is formally defined in the Appendix B.
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the Appendix, we make this intuition precise: if the rejection chain process does not lead to a new 
proposal (case (i)), then a college cannot benefit from a dropping strategy.24 This result allows us 
to link the dropping strategy to the rejection chains algorithm. This connection gives us traction 
in large markets, as the number of cases to consider is bounded by a constant  2   

__
 q    for rejection 

chains, whereas there are 2 |  S
n

 | potential dropping strategies in a market with n colleges, and the 
latter number may approach infinity as n approaches infinity.

The last step of the proof establishes that the probability that a rejection chain returns to the 
manipulating college is small when the market is large. To see the intuition for this step, suppose 
that there is a large number of colleges in the market. Then there is also a large number of col-
leges with vacant positions with high probability. We say that a college is popular if it is given a 
high probability in the distribution from which students preferences are drawn. Any student is 
much more likely to apply to one of those colleges with vacant positions rather than the manipu-
lating college unless it is extremely popular in a large market, since there is a large number of 
colleges with vacant positions. Since every student is acceptable to any college by assumption, 
the rejection chains algorithm terminates without returning to the manipulating college if such 
an application happens. Thus, the probability that the algorithm returns to the manipulating col-
lege is very small unless the college is one of the small fraction of very popular colleges. Note 
that the expected proportion of colleges that can manipulate is equal to the sum of probabilities 
that individual colleges can manipulate. Together with our earlier reasoning, we conclude that 
the expected proportion of colleges that can successfully manipulate converges to zero when the 
number of colleges grows.

Both Roth and Peranson (1999) and Immorlica and Mahdian (2005) attribute the lack of 
manipulability to the “core-convergence” property as stated in Corollary 1. While this interpre-
tation is valid in one-to-one markets, the fact that a college is matched to the same set of stu-
dents in all stable matchings is necessary but not sufficient for the college to have incentives for 
truth-telling in many-to-one markets. Instead, our arguments show that lack of manipulability 
comes from the “vanishing market power” in the sense that the impact of strategically rejecting 
a student will be absorbed elsewhere and rarely affects the college that manipulated when the 
market is large.

Roth and Peranson (1999) analyze the NRMP data and argue that of the 3,000–4,000 par-
ticipating programs, less than one percent could benefit by truncating preference lists or via 
capacities, assuming the data are true preferences. They also conduct simulations using ran-
domly generated data in one-to-one matching, and observe that the proportion of colleges that 
can successfully manipulate quickly approaches zero as n becomes large. The first theoretical 
account of this observation is given by Immorlica and Mahdian (2005), who show Corollary 1 
for one-to-one matching. Theorem 1 improves upon their results and fully explains observations 
of Roth and Peranson (1999) in the following senses: (i) it studies manipulations via preference 
lists in many-to-one markets, and (ii) it studies manipulations via capacities. Neither of these 
points is previously investigated theoretically. Furthermore, we strengthen assertions of Roth and 
Peranson (1999) and Immorlica and Mahdian (2005) by showing that large markets are immune 
to arbitrary manipulations and not just misreporting preference lists or misreporting capacities.

III. Equilibrium Analysis

In the last section, we investigated individual colleges’ incentives to manipulate the SOSM 
when all agents are truth-telling. As noted in the previous section, Theorem 1 does not  necessarily 

24 We note that the manipulating college may not be made better off even when the rejection chain leads to a new 
proposal to the college (case (ii)).
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mean that agents report true preferences in equilibrium. We now allow all participants to behave 
strategically and investigate equilibrium behavior in large markets. This section focuses on the 
simplest case to highlight the analysis of equilibrium behavior. Appendix A.5 presents the more 
general treatment incorporating heterogeneous distributions of student preferences.

To investigate equilibrium behavior, we first define a normal-form game as follows. Assume 
that each college c ∈ c has an additive utility function 2S → 핉 on the set of subsets of students. 
More specifically, we assume that

 uc(S′)  { = ∑s∈S′  uc(s) if |S′| ≤ qc,   

 
< 0 otherwise, 

 
 

where uc(s) = uc({s}). We assume that sPc s′ ⇔ uc(s) > uc(s′). If s is acceptable to c, uc(s) > 0. If s 
is unacceptable, uc(s) < 0. Further, suppose that utilities are bounded. Formally, sup uc(s) is finite 
where the supremum is over the size of the market n, students s ∈ S n, and colleges c ∈ c n.

The normal-form game is specified by a random market   ̃    Γ  coupled with utility functions of 
colleges, and is defined as follows. The set of players is c, with von Neumann–Morgenstern 
expected utility functions induced by the utility functions above. All the colleges move simulta-
neously. Each college submits a preference list and quota pair. After the preference profile is sub-
mitted, random preferences of students are realized according to the given distribution . The 
outcome is the assignment resulting from φ under reported preferences of colleges and realized 
students preferences. We assume that college preferences and distributions of student random 
preferences are common knowledge, but colleges do not know realizations of student preferences 
when they submit their preferences.25 Note that we assume that students are passive players and 
always submit their preferences truthfully. A justification for this assumption is that truthful 
reporting is weakly dominant for students under φ (Dubins and Freedman 1981; Roth 1982).

First, let us define some additional notation. Let Pc = (Pc)c∈c and Pc−c = (Pc′  )c′∈c, c′≠c. Given ε 
> 0, a profile of preferences (P*

c, q*
c) = (P*

c, q*
c )c∈c is an ε-Nash equilibrium if there is no c ∈ c 

and (Pc′  , q′c) such that

 E[uc(φ(S, c, (PS, P′c, P*
c−c), (q′c, q*

−c))(c))] > E[uc(φ(S, c, (PS, P*
c  ), q* )(c))] + ε,

where the expectation is taken with respect to random preference lists of students.
Is truthful reporting an approximate equilibrium in a large market for an arbitrary regular 

sequence of random markets? The answer is negative, as shown by the following example.26

ExAMPLE 2: consider the following market   ̃    Γ    n for any n. there are n colleges and students. 
Preference lists of c1 and c2 are given as follows:27

  P   c 1   : s2, s1, … ,

  P   c 2   : s1, s2, … .

25 Consider a game with incomplete information, in which each college knows other colleges’ preferences only 
probabilistically. The analysis can be easily modified for this environment. See Appendix A.4.

26 This example shows that Corollaries 3.1 and 3.3 in Immorlica and Mahdian (2005) are not correct.
27 “…” in a preference list means that the rest of the preference list is arbitrary after those written explicitly.



JUNE 2009620 thE AmERicAN EcONOmic REViEW

Suppose that  p  c 1   
n
   =  p  c 2   

n
   = 1/3 and  p c  

n  = 1/(3(n − 2)) for any n ≥ 3 and each c ≠ c1, c2.28 With 
probability [  p  c 1   

n
    p  c 2   

n
  /(1 −  p  c 1   

n
  )] × [  p  c 1   

n
    p  c 2   

n
  /(1 −  p  c 2   

n
  )] = 1/36, preferences of s1 and s2 are given by

  P   s 1   : c1, c2, … ,

  P   s 2   : c2, c1, … .

Under the student-optimal matching μ, we have μ(c1) = s1 and μ(c2) = s2. Now, suppose that 
c1 submits preference list  P′  c 1   : s2. Then, under the new matching μ′, c1 is matched to μ′(c1) = s2, 
which is preferred to μ(c1) = s1. Since the probability of preference profiles where this occurs is 
1/36 > 0, regardless of n ≥ 3, the opportunity for preference manipulation for c1 does not vanish 
even when n becomes large. Therefore truth-telling is not an ε-Nash equilibrium if ε > 0 is suf-
ficiently small, as c1 has an incentive to deviate.

The example above shows that, while the proportion of colleges that can manipulate via pref-
erence lists becomes small, for an individual college the opportunity for such manipulation may 
remain large. Note, on the other hand, that this is consistent with Theorem 1 since the scope for 
manipulation becomes small for any c ≠ c1, c2.29

A natural question is under what conditions we can expect truthful play to be an ε-Nash equi-
librium. One feature of Example 2 is that c1 and c2 are popular and remain so even as the market 
becomes large. This suggests that it is the colleges that are extremely popular and remain so in a 
large market that may be able to manipulate.

Consider a market where there is not too much concentration of popularity among a small 
set of colleges. This feature of the market will reduce the influence of the exceptionally popular 
colleges that we observed in Example 2. One way to formally define this situation is to consider 
a sequence of random markets with the following property: there exists a finite bound t and frac-
tion of a colleges such that

(1)  p  1  
n / p [an]  

n
   ≤ t,

for large n, where  p  1  
n  is the popularity of the most popular college and  p [an]  

n
   is the popularity of 

the ath-tile college in market   ̃    Γ n. The condition means that the ratio of the popularity of the most 
popular college to the popularity of the college at the ath-tile does not grow without bound as the 
size of the market grows. This condition is satisfied if there is not a small number of colleges that 
are much more popular than all of the other colleges.

In Example 2, when n is large,  p  c 1   
n
  / p  c 2   

n
   = 1, but  p  c 1   

n
  / p c  

n  = n − 2 when c is not college c1 or c2, 
and this ratio grows without bound as n → ∞. We will show later that inequality (1) is sufficient 
for truth-telling to be an ε-Nash equilibrium.

While this condition is easy to explain, it is not the most general condition that will ensure 
truthful play. Appendix A.3 presents additional examples with weaker assumptions. We can 
describe a more general condition with the help of additional notation. Let

 Vt(n) = {c ∈ c n |  max    
c′∈c n

    { p c′  
n
  }/ p c  

n  ≤ t, #{s ∈ S n | cPs s} < qc}.

28 We use superscript n on pc to indicate the probability of college c for market   ˜ 
 

 Γ n. This notation is used in subse-
quent parts of the text.

29 Capacity manipulation may remain profitable for some colleges in a large market as well. See the Appendix A.6 
for an example illustrating this point.
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In words, Vt(n) is a random set that denotes the set of colleges sufficiently popular ex ante  
(maxc′  {  p c′  

n
  }/ p c  

n  ≤ t ) but there are fewer potential applicants than the number of positions 
(#{s ∈ Sn | cPs s} < qc) ex post.

DEFINITION 3: A sequence of random markets is sufficiently thick if there exists t ∈ 핉 such 
that 

 E [|Vt (n)|] → ∞,

as n → ∞.
The condition requires that the expected number of colleges that are desirable enough, yet have 

fewer potential applicants than seats, grows fast enough as the market becomes large. Consider 
a disruption of the market in which a student becomes unmatched. If the market is thick, such a 
student is likely to find a seat in another college that has room for her. Thus the condition would 
imply that a small disruption of the market is likely to be absorbed by vacant seats.30 In the 
example above, it is easy to verify that the market is not sufficiently thick. However, many types 
of markets satisfy the condition of sufficient thickness. For instance, if all student preferences are 
drawn from the uniform distribution, the market will be sufficiently thick. This is the environ-
ment first analyzed by Roth and Peranson (1999). The sufficient thickness condition is satisfied 
in more general cases, which are described in Appendix A.3.

THEOREM 2: Suppose that the sequence of random markets is regular and sufficiently thick. 
then, for any ε > 0, there exists n0 such that truth-telling by every college is an ε-Nash equilib-
rium for any market in the sequence with more than n0 colleges.

The proof of Theorem 2 (shown in Appendix B.3) is similar to that of Theorem 1, except for 
one point. With sufficient thickness, we can make sure that the rejection chain fails to return to 
any college with high probability, as opposed to only unpopular ones. This is because, with suf-
ficient thickness, in a large market there are many vacant positions that are popular enough for 
students to apply to with a high probability, and hence terminate the algorithm. The key differ-
ence is that, in this section, we have an upper bound of the probability of successful manipula-
tion for every college, while in the previous section, we have an upper bound only for unpopular 
colleges.

We pursue generalizations of this result in the Appendix. First, we consider an incomplete 
information environment and show the conditions needed for truth-telling to be an ε-Bayesian 
equilibrium of the game (Appendix A.4). Second, we obtain a similar result when we allow for 
the possibility of pre-arrangement (Appendix A.6). Third, when we allow a coalition of colleges 
to manipulate, we extend the result to show the conditions under which coalitions of colleges will 
have little incentive to manipulate (Appendix A.7). The precise statements and details of each of 
these extensions is in the corresponding sections of the Appendix.

30 This condition refers to the limit as the size of the market becomes large, so this notion is not relevant to a par-
ticular finite market. Thickness and the size of the market are not related. It is even possible that the market does not 
become “thick” even when the market becomes large, in the sense that the limit in the definition above is finite as n 
goes to infinity.



JUNE 2009622 thE AmERicAN EcONOmic REViEW

IV. Discussion and Conclusion

Why do many stable matching mechanisms work in practice, even though existing theory 
suggests that they can be manipulated in many ways? This paper established that the fraction of 
participants who can profitably manipulate the student-optimal stable mechanism (SOSM) in a 
large two-sided matching market is small under some regularity conditions. We further showed 
that truthful reporting is an approximate equilibrium in large markets that are sufficiently thick. 
These results suggest that a stable matching will be realized under the SOSM in a large market. 
Since a stable matching is efficient in general, the results suggest that the SOSM achieves a high 
level of efficiency in a large market.31 Taken together, these results provide a strong case for the 
SOSM as a market design in large markets.

Based on the results in this paper, when do we expect certain matching mechanisms to be hard 
to manipulate? We will highlight three crucial assumptions here. First, our result is a limit result, 
and requires that the market is regular and large.32 As discussed below, in a finite economy, 
the possibility of manipulation cannot be excluded without placing restrictive assumptions on 
preferences. Our results suggest that larger markets employing the SOSM will be less prone to 
manipulation than smaller markets, holding everything else the same.

Second, we have required that the length of the student preference list is bounded. As men-
tioned in the introduction, the primary motivation for this assumption is empirical. In the NRMP, 
the length of applicant preference lists is typically less than or equal to 15. In NYC, almost 
75 percent of students ranked fewer than the maximum of 12 schools in 2003–04 and there 
were over 500 programs to choose from.33 In Boston public schools, which recently adopted the 
SOSM, more than 90 percent of students ranked 5 or fewer schools at elementary school during 
the first and second year of the new mechanism, and there are about 30 different elementary 
schools in each zone.34 The conclusions of our results are known to fail if the assumption of 
bounded preference lists is not satisfied, and instead students regard every college as acceptable 
(Donald Knuth, Rajeev Motwani, and Boris Pittel 1990). Roth and Peranson (1999) conduct 
simulations on random data illustrating this point.

One reason students do not submit long preference lists is that it may be costly for them to do 
so. For example, medical school students in the United States have to interview to be considered 
by residency programs, and financial and time constraints can limit the number of interviews. 
Likewise, in public school choice, to form preference lists students need to learn about the pro-
grams they may choose from, and in many instances they may have to interview or audition 
for seats. Another reason may be that there is an exogenous restriction on the length of stu-
dent preference lists as in NYC. However, there is an additional concern for manipulation under 
such exogenous constraints on preference lists, since students may not be able to report their 
true preferences under the restriction.35 We submit as an open question how the large  market 

31 In a somewhat different model of matching with price competition, Bulow and Levin (2006) show that stable match-
ing mechanisms in their environment achieve high efficiency when there is a large number of market participants.

32 It is easy to relax some of our conditions on the definition of a regular market. For instance, our assumption on 
bounded preference lists could be generalized to state: there is a sequence  (kn) n=1  

∞   with limn→∞ (kn/ln(n)) = 0 such that, 
for any n and any student in Sn, the length of her preference list for the student is at most kn. Similarly, the condition on 
the number of students can be relaxed to state: there exists   ̃     q  such that |S n| ≤   ̃     q n for any n.

33 In subsequent years, the fraction of students with preference lists of fewer than 12 schools ranged between 70 
percent and 78 percent.

34 There is a total of 84 different elementary schools in the entire city. A small handful of these programs are city-
wide, and can be ranked by a student who lives in any zone. There is also a small fraction of students who can apply 
across zones because they live near the boundary of two zones.

35 NYC is a two-sided matching market using the SOSM, which has an explicit restriction on the number of choices 
that can be ranked. Note, however, that even in NYC, in the first year of data from the new system about 75 percent of 
students rank fewer than the maximum number of 12 schools in the main round, so our analysis may still hold approxi-
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argument may be affected when there is a restriction on the length of the preference list (see 
Guillaume Haeringer and Flip Klijn (2007) for analysis in this direction, though in the finite 
market setting).

Finally, our analysis relies on the distributional assumptions on student preferences. For any 
given number of colleges in the market, with enough data on the distribution of student prefer-
ences and college preferences, our methods can be adapted to obtain the bound on the potential 
gain from deviation from truth-telling. However, to verify whether a market is sufficiently thick 
requires making assumptions on college popularity as the market grows.

The main text has focused on a particular process for generating student preferences. Some 
distributions are excluded by this specification. For example, we assume that preferences of stu-
dents are independently drawn from one another, and they are drawn from an identical distribu-
tion. The i.i.d. assumption and the particular process we analyzed in the main text excludes, for 
example, cases where students in a particular region are more likely to prefer colleges in that 
region than students in other regions.

In the Appendix A.5, however, we analyze a more general model that allows students to belong 
to one of several groups and draw their preferences from different distributions across groups. 
We believe that the model with group-specific student preferences may be important for studying 
a number of real-world markets, for participants may often have systematically different prefer-
ences according to their residential location, academic achievement, and other characteristics. 
For instance, in NYC, more than 80 percent of applicants rank a program that is in the borough 
of their residence as their top choice, for all four years we have data. We show that truthful 
reporting is an approximate equilibrium in large markets that are sufficiently thick when this sort 
of heterogeneity across groups is present.

Our result is known to fail when there is some form of interdependence of student preferenc-
es.36 Obtaining the weakest possible condition on the distribution of preferences for our result to 
hold is a challenging problem for future work.

Another direction for generalization is to consider weakening the assumption of responsive 
preferences, or considering models of matching with transfers. With general substitutable pref-
erences, however, telling the truth may not be a dominant strategy for students. Hatfield and 
Milgrom (2005) have shown that substitutable preferences, together with the “law of aggregate 
demand,” is sufficient to restore the dominant strategy property for students. It would be interest-
ing to investigate if a result similar to ours holds in this environment.

A. Large markets and matching market design

Our results have established the virtues of the student-optimal stable mechanism in a large 
market. This may serve as one criterion to support its use as a market design, since other mecha-
nisms may not share the same properties in a large market. To see this point, consider the so-
called Boston mechanism (Abdulkadiro  ̆    g lu and Sönmez 2003), which is often used for real-life 
matching markets. The mechanism proceeds as follows:37

mately. The only other example we are aware of is Spanish college admissions studied by Antonio Romero-Medina 
(1998).

36 Immorlica and Mahdian (2005) present a model in which preferences cannot be generated by our procedure, and 
the fraction of colleges that can manipulate does not go to zero even as the size of the market goes to infinity. Since their 
environment is a special case of ours, it shows that some assumptions similar to ours are needed to obtain our results.

37 With slight abuse of terminology, we will refer to this mechanism where colleges rank students as the Boston 
mechanism, even though the Boston mechanism was introduced as a one-sided matching mechanism. That is, college 
preferences are given as an exogenously given priority structure.
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•	 Step 1: Each student applies to her first choice college. Each college rejects the lowest-
ranking students in excess of its capacity and all unacceptable students.

In general,
•	 Step t: Each student who was rejected in the last step proposes to her next highest choice. 

Each college considers these students, only as long as there are vacant positions not filled 
by students who are already matched by the previous steps, and rejects the lowest-ranking 
students in excess of its capacity and all unacceptable students.

The algorithm terminates either when every student is matched to a college or when every 
unmatched student has been rejected by every acceptable college.38

Under the Boston mechanism, colleges have no incentive to manipulate either via preference 
lists or via capacity, even in a small market with an arbitrary preference profile (Haluk Ergin and 
Sönmez 2006). Nevertheless, we argue that this mechanism performs badly both in small and 
large markets. The problem is that students have incentives to misrepresent their preferences, and 
there is evidence that some participants react to these incentives (Abdulkadiro  ̆    g lu et al. 2006). An 
example in Appendix A.8 shows that students’ incentives to manipulate the Boston mechanism 
remain large even when the number of colleges increases in a regular sequence of markets.

We view this paper as one of the first attempts in the matching literature to show how perfor-
mance of matching mechanisms in large economies can be used to compare mechanisms. One 
traditional approach in the matching literature is to find restrictions on preferences to ensure 
that a mechanism produces a desirable outcome. José Alcalda and Salvador Barberà (1994) 
investigate this question focusing on preference manipulation, and Onur Kesten (2008), Kojima 
(2007b), and Konishi and Ünver (2006) focus on capacity manipulation and manipulation via 
pre-arranged matches. One message from these papers is that the conditions that prevent the 
possibility of manipulation are often quite restrictive. In this paper, we have developed a different 
approach, which uses large market arguments to obtain possibility results.

More generally, we think that the kind of large market arguments similar to that in the cur-
rent paper will be fruitful in future work on matching and related allocation mechanisms. In the 
problem of allocating indivisible objects such as university housing, Kojima and Mihai Manea 
(2008) show that the probabilistic serial mechanism, which has desirable efficiency and fairness 
properties (Anna Bogomolnaia and Hervé Moulin 2001), also has a desirable form of incentive 
compatibility in a large market. In the kidney exchange problem, Roth, Sönmez, and Ünver 
(2004, 2007) show that efficiency can be achieved by conducting only kidney exchanges of small 
sizes when the number of incompatible patient-donor pairs is sufficiently large. Both of these are 
cases where large market arguments support a particular matching market design.

There are also open questions where large market analysis may yield new insights. Roth 
(2007) suggests that large market arguments may be useful to understand why a stable matching 
was always found in the NRMP, even though the existence of couples can make the set of stable 
matchings empty.39 In the school choice setting with indifferences, Aytek Erdil and Ergin (2008) 
propose a new procedure to construct a student-optimal matching. While there are potentially 
large efficiency gains from their procedure (Abdulkadiro  ̆    g lu et al., forthcoming), in their mecha-
nism, it is not a dominant strategy for students to reveal their preferences truthfully. Evaluating 

38 Note the difference between this mechanism and the SOSM. At each step of the Boston mechanism, students 
who are not rejected are guaranteed positions; the matches of these students and colleges are permanent rather than 
temporary, unlike in the SOSM.

39 To ensure the existence of stable matchings with couples, we need restrictive assumptions on preferences of 
couples (Bettina Klaus and Klijn 2005). Kojima (2007a) develops an algorithm to find stable matchings with couples 
without imposing assumptions on preferences that might be a first step to investigate this issue in large markets.
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 incentive properties of this new procedure in large markets may be an interesting direction for 
future research.

As market design tackles more complex environments, it will be harder to obtain finite mar-
ket results on the properties of certain mechanisms. The current paper explores an alternative 
approach, which is based on a large market assumption. Since many markets of interest can be 
modeled as large markets, explicitly analyzing the limit properties will be a useful approach to 
guide policymakers and help evaluate designs in these environments.
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Abdulkadiroğlu, Atila, and Tayfun Sönmez. 2003. “School Choice: A Mechanism Design Approach.” 
American Economic Review, 93(3): 729–47.
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