Financial Crash, Commodity Prices and Global Imbalances

R. Caballero1,4 E. Farhi2,4 P-O. Gourinchas3,4

1MIT, 2Harvard, 3UC Berkeley, 4NBER

Global Financial Linkages, Transmission of Shocks and Asset Prices

European Central Bank, December 1-2, 2008
Bubbles, Commodity Prices and Global Imbalances

- Bubbles...

![Graph of S&P/Case Shiller Composite-10 Price Index (CPI deflated) with marked Asian Crisis and Subprime Crisis periods.]
Commodity Prices (2008 USD price of a barrel of WTI)...
Global Imbalances (CA deficits as percent of World GDP)

- 2.0%
- 1.5%
- 1.0%
- 0.5%
 0.0%
 0.5%
 1.0%
 1.5%
- 2.0%

% of World GDP

Asian Crisis
Subprime Crisis

U.S. Oil Producers Emerging Asia Europe & Japan

Global Imbalances (CA deficits as percent of World GDP)
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

The Role of Asset Supply:
- Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

Initial Phase of the Crisis (June 2007 to June 08):
- Collapse of the US housing and credit bubble reduces further world asset supply;
- Lowers real interest rates and makes commodity inventory accumulation profitable;
- A commodity bubble develops: One shock, not two!
- Commodity prices and asset prices are negatively correlated

Second phase of the Crisis (June 08-):
- Economic growth slows down....
- Eliminates the asset market tightness
- Collapse of the commodity bubble
- Commodity prices and asset prices are positively correlated
The Economic Mechanism.

The Role of Asset Supply:
- Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

Initial Phase of the Crisis (June 2007 to June 08):
- Collapse of the US housing and credit bubble reduces further world asset supply;
- Lowers real interest rates and makes commodity inventory accumulation profitable;
- A commodity bubble develops: One shock, not two!
- Commodity prices and asset prices are negatively correlated

Second phase of the Crisis (June 08-):
- Economic growth slows down....
- Eliminates the asset market tightness
- Collapse of the commodity bubble
- Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

The Role of Asset Supply:
- Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

Initial Phase of the Crisis (June 2007 to June 08):
- Collapse of the US housing and credit bubble reduces further world asset supply;
- Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

Second phase of the Crisis (June 08-):
- Economic growth slows down....
- Eliminates the asset market tightness
- Collapse of the commodity bubble
- Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis** (June 2007 to June 08):
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis** (June 08-):
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia;NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis** (June 2007 to June 08):
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis** (June 2007 to June 08):
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis** (June 08-):
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis (June 2007 to June 08):**
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis (June 08-):**
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis** (June 2007 to June 08):
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis** (June 08-):
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
The Economic Mechanism.

- **The Role of Asset Supply:**
 - Initial global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;

- **Initial Phase of the Crisis** (June 2007 to June 08):
 - Collapse of the US housing and credit bubble reduces further world asset supply;
 - Lowers real interest rates and makes commodity inventory accumulation profitable;
 - A commodity bubble develops: One shock, not two!
 - Commodity prices and asset prices are negatively correlated

- **Second phase of the Crisis** (June 08-):
 - Economic growth slows down....
 - Eliminates the asset market tightness
 - Collapse of the commodity bubble
 - Commodity prices and asset prices are positively correlated
Oil and Stocks
Implications for Global Imbalances.

First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in ’09.
Implications for Global Imbalances.

First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in '09.
First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in '09.
Implications for Global Imbalances.

First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in '09.
Implications for Global Imbalances.

First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in '09.
Implications for Global Imbalances.

- First Phase: Commodity Bubble and Stabilized Global Imbalances
 - U.S. Financial crisis should provoke a dramatic rebalancing;
 - The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
 - These petrodollar flows limit severely the extent of rebalancing:
- Second Phase: Growth Slowdown Provokes Two Offsetting Forces
 - Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
 - But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
 - This second effect dominates: rebalancing may accelerate in ’09.
Implications for Global Imbalances.

First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in ’09.
First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in ’09.
First Phase: Commodity Bubble and Stabilized Global Imbalances

- U.S. Financial crisis should provoke a dramatic rebalancing;
- The increase in commodity prices transfers wealth to commodity producers. They initially turn to the U.S. to store their newfound wealth in the U.S.
- These petrodollar flows limit severely the extent of rebalancing:

Second Phase: Growth Slowdown Provokes Two Offsetting Forces

- Reduction in asset supply; tends to depress interest rates and increase capital flows to the U.S;
- But collapse in commodity prices makes commodity producers poorer and reduces asset demand.
- This second effect dominates: rebalancing may accelerate in ’09.
Quantitative Assessment.

The mechanism we highlight is in the right ballpark;

We explain:

- the decline in world interest rates,
- the surge and subsequent decline in oil prices,
- a small changes in inventories,
- a limited global rebalancing;
Quantitative Assessment.

- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the surge and subsequent decline in oil prices,
 - a small changes in inventories,
 - a limited global rebalancing;
The mechanism we highlight is in the right ballpark;

We explain:

- the decline in world interest rates,
- the surge and subsequent decline in oil prices,
- a small changes in inventories,
- a limited global rebalancing;
Quantitative Assessment.

- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the surge and subsequent decline in oil prices,
 - a small changes in inventories,
 - a limited global rebalancing;
Quantitative Assessment.

- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the surge and subsequent decline in oil prices,
 - a small changes in inventories,
 - a limited global rebalancing;
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]

 \[\begin{align*}
 X_t^d &= C_t/(1 + \alpha) \\
 p_t Z_t^d &= \alpha C_t/(1 + \alpha)
 \end{align*} \]

 \(X_t \) grows at rate \(g \); \(Z \) is constant.

- **Asset Supply**

 | Good Assets | \(V_t \) | \(\delta X_{t+s} \) |
 | Inventories | \(p_t I_t \) |
 | Rational Bubble | \(B_t \) |

- **Asset market equilibrium:**
 \[W_t = V_t + p_t I_t + B_t; \]

- **Inventories:**
 \[p_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } I_t > 0; \]

- **Low asset supply:**
 \[r_{ref} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]
 \[X_t^d = C_t / (1 + \alpha) \]
 \[p_t Z_t^d = \alpha C_t / (1 + \alpha) \]
 \(X_t \) grows at rate \(g \); \(Z \) is constant.

- **Asset Supply**
 - Good Assets \(\rightarrow V_t \) \(\{ \delta X_{t+s} \} \)
 - Inventories \(\rightarrow p_t I_t \)
 - Rational Bubble \(\rightarrow B_t \)

- Asset market equilibrium:
 \[W_t = V_t + p_t I_t + B_t \]

- Inventories:
 \[\dot{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0 \).

- Low asset supply:
 \[r^\text{ref} = \delta \theta / (1 + \alpha) < g \]
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]

- **Commodities**
 \[X_t^d = C_t / (1 + \alpha) \]

- **Numeraire**
 \[p_t Z_t^d = \alpha C_t / (1 + \alpha) \]

- **X_t** grows at rate **g**; **Z** is constant.

- **Asset Supply**

 - **Good Assets** → \(V_t \)
 \[\{ \delta X_{t+s} \} \]
 - **Inventories** → \(p_t I_t \)
 - **Rational Bubble** → \(B_t \)

- **Asset market equilibrium:**
 \[W_t = V_t + p_t I_t + B_t; \]

- **Inventories:**
 \[\hat{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0 \);

- **Low asset supply:**
 \[r_{ref} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \begin{cases} \text{numeraire} & X_t^d = C_t / (1 + \alpha) \\ \text{commodities} & p_t Z_t^d = \alpha C_t / (1 + \alpha) \end{cases} \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

- **Good Assets** → \(V_t \) \{\(\delta X_{t+s} \)\}
- Inventories → \(p_t I_t \)
- Rational Bubble → \(B_t \)

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } I_t > 0; \]

Low asset supply:

\[r^{ref} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]
 \[
 \begin{cases}
 \text{numeraire} & X_t^d = C_t / (1 + \alpha) \\
 \text{commodities} & p_t Z_t^d = \alpha C_t / (1 + \alpha)
 \end{cases}
 \]
 \[X_t \text{ grows at rate } g; \ Z \text{ is constant.} \]

- **Asset Supply**
 - Good Assets \[\rightarrow V_t \ \{\delta X_{t+s}\} \]
 - Inventories \[\rightarrow p_t I_t \]
 - Rational Bubble \[\rightarrow B_t \]

- Asset market equilibrium:
 \[W_t = V_t + p_t I_t + B_t; \]

- Inventories:
 \[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

- Low asset supply:
 \[r_{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]
 \[\begin{aligned}
 X_t^d &= C_t / (1 + \alpha) \\
 p_t Z_t^d &= \alpha C_t / (1 + \alpha)
 \end{aligned} \]

 \(X_t \) grows at rate \(g \); \(Z \) is constant.

- **Asset Supply**
 - Good Assets \(\rightarrow V_t \) \(\{ \delta X_{t+s} \} \)
 - Inventories \(\rightarrow p_t I_t \)
 - Rational Bubble \(\rightarrow B_t \)

- Asset market equilibrium:
 \[W_t = V_t + p_t I_t + B_t; \]

- Inventories:
 \[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

- Low asset supply:
 \[r_{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- Consumption
 \[C_t = \theta W_t \]
 \[\begin{align*}
 \text{numeraire} & \quad X^d_t = C_t / (1 + \alpha) \\
 \text{commodities} & \quad \rho_t Z^d_t = \alpha C_t / (1 + \alpha)
 \end{align*} \]
 \(X_t \) grows at rate \(g \); \(Z \) is constant.

- Asset Supply

 Good Assets \(\rightarrow V_t \) \(\{\delta X_{t+s}\} \)
 Inventories \(\rightarrow \rho_t I_t \)
 Rational Bubble \(\rightarrow B_t \)

- Asset market equilibrium:
 \[W_t = V_t + \rho_t I_t + B_t; \]

- Inventories:
 \[\dot{\rho}_t / \rho_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0; \)

- Low asset supply:
 \[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- **Consumption**
 \[C_t = \theta W_t \]

- **Asset Supply**

<table>
<thead>
<tr>
<th>Good Assets</th>
<th>(V_t)</th>
<th>({\delta X_{t+s}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inventories</td>
<td>(p_t I_t)</td>
<td></td>
</tr>
<tr>
<td>Rational Bubble</td>
<td>(B_t)</td>
<td></td>
</tr>
</tbody>
</table>

- **Asset market equilibrium:**
 \[W_t = V_t + p_t I_t + B_t; \]

- **Inventories:**
 \[\dot{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0 \);

- **Low asset supply:**
 \[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption
\[C_t = \theta W_t \]
\[
\begin{aligned}
\text{numeraire} & : & X_t^d &= C_t / (1 + \alpha) \\
\text{commodities} & : & p_t Z_t^d &= \alpha C_t / (1 + \alpha)
\end{aligned}
\]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply
- Good Assets \(\rightarrow V_t \) \(\{\delta X_{t+s}\} \)
- Inventories \(\rightarrow p_t I_t \)
- Rational Bubble \(\rightarrow B_t \)

Asset market equilibrium:
\[W_t = V_t + p_t I_t + B_t; \]

Inventories:
\[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

Low asset supply:
\[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- **Bubbles equilibrium:**
 \[q_t = \frac{p_t}{X_t} = \frac{\alpha}{Z} \]
 \[r_t \sim g \quad t \to \infty \]
 \[B_t \sim \frac{1 + \frac{\alpha}{\theta g}}{\theta g} \left(g - r^{ref} \right) X_t \]

- **Bubbleless equilibrium**
 \[\begin{aligned}
 \dot{l}_t &= Z - \frac{\alpha}{q_t} \\
 \dot{q}_t &= (r_t - g) q_t
 \end{aligned} \]
 \[p_t l_t \sim \frac{1 + \frac{\alpha}{\theta g}}{\theta g} \left(g - r^{ref} \right) X_t \]
The Model: The Global Equilibrium

- Bubbles equilibrium:
 \[q_t = \frac{p_t}{X_t} = \frac{\alpha}{Z} \]
 \[r_t \sim g \]
 \[B_t \sim 1 + \frac{\alpha}{\theta g} \left(g - r^{ref} \right) X_t \]

- Bubbleless equilibrium
 \[
 \begin{align*}
 \dot{l}_t &= Z - \frac{\alpha}{q_t} \\
 \dot{q}_t &= (r_t - g) q_t \\
 p_t l_t &\sim 1 + \frac{\alpha}{\theta g} \left(g - r^{ref} \right) X_t
 \end{align*}
 \]
The Model: The Global Equilibrium

- **Bubbles equilibrium:**
 \[q_t = \frac{p_t}{X_t} = \frac{\alpha}{Z} \]
 \[r_t \sim_{t \to \infty} g \]
 \[B_t \sim_{t \to \infty} \frac{1 + \alpha}{\theta g} \left(g - r^{ref} \right) X_t \]

- **Bubbleless equilibrium**
 \[\dot{I}_t = Z - \frac{\alpha}{q_t} \]
 \[\dot{q}_t = (r_t - g) q_t \]
 \[p_t I_t \sim_{t \to \infty} \frac{1 + \alpha}{\theta g} \left(g - r^{ref} \right) X_t \]
The Model: The Global Equilibrium

- Bubbles equilibrium:
 \[
 q_t = \frac{p_t}{X_t} = \frac{\alpha}{Z}
 \]
 \[
 r_t \sim \frac{1}{g} \left(g - r^{ref} \right) X_t
 \]
 \[
 B_t \sim \frac{1 + \alpha}{\theta g} \left(g - r^{ref} \right) X_t
 \]

- Bubbleless equilibrium
 \[
 \begin{cases}
 \dot{l}_t = Z - \frac{\alpha}{q_t} \\
 \dot{q}_t = (r_t - g) q_t
 \end{cases}
 \]
 \[
 p_t l_t \sim \frac{1 + \alpha}{\theta g} \left(g - r^{ref} \right) X_t
 \]
The impact of the subprime crisis (Phase I).

\[q_t = \frac{p_t}{X_t} \]

\[q_{t0} \]

\[\bar{q} \]

\[I_{t0} = 0 \]

\[\bar{l} \]

\[Z/g \]

\[\dot{q} = 0 \]

\[\dot{i} = 0 \]

Caballero, Farhi & Gourinchas (2008)
Global Rebalancing (Phase I).

Two regions: U (US) and M (Produces Z).
Start with Bubble located in U (subprime) and no inventories.

- Short Run Rebalancing:
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Two regions: U (US) and M (Produces Z).
Start with Bubble located in U (subprime) and no inventories.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U;
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing (Phase I).

Two regions: U (US) and M (Produces Z).
Start with Bubble located in U (subprime) and no inventories.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing (Phase I).

Two regions: \(U \) (US) and \(M \) (Produces \(Z \)).
Start with Bubble located in \(U \) (subprime) and no inventories.

- **Short Run Rebalancing:**
 - Inventories are still low, but \(M \) is richer because of high \(\rho \);
 - Implies even lower interest rates and recycling of petrodollars from \(M \) to \(U \).
 - With low short run price-elasticity, less rebalancing.
Two regions: U (US) and M (Produces Z). Start with Bubble located in U (subprime) and no inventories.

- Short Run Rebalancing:
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Imbalances with price-elasticity < 1 (Phase I).

Panel A: Real Interest Rate (percent)

Panel B: normalized commodity prices

Panel C: \(p^* / W \)

Panel E: TB/X, U-region
Global Imbalances with price-elasticity < 1 (Phase I).

Panel F: Decomposition of TB/X
Orders of Magnitude (Phase I)

Initial Conditions:

Cost of Financial Crisis (phase I)	$2-$4 trillion
Net Foreign Asset Position (relative to GDP)	0.15
Short run price elasticity of oil demand	0.10
Expenditure share on oil	0.04

The Short Run Changes:

<table>
<thead>
<tr>
<th>Real Interest Rates (%)</th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inv.</td>
<td>1.16</td>
<td>0.06</td>
</tr>
<tr>
<td>No Inv.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.55</td>
<td>6.02</td>
</tr>
</tbody>
</table>
Orders of Magnitude (Phase I)

Initial Conditions:

- Cost of Financial Crisis (phase I): $2-$4 trillion
- Net Foreign Asset Position (relative to GDP): 0.15
- Short run price elasticity of oil demand: 0.10
- Expenditure share on oil: 0.04

The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>No Inv.</td>
</tr>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.16</td>
<td>-0.06</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.55</td>
<td>6.02</td>
</tr>
</tbody>
</table>
Orders of Magnitude (Phase I)

- **Initial Conditions:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Financial Crisis (phase I)</td>
<td>$2-$4 trillion</td>
</tr>
<tr>
<td>Net Foreign Asset Position (relative to GDP)</td>
<td>0.15</td>
</tr>
<tr>
<td>Short run price elasticity of oil demand</td>
<td>0.10</td>
</tr>
<tr>
<td>Expenditure share on oil</td>
<td>0.04</td>
</tr>
</tbody>
</table>

- **The Short Run Changes:**

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>No Inv.</td>
</tr>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.16</td>
<td>-0.06</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.55</td>
<td>6.02</td>
</tr>
</tbody>
</table>
Orders of Magnitude (Phase I)

- **Initial Conditions:**
 - Cost of Financial Crisis (phase I): $2-$4 trillion
 - Net Foreign Asset Position (relative to GDP): 0.15
 - Short run price elasticity of oil demand: 0.10
 - Expenditure share on oil: 0.04

- **The Short Run Changes:**

<table>
<thead>
<tr>
<th></th>
<th>Predicted Inv.</th>
<th>Predicted No Inv.</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.16</td>
<td>-0.06</td>
<td>-1.75</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.55</td>
<td>6.02</td>
<td>1.02</td>
</tr>
</tbody>
</table>
After 1 year, economic activity slows down.

Severe Growth Slowdown Assumption:

\[\hat{g} < r^{ref} \]

Eliminates the global asset scarcity. Destroys commodities as an asset class.
After 1 year, economic activity slows down.

Severe Growth Slowdown Assumption:

\[\hat{g} < r^{ref} \]

Eliminates the global asset scarcity. Destroys commodities as an asset class.
The impact of the growth slowdown (Phase II).

\begin{align*}
\dot{q} &= 0 \\
\dot{i} &= 0
\end{align*}

\[q_t = 0 \]

\[I_t = 0 \]

\[\bar{I} \]

\[I_t = 1 \]

\[q_t = 0 \]

\[I_t = 0 \]

\[\bar{q} \]

\[q_{t_0} \]

\[q_{t_1} \]

\[A \]

\[B \]

\[C \]

\[D \]

\[E \]
Global Rebalancing (Phase II).

- Global supply of assets declines because of the decline in growth.
- M is poorer because of decline in p; Reduces global demand for assets;
- Second effect dominates when inventory levels are low, global rebalancing accelerates.
Global Rebalancing (Phase II).

- Global supply of assets declines because of the decline in growth.
- M is poorer because of decline in p; Reduces global demand for assets;
- Second effect dominates when inventory levels are low, global rebalancing accelerates.
Global Rebalancing (Phase II).

- Global supply of assets declines because of the decline in growth.
- M is poorer because of decline in p; Reduces global demand for assets;
- Second effect dominates when inventory levels are low, global rebalancing accelerates.
Global Imbalances with price-elasticity < 1 (Phase II).

Panel A: Real Interest Rate (percent)

Panel B: normalized commodity prices

Panel C: p*I/W

Panel E: Decomposition of TB/X, U-region
Orders of Magnitude (Phase II)

The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>No Inv.</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.18</td>
<td></td>
</tr>
</tbody>
</table>
Orders of Magnitude (Phase II)

The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oil Prices (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-58</td>
<td>0</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.18</td>
<td>??</td>
</tr>
<tr>
<td></td>
<td>-53</td>
<td></td>
</tr>
</tbody>
</table>

Caballero, Farhi & Gourinchas
The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted Inv.</th>
<th>Predicted No Inv.</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude Oil Prices (%)</td>
<td>-58</td>
<td>0</td>
<td>-53</td>
</tr>
<tr>
<td>Trade Balance (% of GDP)</td>
<td>2.18</td>
<td></td>
<td>??</td>
</tr>
</tbody>
</table>
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:
- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy
- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:
- Inventories respond **slowly** to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy
- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
Inventories & Speculation

- US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA).

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:
- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy
- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
The paper provides an asset view of the current crisis and related developments;

- The central feature is a chronic global shortage of financial assets;
- This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;
- A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;
- The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
Oil and Stocks

\[
\Delta p_t = \alpha + \beta \Delta S_t + \epsilon_t
\]

<table>
<thead>
<tr>
<th></th>
<th>(1) daily</th>
<th>(2) weekly</th>
<th>(3) monthly</th>
<th>(4) quarterly</th>
<th>(5) annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP500</td>
<td>-1.55</td>
<td>-1.85</td>
<td>-2.75</td>
<td>-3.03</td>
<td>-1.07</td>
</tr>
<tr>
<td></td>
<td>(6.12)</td>
<td>(4.57)</td>
<td>(3.43)</td>
<td>(3.48)</td>
<td>(1.07)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(2.07)</td>
<td>(2.33)</td>
<td>(2.23)</td>
<td>(2.74)</td>
<td>(1.36)</td>
</tr>
</tbody>
</table>

First Stage regressions (dependent variable S&P 500)

<table>
<thead>
<tr>
<th></th>
<th>(1) daily</th>
<th>(2) weekly</th>
<th>(3) monthly</th>
<th>(4) quarterly</th>
<th>(5) annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Financials</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>(7.45)</td>
<td>(5.28)</td>
<td>(2.92)</td>
<td>(2.40)</td>
<td>(0.79)</td>
</tr>
<tr>
<td>gold</td>
<td>-0.09</td>
<td>-0.08</td>
<td>-0.16</td>
<td>-0.19</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>(3.99)</td>
<td>(2.45)</td>
<td>(2.58)</td>
<td>(2.71)</td>
<td>(1.85)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>(2.70)</td>
<td>(2.88)</td>
<td>(3.19)</td>
<td>(4.13)</td>
<td>(2.65)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6015</td>
<td>1279</td>
<td>293</td>
<td>291</td>
<td>282</td>
</tr>
</tbody>
</table>

Commodity Prices
Energy + biofuels

COAL
CORN
GASOLINE
CRUDE
HEATING OIL
CPI