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Abstract

How should the tax rate and the level of public debt adjust to an adverse

Þscal shock? What is the optimal maturity structure of public debt? If the

maturity structure is carefully chosen, the ex post variation in the market

value of public debt can cover the government against the need to raise taxes

or debt should Þscal conditions turn bad. In general, almost every Arrow-

Debreu allocation can be implemented with non-contingent debt of different

maturities. In a stylized example, the optimal policy is implemented by

selling a perpetuity and investing in a short-term asset.

Keywords: Fiscal Policy, Debt Management, Taxation, Complete Markets

JEL Classification: E43, E60, H21, H63

∗I am indebted to Alberto Alesina, Robert Barro, and N. Gregory Mankiw for their advice and
support throughout my Ph.D. studies. Robert Barro, in particular, has been a true mentor to me.
For helpful feedback and discussions, I am particularly grateful to my three advisors; the editor,
Edward Glaeser; and one anonymous referee, whose report was unusually extensive. I also thank a
second anonymous referee; Daron Acemoglu, Fernando Alvarez, Abhijit Banerjee, Olivier Blanchard,
Ricardo Caballero, V.V. Chari, Ben Friedman, Pat Kehoe, Robert E. Lucas, Jr., Alessandro Pavan,
Julio Rotemberg, Nancy Stokey, Glen Taksler, Jaume Ventura, and Alvin Young; and seminar partici-
pants at various places where I presented earlier drafts of this paper. The standard disclaimer applies.
Correspondence: MIT Department of Economics, 50 Memorial Drive, E52-251, Cambridge, MA 02142.
Email: angelet@mit.edu.

1



I. Introduction

What are the properties of optimal fiscal policy when fiscal expenditure and aggregate

income are random, taxation is distortionary, and the government can issue only non-

contingent bonds? How should the tax rate and the level of public debt adjust to

an innovation in fiscal expenditure or national income? How should the government

design the maturity structure of public debt in anticipation of future uncertainty in

fiscal conditions?

When taxation is distortionary, any random variation in the tax rate reduces social

welfare. A benevolent government thus seeks a constant tax rate even in the presence of

aggregate uncertainty.1 But complicating this goal is the requirement that the govern-

ment satisfy her budget constraint. The present value of taxes must always cover the

present value of government expenditure plus the debt burden. Keeping the tax rate

constant is only possible when the variation in the realized debt burden perfectly offsets

any random variation in fiscal expenditure and the tax base.

The government could easily obtain a constant tax rate if she traded state-contingent

debt, that is, promises with the private sector that were conditional on the realization

of future uncertainty. In reality, however, governments do not customarily issue state-

contingent debt, perhaps because the involved contingencies are hard to describe and

verify. Instead, governments almost exclusively issue non-contingent debt, or bonds
1Technically, the marginal social cost of taxation, not the tax rate, must be equal across dates and

states of the world. For simplicity, I use the two notions interchangeably.
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whose pay-off is independent of the realization of uncertainty. Is it then possible to keep

the tax rate constant?

Unfortunately, this is not possible if the government issues only short-term debt.

The debt burden is then completely independent of the realization of contemporaneous

uncertainty, and the government must offset any random variation in the budget with an

appropriate adjustment in the tax rate. In fact, a positive innovation in fiscal expenditure

or a negative innovation in aggregate income forces the government to raise both the tax

rate and the level of public debt, since it is optimal to smooth the extra tax burden

intertemporally.

The situation is much better if the government issues long-term debt. The actual

debt burden then depends on contemporaneous interest rates, which in turn depend

endogenously on the state of the economy. If the maturity structure of public debt is

carefully chosen ex ante, the ex post variation in the market value of outstanding long-

term debt may offset the contemporaneous variation in the level of fiscal expenditure or

the tax base. In good times, interest rates are relatively low and the market value of

long-term debt is relatively high. In bad times, the market value of long-term debt falls

and the government enjoys a capital gain, which compensates for the increase in fiscal

expenditure or the drop in tax revenues.

The theoretical contribution of this paper is to formalize the above arguments within

a standard general-equilibrium economy and establish that the maturity structure of non-

contingent debt can replicate state-contingent debt. For general aggregate uncertainty,
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I prove that the government can implement almost every Arrow-Debreu allocation with

non-contingent debt of different maturities.

This paper also offers a practical lesson for public policy: Long-term debt can hedge

the budget against fiscal shocks. The optimal maturity structure permits the government

to keep a constant tax rate despite any variation in fiscal conditions.

In a stylized example, where shocks occur only to fiscal expenditure, the government

implements the optimal policy by selling a perpetuity (long-term debt) and investing in

a reserve fund (a short-term asset). In good times, the government rolls over a constant

balance in the reserve fund. In bad times, she withdraws from the reserve fund to

finance the increase in fiscal expenditure. Higher fiscal expenditure raises real returns,

which offset the drop in the balance of the short-term asset. This process insures the

government against innovations in fiscal expenditure and insulates the budget from risk

of refinancing the debt at high interest rates. Finally, because real returns vary inversely

with innovations in output, the same scheme insures against output fluctuations as well.

II. Discussion

The neoclassical literature on optimal fiscal policy is immense and I will not attempt

a comprehensive review.2 I will, however, stress the key elements that distinguish my

analysis from the pertinent literature: The restriction that the government can trade only

in non-contingent debt, and the general-equilibrium approach to the maturity structure
2See Barro [1989], Chari and Kehoe [1999], and references therein.
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of public debt.

Since Lucas and Stokey [1983], the standard paradigm on optimal fiscal policy has

maintained the assumption that markets are complete and the government can trade

state-contingent debt. State-contingent debt works as an insurance contract that permits

the government to sustain a constant tax rate in the face of aggregate uncertainty.

There are two disturbing facts, however, about the standard paradigm. First, the

maturity structure is irrelevant for tax smoothing when state-contingent debt is available.

The standard paradigm thus remains silent about the role of the maturity structure.3

Second, the assumption of state-contingent debt is counterfactual. The standard par-

adigm thus appears vacuous for a world where governments do not customarily issue

state-contingent debt.

Motivated from the last fact, Marcet, Sargent, and Seppala [2000] take the economy

of Lucas and Stokey [1983] and restrict the government to issue only risk-free debt, that

is, short-term non-contingent debt. Their findings affirm the “random-walk hypothesis”

of Barro [1979]. The rate of taxation and the level of debt permanently increase after

an adverse fiscal shock.

The critical difference in this paper is that the government has the option to issue

long-term non-contingent debt. The market value of long-term debt varies with equilib-

rium interest rates. The endogenous variation in the debt burden insures the government
3This paper does not consider the alternative role that the maturity structure can play in ensuring

time consistency, as in Lucas and Stokey [1983].
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against the need to raise either the tax rate or the level of debt when fiscal conditions

turn bad.

It is worth noting that the maturity structure can replicate state-contingent debt

not only when state-contingent debt is unavailable by assumption, but also when market

incompleteness is endogenous. Suppose that default is not possible and the state of the

economy is not verifiable. If the government writes a contingent debt contract with

the private sector, she is tempted ex post to misrepresent the state (e.g., the exact

level of fiscal spending), in order to pay the lowest possible amount to the private

sector. Private agents, however, are rational and anticipate that the government will

be tempted to cheat. Thus, the optimal contingent contract may not be feasible. The

maturity structure does not face this problem, simply because it is a contract that

prescibes unconditional payments on specific dates.

Finally, by translating the optimal contingent contract to non-contingent debt, I

provide a concrete theory for the optimal maturity structure of public debt, on the

basis of Ramsey’s [1927] principle for optimal taxation. I identify the optimal maturity

structure as the one that insures against fiscal shocks and permits the government to

implement an invariant tax rate.4

4Because nominal debt makes the real debt burden contingent on inflation, one could argue that

nominal debt can replicate state-contingent debt. The problem with this argument, however, is that

variation in the inflation rate is distortionary. In fact, just as it is optimal to keep that tax rate invariant,

it is optimal to keep the inflation rate invariant as well. In that case, nominal and real debt coincide.

And then, the optimal maturity structure permits the government to keep both the tax rate and the
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My discussion on optimal debt management is related to Roley [1979], Bohn [1990],

and Barro [1995]. However, they model interest rates as exogenous and take a simple

portfolio approach. I instead take a genuine general-equilibrium approach. General

equilibrium allows me to prove that the asset span of non-contingent debt is generically

complete and provides sound theoretical foundations for the optimal maturity structure.

Finally, the insight that long-term debt can provide insurance appears also in Gale

[1990]. However, he considers an orthogonal dimension — how long-term debt facilitates

inter-generational risk-sharing in an OLG economy — and does not provide a general

result about the relation between state-contingent and non-contingent debt.

The rest of the paper is organized as follows: Section III introduces the model and

characterizes what policies are implementable with and without state-contingent debt.

Section IV proves that the maturity structure can replicate state-contingent debt and

defines the optimal maturity structure under general aggregate uncertainty. Section V

focuses on uncertainty in fiscal expenditure and discusses some further insights. Section

VI concludes. All proofs are deferred to Appendix A.

III. The Economy

The model is a neoclassical, stochastic production economy similar to Lucas and Stokey

[1983]. The economy has a representative private agent and a government. The govern-

inflation rate constant.
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ment imposes a linear income tax which distorts the labor-leisure choice of the private

agent. Government spending, labor productivity, and tastes are exogenous and stochas-

tic.

A. Preferences, Technology, and Uncertainty

Time is discrete, indexed by t ∈ N ≡ {0, 1, ...}. The exogenous stochastic disturbances

in period t are summarized by a random variable st ∈ S. st is the ‘state’ at date

t. For convenience, S = {1, 2, ..., S}. S is thus the number of possible states. I let

st ≡ (s1, ...., st) ∈ St, ∀t ≥ 1. I call st−1 the ‘history’ and st ≡ (st−1, st) the ‘event’

at date t. Ct(st), Xt(st), Lt(st), Yt(st), Gt(st), and τ t(s
t) denote, respectively, aggregate

consumption, leisure, labor, output, government spending, and the tax rate at date t and

event st. Finally, µ(st) denotes the unconditional probability of st, and σn(st) denotes the

set of events at date n that are consistent with a given event st at date t : σt(st) ≡ {st},

σn(st) ≡ {st} × Sn−t if n > t, and σn(st) ≡ {sn ∈ Sn|st ∈ σt(sn)} if n < t.

There is a representative private agent. His preferences are standard, given recur-

sively by EtUt = Ut(Ct, Xt, st) + β · EtUt+1, ∀t ≥ 1. Et denotes the expectation operator

conditional on st. β is the constant discount factor. Ut (C,X, s) denotes the utility from

consumption C and leisure X at date t and state s. Ut : R2++ × S → R is increasing,

strictly concave, and smooth, and satisfies the Inada conditions. I frequently use the

shortcuts U(t) or Ut(st) for Ut(Ct(st),Xt(st), st).

The technology frontier is also separable across time and states. The resource con-
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straint at (t, st) is:

Ct(s
t) +Gt(st) = Yt(s

t) = Ft(Lt(s
t), st) (1)

Gt : S → R+ gives the level of fiscal expenditure at date t as a function of the con-

temporaneous state. Ft : R+×S → R+ is a neoclassical production function, with

∂Ft/∂L > 0 ≥ ∂2Ft/∂L
2. Through its dependence on st, the technology specification

accommodates exogenous productivity and endowment shocks, as well as productive

government services. Finally, total time is normalized to one: Xt(st) = 1− Lt(st).

To complete the description of the economy, I need to specify the type of assets the

government trades with the private agent. I consider two asset structures. The first

corresponds to complete Arrow-Debreu markets: The government is permitted to issue

state-contingent debt. The second introduces incomplete markets: The government is

restricted to trade only non-contingent bonds of N different maturities.

B. Arrow-Debreu Markets and State-Contingent Debt

The complete-markets economy is defined by the collection E = ({Ut, Ft, Gt}∞t=0 , β, µ, S).

In every period, the government trades a complete contingent debt contract with the pri-

vate agent. For st+1 = (st, st+1), let dt(st+1) denote the amount of the consumable good

that the government promises to deliver to the private agent at t+1 if event st+1 (state

st+1) occurs. The contingent contract at (t, st) is defined by Dt(st) = (dt(st, s))s∈S ∈ RS.

Let qt(st+1) denote the price of an Arrow security issued at t, st = σt(st−1), which

promises to pay one unit of the consumption good at t + 1 if event st+1 occurs. Then,
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the value of Dt(st) at the date of issue is
P

s∈S qt(s
t, s)dt(s

t, s).

Consider the fiscal budget at t, st = (st−1, st). The government inherits a debt

obligation dt−1(st), paysGt(st) in fiscal expenditures, collects τ t(st)Yt(st) in tax revenues,

and receives
P

s∈S qt(s
t, s)dt(s

t, s) from the sale of Dt(st). Thus, the budget at (t, st) is

dt−1(st) =
£
τ t(s

t)Yt(s
t)−Gt(st)

¤
+
X
s∈S
qt(s

t, s)dt(s
t, s). (2)

The consumer’s budget at (t, st) is symmetrically given by:

Ct(s
t) +

X
s∈S
qt(s

t, s)dt(s
t, s) = [1− τ t(s

t)]Yt(s
t) + dt−1(st). (3)

The consumer’s problem consists of maximizing his life-time utility, E0U0, subject to the

series of budget constraints above.

Definition 1. An allocation {Ct(.), Lt(.)}∞t=0 and a policy {τ t(.)}∞t=0 are implementable

with state-contingent debt if there are prices {qt(.)}∞t=0 and contingent debt promises

{dt(.)}∞t=0 such that: (i) Given {τ t(.), qt(.)}∞t=0, {Ct(.), Lt(.), dt(.)}∞t=0 maximize

E0U0 subject to (3). (ii) Given {Ct(.), Lt(.), qt(.)}∞t=0, {τ t(.), dt(.)}∞t=0 satisfy (2).

The equilibrium price of an Arrow security is equal to the intertemporal rate of

substitution in consumption: qt(st+1) = β[µ(st+1) ∂Ut+1(s
t+1)/∂C]/[µ(st) ∂Ut(s

t)/∂C],

st+1 ∈ σt+1(st). Moreover, the marginal rate of substitution between consumption and

leisure must equal the after-tax wage rate:

∂Ut(s
t)/∂X = [1− τ t(s

t)] · ∂Ft(Lt(st), st)/∂L · ∂Ut(st)/∂C. (4)
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Using equilibrium prices and integrating (2) over all sn ∈ σn(st), n ≥ t, we derive the

intertemporal budget at (t, st):

dt−1(st) = PVt(st) ≡
∞X
n=t

X
sn∈σn(st)

βnµ(sn)∂Un(s
n)/∂C

µ(st)∂Ut(st)/∂C
[τ t(s

t)Yt(s
t)−Gt(st)]. (5)

PVt(s
t) is the present value of surpluses at (t, st), which must always cover the debt

obligation of the government.

Under complete Arrow-Debreu markets, the government can freely transfer fiscal

funds across all different periods and realizations of uncertainty. As a result, the in-

tertemporal budgets for all t ≥ 1 are redundant:

Proposition 1. An allocation and a policy are implementable with state-contingent

debt if and only if: (i) They satisfy (1) and (4) at all dates and events; and (ii)

they satisfy the intertemporal budget at date 0, namely:

b−1 =
∞X
t=0

X
st∈St

βtµ(st)
∂Ut(s

t)/∂C

∂U0/∂C
[τ t(s

t)Ft(Lt(s
t), st)−Gt(st)]. (6)

C. Incomplete Markets and Non-Contingent Debt

In this section I introduce the incomplete-markets economy, defined by the collection

(E, N) = ({Ut, Ft, Gt}∞t=0 , β, µ, S, N) . The government issues only non-contingent zero-

coupon bonds. These are real securities that promise to pay one unit of consumption

at maturity, independent of the realization of uncertainty. Maturity is indexed by j ∈

{1, 2, ..., N}. bt,j(st) denotes the stock of bonds issued at date t, event st, and promising

to pay one unit of consumption at date t + j. Their issue price is denoted by pt,j(st).
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The maturity structure is Bt = (bt,j)1≤j≤N ∈ RN , and Pt = (pt,j)1≤j≤N corresponds to

the term structure of interest rates. Finally, pt,0 ≡ 1.

Without loss of generality, I assume that the government restructures the public

debt every period: She first redeems all outstanding debt, and then issues fresh debt at

all maturities. The withdrawal of outstanding debt must be financed by the primary

surplus, plus the revenue from the sale of new debt. Therefore, the fiscal budget at (t, st)

is:
N−1X
j=0

pt,j(s
t)bt−1,j+1(st−1) =

£
τ t(s

t)Yt(s
t)−Gt(st)

¤
+

NX
j=1

pt,j(s
t)bt,j(s

t). (7)

The left-hand side represents the effective debt burden in period t. Although the stock

of bonds bt−1,j is non-contingent at t− 1, its market value at t depends endogenously on

st, through prices pt,j, provided N ≥ 2.

The consumer’s budget at (t, st) is symmetrically given by

Ct(s
t) +

NX
j=1

pt,j(s
t)bt,j(s

t) = [1− τ t(s
t)]Yt(s

t) +
N−1X
j=0

pt,j(s
t)bt−1,j+1(st−1). (8)

The consumer’s problem consists of maximizing his life-time utility, E0U0, subject to the

series of budget constraints above.

Definition 2. An allocation {Ct(.), Lt(.)}∞t=0 and a policy {τ t(.)}∞t=0 are implementable

with non-contingent debt if there exist interest rates {(pt,j(.))1≤j≤N}∞t=0 and non-

contingent debt issues {(bt,j(.))1≤j≤N}∞t=0 such that: (i) given {τ t(.), (pt,j(.))}∞t=0,

{Ct(.), Lt(.), (bt,j(.))}∞t=0 maximize E0U0 subject to (8) and (ii) given {Ct(.), Lt(.),

(pt,j(.))}∞t=0, {τ t(.), (bt,j(.))}∞t=0 satisfy (7).
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The equilibrium price of a non-contingent bond equals the expected marginal rate of

substitution in consumption between issuance and maturity: pt,j(st) =
P

st+j∈σt+j(st) β
j

[µ(st+j)∂Ut+1(s
t+j)/∂C]/ [µ(st)∂Ut(s

t)/∂C] . Moreover, condition (4) holds again. Us-

ing equilibrium prices and integrating (7) over all sn ∈ σn(st), n ≥ t, we derive the

intertemporal budget at (t, st) as

N−1X
j=0

pt,j(s
t)bt−1,j+1(st−1) = PVt(st). (9)

Thus, the present value of surpluses must cover the market value of outstanding debt.

(The derivation of (9) is included in the proof of Proposition 2.)

I earlier established (Proposition 1) that the intertemporal budgets for all t ≥ 1 were

redundant when markets were complete. Thanks to state-contingent debt, the govern-

ment could freely transfer funds across different states just as well as across different

dates. Now that markets are incomplete, however, the asset structure restricts the ways

the government may transfer funds across different states. As a result, the intertemporal

budgets at t ≥ 1 are no longer redundant.

To understand the nature of these restrictions, consider N = 1 as an example. This

is the case of risk-free debt as in Marcet, Sargent, and Seppala [2000]. (9) then reduces

to PVt(., s) = PVt(., s0) for all s, s0 ∈ S. That is, for a policy to be implementable with

risk-free debt, the present value of surpluses must not vary across states. The example

highlights two facts: First, the lack of state-contingent debt restricts the stochastic

variation in present value surpluses. Second, the case of risk-free debt is extreme in the

sense that it eliminates any cross-state variation in present-value surpluses.
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To formalize the restrictions that the lack of state-contingent debt implies, I intro-

duce the following two objects, ∀t ≥ 1: The S ×N matrix

Qt(s
t−1) ≡



1 pt,1(s
t−1, 1) ... pt,N−1(st−1, 1)

1 pt,1(s
t−1, 2) ... pt,N−1(st−1, 2)

...
...

. . .
...

1 pt,1(s
t−1, S) ... pt,N−1(st−1, S)


,

and the S × 1 vector

Vt(s
t−1) ≡


PVt(s

t−1, 1)

...

PVt(s
t−1, S)

 .

Qt(s
t−1) corresponds to the span of the term structure of real returns at date t, given

history st−1. Vt(st−1) gives the contemporaneous variation in present value surpluses. I

then arrange the intertemporal budgets (9) in matrix form as

Qt(s
t−1) ·Bt−1(st−1) = Vt(st−1). (10)

Because the choice of Bt−1(st−1) is otherwise free, (10) simply requires that Vt(st−1) is

spanned by Qt(st−1). That is, the stochastic variation in the term structure of interest

rates must support the contemporaneous variation in present value surpluses. I thus

conclude:

Proposition 2. An allocation and a policy are implementable with non-contingent debt

if and only if: (i) They satisfy (1) and (4) at all dates and events; (ii) they satisfy
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(6), the intertemporal budget at date 0; and (iii) equilibrium interest rates and

surpluses satisfy

Vt(s
t−1) ∈ Span £Qt(st−1)¤ , ∀t ≥ 1, st−1 ∈ St−1. (11)

D. Interest Rates, Taxes, and Fiscal Shocks

In general equilibrium, allocations and interest rates depend on the rate of taxation and

the state of the economy, which includes the level of government spending. An increase

in the tax rate induces substitution toward leisure without implicating a wealth effect.

Labor supply, output, and consumption thus decrease, causing the marginal utility of

consumption to increase. By implication, interest rates increase with contemporaneous

taxes and decrease with taxes at the date of maturity. On the other hand, a positive

innovation in fiscal expenditure means a negative wealth effect. Consumption and leisure

fall, output increases, and marginal utility raises. An adverse fiscal shock thus raises

contemporaneous interest rates. These intuitions are formalized below:

Proposition 3. There are mappings χt,λt, and ωt (t ≥ 0) such that Ct(st) = χt (τ t(s
t), st) ,

Lt(s
t) = λt (τ t(s

t), st) , and ∂Ut(s
t)/∂C = ωt(τ t(s

t), st). ∂χt/∂τ < 0, ∂λt/∂τ < 0,

and ∂ωt/∂τ 6= 0 for generic (U, F ). If ∂2Ut/(∂C∂X) ≥ 0, ∂ωt/∂τ > 0 and therefore

∂pt,j(s
t)/∂τ t(s

t) < 0 < ∂pt,j(s
t)/∂τ t+j(s

t+j).

Proposition 4. Provided ∂2Ut/(∂C∂X) ≥ 0, a positive innovation in fiscal expenditure

depresses consumption, expands employment and output, and raises interest rates

across all maturities.
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Remark. I will use the dependence of interest rates on tax rates to prove that non-

contingent debt can replicate state-contingent debt. I will later use the correlation of

interest rates with fiscal expenditure to characterize the optimal maturity structure.

IV. The Maturity Structure of Non-Contingent Debt

Define SCD andNCD as the sets of policies that are implementable with state-contingent

debt and non-contingent debt, respectively. Following Propositions 1 and 2, the only

difference between SCD and NCD is the series of spanning restrictions (11). But, when

do these restrictions really matter?

A. Arrow-Debreu Allocations with Non-Contingent Debt

Vt is a vector in RS, while Qt is collection of N column vectors in RS.Whenever N < S,

Span[Qt] is necessarily a proper subspace of RS. It follows that:

Lemma 1. (a) NCD $ SCD ∀N,S. (b) N < S ⇒ Closure[NCD] $ SCD.

(c) N1 < N2 ≤ S ⇒ Closure
£NCD|N=N1¤ $ NCD|N=N2 .

Part (a) states that there are always Arrow-Debreu allocations that cannot be im-

plemented with non-contingent debt. Part (b) gives more bite by establishing that NCD

cannot be dense in SCD if N < S : When N < S, there are clusters of Arrow-Debreu

allocations that are remote from any allocation that can be implemented with state-

contingent debt. Finally, part (c) means that NCD increases with N, in a ‘dense’ sense,
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as long as N < S.5

On the other hand, when N ≥ S, the converse to part (b) holds. That is, NCD is

dense in SCD if N ≥ S :

Lemma 2. N ≥ S ⇒ Closure[NCD] = SCD.

The formal proof is presented in Appendix A, but it is important to outline the main

argument here: I pick an arbitrary policy τ = {τ t(.)}∞t=0 ∈ SCD, calculate Vt and Qt at

all nodes t ≥ 1, st−1, and check whether Vt ∈ Span[Qt] at all (t, st−1). If Vt /∈ Span[Qt] at

some (t, st−1), then and only then the policy fails to be in NCD. In that case, I perturb

the allocation so as to force rank[Qt] = S, and thus Vt ∈ Span[Qt], at all nodes. I can

do this because (from Proposition 3) tax rates at t+j give me control over interest rates

at t. It is important, however, that I keep interest rates before t fixed while I perturb

interest rates at t. This makes sure that, while I force rank[Qt] = S at a date t, I do

not introduce a pathology before t. Finally, I make sure that the change in tax rates is

arbitrarily small in every node, and that it does not break the period-0 intertemporal

budget. Therefore, I am able to construct a policy in NCD that is arbitrarily close to

the any policy in SCD.

Combining Lemmas 1 and 2, I conclude:6

5In general, introducing an asset in an incomplete-markets economy might decrease social welfare.

In the present context, however, (c) implies that supτ∈NCD E0U0 is (generically) increasing in N.
6Greg Mankiw first pointed out that my result was reminiscent of results in the finance literature

regarding the spanning of contingent claims by long-lived securities. Although I was unaware of this,

my formal argument is related to Kreps [1979] and Duffie and Huang [1985].
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Theorem 1. Let S ≥ 1 be the number of states and N ≥ 1 the number of maturities.

When N ≥ S, then and only then any policy/allocation that is implementable

with Arrow-Debreu markets can either be implemented with non-contingent debt

or be approximated arbitrarily well.

Corollary. When N = S, a generic Arrow-Debreu allocation is implemented with non-

contingent debt by setting

Bt(s
t) = Qt+1(s

t)−1Vt+1(st), ∀t ≥ 0. (12)

Remark. In the model, S is identified with the number of different values the state

variable can take. However, the number of different sources of uncertainty is what

matters quantitatively. For example, if there are only shocks in fiscal expenditure, one

long maturity (N = 2) is enough. (See Section V.)

B. The Optimal Maturity Structure

The Ramsey plan equates the marginal welfare loss of taxation across all dates and all

events. Because preferences and the resource constraint at any given t depend only on

st and not on st−1, optimal tax rates and optimal allocations (under complete markets)

are independent of history. By implication:

Lemma 3. Along the Ramsey plan, Qt(st−1) = Qt and Vt(st−1) = V t, ∀st−1, t ≥ 1. If

the economy is stationary and uncertainty follows a Markov process, then Qt = Q

and V t = V , ∀t ≥ 1.

17



Theorem 1 implies that the Ramsey allocations can at least be approximated with

non-contingent debt. Furthermore, it can be proved that if the state follows a generic

Markov process, then Q has full rank and thus the Ramsey plan is itself implemented

with non-contingent debt. (See ch.1 in Angeletos [2001a].)

Definition 3. The optimal maturity structure is the one that implements the Ramsey

plan with non-contingent debt when N = S.

In an economy without capital, the history-independence of the Ramsey allocations

implies that the optimal maturity structure is invariant, not only over all past shocks,

but also over the contemporaneous shock:

Theorem 2. The optimal maturity structure at t is independent of st. If the economy

is stationary and uncertainty follows a Markov process, then the optimal maturity

structure is independent of t as well.

C. The Optimal Maturity Structure in an Economy with Capital

My model is an economy without capital, like Lucas and Stokey [1983]. It is important,

however, to extend the results to an RBC economy as in Chari, Christiano, and Kehoe

[1994]:

Theorem 3. In an a stationary economy with capital, the optimal maturity structure

is a function of the contemporaneous optimal investment alone and is otherwise

independent of st and t.
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Therefore, the optimal maturity structure is invariant with contemporaneous and

past disturbances only once it is conditioned on contemporaneous investment. Moreover,

the level of public debt and its maturity structure inherit the cyclical and persistence

properties of investment.

Simulating the optimal maturity structure for an RBC economy could provide useful

insights about the cyclical properties of optimal debt management. The recipe for this

kind of quantitative exercise is now complete: First, simulate the Ramsey allocations

under complete markets, along the lines of Chari, Christiano, and Kehoe [1994] and

Chari and Kehoe [1999]. Next, calculate interest rates and present-value surpluses along

the Ramsey plan. Finally, use Bt = [Qt+1]
−1 Vt+1 to uncover the optimal maturity

structure.

V. Optimal Policy with Fiscal Shocks

In this section, I characterize the optimal maturity structure when the only (or main)

source of uncertainty is innovation in fiscal expenditure. I start with a stylized economy

which only has two states.

A. A Stylized Example: War and Peace

The state space is S = {w, n} ∀t ≥ 1. w represents ‘war’ and n represents ‘normal times’

or ‘peace’. w and n are serially uncorrelated with probabilities µw and µn. A ‘war’ is

simply a period of high fiscal expenditure: G(w) > G(n). R(s), PV (s), and 1/p(s)
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denote, respectively, the primary surplus, the present-value of surpluses, and the risk-

free rate under the Ramsey allocation, ∀t ≥ 1, s ∈ {w, n}. R0, PV0, and 1/p0 correspond

to t = 0. Finally, for any variable x, Ex ≡ µnx(n) + µwx(w) and ∆x ≡ |x(n)− x(w)|.

Proposition 4 established that, for a fixed tax rate, a war increases output, depresses

private consumption, and raises interest rates. Because the optimal adjustment in the

tax rate is small, these results (typically) extend to the Ramsey allocation as well. I

normalize ∂U/∂C = 1 during peace and ∂U/∂C = 1/δ > 1 during war. To simplify, I

set ∂U/∂C = 1 in period 0. It follows that p0 = p(n) = β (µn + µw/δ) and p(w) = δp(n).

(1− δ) = ∆p/p0 measures the increase in interest rates during a war. A war worsens the

fiscal budget in two ways: It reduces the contemporaneous surplus and raises the interest

rate at which future surpluses are discounted. Both effects imply PV (w) < PV (n).

Moreover,7 ∆PV = ∆R+(∆p/p0)(b−1−R0). That is, the variation in the present value

of surpluses equals the variation in the primary surplus plus the variation in the cost of

refinancing the historical debt.

In Appendix B, I show how to implement the optimal policy with continuous trading

of a one-period and a two-period bond. I also present a numerical example and discuss

comparative statics of the optimal maturity structure. Below, I show how to implement

the optimal policy with an alternative scheme that involves small transactions: Selling

a perpetuity once in period 0 and investing each period in a reserve fund.
7It follows from b−1 = PV0 and from PV0 = R0+ b∗, PV (n) = R(n)+ b∗, and PV (w) = R(w)+ δb∗,

where b∗ ≡ β[µnPV (n) + µwPV (w)/δ].
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First, consider period 0. The government sells a perpetuity which promises to pay a

fixed coupon κ in every t ≥ 1. The price of this perpetuity is π =P∞
t=1 β

t (µnκ+ µwκ/δ) =

p0κ/(1−β). The government also invests an amount z in a short-term asset, which I call

the ‘reserve fund.’ The period-0 budget implies z+b−1 = π+R0. Next, consider period 1.

(Along the Ramsey plan, periods t > 1 are isomorphic to period 1.) The short-term rate

between 0 and 1 is 1/p0. The reserve fund thus opens with balance z/p0. The government

pays κ for the coupon of the perpetuity. The market value of the remaining perpetuity isP∞
t=2 β

t−1 (µnκ+ µwκ/δ) = π during peace and
P∞

t=2 β
t−1δ (µnκ+ µwκ/δ) = δπ during

war. Therefore, the intertemporal budget is κ+π−z/p0 = PV (n) in the event of peace,

and κ+ δπ−z/p0 = PV (w) in the event of war. It follows that (∆p/p0)π = ∆PV . That

is, the right π makes sure that the realized variation in the market value of the perpe-

tuity matches the desired variation in the present value of surpluses. Finally, combining

with ∆PV = ∆R+ (∆p/p0)(b−1 − R0) and p0z + b−1 = π +R0, I conclude:

z =
∆R

∆p/p0
and π = [b−1 − R0] + ∆R

∆p/p0
.

The optimal investment in the reserve funds makes sure that the increase in real returns

during war is just enough to compensate for the shortfall in the primary surplus. The

optimal perpetuity, on the other hand, is equal to this investment plus the historical

level of debt.

I now can describe the optimal policy in action: At date 0, the government trans-

forms all outstanding public debt to a perpetuity and sells an additional perpetuity to

invest in the reserve fund. As long as peace prevails, the government rolls over a con-
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stant balance in the reserve fund. Whenever a war occurs, the government raises neither

taxes nor debt. She simply withdraws the expenses of the war from the reserve fund.

The reserve fund thus closes with a lower balance. A war, however, brings higher real

returns, and the increase in return compensates for the drop in balance. This way, the

government manages to insure herself against fiscal shocks and to implement a roughly

invariant tax rate.

Remark 1. The positive correlation between real returns and fiscal expenditure

drives the result that holding long-term debt and a short-term asset hedges against fiscal

shocks. In this aspect, I am standing on fairly sound foundations: The prediction that

real returns, output, and work hours increase with government spending is common

ground in macro theory. (See, e.g., Blanchard [1981], Turnovsky and Fisher [1992],

Aiyagari et al. [1992], Baxter and King [1993], and Barro [1995].) Most importantly,

there is substantial empirical evidence that real returns, together with output and work

hours, increase with a positive innovation in fiscal expenditure. (See, e.g., Barro [1987],

Plosser [1982, 1987], Plosser and Rouwenhorst [1994], and Evans [1987].)

Remark 2. If R(n) = R(w), z = 0 and π = b−1 − R0. If the primary surplus

is invariant, there is no need to hold a reserve fund. However, it is still optimal to

transform the initial debt to a perpetuity, so as to insulate the budget from the risk of

refinancing public debt at variable interest rates.

Remark 3. Prescott et al. [1983], Plosser [1987], Fama and French [1989], King

and Watson [1996], and Seppala [2000] provide evidence that real returns increase with
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negative innovations in output. If this is the case, long-term debt hedges the budget

against output fluctuations as well. Seppala [2000] reports standard deviations for the

real returns of British indexed bonds in the range of 4%−5%. If the British government

kept a long-term debt position in the range of 50% − 100% of GDP, and if a recession

raised the real return by about one standard deviation, the treasury department would

enjoy a capital gain in the range of 2%− 5% of GDP during a recession. These numbers

are of course only suggestive and serious quantitative analysis is still required.

B. The Number of Maturities, States, and Shocks

In the stylized economy I presented above, there were only two states (S = 2). Two

maturities (N = 2) were thus enough to implement the optimal policy. But, what if S is

much larger, say S = 100? If we take Theorem 1 too literally, N = 100 is necessary for

perfect insurance. However, N = 2 (one short and one long maturity) can still provide

substantial hedging. For a plausible numerical example that I present in Appendix B,

as much as 97% of the optimal variation in present-value surpluses can be supported

with N = 2 when S = 100. The reason for this result is that when there is only one

macroeconomic shock in the economy, present value surpluses and interest rates are

monotonic transformations of that shock and are nearly collinear with each other.

This insight suggests that what really matters is not S per se, but rather the types of

different macroeconomic shocks.8 If shocks in fiscal expenditure are the only (or main)
8In continuous time, a natural conjecture would be the following: If there are z ≥ 1 aggregate

random factors, N = z+ 1 implements the Ramsey policy with non-contingent debt.
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source of aggregate uncertainty, holding long-term debt and investing in a short-term

asset is enough to implement the optimal policy. But, suppose we introduce uncertainty

in productivity and tastes (interest rates) as well. How well can the government do with

just two debt instruments? Holding a perpetuity and a short-term asset will continue

to hedge the budget against both fiscal and output shocks, as well as against the risk of

refinancing the debt at variable interest rates. On the other hand, this hedging will be

incomplete, and optimal taxes and debt will necessarily exhibit a unit-root component.

Remark. The complete-markets paradigm predicts that optimal tax rates should be

roughly invariant, while the random-walk paradigm suggests that they should exhibit

unit-root persistence. One might infer that testing for a unit root in tax rates is enough to

distinguish the two paradigms. However, any degree of incomplete insurance generates

a unit-root component in taxes. The latter is just the manifestation of intertemporal tax

smoothing. To confront the two paradigms, one needs to compare the variance of this

unit-root component with the variance of the innovation in the annuity value of fiscal

spending. The complete-markets paradigm predicts that the ratio of the two is close

to zero. The random-walk paradigm predicts that this ratio is close to one. Whether

actual policy is closer to zero or one is still an open question.

VI. Concluding Remarks

If the maturity structure of non-contingent debt is carefully chosen, the equilibrium vari-

ation in the market value of public debt can hedge the budget against random variation
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in fiscal conditions. Within a standard neoclassical general-equilibrium economy, almost

every Arrow-Debreu allocation can be implemented with non-contingent debt of differ-

ent maturities. The optimal maturity structure is that which provides perfect insurance

and permits the government to sustain an invariant rate of taxation.

Critical for my argument that the maturity structure can provide perfect insurance

is that the government knows exactly how equilibrium interest rates will fluctuate with

relevant macroeconomic shocks. It is precisely this knowledge that permits the govern-

ment to exactly implement the desirable variation in the market value of public debt by

carefully choosing the maturity structure.

There are at least two reasons why the government may not enjoy this kind of

knowledge: Noise in asset prices and uncertainty about the model of the economy. If

real returns are subject to shocks that are orthogonal to the variation in present-value

surpluses, the optimal maturity structure will face a trade off between hedging against

fiscal shocks and infusing noise in the debt burden.

It is worth formalizing the above intuitions within a model that permits the govern-

ment to design the maturity structure of public debt, but introduces noise in interest

rates. The presence of uninsurable risks will generate a martingale in tax rates as in

Marcet, Sargent, and Seppala [2000]. However, because interest rates will continue to

increase with positive innovations in fiscal expenditure or negative innovations in output,

the nature of the optimal maturity structure will survive.

To recap, this paper proved that, within the neoclassical framework, the maturity
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structure of non-contingent debt can replicate state-contingent debt and permit the

government to sustain an invariant tax rate. Of course, I do not suggest by this result

that we should abandon research on policy design under incomplete markets. To the

contrary. Governments are unavoidably subject to uninsurable shocks and work such as

Marcet, Sargent, and Seppala [2000] and Marcet and Scott [2001] is very important for

understanding both the positive and the normative aspects of fiscal policy. However, I

will reiterate the main policy conclusion of this paper:

Holding long-term debt and investing in a short-term asset can hedge the

budget against both random variation in fiscal expenditure and aggregate

income, as well as against the risk of refinancing the outstanding debt at

variable interest rates.

This is probably more important for economies that face large fiscal and interest-rate

risks, but also could be an input in the recent debate about reducing and restructuring

the public debt of the United States.

Appendix A: Proofs

Proof of Proposition 1. This result is standard. See, e.g., Lucas and Stokey [1983]

or Chari and Kehoe [1999].

Proof of Proposition 2. Let Rt ≡ τ tYt − Gt, Pt ≡ (pt,1, ..., pt,N), Bt ≡ (bt,1, ..., bt,N),

and rewrite the budget (7) as
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Rt(s
t) =

£
1

Pt(st)

¤0£ I
00
¤
Bt−1(st−1)− Pt(st)0Bt(st).

A prime (0) denotes vector transpose, I is the N ×N identity matrix, and 0 is a column

vector of N zeros. Define qt,n(st+n|st) ≡ βn[µ(st+n)∂Ut+n(s
t+n)/∂C]/[µ(st)∂Ut(s

t)/∂C].

Observe that qt,1(st+1|st) ≡ qt(st, st+1), qt,n+1(st+n+1|st) = qt,n(st+n|st)qt+n(st+n, st+n+1).

Step 1 below proves that the budgets imply (11). Step 2 proves the converse.

Step 1. I fix (t, st). I take the budget at (t + n, st+n), multiply both sides with

qt,n(s
t, st+n)qt,n+1(s

t+n+1|st) = qt,n(s
t+n|st)qt+n(st+n, st+n+1), and sum over all st+n ∈

σt+n(st), n ≥ 0, to obtain:

PVt(s
t) ≡

∞P
n=0

P
st+n

qt,n(s
t+n|st)Rt+n(st+n) =

=
∞P
n=0

P
st+n

qt,n(s
t+n|st)

n£
1

Pt+n(st+n)

¤0£ I
00
¤
Bt+n−1(st+n)− Pt+n(st+n)0Bt+n(st+n)

o
=

=
£

1
Pt(st)

¤0£ I
00
¤
Bt−1(st−1) +

∞P
n=0

P
st+n

qt,n(s
t+n|st)×

×{−Pt(st+n)0 +
P
st+1

qt+n(st+n, st+n+1)
£

1
Pt+n+1(st+n,st+n+1)

¤0£ I
00
¤o
Bt+n(s

t+n).

Because pt+n,j(st+n) =
P

st+1
[qt+n(st+n, st+n+1)pt+n+1,j−1(st+n, st+n+1)],∀j, the term in

the brackets vanishes, implying PVt(st) =
PN−1

j=0 pt,j(s
t)bt−1,j(st−1). Evaluating this at

t = 0 gives (6). Arranging over all st ∈ S at t ≥ 1, st−1, gives Vt(st−1) = Qt(st−1)Bt−1(st−1),

which implies (11).

Step 2. (11) implies that, ∀st−1 ∈ St−1, t ≥ 1, there is some Bt−1(st−1) ∈ RN

such that Vt(st−1) = Qt(s
t−1)Bt−1(st−1), and therefore

PN−1
j=0 pt,j(s

t)bt−1,j+1(st−1) =

PVt(s
t), ∀st ∈ σt(st−1). By definition, PVt(st) = Rt(st) +

P
s∈S qt(s

t, s)PVt+1(s
t, s). Us-

ing PVt+1(st, s) =
PN−1

j=0 pt+1,j(s
t, s)bt,j+1(s

t, s) and
P

s[qt(st, s)pt+1,j−1(s
t, s)] = pt,j(s

t),

I obtain
PN−1

j=0 pt,j(s
t)bt−1,j+1(st−1) = Rt(st) +

PN
j=1 pt,j(s

t)bt,j(s
t).
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Proof of Proposition 3. To simplify notation, drop the dependence on t. C = χ(τ , s)

and L = λ(τ , s) are defined by UX(C, 1 − L, s) = (1 − τ)FL(L, s)UC(C, 1 − L, s) and

C + G(s) = F (L, s). Applying the implicit function theorem, ∂χ/∂τ = (∂F/∂L)2/D

and ∂λ/∂τ = (∂F/∂L)/D, where D is the Jacobian determinant. Concavity of U and

F (with at least one being strictly concave) imply D < 0. Therefore, ∂χ/∂τ < 0 and

∂λ/∂τ < 0. Next, define υ(τ , s) ≡ U(χ(τ , s), 1−λ(τ , s), s) and ω(τ , s) ≡ UC(χ(τ , s), 1−

λ(τ , s), s). ∂υ/∂τ = (1/D)FL(UCFL − UX) = (1/D)F 2LUCτ . Thus, τ = 0 ⇒ ∂υ/∂τ =

0 and τ > 0 ⇒ ∂υ/∂τ < 0. ∂ω/∂τ = (1/D)FL[UCCFL − UCX ]. Thus, ∂ω/∂τ 6=

0 for generic (U,F ) and ∂ω/∂τ > 0 ⇔ UCX > UCCFL (< 0). Finally, pj(st) =P
ς∈σt+j(st)[β

jµ(ς)ω(τ t+j(ς), ς)]/[µ(s
t)ω(τ t(s

t), st)] ≡ φj(τ t(s
t), τ t+j(σ

t+j(st)), st). (If µ is

a Markov process, φj(., s
t) can be redefined as φj(., st).) The derivatives of φj then follow

from those of ω.

Proof of Proposition 4. Assume G is sufficient statistic for the state and U, F are

independent of G. Redefine C = χ(τ , G) and L = λ(τ , G) by UX = (1 − τ)FLUC and

C + G = F (L), and ω(τ , G) ≡ ∂U(χ(τ , G), 1 − λ(τ , G))/∂C. Letting again D < 0 be

the Jacobian determinant, ∂λ/∂G = −(1/D)(UCUCX − UXUCC)/(UCC)2 and ∂χ/∂G =

−(1/D)[UCUXX−UXUCX+(1−τ)U 2CFLL]/(UCC)2 ≤ −(1/D)(UCUXX−UXUCX)/(UCC)2.

Thus, UCX ≥ 0 is sufficient for ∂χ/∂G > 0 and ∂λ/∂G > 0, and then ∂ω/∂G > 0.

Proof of Lemma 1. Part (a) and is obvious from Propositions 1 and 2. The proof

of parts (b) and (c) uses a perturbation argument similar to that of Lemma 2 (see

below): When N < S, rank[Qt] ≤ N < S, implying that Span[Qt] is never as large
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as RS, where Vt lives. If τ ∈ SCD implies Vt /∈ Span[Qt] at some t, any τ 0 ∈ SCD

close enough to τ will fail to induce Vt ∈ Span[Qt]. Similarly, Span[Qt|N=N1 ] is never as

large as Span[Qt|N=N2 ], provided N1 < N2 ≤ S. If a particular τ ∈ NCD|N=N2 implies

Vt /∈ Span[Qt|N=N1 ], any τ 0 close enough to τ will fail Vt ∈ Span[Qt|N=N1 ].

Proof of Lemma 2. Assume N ≥ S ≥ 2 (S = 1 is the trivial deterministic case).

Vt ∈ RS, Qt = Qt(st−1) is an S×N matrix, rank[Qt] ≤ min{S,N} = S, and rank[Qt] =

S is sufficient for Vt ∈ Span[Qt]. Take any τ = {τ t(.)}∞t=0 ∈ SCD. If Vt ∈ Span[Qt] for

all t, st−1, then τ ∈ NCD, and I am done. Consider τ such that Vt /∈ Span[Qt] for some

t, st−1. I start ascending the date-event tree till I hit the first pathological node. I then

follow Steps 1 and 2 below:

Step 1. From Proposition 3, ∂Ut+j(st+j)/∂C = ωt+j(τ t+j(s
t+j), st+j), ∂ωt+j/∂τ t+j 6=

0, and pt,j(st) = βjEt(∂Ut+j/∂C)/(∂Ut/∂C) = φt,j(τ t(s
t), τ t+j(σ

t+j(st)), st), ∂φt,j/∂τ t+j 6=

0. Perturbing ∂Ut+j(st+j)/∂C is thus equivalent to perturbing τ t+j(st+j) and τ t+j(σt+j(st)) ≡

{τ t+j(st+j) | st+j ∈ σt+j(st)} is a set of controls for pt,j(st). Moreover, ∀s, s0 ∈ S and

j, j0 ≥ 1, pt,j0(st−1, s0) is invariant with τ t+j(σ
t+j(st−1, s)), if and only if s0 6= s or j0 6= j.

Thus, for given j ∈ {0, ..., N − 1}, s ∈ S, perturbing τ t+j(σ
t+j(st−1, s)) affects only ele-

ment (s, j+1) and no other element of matrix Qt(st−1). By perturbing τ t+j(σt+j(st−1, s))

for all j ∈ {0, ..., N − 1}, s ∈ S, I can definitely obtain rank[Qt(st−1)] = S.

Step 2. ∂Ut+j/∂C enters, not only in pt,j = βjEt(∂Ut+j/∂C)/(∂Ut/∂C), but also

pt−k,k+j= βjEt−k(∂Ut+j/∂C)/(∂Ut−k/∂C) for all k ∈ {1, ..., t}. Therefore, perturbing

τ t+j(σ
t+j(st−1, s)) generally affects not only Qt(st−1), but also Qk(sk−1), ∀k ∈ {t−N +
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1 ≤ k ≤ t−1}, k ≥ 1, sk−1 = σk−1(st−1). This feedback from τ t+j to Qk, however, works

only through Et−k(∂Ut+j/∂C) = Et−k[Et−1(∂Ut+j/∂C)]. And Qk(sk−1) is unaffected if

sk−1 6= σk−1(st−1) or k ≤ t−N. To make sure that no earlier node is affected, it is thus

sufficient to keep E[(∂Ut+j/∂C)|st−1] remains invariant, ∀j ∈ {1, ..., N−1}. From Propo-

sition 3, E[(∂Ut+j/∂C)|st−1] is a single non-linear constraint on {τ t+j(σt+j(st−1, s)) :

1 ≤ s ≤ S}. Moreover, letting θ(s) ≡ ωt(τ t(s
t−1, s), (st−1, s))µ(st−1, s)/µ(st−1), we can

write β−jE[(∂Ut+j/∂C)|st−1] =
P

s∈S θ(s) · pt,j(st−1, s). The latter is a simple linear con-

straint over the S elements of column j + 1 of matrix Qt(st−1). Therefore, I can freely

perturb S− 1 elements of column j +1 of Qt(st−1) so as to obtain full rank for Qt(st−1)

and at the same time ensure no effect on earlier nodes.

I proceed forward in the event tree, repeating Steps 1 and 2 at all pathological nodes.

Finally:

Step 3. SCD and NCD are subsets of the space of sequences x = {xt}∞t=0 , xt ∈ RS
t
.

I endow this space with the norm ||x||∗ ≡ supt≥0{S−t/2||xt||}, ||xt|| ≡
p
x0txt. Let τ =

{τ t(.)}∞t=0 ∈ SCD denote the original policy and bτ = {bτ t(.)}∞t=0 the perturbed one; and
consider any ε, ε0 > 0. τ t(st) enters Qt−k(st−k), st−k = σt−k(st), for all k ∈ {1, ..., N−1}.

Therefore, τ t(st) is perturbed at most N − 1 times. I limit each such perturbation to

be < ε/(N − 1). Thus, |τ t(st)− bτ t(st)| < ε ∀ ≥ 1, st. Next, I need to adjust τ 0 to make

sure that bτ satisfies (6), the period-0 intertemporal budget. (6) is continuous in τ t(s
t)

∀st, t ≥ 1. The first partial derivative of (6) with respect to τ 0 is non-zero for almost

every τ ∈ SCD (τ 0 is not on the top of the Laffer curve). Therefore, the adjustment
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in τ 0 is both feasible and small: ∃ε > 0 such bτ ∈ SCD and |τ 0 − bτ 0| < ε0. Therefore,

||τ t−τ̂ t|| = {
P

st [τ t(s
t)− τ̂ t(s

t)]2}1/2 < St/2ε for all all t ≥ 1 and |τ 0−bτ 0| < ε0, implying

||τ − τ̂ ||∗ ≤ max{ε0, ε}.

To recap: I just constructed a bτ ∈ SCD that is arbitrarily close to τ ∈ SCD and

obtains full rank at all t ≥ 1.

Proof of Theorem 1. It follows from Lemmas 1 and 2.

Proof of Lemma 3. That the Ramsey allocations and tax rates are independent of

st−1 is established, e.g., in Lucas and Stokey [1983] and Chari and Kehoe [1999]. It

follows that PVt, pt,j and thus Vt, Qt, are independent of st−1 : Vt(st−1) = V t, Qt(st−1) =

Qt. If (Ut, Ft, Gt) = (U, F,G) and µ(st−1, s, s0) = µ(st−1)µs,s0, the Ramsey allocations,

and therefore V t, Qt, are independent of t as well.

Proof of Theorem 2. Assume N = S = rank[Qt],∀t ≥ 1. From (12) and Lemma 3,

Bt(s
t) = Bt ≡ Q−1t+1V t+1, ∀t ≥ 0.

Proof of Theorem 3. kt denotes the capital stock at t. The state at t is (st, kt). Al-

locations and prices are conditional on (st, kt). Redefine Bt(st, kt) ≡ [bt,j(st, kt)]1≤j≤N ,

Vt(s
t−1, kt) ≡ [PV (st−1, st, kt)]1≤st≤S , and Qt(s

t−1, kt) ≡ [pt,j−1(st−1, st, kt)]
1≤j≤N
1≤st≤S, and

rewrite (10) as Qt(st−1, kt) ·Bt−1(st−1, kt−1) = Vt(st−1, kt). Zhu [1992] and Chari, Chris-

tiano, and Kehoe [1994] prove that the Ramsey allocations and policies at t are indepen-

dent of st−1. Let k(s, k), pj(s, k), and PV (s, k) denote, respectively, the rate of invest-

ment, the price at maturity j, and the present value of surpluses at state (s, k) under the

Ramsey plan. Define V (k) ≡ £PV (s, k)¤
1≤s≤S , Q(k) ≡

£
1 p1(s, k) ... pN−1(s, k)

¤
1≤s≤S,
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and assume N = S = rank[Q(k)], ∀k. Then, Bt−1(st−1, kt−1) =
£
Q(kt)

¤−1
V (kt), kt =

k(st−1, kt−1).

Appendix B: A Numerical Example

Consider the wars-and-peace economy I introduced in Section V. S = {w, n} and

G(w) > G(n) ≥ 0. To derive closed-form results, I assume linear technology and isoe-

lastic preferences: Y = L and U(C,X) = (CαX1−α)1−γ/(1 − γ), γ > 0, 0 < α < 1.

B = (bshort, blong) denotes the optimal maturity structure. The government trades a

one-period (short) and a two-period (long) bond. B = Q
−1
V reduces to bshort =

EPV − blongEp1 and blong = ∆PV /∆p1. PV (w) < PV (n) and p(w) < p(n) imply

blong > 0. Besides, following the results in Section V, blong ≈ π ≈ b−1 + ∆R/∆p and

bshort ≈ −z ≈ ∆R/∆p, where π is the perpetuity and z is the reserve fund.

Baseline example. Preferences are β = .97, γ = 3, and α = 2/3. (The fraction

of labor time devoted to production is 2/3 and the coefficient of relative risk aversion

is ρ ≡ αγ = 2.) Probabilities are µw = µn = .5. EG is calibrated to 25% of EY, a

‘war’ means ∆G = 5% of EY , and initial debt is 40% of EY . For this parametrization,

B ≡ (bshort, blong) = (−31%,+72%)×EY . That is, the government transforms the initial

debt to long-term debt and issues another 30% of GDP in long-term debt, which she

invests in a short-term asset. I next consider some comparative statics.

Initial debt. Any change in the historical debt is reflected almost exclusively in

the long maturity. b−1 − R0 = 0 ⇒ B = (−32%,+33%); b−1 − R0 = 40% ⇒ B =

(−31%,+72%), and b−1 −R0 = 50%⇒ B = (−31%,+82%).
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Magnitude of shocks. ∆R and ∆p tend to increase almost linearly with ∆G. As

a result, ∆G has almost no effect on B. ∆G = 10% ⇒ B = (−30%,+71%), while

∆G = 5%⇒ B = (−31%,+72%).

Risk Aversion. Given ∆G, ∆p tends to increase with ρ ≡ αγ, the coefficient of

relative risk aversion, while ∆R is almost invariant with ρ. As a result, z ≈ −bshort

tends to decrease with ρ. ρ = 1⇒ B = (−60%,+102%); ρ = 2 ⇒ B = (−31%,+72%);

and ρ = 4⇒ B = (−16%,+56%).

Likelihood of war. The unconditional probabilities per se do not appear to matter.

µw = .1, µn = .9⇒ B = (−29%,+71%), while µw = µn = .5⇒ B = (−31%,+72%).

The Persistence of Shocks. In an economy without capital, more persistence in ex-

ogenous shocks translates to more persistence in optimal consumption and less variation

in interest rates. By implication, the investment in the short-term asset increase with

persistence. If I increase the probability of staying in the same state from .50 (baseline

example) to .75, I get b1 = −160% and b2 = +206%. As persistence tends to unit root,

interest-rate variation shrinks to zero, and −b1, b2 explode to infinity. However, this

disturbing result is mostly an artefact an economy without capital. In a standard RBC

economy, a permanent increase in fiscal expenditure triggers an increase in the steady-

state level of capital. Consumption growth and interest rates initially increase and then

slowly decrease as the economy converges to the new steady state. (See, e.g., Turnovsky

and Fisher [1992], Aiyagari et al. [1992], Baxter and King [1993].) Therefore, the varia-

tion of interest rates stays away from zero even when persistence tends to unit root. The
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maturity structure can then hedge the budget against even perfectly persistent shocks.

The number of states. N = 2 and S = 100. I calibrate G(s) to vary linearly between

20% and 30% of GDP. The rest of the parameter values are as in the baseline case. I

simulate the Ramsey plan and calculate V and Q. V is 100×1 and Q is 100×2. The first

column of Q is a column of units. The second column corresponds to the variation in

the short-term rate. I regress V on Q and compute the coefficient of determination, R2.

The latter measures the portion of variability in V that can be sustained with N = 2.

I get R2 = 97%. Besides, the coefficients of this regression, (bbshort,bblong) = [Q0Q]−1Q0V ,
can be interpreted as an ‘approximate’ optimal maturity structure. Not surprisingly,

bbshort < 0 < bblong.
Remark. Buera and Nicolini [2001] explore in some more detail the quantitative

properties of the optimal maturity structure. A problem with their simulations, however,

is that they impose high persistence in fiscal shocks. In an economy without capital,

this makes the variation in interest rates artificially small and the spread in the maturity

structure artificially large. It is thus important to extend the quantitative analysis to a

standard RBC economy, with endogenous capital.

Massachusetts Institute of Technology
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