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Abstract

I study a dynamic economy featuring adverse selection in financial markets. Investment

is undertaken by borrowing-constrained entrepreneurs. They sell their past projects to

finance new ones, but asymmetric information about project quality creates a lemons

problem. The magnitude of this friction responds to aggregate shocks, amplifying the

responses of asset prices and investment. Indeed, negative shocks can lead to a complete

shutdown in financial markets. I then introduce learning from past transactions. This

makes the degree of informational asymmetry endogenous and makes the liquidity of

assets depend on the experience of market participants. Market downturns lead to less

learning, worsening the future adverse selection problem. As a result, transitory shocks

can create highly persistent responses in investment and output. (JEL E22, E44, D83,

G14)
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1 Introduction

Financial markets are fragile, volatile and occasionally shut down entirely. The recent financial

crisis has intensified economists’ interest in understanding the causes of financial instability

and its effects on real economic variables such as investment, output and productivity. In this

paper I develop a model of financial imperfections to explain how instability in general and

market shutdowns in particular can result from macroeconomic shocks and in turn amplify and

propagate them.

I focus on one specific type of financial market imperfection: asymmetric information about

the quality of assets. There are several reasons why it is worth studying this particular imper-

fection. First, the ability of creditors to seize a debtor’s assets, either as a possible equilibrium

outcome or as an off-equilibrium threat, is crucial for enabling financial transactions to take

place, both in theory (Hart and Moore 1994, Kiyotaki and Moore 1997) and in everyday prac-

tice. If there is asymmetric information about asset qualities, which is a natural assumption,

this has the potential to interfere with a large subset of financial transactions. Second, asym-

metric information is a central concern in corporate finance. Following Myers and Majluf

(1984), asymmetry of information between firm managers and their outside investors is seen as

a key determinant of firms’ capital structure. Third, sometimes financial markets simply cease

to function, as documented for instance by Gorton and Metrick (2009) for the repo market in

2007-2009. Since Akerlof (1970), it is well known that the complete breakdown of trade is a

theoretical possibility in economies with asymmetric information. This means that asymmetric

information at least has the potential to explain extreme crises and may shed light on less

extreme phenomena as well.

I embed imperfect financial markets in a simple dynamic macroeconomic model. In the

model, entrepreneurs hold the economy’s stock of capital. Every period, they receive random

idiosyncratic investment opportunities. The only way to obtain financing is by borrowing

against existing assets or, equivalently, selling them. Assets are bought by entrepreneurs who

in the current period have poor investment opportunities but nevertheless wish to save part of

their dividends. Unfortunately, some fraction of existing assets are useless lemons and buyers

can’t tell them apart from high quality assets (nonlemons), creating a classic lemons problem.

I show that the lemons problem introduces a wedge between the return on saving and the

cost of funding, persuading some entrepreneurs to stay out of the market. This is formally

equivalent to introducing a tax on financial transactions, with revenues rebated lump-sum to

entrepreneurs. This defines a notion of liquidity where the degree of illiquidity of assets is the

size of the implicit tax. The tax lowers asset prices, the rate of return obtained by uninformed

investors and the rate of capital accumulation. Furthermore, the implicit tax depends on

the proportions of lemons and nonlemons sold, which respond to aggregate shocks. Standard

2



productivity shocks increase current dividends, which increases the supply of savings and raises

asset prices. This persuades more entrepreneurs to sell their nonlemons, improving the overall

mix of projects that get sold and lowering the implicit tax on financial transactions. Shocks to

the productivity of investment have similar effects because they increase entrepreneurs’ desire

to invest and thus their willingness to sell nonlemons. The endogenous response of the size of

the tax implies that asymmetric information can be a source of amplification of the effects of

shocks on both capital accumulation and asset prices. Large negative shocks may lead financial

markets to shut down entirely.

The model predicts that capital becomes more liquid in economic expansions. This predic-

tion is consistent with empirical research by Eisfeldt and Rampini (2006), who find that the

costs of reallocating capital across firms are countercyclical. It is also consistent with the evi-

dence in Choe et al. (1993), who find that the negative price reaction to an offering of seasoned

equity is smaller and the number of firms issuing equity is larger in the expansionary phase of

the business cycle, suggestive of countercyclical adverse selection costs.

In reality, asymmetric information does not mean that relatively uninformed parties do

not know anything. Instead, it can be a matter of degree. In order to investigate how the

degree of asymmetry could vary endogenously, I extend the baseline model by introducing

public information about the quality of individual assets. Each asset issues a signal which is

correlated with its true quality. The correlation is imperfectly known and changes over time.

The precision of entrepreneurs’ estimates of the correlation determines how informative they

find the signals. They learn about the current value of the correlation by observing samples

of past transactions. More transactions lead to larger sample sizes, more precise estimates,

more informativeness of future signals and lower future informational asymmetry. Conversely,

market shutdowns lead to smaller sample sizes, less certainty about the correlation between

signals and quality and more severe informational asymmetry in the future. This can be a

powerful propagation channel by which temporary negative shocks can lead to financial crises

followed by long recessions, in a manner consistent with the evidence in Cecchetti et al. (2009),

Claessens et al. (2009) and Cerra and Saxena (2008).

The learning mechanism in the model formalizes the notion that assets will be more liquid if

they are more familiar and familiarity depends on experience. Accumulated financial experience

is a form of intangible social capital which increases liquidity and reduces frictions in the

investment process. Learning-by-doing in financial markets plays the important role of building

up that capital.

Because investment opportunities are heterogeneous, the distribution of physical investment

across entrepreneurs matters for capital accumulation. Asymmetric information lowers the level

of investment of entrepreneurs with relatively good opportunities, who may decide not to sell

their existing nonlemons due to depressed prices or receive lower prices if they do sell them.
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At the same time, it increases the level of investment of entrepreneurs with relatively poor

investment opportunities, who might decide to undertake them anyway rather than buy assets

from others for fear of receiving lemons. These effects lower the average rate of transformation

of consumption goods into capital goods and thus can be seen as a determinants of endogenous

investment-sector-specific productivity. Shocks to this type of productivity have been found to

be an important driver of output fluctuations in estimated quantitative models by Greenwood

et al. (2000), Fisher (2006) and Justiniano et al. (2008a). Furthermore, Justiniano et al.

(2008b) find that movements in investment-sector productivity are correlated with measures of

the smooth functioning of financial markets, as would be predicted by the model.

Measurement of investment sector productivity depends on accurate measures of capital

formation. If these fail to take into account changes in the the efficiency of investment due

to changes in the degree of informational asymmetry, information effects in one period would

show up as measured Solow residuals in future periods. Thus the movement of implicit tax

wedges in the model can be a source of changes in (measured) TFP or, in the terminology of

Chari et al. (2007), movements in efficiency wedges.

In common with Kiyotaki and Moore (1997), Bernanke and Gertler (1989), Bernanke,

Gertler and Gilchrist (1999) and Carlstrom and Fuerst (1997) among others, financial fric-

tions in my model are sensitive to wealth effects. However, what governs their severity in my

model is not the wealth of financially-constrained investors, since the margin that determines

whether to sell or keep nonlemons is independent of wealth. Instead, the wealth of those who

finance them matters because it governs the demand for assets.

The structure of the model is close to that developed by Kiyotaki and Moore (2005, 2008),

which also features random arrival of investment opportunities, borrowing constraints and

partially illiquid assets. Those papers use a reduced-form model of the limitations on selling

capital and investigate whether this may explain why easier-to-sell assets command a premium.

In contrast, I develop an explicit model of what the sources of these limitations are, which allows

me to investigate how they respond to aggregate shocks. My model also shares some of the

simplifying assumptions of the Kiyotaki-Moore framework, in particular that entrepreneurs

have no labour income and log preferences. One additional simplification that I make is that

physical capital is the only asset. Thanks to this assumption, entrepreneurs’ policy functions

can be found in closed form despite having an infinite dimensional state vector (due to the

continuum of possible signals) and a nonlinear budget set. This makes it possible to derive

most of the qualitative results analytically and to simulate the model at little computational

cost.

Following (Stiglitz and Weiss 1981), adverse selection played an important early role in the

theory of credit markets, although the emphasis was on the riskiness of projects rather than the

quality of assets. Financial market imperfections that arise specifically due to a lemons problem
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in asset quality have recently been studied by Bolton et al. (2009) and Malherbe (2009). These

papers model games where dynamic strategic complementarities can give rise to different types

of equilibria, with more or less severe adverse selection. Instead in my model the equilibrium

is unique so the severity of the lemons problem responds to aggregate shocks in a predictable

way.

The lemons problem remains relatively unexplored in macroeconomic settings. One excep-

tion is Eisfeldt (2004). In her model, entrepreneurs hold different vintages of projects and

cannot diversify risks. The reason financial transactions are desirable is that they enable en-

trepreneurs to smooth consumption when they suffer poor realizations of income from previous

vintages of risky projects. Thus her paper is about how asymmetric information interferes

with risk-sharing whereas mine is about how it interferes with the financing of investment. On

a more technical side, one limitation of her approach is that it requires keeping track of of

the distribution of portfolio holdings across different vintages of projects, for all entrepreneurs,

which makes it necessary to limit attention to numerical simulations of steady states or simple

deterministic cycles, since stochastic simulations are computationally infeasible.

The idea that economic recessions are associated with reduced learning is explored by Veld-

kamp (2005), van Nieuwerburgh and Veldkamp (2006) and Ordoñez (2009). In these models,

what agents need to learn about is the state of aggregate productivity. The speed of learning

governs how fast output and prices align themselves with fundamentals but the direction of

this alignment is just as likely to be towards higher or lower output. In contrast, in my model

agents learn about parameters of the information structure. More learning alleviates infor-

mational asymmetries, which helps the functioning of financial markets for any given level of

productivity. Another difference is that in my model the activity which generates information

is selling projects rather undertaking them. Since the volume of financial transactions can be

very volatile, this opens the door to strong learning effects.

The rest of the paper is organized as follows. Section 2 introduces the model and section

3 and describes frictionless benchmarks. Section 4 describes the equilibrium conditions under

asymmetric information and contains the results for the model without signals. Section 5

contains the extension of the model with signals and learning. Section 6 offers some brief final

remarks. Proofs are collected in Appendix D.

2 The environment

Households. There are two kinds of agents in the economy, workers and entrepreneurs. There

is a continuum of mass L of identical workers, each of whom supplies one unit of labour

inelastically; they have no access to financial markets, so they just consume their wage. In
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addition, there is a continuum of mass one of entrepreneurs, indexed by j, who have preferences

E

∞
∑

t=0

βtu(cj
t)

with u(cj
t) = log(cj

t). They do not work.

Technology. Final output (coconuts) is produced combining capital and labour. The capital

stock consists of projects owned by entrepreneurs. Entrepreneur j’s holdings of projects are

denoted kj
t so the aggregate capital stock is Kt =

∫

kj
tdj. Every period a fraction λ of projects

becomes useless or “lemons”. Each entrepreneur’s holdings of projects is sufficiently well di-

versified that the proportion λ applies at the level of the individual entrepreneur as well. Each

of the (1 − λ)Kt projects that do not become lemons is used for production, so that output

is Yt = Y ((1 − λ)Kt, L; Zt), where Y is a constant-returns-to-scale production function that

satisfies Inada conditions and Zt is exogenous productivity. The marginal product of capital

and labour are denoted YK and YL respectively.

The aggregate resource constraint is

Lcw
t +

∫

(

cj
t + ijt

)

dj ≤ Y ((1 − λ)Kt, L; Zt) (1)

where cw
t denotes consumption per worker, cj

t is consumption by entrepreneur j and ijt represents

physical investment by entrepreneur j.

Physical investment is undertaken in order to convert coconuts into projects for period

t + 1. Each entrepreneur can transform coconuts into projects using an idiosyncratic linear

technology with a stochastic marginal rate of transformation Aj
t . In addition, each nonlemon

project turns into γ projects at t + 1, so it is possible to interpret 1 − γ (1 − λ) as an average

rate of depreciation. Aggregate capital accumulation is given by

Kt+1 = γ (1 − λ)Kt +

∫

ijtA
j
tdj (2)

Aj
t is iid across entrepreneurs and across periods and follows distribution F with mean E (A) <

∞.

Allocations. The exogenous state of the economy is zt ≡
{

Zt, Āt

}

. It includes productivity

Zt and the function Āt, which maps each entrepreneur to a realization of Aj
t . An allocation

specifies consumption and investment for each agent in the economy and aggregate capital after

every history: {cw (zt) , cj (zt) , ij (zt) , K (zt)}. An allocation is feasible if it satisfies constraints

(1) and (2) for every history given some K0.

Information. At time t each entrepreneur knows which of his own projects have become
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lemons in the current period, but the rest of the agents in the economy do not. In section

5, I augment the model by allowing for publicly observable signals about individual projects.

Informational asymmetry lasts only one period. At t + 1, everyone is able to identify the

projects that became lemons at t, so they effectively disappear from the economy, as illustrated

in figure 1. This assumption is made for simplicity as it eliminates the need to keep track

of projects of different vintages. Daley and Green (2009) study the strategic issues that arise

when informational asymmetries dissipate gradually over time.

Nonlemon
enters Yt(·)

Lemon

1 − λ

λ

1 − λ
λ

Period t Period t + 1

Lemon

Nonlemon
enters Yt+1(·)

1 project

γ projects

project disappears

Figure 1: Information about a project over time

The investment opportunity Aj
t is and remains private information to entrepreneur j, so

entrepreneurs know their individual state zj
t ≡

{

Zt, A
j
t

}

but not the aggregate state zt ≡
{

Zt, Āt

}

.

3 Symmetric information benchmarks

3.1 Complete Arrow-Debreu markets

Suppose zt and the quality of individual projects were public information and there were com-

plete competitive markets. The price of lemons will be zero so we can just focus on factor

markets and trades of coconuts for nonlemons and state-contingent claims.

Factor markets are competitive. Entrepreneurs hire workers at a wage of w (zt) = YL (zt)

coconuts and obtain dividends of r (zt) = YK (zt) coconuts for each nonlemon project.1 Co-

conuts are traded for nonlemon projects, ex-dividend, at a spot price of pNL(zt) coconuts per

nonlemon project. State-contingent claims are traded one period ahead: it requires q (zt, zt+1)

1 As is standard, this could be the result of competitive firms renting capital from entrepreneurs or of
entrepreneurs operating the productive technology themselves. With asymmetric information, the latter inter-
pretation avoids the need to analyze adverse selection in the rental market.
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coconuts at history zt to obtain a coconut in history (zt, zt+1) and ρ(zt, zt+1) is the associated

state-price density.

An entrepreneur who starts with kj
0 projects solves the following program:

max
{c(zt),k(zt),dNL(zt),b(zt,zt+1),i(zt)}

E

∞
∑

t=0

βtu
(

c
(

zt
))

(3)

s.t.

c
(

zt
)

+ i
(

zt
)

+ pNL(zt)dNL

(

zt
)

+ E
[

ρ
(

zt, zt+1

)

b
(

zt, zt+1

)]

≤ r
(

zt
)

(1 − λ) k
(

zt
)

+ b
(

zt−1, zt

)
(4)

k
(

zt, zt+1

)

= γ
[

(1 − λ) k
(

zt
)

+ dNL

(

zt
)]

+ Aj (zt) i
(

zt
)

(5)

i
(

zt
)

≥ 0, dNL(zt) ≥ −(1 − λ)k(zt) (6)

lim
t→∞

E

[

b(zt)

t−1
∏

s=0

ρ(zs, zs+1)

]

≥ 0 (7)

Constraint (4) is the entrepreneur’s budget constraint in terms of coconuts. The en-

trepreneur’s available coconuts are equal to the dividends from his nonlemons r (zt) (1 − λ)

k (zt) plus net state-contingent coconuts bought the previous period b (zt−1, zt). These are

used for consumption plus physical investment plus net purchases of nonlemons dNL (zt) plus

purchases of state-contingent coconuts for period t + 1. Constraint (5) keeps track of the en-

trepreneur’s holdings of projects. k (zt, zt+1), the total number of projects the entrepreneur

has in history (zt, zt+1), is equal to the nonlemon projects he owned at the end of period zt,

which were (1 − λ) k (zt)+dNL (zt), and have grown at rate γ plus the projects that result from

his physical investment in the previous period, Aj (zt) i (zt). Constraint (6) states that invest-

ment must be nonnegative and sales of nonlemons are limited by the number of nonlemons the

entrepreneur owns. Constraint (7) is a no-Ponzi condition.

The first order conditions with respect to i (zt) and dNL (zt) imply

Aj (zt) ≤
γ

pNL (zt)
, with equality if i

(

zt
)

> 0 (8)

Let Amax be the highest possible value of A. By the law of large numbers, at each history

there will be an entrepreneur (the best entrepreneur) with Aj = Amax who can transform each

coconut into Amax projects at t + 1.2 Equation (8) then implies that pNL (zt) = γ

Amax for all zt.

At each history, the best entrepreneur is the only one to undertake physical investment. He

2With a continuous F there will be a zero measure of best entrepreneurs, but a positive measure of en-
trepreneurs with Aj ∈ (Amax − δ, Amax] for any positive δ. The results below follow from taking the limit as
δ → 0.
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finances this investment by selling claims to coconuts one period ahead (i.e. borrowing) which

he then satisfies with the dividends plus proceeds of selling the newly created projects in the

spot market. Since r (zt) is stochastic, capital is a risky asset, and the best entrepreneur will

use state-contingent securities to share this risk with the rest of the entrepreneurs. Complete

markets imply that risk-sharing will be perfect.

There is an alternative market structure, not requiring state-contingent securities, which will

also result in the complete markets allocation. Suppose the only market that exists is for newly

created projects. An entrepreneur can create and sell a project simultaneously, selling it for a

price pNEW (zt) in the same instant it is created, at which time no one knows whether it will

become a lemon in the following period. There is no borrowing, no state-contingent securities

and no spot market for existing assets. The constraints on the entrepreneur’s problem simplify

to

c
(

zt
)

+ i
(

zt
)

+ pNEW (zt)dNEW

(

zt
)

≤ r
(

zt
)

(1 − λ) k
(

zt
)

k
(

zt, zt+1

)

= γ (1 − λ) k
(

zt
)

+ dNEW

(

zt
)

+ Aj (zt) i
(

zt
)

i
(

zt
)

≥ 0, dNEW (zt) ≥ −Aj (zt) i
(

zt
)

The first order conditions for i (zt) and dNEW (zt) imply

Aj (zt) ≤
1

pNEW (zt)
, with equality if i

(

zt
)

> 0

which implies that new projects will sell for pNEW (zt) = 1
Amax and the best entrepreneur will be

the only one to invest, just as in the complete markets allocation.3 Furthermore, entrepreneurs’

only asset in any given period consists of projects, so they automatically share aggregate risk

in proportion to their wealth. Since they have identical homothetic preferences, this coincides

with what they would do with complete markets.

Proposition 1. If there are complete markets, all the physical investment is undertaken by the

entrepreneur with Aj = Amax; all entrepreneurs obtain a return of Amax projects per coconut

saved and they bear no idiosyncratic risk. The same allocation is obtained if the only market

that exists is for newly-created projects.

The aggregate economy behaves just like an economy where the rate of transformation of

coconuts into projects is fixed at Amax, there is a representative entrepreneur and workers are

constrained to live hand-to-mouth. Due to log preferences, it is straightforward to compute the

3The difference between pNEW and pNL is due to the fact that old nonlemons grow by a factor γ and new
projects don’t.
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entrepreneur’s consumption choice, which will be given by

cj
(

zt
)

= (1 − β) (1 − λ)
[

YK

(

zt
)

+
γ

Amax

]

kj(zt) (9)

and hence aggregate capital accumulation will be:4

K
(

Zt, Zt+1

)

= β (1 − λ)
[

AmaxYK

(

Zt
)

+ γ
]

K
(

Zt
)

(10)

3.2 Borrowing constraints with symmetric information

For various reasons, it may be difficult for an entrepreneur to borrow against his future wealth,

i.e. to choose negative values of b (zt, zt+1). For instance, the he may be able to run away

with his wealth rather than honouring his debts.5 Creditors’ main means of enforcing their

claims is the threat to seize the entrepreneur’s assets. In other words, the entrepreneur’s assets

serve as collateral for any obligations he undertakes. Kiyotaki and Moore (2008) point out

that it is important to distinguish between assets that are already in place at the time the

financial transaction is initiated and those that are not, since the latter are harder for creditors

to keep track of and subject to more severe moral hazard problems. In what follows I make the

extreme assumption that entrepreneurs can costlessly run away with coconuts and hide new

projects from their creditors, which makes them useless as collateral. However, they cannot

hide projects that already exist a the time the transaction is initiated. These constitute the

only form of collateral.

Collateralized financial transactions could take many forms. However, in this model the

future payoffs of current nonlemon projects are binary: either they become a lemon at t + 1

or they do not. Any financing transaction must therefore have zero repayment if the project

becomes a lemon and positive repayment otherwise. If there is no aggregate risk, this makes

selling the asset and using it as collateral for borrowing exactly equivalent.6 Selling is sim-

pler to model, so I assume that the only kind of transaction is ex-dividend sales of existing

projects. This is intended to represent the wider range of transactions that use existing assets

as collateral.7

4Equations (9) and (10) assume that the nonnegativity of aggregate investment is not binding. Otherwise
cj(zt) = YK(zt)kj(zt) and K (Zt, Zt+1) = γ(1 − λ)K(Zt).

5Alternatively, he could refuse to exert effort if he has pledged the output to someone else, as in Holmström
and Tirole (1998).

6If there is aggregate risk, selling the asset is equivalent to state-contingent borrowing proportional to the
value that the asset would have in each state of the world if it does not become a lemon.

7In Kurlat (2009) I study the case of a general joint distribution of asset qualities and investment opportu-
nities and allow for arbitrary contracts.
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The entrepreneur will solve program (3), with the added constraint:

b
(

zt, zt+1

)

≥ 0 (11)

Constraint (11) will bind for the best entrepreneur. As a result, he will not be able to

undertake all the investment in the economy. Instead, there will be a cutoff A∗ (zt) = γ

pNL(zt)

such that entrepreneurs with Aj (zt) < A∗ (zt) will not invest and entrepreneurs with Aj (zt) >

A∗ (zt) will sell all their existing nonlemons in order to obtain coconuts for investment.

This equilibrium is inefficient in two related ways. First, the economy does not exclusively

use the most efficient technology (Amax) for converting coconuts into projects. The best en-

trepreneur is financially constrained and thus unable to invest all the coconuts the economy

saves, so others with Aj ∈ (A∗ (zt) , Amax) also undertake physical investment. Secondly, en-

trepreneurs are exposed to idiosyncratic risk. If they draw a low value of Aj, they must convert

their coconuts into projects through the market, which only provides a return A∗ (zt), whereas

if they draw a higher value they convert them at a rate Aj (zt).

4 Asymmetric information

Assume, as in section 3.2, that the only transactions in financial markets are sales of existing

projects. However, now there is asymmetric information: only the owner of a project knows

whether it is a lemon, and each entrepreneur observes only his own Aj . Those who purchase

projects have rational expectations about λM (zt), the proportion of lemons among the projects

that are actually sold in the market.8

Since Aj is private information, decisions must be conditioned on individual histories zj,t

rather than full histories zt. However, it is easy to verify that the aggregate variables r, p and

λM that are relevant for the entrepreneur’s decision depend only on the history of productivity

Zt, which is part of the entrepreneur’s information set. An entrepreneur who starts with kj
0

projects solves the following program:

8One might still ask why an entrepreneur cannot sell claims against his entire portfolio of projects (by the
law of large numbers, he is not asymmetrically informed about it) instead of selling them individually. Kiyotaki
and Moore (2003) assume that it is possible to credibly bundle all of one’s projects by paying some cost. I
assume this cost is prohibitively large.
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max
{c(zj,t),k(zj,t,z

j
t+1),i(zj,t),sL(zj,t),sNL(zj,t),d(zj,t)}

E

∞
∑

t=0

βtu
(

c
(

zj,t
))

(12)

s.t.

c
(

zj,t
)

+ i
(

zj,t
)

+ p
(

Zt
) [

d
(

zj,t
)

− sL

(

zj,t
)

− sNL

(

zj,t
)]

≤ (1 − λ) r
(

Zt
)

k
(

zj,t
)

k
(

zj,t, zj
t+1

)

= γ
[

(1 − λ) k
(

zj,t
)

+
(

1 − λM
(

Zt
))

d
(

zj,t
)

− sNL

(

zj,t
)]

+ Aj
(

zj
t

)

i
(

zj,t
)

i
(

zj,t
)

≥ 0, sL

(

zj,t
)

∈
[

0, λk
(

zj,t
)]

, sNL

(

zj,t
)

∈
[

0, (1 − λ) k
(

zj,t
)]

, d
(

zj,t
)

≥ 0

Program (12) incorporates the borrowing constraint (11) and the fact that the price p (Zt)

applies equally for sales of lemons sL (zj,t), sales of nonlemons sNL (zj,t) and purchases of

projects of unknown quality d (zj,t), a proportion λM (Zt) of which turn out to be lemons.

I will look for a recursive competitive equilibrium with X ≡ {Z, Γ} as a state variable,

where Γ(kt, At) is the cumulative distribution of entrepreneurs over holdings of capital and in-

vestment opportunities.9 The relevant state variable for entrepreneur j’s problem is {kj , Aj, X}
so (dropping the j superscript) he solves the following recursive version of program (12):

V (k, A, X) = max
c,k′,i,sL,sNL,d

[u (c) + βE [V (k′, A′, X ′) |X]] (13)

s.t.

c + i + p (X) [d − sL − sNL] ≤ (1 − λ) r (X) k

k′ = γ
[

(1 − λ) k +
(

1 − λM (X)
)

d − sNL

]

+ Ai

i ≥ 0, d ≥ 0

sL ∈ [0, λk] , sNL ∈ [0, (1 − λ) k]

Denote the solution to this program by {c (k, A, X) , k′ (k, A, X) , i (k, A, X) , sL (k, A, X) ,

sNL (k, A, X) , d (k, A, X)} and define the supply of lemons and nonlemons, total supply of

9Since Aj is iid, then it is independent of kj and Γ is just the product of F and the distribution of k. The
more general formulation could easily accommodate the case where an entrepreneur’s individual Aj has some
persistence, which would create some correlation between kj and Aj .
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projects and demand of projects respectively as

SL (X) ≡
∫

sL (k, A, X) dΓ(k, A)

SNL (X) ≡
∫

sNL (k, A, X) dΓ(k, A)

S (X) ≡ SL (X) + SNL (X)

D (X) ≡
∫

d (k, A, X) dΓ(k, A)

Definition 1. A recursive competitive equilibrium consists of prices {p (X) , r (X) , w (X)};
market proportions of lemons λM (X); a law of motion Γ′(X) and associated transition density

Π (X ′|X); a value function V (k, A, X) and decision rules {cw (X) , c (k, A, X) , k′ (k, A, X) ,

i (k, A, X) , sL (k, A, X) , sNL (k, A, X) , d (k, A, X)} such that (i) factor prices equal marginal

products: w (X) = YL (X), r (X) = YK (X); (ii) workers consume their wage cw (X) =

w (X); (iii) {c (k, A, X), k′ (k, A, X), i (k, A, X), sL (k, A, X), sNL (k, A, X), d (k, A, X)} and

V (k, A, X) solve program (13) taking p (X), r (X), λM (X) and Π (X ′|X) as given; (iv) the

market for projects clears: S (X) ≥ D (X), with equality whenever p (X) > 0; (v) the mar-

ket proportion of lemons is consistent with individual selling decisions: λM (X) = SL(X)
S(X)

and

(vi) the law of motion of Γ is consistent with individual decisions: Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k

dΓ(k̃, Ã) F (A)

4.1 Solution of the entrepreneur’s problem and equilibrium condi-

tions

I solve the entrepreneur’s problem and find equilibrium conditions in steps. First I show that

all the policy functions are linear in k, which implies an aggregation result. Second I show

that, given choice of c and k′, the choices of d, sL, sNL and i reduce to a simple arbitrage

condition. Third I solve a relaxed problem, converting the entrepreneur’s nonlinear budget set

into a weakly larger linear one and show that there is a simple static characterization of the

consumption-savings decision. Based on the solution to the relaxed problem it is possible to de-

rive supply, demand and a market clearing condition. Finally I show that the equilibrium price

must satisfy the market-clearing condition whether or not the solutions to the two programs

coincide. In either case the rest of the equilibrium objects follow immediately.

Linearity of policy functions. The constraint set in program (13) is linear in k and the

utility function is homothetic. Hence the policy functions c (k, A, X), k′ (k, A, X), i (k, A, X),

sL (k, A, X), sNL (k, A, X) and d (k, A, X) are all linear in k. This implies the following aggre-

gation result:

13



Lemma 1. Prices and aggregate quantities do not depend on the distribution of capital holdings,

only on total capital K.

By Lemma 1, {Z, K} is a sufficient state variable; in order to compute aggregate quantities

and prices it is not necessary to know the distribution Γ.

Buying, selling and investing decisions. Take the choice of k′ as given. The entrepreneur’s

problem then reduces to choosing d, sL, sNL and i to maximize c. This program is linear so the

entrepreneur will always choose corner solutions. The decision to keep or sell lemons is trivial:

as long as p > 0 the entrepreneur will sell the lemons (sL = λk), since they are worthless to him

if kept. The decisions to keep or sell nonlemons and to invest in new projects or in purchasing

projects depend on A. The return (i.e. the number of t + 1 projects obtained per coconut

spent) from buying projects is AM ≡ γ(1−λM)
p

. I refer to this as the market rate of return.10

Conversely, the number of t +1 nonlemon projects an entrepreneur must give up to obtain one

coconut is γ

p
> AM . The return on investing is simply A. This implies that the optimal choices

of d, sNL and i are given by two cutoffs, shown in figure 2.

Aγ

p
AM ≡ γ(1−λM )

p

Buyer:
Keep nonlemons

Buy projects

Keeper:
Keep nonlemons

Invest

Seller:
Sell nonlemons

Invest

Figure 2: Buying, selling and investing decision as a function of A

Suppose first that k′ > γ (1 − λ) k so the entrepreneur wants to save more than by just

keeping his nonlemons. For A < AM , entrepreneurs are Buyers: the return from buying is

greater than the return from investing so i ≥ 0 and sNL ≥ 0 bind and d > 0. For A ∈ [AM , γ

p
]

entrepreneurs are Keepers: investing offers a higher return than buying but not higher than

the opportunity cost of selling nonlemons at the market price, so the entrepreneur neither buys

projects nor sells nonlemons; d ≥ 0 and sNL ≥ 0 bind and i > 0. For A > γ

p
entrepreneurs are

Sellers: the return from investing is high enough for the entrepreneurs to sell nonlemons in order

to finance investment; d ≥ 0 and sNL ≤ (1 − λ) k bind and i > 0. If instead k′ < γ (1 − λ) k

(which by lemma 4 below is inconsistent with equilibrium), then Buyers and Keepers would

choose i = d = 0 and sNL > 0 while Sellers would still choose d = 0, sNL = (1 − λ) k and

i > 0. Combining these arbitrage conditions with the constraint from program (13) yields the

following lemma:

10Noting, however, that it involves two different goods (projects and coconuts) as well as two different dates.
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Lemma 2. Given k′, the optimal d, sL, sNL and i are given by

Buyers: A ∈
[

0, AM
]

Keepers: A ∈
[

AM , γ

p

]

Sellers: A ∈
(

γ

p
,∞
)

sL = λk λk λk

d = max
{

k′−γ(1−λ)k
γ(1−λM )

, 0
}

0 0

sNL = max
{

γ(1−λ)k−k′

γ
, 0
}

max
{

γ(1−λ)k−k′

γ
, 0
}

(1 − λ) k

i = 0 max
{

k′−γ(1−λ)k
A

, 0
}

k′

A

(14)

Consumption-savings decision under a relaxed budget set. An entrepreneur with investment

opportunity is A must choose c
k

and k′

k
from his budget set, shown in figure 3.

x

c
k

k′

k

(1 − λ)r
+λp

(1 − λ)r
+p

Buyer

Keeper

Seller

(1 − λ)γ

A[(1 − λ)r + p]

(1 − λ) γ+
[(1 − λ) r + λp]AM

(1 − λ) γ+
[(1 − λ) r + λp]A

Figure 3: Budget sets

Point x represents an entrepreneur who chooses sL = λk and i = sNL = d = 0, an option

available to all entrepreneurs. He simply consumes the dividends (1 − λ) rk and the proceeds

from selling lemons λpk, and enters period t + 1 with (1 − λ) γk projects.

Consider first the decision of a Keeper. If he wishes to increase consumption beyond point

x he must sell nonlemons, which means giving up γ

p
projects for each additional coconut of

consumption. If instead he wishes to carry more projects into t+1, he invests with productivity

A. Hence the budget constraint is kinked: to the right of x the slope is −γ

p
whereas to the left

it is −A. Consider next a Buyer. His budget set is the same as for the Keeper except that the

return he obtains from saving beyond point x is the market return AM , which is higher than

his individual return on investment A but lower than that of Keepers. Lastly, a Seller will sell

all his projects and his budget constraint is linear with constant slope −A.
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Define the entrepreneur’s virtual wealth as

W (k, A, X) ≡
[

λp (X) + (1 − λ)

(

r (X) + max

{

p (X) ,
γ

max {A, AM(X)}

})]

k (15)

Virtual wealth corresponds to to the projection of the left half of the budget constraint onto

the horizontal axis. It consists of the coconuts the entrepreneur has (dividends plus proceeds of

selling lemons) plus the nonlemon projects, valued at the maximum of either their sale price p or

their replacement cost γ

max{A,AM (X)} . The linear budget set k′

k
≤ max

{

A, AM (X)
}

[

W (k,A,X)
k

− c
k

]

is weakly larger than the true kinked budget, so substituting it in program (13) leads to the

following relaxed program:

V (k, A, X) = max
c,k′

[u (c) + βE [V (k′, A′, X ′) |X]] (16)

s.t.

k′ = max
{

A, AM (X)
}

[W (k, A, X) − c]

Lemma 3. Under the relaxed program (16), the entrepreneur’s consumption is c (k, A, X) =

(1 − β)W (k, A, X)

Due to logarithmic preferences, entrepreneurs will always choose to consume a fraction

1 − β of their virtual wealth and save the remaining β, by some combination of keeping their

old nonlemons, buying projects and physical investment. Note that the entrepreneur’s decision,

while rational and forward looking, does not depend on the transition density Π (X ′|X) or on

the stochastic process for A. This feature will make it possible to solve for the equilibrium

statically.

Notice that the function W is decreasing in A. Different agents have different relative valu-

ations of projects and coconuts but asymmetric information prevents them from trading away

those differences. In that sense, capital is illiquid. Furthermore, Lemma 3 implies that agents

who value projects the least also consume less, so project valuation is negatively correlated with

the marginal utility of consumption. Therefore agents would be willing to save in a risk-free

asset with a lower expected return, a premium that would disappear if there was symmetric

information. See Appendix B for a formal derivation. Kiyotaki and Moore (2008) obtain a

similar result by assuming that resaleability constraints prevent entrepreneurs from reselling a

fraction of their projects. Here instead the difference between the values placed on projects

by entrepreneurs with different investment opportunities is derived endogenously as a result of

asymmetric information.

Supply and demand under the relaxed program. Take p as given. By (14), the supply of
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projects will include all the lemons plus the nonlemons from Sellers. Hence

S (p) =

[

λ + (1 − λ)

(

1 − F

(

γ

p

))]

K (17)

This implies a market proportion of lemons of

λM (p) =
λ

λ + (1 − λ)
(

1 − F
(

γ

p

)) (18)

and a market rate of return of:11

AM (p) =
γ

p

(

1 − λM (p)
)

=
γ

p

(1 − λ)
(

1 − F
(

γ

p

))

λ + (1 − λ)
(

1 − F
(

γ

p

)) (19)

Demand for projects will come from Buyers. By Lemma 3, under the relaxed program they

choose k′ =βAMW
(

k, AM , X
)

. By Lemma 2, they each demand k′−γ(1−λ)k
γ(1−λM )

projects. Using

(15) and adding over all Buyers, demand for projects will be:

D (p) =

(

β

[

λ + (1 − λ)
r

p

]

− (1 − β) (1 − λ)

1 − λM (p)

)

F
(

AM (p)
)

K (20)

Market clearing implies

S(p∗) ≥ D(p∗) with equality whenever p∗ > 0 (21)

Equilibrium conditions under the true program.

Lemma 4. D > 0 only if the solutions to programs (13) and (16) coincide for all entrepreneurs

The solutions to programs (13) and (16) will not coincide whenever in the relaxed program,

some entrepreneurs wish to choose points to the right of x. Lemma 4 states that if this is the

case there will be no demand for projects and the price must be zero.

This implies the following result:

Proposition 2.

1. In any recursive equilibrium, the function p (X) satisfies (21) for all X

2. For any p(X) that satisfies (21), there exists a recursive competitive equilibrium where

the price is given by p(X)

11Define A(0) ≡ 0.
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3. There exists at least one function p(X) that satisfies (21)

Proposition 2 establishes that a recursive equilibrium exists and must satisfy (21) regardless

of whether or not the solutions to programs (13) and (16) coincide. Therefore it is possible to

find equilibrium prices statically simply by solving (21). Once p∗ is determined, it is straight-

forward to solve, also statically, for the rest of the equilibrium objects. λM and AM follow

from (18) and (19). If p∗ > 0 then virtual wealth and, by Lemma 3, consumption for each

entrepreneur can be found using (15) and sL, sNL, d and i are given by (14). If instead the

only solution to (21) is p∗ = 0, I refer to the situation as one of market shutdown. It is still

possible to solve the relaxed problem (16), which results in

k′ = β (1 − λ) (Ar + γ) k

This satisfies k′ ≥ γ (1 − λ) k iff A ≥ Ā ≡ γ

r

(1−β)
β

. Hence for entrepreneurs with A ≥ Ā,

consumption and investment can be computed in the same way as when the market does not

shut down whereas entrepreneurs with A < Ā chose c = (1 − λ) rk and k′ = γ (1 − λ) k.

Aggregate capital accumulation is found by replacing the equilibrium values of i into the

law of motion of capital (2),12 yielding

K ′

K
= γ (1 − λ) +

∫
γ
p

AM

[βA [λp + (1 − λ) r] − (1 − β) (1 − λ) γ] dF (A) (22)

+

∫ ∞

γ
p

βA [p + (1 − λ) r] dF (A)

In general, the market return AM (p) can be either increasing or decreasing. An increase

in the price has a direct effect of lowering returns by making projects more expensive and an

indirect effect of improving returns by increasing the proportion of entrepreneurs who choose to

sell their nonlemons. This implies that there could be more than one solution to (21). In this

case, I will assume that the equilibrium price is given by the highest solution. More worryingly,

there could exist a price p′ > p∗ such that AM (p′) > AM (p∗) even when p∗ is the highest solution

to (21). This will be the case when selection effects are strong enough that the return from

buying projects would be higher at a price higher than the highest market-clearing one. Both

Buyers and Sellers would be better off if there was sufficient demand to sustain such a price.

Stiglitz and Weiss (1981) argue that when this is the case the equilibrium concept used above

is not reasonable and it would be more sensible to assume that Buyers set a price above p∗ that

maximizes their return and ration the excess supply. Appendix A discusses how the definition

of equilibrium may be adapted to allow for rationing, a change that makes little difference

for the results. In section 5, I consider signals that segment the market into a continuum of

12By Walras’ Law, it is equivalent to just sum k′(k, A, X) over all entrepreneurs.
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different submarkets. In that variant there exists a unique equilibrium in which Buyers can

never benefit from raising prices in any submarket (see Lemma 8), so the issue of what is the

right equilibrium concept becomes moot, a point first made by Riley (1987) in the context of

the Stiglitz-Weiss model.13 For some of the results below, it will simplify the analysis to simply

assume that parameters are such that the issue does not arise:14

Assumption 1. AM(p) is decreasing

4.2 Equivalence with an economy with taxes

As shown in figure 2, asymmetric information introduces a wedge between the return obtained

by Buyers, AM , and the return given up by Sellers of nonlemons, γ

p
. The magnitude of this

wedge depends on λM (X). It turns out that this wedge is exactly isomorphic to the wedge

that would be introduced by imposing state-dependent taxes on the sales of projects.

Consider the economy with borrowing constraints and symmetric information of section

3.2, but now assume that the government imposes an ad-valorem tax of τ (X) p coconuts on

sales of projects. The total revenue T (X) = τp(X)S(p(X)) collected from this tax is rebated

lump-sum to all entrepreneurs. Entrepreneurs solve the following program:

V (k, A, X) = max
c,k′,i,sNL,d

[u (c) + βE [V (k′, A′, X ′) |X]] (23)

s.t.

c + i + p (X) [d (1 + τ (X)) − sNL] ≤ (1 − λ) r (X) k + T (X)

k′ = γ [(1 − λ) k + d − sNL] + Ai

i ≥ 0, d ≥ 0

sNL ∈ [0, (1 − λ) k]

This problem can be solved by the same steps used to solve program (13). Solving for the

equilibrium conditions leads to the following equivalence result.

Proposition 3. Suppose τ (X) = λM∗(X)
1−λM∗(X)

, where λM∗ (X) is the equilibrium value of the

asymmetric information economy. Then prices and allocations of the symmetric-information-

with-taxes and the asymmetric information economies are identical.

By Proposition 3, the distortionary effect of having a proportion λM of lemons in the market

is exactly equivalent to the one that would result from a tax at the rate τ = λM

1−λM . Moreover,

13In their terminology, there will be redlining (exclusion of arbitrarily similar yet distinct groups) but not
pure rationing (partial exclusion of observationally identical projects).

14A sufficient condition for Assumption 1 to hold is h (x) ≤ 1
x

[

1 + 1−λ
λ

(1 − F (x))
]

for all x, where h is the
hazard function of A. Results do not rely on Assumption 1 unless otherwise stated.
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asymmetric information gives all entrepreneurs the possibility of earning λpk coconuts from

selling lemons to others. This has an exact counterpart in the lump-sum redistribution of the

government’s revenue.

Chari et al. (2007) propose a way to decompose economic fluctuations into the movements

of an efficiency wedge, a labour wedge, an intertemporal wedge and a government spending

wedge. The implicit taxes that result from asymmetric information do not translate neatly into

a single one of these wedges. They distort both the consumption-saving decision (resulting in an

intertemporal wedge) and the allocation of investment across different entrepreneurs (resulting

in an efficiency wedge). Furthermore, the model would have an intertemporal wedge even

under symmetric information due to borrowing constraints and the fact that workers do not

participate in asset markets.

It is reasonably simple to analyze the effects of exogenous changes in tax rates. This will

be useful when looking at the economy with asymmetric information because Proposition 3

implies these are exactly isomorphic to the effects of endogenous changes in λM .

Lemma 5. For any state X

1. dp

dτ
< 0

2. dAM

dτ
< 0

3. dK ′

dτ

∣

∣

τ=0
< 0

An increase in taxes increases the wedge between AM and γ

p
. Parts 1 and 2 of Lemma 5 es-

tablish that this increase in the wedge manifests itself through both lower returns for Buyers and

lower prices for Sellers. Both of these effects tend to lower capital accumulation. In addition,

taxes have the effect of redistributing resources form Buyers and Sellers to all entrepreneurs,

including Keepers. As with any tax, the relative incidence on Buyers and Sellers depends on

elasticities. For small enough τ , the elasticities of supply and demand are mechanically linked,

as the density of marginal Buyers, f
(

AM
)

, approaches that of marginal Sellers, f
(

γ

p

)

. Part

3 of Lemma 5 establishes that in this case the redistributive effect always goes against the

higher-A agents, reinforcing the effect of lower capital accumulation.15

4.3 Comparative statics and aggregate shocks

The equilibrium conditions derived in section 4.1 are static. This feature is a consequence of

assuming that entrepreneurs have log preferences, no labour income and a single asset to invest

15For τ away from zero, it is possible to construct counterexamples where f
(

γ
p

)

is much higher than f
(

AM
)

,

so supply is much more elastic than demand. In this case it is possible for Sellers to be net beneficiaries of
redistribution, so taxes can conceivably increase capital accumulation. Working in the opposite direction is the
fact that the direct marginal distortion increases with τ .
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in. This simplifies the analysis of the effects of aggregate shocks. In particular, it implies that

shocks will have the same effects whether or not they are anticipated. Thus by answering the

comparative statics question “how would the features of the model change if a parameter were

different?” one also answers the impulse response question “how would the economy respond

to a shock to one of the parameters?”

Consider first the effects of a productivity shock. It makes a difference in this model whether

the shock affects primarily the coconut-producing capacity of the economy or its project-

producing capacity. Suppose first that there is a proportional shock to coconut-productivity.

This would affect the equilibrium conditions through its effect on the marginal product of cap-

ital r = YK . Its effects can therefore be understood through the comparative statics of the

equilibrium with respect to r.

Proposition 4. If in equilibrium p∗ > 0 then

1. p∗ is increasing in r.

2. Under Assumption 1, AM∗ is decreasing in r.

3. λM∗ is decreasing in r.

4. Under Assumption 1, K ′

K
is increasing in r

Favourable shocks will mean that entrepreneurs hold a higher number of coconuts. Other

things being equal, entrepreneurs would want to save a fraction β of the additional coconuts.

Sellers and Keepers would do so through physical investment but Buyers would attempt to

buy more projects, thus bidding up the price (part 1) and lowering returns (part 2). Note that

it is not productivity per se that matters but rather the effect of the productivity shock on

current dividends. A similar effect would result, for instance, if there was a temporary shock

to the capital share of output leaving total output unchanged or simply a helicopter drop of

coconuts from outside the economy. Part 3 of Proposition 4 has the important implication that

the severity of the lemons problem, as measured by the equivalent tax wedge τ = λM

1−λM will

respond to aggregate shocks. Higher prices persuade marginal Keepers to sell their nonlemons

and therefore a favourable shock to the coconut-producing capacity of the economy will alleviate

the lemons problem.

Turn now to an investment-productivity shock. This can be represented as a proportional

change in the investment opportunity of every entrepreneur, from A to φA, so that the distri-

bution of A becomes F ′, where F ′ (A) = F
(

A
φ

)

.

Proposition 5.

1. λM∗ is decreasing in φ.
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2. Under Assumption 1, K ′

K
is increasing in φ

Proposition 5 implies that higher productivity in the project-producing sector also alleviates

the lemons problem. In this case, the effect comes from the supply side rather than the demand

side. Because physical investment has become more attractive, marginal Keepers decide to sell

their nonlemons, improving the mix of projects.

Propositions 4 and 5 jointly show that positive shocks lessen financial market wedges and

negative shocks worsen them. Liquidity, as measured by (the inverse of) the size of these

wedges, is procyclical.

The endogenous response of liquidity has the important consequence of amplifying the re-

sponse of the economy to exogenous shocks. To show this, I compare the responses of economies

with symmetric and asymmetric information to the same exogenous shock. In order to make

sure that the economies are otherwise identical, I assume that in the symmetric information

economy there are (fixed) taxes on transactions at a rate such that, absent the shock, prices

and allocations in both economies would be exactly the same. Denote equilibrium variables in

both economies by the superscripts SI and AI respectively.

Proposition 6.

1. dpAI

dr
> dpSI

dr

2. dAM,SI

dr
< dAM,AI

dr

3. dK ′,AI

dr
> dK ′,SI

dr
for λ small enough

Proposition 6 implies that, in response to a productivity shock which increases r, asym-

metric information amplifies the rise in asset prices, moderates the drop in rates of return and

amplifies the increase in the rate of capital accumulation compared to the symmetric informa-

tion benchmark.

For negative shocks, the adverse selection effect can be sufficiently strong to lead to a

complete shutdown of financial markets.

Proposition 7.

1. If

max
p

AM (p) <
γ

r

(1 − β)

β
(24)

then the market shuts down

2. Sufficiently large negative shocks to coconut-productivity or project-productivity lead to

market shutdowns
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When r is sufficiently low, then entrepreneurs have very few coconuts for each project they

own. The return from buying that would be needed to entice Buyers to choose k′ above the kink

in figure 3 is so high that it cannot be obtained at any price, and the market shuts down. When

project-productivity is low, the measure of entrepreneurs who are willing to sell nonlemons at

any given price becomes low. The market becomes full of lemons, lowering returns to the point

where Buyers choose to stay at the kink in figure 3 and the market shuts down. Notice that

asymmetric information is essential for the result. In the symmetric information benchmark

of section 3.2, as in the complete markets benchmark of section 3.1, markets would only shut

down when no entrepreneurs wish to invest, so there are no gains from trade.

It is also possible to analyze shocks whose only effect is due to informational asymmetry.

Consider a temporary increase in λ, compensated by an increase in K such that (1 − λ) K

remains unchanged. This shock has no effect on the production possibility frontier of the

economy and, with symmetric information, would have no effect on allocations. With asym-

metric information, the fact that there are more lemons mixed in with the nonlemons makes a

difference.

Proposition 8. An simultaneous increase in λ and K that leaves (1 − λ) K unchanged in-

creases λM∗

The increase in λM∗ that results from this type of shock is equivalent to an increase in

taxes, so the results in Lemma 5 regarding the effects on asset prices, rates of return and

capital accumulation can be applied directly.

One interpretation of this type shock may be the following. Suppose every period en-

trepreneurs receive an endowment of ∆λK useless lemons, so the total number of lemons

is (λ + ∆λ) K rather than λK. However, in ordinary times it is possible to tell apart the

endowment-lemons from the nonlemons, so their existence is irrelevant. A shock to λ of the

kind described above is equivalent to entrepreneurs losing the ability to detect endowment-

lemons, a form of deterioration of information. Effects of this sort will play a role in section 5

where I make the quality of information endogenous.

4.4 Simulations

In this section I compute dynamic examples of the response of the economy to shocks. In order

to highlight the role of asymmetric information, I compare the impulse responses to those of an

economy with a fixed level of taxes on financial transactions such that steady state allocations

are identical.

While I choose parameter values that are close to those used in quantitative models, the

spirit of the exercise is to illustrate the mechanisms underlying the results stated above and
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give a rough idea of the potential magnitudes rather than to constitute a quantitatively precise

simulation.

Parameter Value
β 0.85
γ .9
λ 0.15
F (A) Gamma distribution with E (A) = 1 and std (A) = 2
Y Z [(1 − λ) K]α L1−α with α = 0.4
L 1
Z 1

Table 1: Parameter values used in simulations

The production function is a standard Cobb-Douglas. The length of the period is approxi-

mately two years.16 Usually one would calibrate discount rates in order to match either observed

interest rates or rates of return to capital but in this model this is complicated by the fact that

these are different for different agents (see Appendix B). Under the choice of β = 0.85, the gross

annualized risk-free rate is 0.93 for Buyers and 1.14 on average. γ = 0.9 and λ = 0.15 imply

an annual rate of depreciation of 13%. There is less guidance as to what are reasonable values

for λ and F . The values were chosen primarily to ensure that the adverse selection problem is

not severe enough to make markets shut down in steady state. A standard deviation of 2 for A

implies that the investment opportunity of the marginal Seller, who is at the 91st percentile of

investment productivity, is 3.3 times better than that of the marginal Buyer, who is at the 76th

percentile. Under these parameters, Assumption 1 holds in the relevant range where equilibria

take place.

In all cases I assume the economy begins at a steady state and is hit by a shock at t = 3.

As a preliminary remark, I show that such a steady state exists.

Lemma 6. Under Assumption 1, for any fixed Z there exists a unique steady state level of

capital.

The first exercise is to simulate a productivity shock in the consumption goods sector lasting

a single period. Panel 2 of figure 4 shows the response of output to the TFP shock. It rises

mechanically at the time of the shock and remains slightly above steady state because of capital

accumulation. Panel 3 shows how capital accumulation responds to the shock, illustrating the

amplifying effect of asymmetric information. Panel 4 illustrates the response of asset prices.

Because the increase in the marginal product of capital increases the supply of savings, these

would rise even with symmetric information; they rise even more because of the selection effect.

16A relatively long period length makes the investment opportunity of a given entrepreneur somewhat per-
sistent despite the assumption that A is iid.
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Figure 4: Transitory productivity shock in the consumption goods sector

The response of λM is shown on panel 5. Panel 6 shows the response of market rates of return.

The increase in the supply of savings drives them down, but selection effects moderate the

effect. After the shock is over at t = 4, the marginal product of capital is slightly below its

steady state level due to diminishing marginal product, so the effects are reversed.

If the productivity shock followed an AR(1) process (with persistence of 0.9), the effects

would be similar to the nonpersistent shock. The main difference is that output in the asym-

metric information economy remains above that of the fixed-tax economy for longer due to the

sum of several periods of more capital accumulation.

The next exercise is to simulate a productivity shock in the investment sector, i.e. a shift

in F (A) of the kind considered in Proposition 5, lasting only one period. The most interesting

difference compared to the standard TFP shock lies in the response of AM and p. The increase

in investment-productivity means that more entrepreneurs wish to sell their assets to obtain

financing. Even with symmetric information, this raises market returns, as shown on panel 6

of figure 6. The selection effect means that this is even stronger with asymmetric information.

With symmetric information, the increase in the supply of assets necessarily lowers asset prices,

as shown on panel 4. With asymmetric information the increase in the proportion of nonlemons

can lead to the opposite effect, as is the case in this example.
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Figure 5: AR(1) productivity shock in the consumption goods sector
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Figure 6: Transitory productivity shock in the investment sector
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5 Informative signals and learning

In section 4 I made the extreme assumption that potential buyers of projects do not know

anything about an individual project. In reality there are many sources of information about

assets that potential buyers may consult, such as financial statements and analyst reports.

All of these are imperfect but contain some useful information that helps buyers update their

beliefs about whether a given project is a lemon. In this section I extend the model by intro-

ducing publicly observable imperfect signals about individual projects’ quality and explore how

equilibrium outcomes are affected by the existence of these sources of information.

The structure of information is as shown in figure 7. Each project receives a random

Nonlemon

Lemon

λ

1 − λ

1 − µl

µl

l, Blue

l, Green

l, Blue

l, Green

1 − µl

µl

Outcome SignalsIndex

l

Figure 7: Information structure

index l uniformly distributed in [0, 1]. After it has either become a lemon or not it emits a

publicly observable message s ∈ {Blue, Green}. A function µ : [0, 1] → [0, 1] governs the

conditional probability of emitting each of the two messages for a given index l; I denote

µ (l) by µl, where µl ≡ Pr [s = Blue|l, Lemon] = Pr [s = Green|l, Nonlemon]. The index l,

as well as the messages Blue or Green are publicly observable, so a signal consists of a pair

l, s ∈ [0, 1] × {Blue, Green}. Conditional on the signal, the probability that a given project is

a lemon is given respectively by

λl,B ≡ Pr [Lemon|l, Blue] =
λµl

λµl + (1 − λ) (1 − µl)

λl,G ≡ Pr [Lemon|l, Green] =
λ (1 − µl)

λ (1 − µl) + (1 − λ) µl

(25)

The index l represents the different pieces of information that a firm can issue in any given

period: a financial statement, news about a labour dispute, a profit forecast, consumer reports
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about its products, a rumour about production delays, etc. The message s represents the actual

content of that piece of information, such as “profits increased 5% in the second quarter” or

“the product ranks third in customer satisfaction”, simplified so that each message can only

take two values. To abstract from issues of strategic release of information, I assume that both

the index l and the message s are beyond the entrepreneur’s control.

Define

Il (µl) ≡
(

µl −
1

2

)2

Il (or any monotone transformation thereof) measures the quality of signals for projects with

index l. When Il = 0 then λl,s = λ and signals with index l are completely uninformative; if

this is true for all l the model reduces to the one without signals. If Il = 1
4

then signals are

perfectly informative; if this is true for all l, the model reduces to the symmetric information

benchmark of section 3.2. For intermediate values of Il the signals are partially correlated with

the project outcome.

It will be useful below to discuss the overall distribution of information in the economy.

To do so, reorder the indices l (without loss of generality) so that µl is weakly increasing and

define the distribution function H (µ):17

H(µ) ≡ sup{l : µl ≤ µ}

5.1 General equilibrium

A definition of equilibrium, which is just a generalization of Definition 1 can be found in

Appendix C. Equilibrium conditions can be found statically in the same way as in section 4.1.

Signals have the effect of segmenting the market into a continuum of separate submarkets, with

prices pl,s. Denote the price vector by p = {pl,s}l=[0,1],s=B,G
. Entrepreneurs might decide to

sell their nonlemons into certain l, s submarkets but not others18 and may also decide which

submarkets to buy from. Entrepreneurs will sell their nonlemons into pool l, s iff A > γ

pl,s
, so

λM
l,s (pl,s) =

λl,s

λl,s + (1 − λl,s)
(

1 − F
(

γ

pl,s

)) (26)

17Note the slight abuse of notation: µ refers to both the function µ(l) : [0, 1] → [0, 1] and to the values that
function may take.

18Assume they are sufficiently well diversified that, at the level of the individual entrepreneur, their holdings
of projects are uniformly distributed across l and the proportion of messages Blue and Green for each l is given
by µl.
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and the return obtained by Buyers who purchase from market l, s is

AM
l,s (pl,s) =

γ

pl,s

(

1 − λM
l,s (pl,s)

)

(27)

The marginal Buyer must be indifferent between buying in any of the submarkets where

demand is positive or investing on his own. Denoting his investment opportunity by A∗, this

implies that

AM
l,s (pl,s) ≤ A∗, with equality if pl,s > 0, for every l, s (28)

By continuity, for every l, s there is at least one price that satisfies condition (28). If AM
l,s(pl,s) <

A∗ for all pl,s then the l, s market shuts down and pl,s = 0. Otherwise there exists at least one

price pl,s where (28) holds as equality. Assume that for any l, s, pl,s will be given by highest

price that satisfies pl,s and denote this price by pl,s(A
∗).19

Lemma 7. pl,s(A
∗) is decreasing in A∗

If λM
l,s did not respond to the price, Lemma 7 would be a trivial statement: if Buyers demand

higher returns, this lowers asset prices. With λM
l,s endogenous, this depends on the selection

effect not dominating the direct effect. Lemma 7 holds because this is always the case for high

enough p, including the highest solution to condition (28).

Since Buyers are indifferent between buying in any submarket, demand in each submarket

is not uniquely determined. However, total spending across submarkets is, and is given by

TS (p, A∗) = K

[

β

[

λ

∫ 1

0

[µlpl,B + (1 − µl) pl,G] dl + (1 − λ) r

]

− (1 − β) (1 − λ) γ

A∗

]

F (A∗)

(29)

The supply in each submarket is determined by arbitrage between selling and keeping, leading

to total revenue from selling projects equal to

TR (p) = K

∫ 1

0





pl,B

[

λµl + (1 − λ) (1 − µl)
(

1 − F
(

γ

pl,B

))]

+

pl,G

[

λ (1 − µl) + (1 − λ)µl

(

1 − F
(

γ

pl,G

))]



 dl (30)

Market clearing implies that the value of excess demand must be zero, i.e.

E (p, A∗) ≡ TS (p, A∗) − TR (p) = 0 (31)

It is easily seen that (26)-(31) are necessary and sufficient conditions for equilibrium. However,

19 Under Assumption 1, there is always a unique price that satisfies (28). Otherwise, the focus on the highest
solution is justified by the fact that otherwise Buyers could improve their returns by raising prices. See Appendix
A for a discussion of this case.
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there is nothing in the definition of equilibrium that implies that if there are many solutions to

(28) the highest must be selected. The following equilibrium refinement imposes this selection

rule.

Definition 2. A robust equilibrium with signals is a recursive equilibrium with signals and

a value of A∗(X) such that, for any l, s and any p̃ ≥ pl,s(X), the following inequality holds:

AM
l,s (p̃) ≤ A∗(X), with equality if p̃ = pl,s(X) > 0

Mild regularity conditions ensure existence and uniqueness of a robust equilibrium.

Lemma 8. If H (µ) is continuous, then there exists a unique robust equilibrium with signals

Lemma 8 states that there is a unique equilibrium in which it is never the case that Buyers

would prefer higher prices, without requiring Assumption 1 or allowing for rationing in the

definition of equilibrium. For any A∗, prices and allocations are uniquely determined, so the

proof rests on showing that there exists a unique value of A∗ such that E (p (A∗) , A∗) = 0.

Uniqueness is guaranteed because, using Lemma 7, E (p (A∗) , A∗) is monotonic. Existence

requires the assumption that H be continuous. A small change in A∗ can lead to a discrete

shutdown of a particular submarket, but continuity implies that each submarket is small so

the excess demand function is continuous and must intersect zero at some point. A similar

argument can be found in Riley (1987).

5.2 Effects of information

For concreteness assume that µl ≥ 1
2
∀l; the symmetry of the information structure implies that

this is without loss of generality.20 In this case, λl,G < λ < λl,B, so message Green is good news

while message Blue is bad news. For some indices l, µl will be near 1
2
⇐⇒ Il near 0, so signals

will be relatively uninformative, whereas for other indices µl will be near 1 ⇐⇒ Il near 1
4
, so

signals will be very informative. Taking A∗ as given for now, compare prices in these different

submarkets.

Lemma 9. For given A∗, pl,G is increasing in µl and pl,B is decreasing in µl

For a given l, µl determines what proportion of the lemons end up in each of the Green or

Blue submarkets. Better information implies that the lemons will be more highly concentrated

in just one of the two submarkets, the Blue one in case µl > 1
2
. To maintain the same return

for Buyers in both submarkets, this means the price must rise in the relatively better Green

submarket and drop in the relatively worse Blue submarket. This can be interpreted in terms

20The possibility that µl might take values both below and above 1
2 is important in section 5.4, where I study

the effect of uncertainty about the value of µl.
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of the implicit tax that the presence of lemons imposes, as in section 4.2. Concentrating the

lemons in the Blue submarket is akin to increasing the tax on Blue-market transactions and

lowering it in the Green-market transactions.

Lemma 10. Given any A∗, ∃µ̂ ∈ (0, 1) such that pl,B = 0 and pl,G > 0 iff µl ≥ µ̂

If signals are sufficiently informative, lemons will be so exclusively concentrated in the bad

submarket that it will necessarily shut down, while the good submarket will be almost lemon-

free and have a positive price. What Lemma 10 does not specify is whether there exist values

of µl such that either both submarkets shut down or both have a positive price. In fact, either

of these cases is possible for values of µl close to 1
2
.

Define the amount of indispensable information ε (X) for a given state X as the maximum

number ε ≥ 0 such that pl,B(X) = pl,G(X) = 0 whenever Il < ε. If ε (X) > 0, then some

amount of information is necessary for trade to take place; markets with uninformative signals

will shut down. Instead if ε = 0, markets with uninformative signals will be open. Price

patterns in cases where ε > 0 and ε = 0 are illustrated in figure 8.
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Figure 8: Price patterns when ε > 0 and when ε = 0

The condition ε(X) > 0 will always hold when λ is sufficiently large. The economic inter-

pretation of this is that poor quality assets are so common that Buyers will only be willing to

buy assets that they have received good reports about.

A general increase in the quality of information can be represented by an increase in Il

for all l or equivalently by a shift in the distribution H(µ) away from µ = 1
2
, i.e. a decrease

in H
(

1
2

+ δ
)

− H
(

1
2
− δ
)

for every δ. This increases the overall degree of sorting of lemons

and nonlemons in different submarkets. By Lemmas 9 and 10, for given A∗ this will mean a

higher fraction of markets with either little adverse selection and high prices or extreme adverse

selection and market shutdown and a lower fraction of markets with intermediate degrees of

31



adverse selection and moderate prices. In addition, there will be general-equilibrium effects

from changes in A∗.

Let ξ (X) ≡ {µ ∈ [0, 1] : I (µ) ≥ ε (X)} be the set of values of µl such that the level of

information conveyed is sufficient for markets not to shut down.

Lemma 11. A shift in H(µ) away from µ = 1
2

1. May increase or decrease A∗(X)

2. Necessarily increases A∗(X) if there is no interval (a, b) ⊂ ξ (X) such that H (b) −H (a)

decreases.

In order to interpret Lemma 11, consider a case where ε (X) > 0, so the set ξ (X) does

not include the entire unit interval. Submarkets where the pool is relatively mixed because

signals are uninformative shut down, as in the left panel of figure 8, so the implicit taxes in

those markets are infinite. For those cases, increasing the probability that µl takes values in

ξ (X) (as implied by the conditions of part 2 of the Lemma) necessarily gives Buyers more

relatively-less-adversely-selected submarkets to purchase from, which increases market rates of

return. One way to interpret this is by noting that increasing the probability that µl takes

values in ξ (X) means that nonlemons tend to end up in lower-implicit-tax submarkets. As in

part 2 of Lemma 5, lowering implicit taxes improves the rate of return for Buyers.

Improving the information has several effects on the process of capital accumulation. If

ε (X) > 0, then by Lemma 9, more information increases asset prices for a given A∗. This

increases wealth and therefore capital accumulation. Furthermore, price increases benefit only

those entrepreneurs who sell projects, who have better-than-average investment opportunities.

This raises the average productivity of investment. However, general equilibrium effects com-

plicate the picture. By Lemma 11, improving information increases market returns. On the

one hand, this persuades marginal Keepers to become Buyers and since they have worse-than-

average investment opportunities, this further increases the average productivity of investment.

On the other hand, by Lemma 7 the increase in A∗ counteracts the increase in asset prices.

The following proposition identifies conditions under which all entrepreneurs unambiguously

increase their capital accumulation in response to an improvement of information.

Proposition 9. Suppose Pr [µl ∈ ξ (X)] = 0. Then a shift in H such that Pr [µl ∈ ξ (X)] > 0

increases k′(k, A, X) for every entrepreneur.

An immediate corollary of Proposition 9 is that aggregate capital accumulation increases

as well. Admittedly, the conditions under which the proposition holds are extreme, as they

only refer to situations where improving information moves the economy from complete market

shutdown to some positive level of financial activity. Still, they provide a useful benchmark
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from which to explore the generality of the result by numerical simulation. These explorations

suggest that the result that aggregate capital accumulation increases with improvements in

information holds fairly generally. However, it is possible to construct counterexamples where

it does not, in the same way that it is possible to construct counterexamples to part 3 of Lemma

5 where dK ′

dτ
> 0.

5.3 Uncertainty about the information structure

In the model, when Buyers are thinking about whether to buy a project, they observe its signal,

form a Bayesian posterior about whether it is a lemon and then choose whether to buy at the

equilibrium price. In reality, inferring the the true value of a project on the basis of signals is

a difficult task. Messages Blue and Green are intended to represent complicated composites

of the information published by a firm in a given period. Suppose a signal is “market share

increased from 17% to 22% in the past year but profit margins declined”. This signal could have

been issued by a healthy firm (a nonlemon), if it operated in a market where customers have

high brand loyalty (which makes market share valuable) and profit margins declined due to

cyclical factors. Alternatively, this signal could have been issued by a struggling firm (a lemon)

if market share increased simply as a result of pricing its products too low, and management’s

inability to control costs will continue to hurt profits. If Buyers are inexperienced they will

find it difficult to assess which of these two explanations is more likely and will therefore find

the signal relatively uninformative. Instead, if Buyers are more experienced, they will have

observed firms in this industry increase market share at the expense of profits several times in

the past and will know how frequently this turned out successfully. Therefore they will find

the signal informative and form a more accurate posterior. They may have to worry, however,

about whether their experience continues to be relevant or whether changes in the environment

have rendered it obsolete.

Formally, assume that at any point in time agents do not know the function µ, which they

need in order to form posteriors λl,s using equation (25). Their beliefs about µ are given by a

distribution B over all possible functions µ : [0, 1] → [0, 1]. Beliefs about a particular µl are

given by a marginal distribution Bl with density bl. Beliefs are independent if µl is independent

of µl′ for all l 6= l′. The mean of Bl (µl) is denoted µ̂l.

Lemma 12. The posterior λl,s depends on beliefs B only through µ̂l.

The binary structure of both signals and project quality means that the mean of beliefs

about µl is a sufficient statistic for the problem that Buyers care about, which is inferring

project quality from a given signal. This implies that uncertainty about the true value of µl,

for a given mean, makes no difference to the informativeness of signals. Better knowledge of
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the information structure matters only to the extent that it shifts µ̂l. As before, values of µ̂l

further away from 1
2

mean signals are more informative, so informativeness can be indexed by

Il ≡
(

µ̂l − 1
2

)2
.

Lemma 13. Let χ be any random variable, possibly correlated with µl. In expectation, observing

χ increases Il.

Lemma 13 follows from the law of total variance. Uncertainty about whether a project is a

lemon given a signal can be decomposed into uncertainty given a value of µl and uncertainty

about µl. Observing a variable that is informative about µl will reduce this second component

and on average make signals more informative. One limitation of this result is that it only

refers to mean informativeness and the mean need not be the only moment of economic interest.

Nevertheless, it implies that on average signals will convey more information if the structure

by which they are generated is better understood.

A special extreme case of Lemma 13 occurs when µ̂l = 1
2
, as would be the case for instance if

Bl (µl) is symmetric around 1
2
. Under these beliefs signals are completely uninformative, while

for someone who knew the true value of µl they would convey information. For example, if

beliefs are that µl might take the values 0 or 1 with equal probability, then Il = 0 but knowing

µl would make signals perfectly informative.

The nature of the equilibrium will depend on where exactly beliefs B come from. I will

assume that, starting from some B0, beliefs are the result of Bayesian updating given a set of

variables that agents are able to observe every period. As is standard in rational expectations

equilibria, agents are able to observe prices and, if these are informative about the function µ,

they can simultaneously update their beliefs B and adjust their demand accordingly. They are

not, however, able to observe the quantity of projects traded in any given submarket. Further-

more, they do not learn µ from observing the signals emitted by the lemons and nonlemons in

their own portfolio of projects.21 At the end of each period, all agents are also able to observe

a random vector χ, whose probability distribution may depend on µ and other equilibrium

objects, and use this observation to update B. For now leave the exact nature of χ unspecified,

a concrete description is in section 5.4 below. Finally, assume the true µ is not fixed but follows

a known Markov process, and agents take this into account to form their beliefs Bt+1 for the

following period. Note that since all signals are public, all agents will have the same beliefs.

Let the state variable be X = {Z, Γ, B}, where B refers to the beliefs that agents hold when

21This may seem inconsistent with the fact that they are fully diversified. However, full diversification can
be achieved by holding a countably infinite number of projects. Learning the true µl for a countable number of
indices l would provide information about a zero-measure subset of submarkets.
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entering the period, before prices are realized. The entrepreneur solves

V (k, A, X) = max
c,k′(µ),i,sL,l,s(µ),sNL,l,s(µ),dl,s

[u (c) + βE [V (k′(µ), A′, X ′) |X, p(X, µ)]] (32)

s.t.

c + i +

∫ 1

0

∑

s

pl,s (X, µ) [dl,s − (sL,l,s(µ) + sNL,l,s(µ))] dl ≤ (1 − λ) r (X) k

k′(µ) = γ

[

(1 − λ) k +

∫ 1

0

∑

s

[(

1 − λM
l,s (X, µ)

)

dl,s − sNL,l,s

]

dl

]

+ Ai

i ≥ 0, dl,s ≥ 0

sL,l,B ∈ [0, λµlk] , sL,l,G ∈ [0, λ (1 − µl) k]

sNL,l,B ∈ [0, (1 − λ) (1 − µl) k] , sNL,l,G ∈ [0, (1 − λ) µlk]

Notice that the buying, selling and investing decisions are not necessarily sufficient to determine

k′. In case dl,s is positive for some submarket l, s, then λM
l,s determines how many nonlemons

the entrepreneur obtains from that purchase depends. The realized λM
l,s depends on the realized

µl,s, which is unknown to the entrepreneur. Conditional expectations about the future state,

including future beliefs (which will in turn depend on the realized χ) and k′ are formed knowing

the current state X and any information the current prices provide about current µ.

Definition 3. A recursive rational expectations equilibrium with signals consists of prices

{p (X, µ) , r (X) , w (X)}; market proportions of lemons λM (X, µ); laws of motion Γ′(X, µ)

and beliefs B′(X, µ, χ) and associated transition density Π (X ′|X); a value function V (k, A, X)

and decision rules {cw (X) , c (k, A, X) , k′(k, A, X;µ), i (k, A, X) , sL,l,s (k, A, X; µ) , sNL,l,s

(k, A,X;µ), ds (k, A, X; µ)} such that (i) factor prices equal marginal products: w (X) = YL (X),

r (X) = YK (X); (ii) workers consume their wage cw (X) = w (X); (iii) {c (k, A, X) , k′(k, A, X;

µ), i (k, A, X) , sL,l,s (k, A, X; µ) , sNL,l,s (k, A, X; µ) , dl,s (k, A, X; µ)} and V (k, A,X) solve pro-

gram (32) taking p (X; µ), r (X), λM (X; µ) and Π (X ′|X) as given; (iv) each submarket l, s

clears: Sl,s (X; µ) ≥ Dl,s (X; µ), with equality whenever pl,s (X; µ) > 0; (v) in each market the

proportion of lemons is consistent with individual selling decisions: λM
l,s (X; µ) =

SL,l,s(X;µ)

Sl,s(X;µ)
; (vi)

the law of motion of Γ is consistent with individual decisions: Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k
dΓ(k̃, Ã)

F (A) and (vii) beliefs evolve according to Bayes’ rule

Notice one subtlety about the definition of equilibrium. Consistent with the assumption

that Buyers do not know µ, program (32) does not allow the choice of dl,s to depend on

the realization of µ. However, in general program (32) may have many solutions if Buyers

are indifferent between buying from different submarkets (making demand a correspondence

rather than a function). If demand is indeed a correspondence, the definition of equilibrium
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allows D(X; µ) to take any value in that correspondence, possibly one that depends on µ. This

corresponds to assuming that, when Buyers are indifferent, demand adjusts to meet supply.

For a given state X, define µ̂p
l ≡ E[µl|X, p]. µ̂p

l represents the mean of beliefs about µl once

the agent has observed equilibrium prices. The expected return that Buyers believe they will

obtain if they buy projects in submarket l, s is still given by equation (27), except that µ is

replaced by µ̂p in the definition of AM
l,s (pl,s), i.e.

AM
l,s (pl,s; µ̂

p) ≡ γ

pl,s

(

1 − λM
l,s (pl,sµ̂

p
l )
)

=
γ

pl,s

(1 − λl,s (µ̂p
l ))
(

1 − F
(

γ

pl,s

))

λl,s (µ̂p
l ) + (1 − λl,s (µ̂p

l ))
(

1 − F
(

γ

pl,s

))

If the actual proportion of lemons among projects in the l, s submarket is higher than Buyers

thought (for instance if s = Blue and µ > µ̂p), then returns will be lower; conversely if the

true proportion of lemons is lower, returns will be higher. However, if beliefs are independent,

agents are able to diversify away this risk (and it will be optimal for them to do so) and will

only care about the expected return when deciding whether to buy from submarket l, s. Using

this fact it is possible to prove that there will exist an equilibrium where prices do not reveal

anything about µ.

Lemma 14. There exists a rational expectations equilibrium such that, in any state X where

beliefs are independent, prices do not depend on µ. In this equilibrium, µ̂p = µ̂ and (28) and

(31) hold, replacing µ̂ for µ in the definition of AM
l,s (pl,s), E (p, A∗) and W (k, A, X).

Lemma 14 implies that for any state in which beliefs are independent, it is possible to

characterize prices and allocations for that state on the basis of beliefs only, without knowing

the true µ. This implies that the analysis from section 5.2 regarding the effects of information

on equilibrium outcomes still holds, with information given by the function µ̂ rather than µ.

The true µ will affect the quantity of projects sold in each submarket, but the shocks to these

cancel out and do not affect aggregate variables. It remains to show that the learning process

will indeed lead to beliefs that are independent across submarkets.

5.4 Learning process

Assume that the variable χ that agents observe after every period consists of sample of size

Nl of signal-outcome pairs for each index l. Each observation consists of the signal the project

issued plus whether it turned out to be a lemon or not. This is a formalization of the idea

that market participants learn from experience. The more times they have gone through the
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process of analyzing information about a firm and monitoring its subsequent performance the

better they will become at inferring a firm’s prospects from its published information.

Nl is random and follows a Poisson distribution with mean

ωl = [flωS + (1 − fl)ωK ] (33)

where

fl = I (pl,B > 0)

[

λµl + (1 − λ) (1 − µl)

(

1 − F

(

γ

pl,B

))]

+I (pl,G > 0)

[

λ (1 − µl) + (1 − λ)µl

(

1 − F

(

γ

pl,G

))]

is the fraction of projects of index l that are sold and ωS and ωK are parameters, with ωS > ωK .

Equation (33) says that, for each project, there is a Poisson probability that the market finds

out what happened to it. This probability is higher for projects that were sold than for projects

that were kept by their owner.

The rationale for the assumption that ωS > ωK is that firms that raise funds from the

market usually provide investors with much more detailed information about their financial

condition than those that do not, both at the time of raising funds and thereafter. Part of

this is due to legal reasons, such as reporting requirements for publicly held companies, and

part may be because firms are purposefully attempting to alleviate the lemons problem. The

information that investors observe after investing gives them feedback about how accurate their

assessment of the firm was at the time they decided whether to invest in it. Furthermore, it

is not sufficient that information exist, someone must take the trouble to analyze it order to

learn from it. The main reason someone would do that is to help them decide whether to trade.

When the volume of trade decreases, the amount of attention paid to analyzing information is

likely to decrease as well. Anecdotal evidence certainly suggests that this is the case. To take

just one example, the investment bank Paribas laid off its entire Malaysian research team in

1998 in response to reduced business during the Asian crisis.22

In the model, observations of χ are used by agents to update beliefs B using Bayes’ rule.

It is useful to analyze the updating in two steps. First, since the number of l-indexed projects

actually sold (and therefore ωl) depends on the true value of µl, the number of signals itself is

a source of information.23 Secondly, given Nl, each observation can be treated as a Bernoulli

trial, where observing Blue, Lemon or Green, Nonlemon is a success, which happens with

probability µl, and observing Blue, Nonlemon or Green, Lemon is a failure, which happens

22Wall Street Journal, October 26, 1998.
23Quantitatively, this source of information is negligible compared to the information derived from the actual

content of the signals
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with probability 1 − µl.

By Lemma 13, each updating of Bl (µl) increases the expected informativeness of signals

for index l, as agents learn from experience. If µ were constant over time, in the long run the

market would observe enough realizations of l-indexed signal-outcome pairs to learn the true

value of µ with arbitrarily high precision.

Instead, if the true value of µl follows a nondegenerate Markov process, then agents face

a filtering problem. After each period, they update their beliefs about µt on the basis of

signal-outcome observations and use those to form beliefs about µl,t+1, taking into account the

stochastic process followed by µl. The solution of this filtering problem for general stochastic

processes can be quite complex, but it is easy to compute in some special cases. Suppose that

each µl,t follows an independent two-state Markov process, taking values µ̄ > 1
2

and 1 − µ̄,

with switching probability σ < 1
2
. At any given period, beliefs about µl,t are summarized by a

single number bl,t ≡ Pr [µl,t = µ̄], and are independent. Applying Bayes’ rule, after observing

nl successes out of Nl observations, bl,t+1 is given by:

bl,t+1 =
(1 − σ) µ̄nl (1 − µ̄)Nl−nl (ωlµ̄)

Nl e−ωlµ̄bl,t + σ (1 − µ̄)nl µ̄Nl−nl (ωl1−µ̄)Nl e−ωl1−µ̄ (1 − bl,t)

µ̄nl (1 − µ̄)Nl−nl (ωlµ̄)
Nl e−ωlµ̄bl,t + (1 − µ̄)nl µ̄Nl−nl (ωl1−µ̄)

Nl e−ωl1−µ̄ (1 − bl,t)
(34)

where ωlµ̄ and ωl1−µ̄ denote the values of ωl when µl takes the values µ̄ and 1− µ̄ respectively.

µ̂l,t is simply given by

µ̂l,t = bl,tµ̄ + (1 − bl,t)(1 − µ̄)

In order to interpret equation (34), consider the extreme case in which ωl = 0 (which implies

Nl = 0), i.e. entrepreneurs do not observe anything regarding index l. In this case,

bl,t+1 = (1 − σ) bl,t + σ (1 − bl,t)

so bl (and therefore µ̂l) moves towards 1
2
, meaning that signals at t + 1 are less informative

than they were at t. The reason for this is that, because there is always a possibility that the

signal structure might change, not learning anything about index l for one period means that

the agents’ understanding of the information structure has become less precise. Experience is

a form of intangible capital, and can depreciate. Conversely, suppose that the realized value

of Nl is very large. The law of large numbers implies that the number of Bernoulli successes

observed will be close to the true µl,t with high probability. In the limit, agents will know

µl,t exactly and bl,t+1 approaches 1 − σ or σ. For intermediate cases, equation (34) implies

that bl will move towards 1
2

whenever (i)
∣

∣bl,t − 1
2

∣

∣ is large (mean reversion); (ii) few signals are

observed (experience becomes outdated) or (iii) nl

Nl
is close to 1

2
(different observations conflict

with each other).
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By Lemma 14, the function µ̂ or, equivalently, the distribution of mean beliefs H(µ̂), is

sufficient to characterize allocations in any given state. Furthermore, the following lemma

establishes that it is possible to characterize the distribution of next-period mean beliefs H ′

without knowing the true realized µ.

Lemma 15. H ′ is a deterministic function of X

By Lemma 15, the realized value of µ in any given state is irrelevant not only for the

determination of prices and allocations in that state, but also for the learning process. This

makes it possible to characterize the entire dynamic path of the economy by keeping track of

beliefs, aggregate capital and productivity Z, without any reference to realized µ at all.

Computationally, the only complication is the need to carry the infinite-dimensional state

variable H and compute its trasition density. However, H itself can be well approximated

by a finite grid and its transition density computed by simulation. The fact that prices and

quantities can be found statically means there is no need to compute the entrepreneur’s value

function.

5.5 Persistence

It is straightforward to verify that, taking H as given, the comparative statics of the economy

with signals regarding the response to shocks are the same as those in the economy without

signals. In addition, learning introduces a dynamic feedback mechanism between activity in

financial markets and the real economy. Suppose the economy suffers a negative productivity

shock. This lowers r, which lowers demand, increases A∗ and lowers asset prices. At these

lower asset prices, marginal Sellers in each submarket become Keepers, lowering the number

of transactions. Since ωK < ωS, equation (33) implies that the sample sizes from which en-

trepreneurs will learn about µ will be lower. Equation (34) then implies that this will lead to

a distribution of beliefs H ′ that is more concentrated towards 1
2
, increasing the overall level

of informational asymmetry as signals become less informative. This will affect asset prices,

the amount of financial market activity, the amount of learning and capital accumulation in

future periods. Thus temporary shocks can have long-lasting real effects. In fact, under certain

conditions a temporary shock can lead to an arbitrarily long recession. To prove this, I first

establish the following preliminary result.

Lemma 16. ε (X) is decreasing in r

Since r is decreasing in K, Lemma 16 implies that, other things being equal, more in-

formation is necessary to sustain financial-market activity in economies with higher levels of

capital.
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Consider the steady states of two otherwise identical economies, one with no signals and

another with signals and endogenous learning. Without signals, the steady state simply consists

of a level of capital K0 such that K ′ = K0. With signals, the steady state is a level of capital

Kss and a distribution of beliefs Hss such that K ′ = Kss and H ′ = Hss. Denote the steady state

levels of output in both economies by Y0 and Yss and the amounts of indispensable information

by ε0 and εss respectively. If ε0 > 0, this means that the steady state without signals is such

that the market shuts down.

Proposition 10. Fix any integer T > 0 and real number δ > 0. Suppose ε0 > 0 and suppose

that, starting from steady state, the economy with signals suffers a negative productivity shock

lasting n periods. If

1. The productivity shock is sufficiently large

2.

n ∈
(

log
(

µ̄ − 1
2

)

− log
(√

ε0

)

− log (1 − 2σ)
− 1,

log Kss − log K0

− log [γ (1 − λ)]

)

3. ωK is sufficiently small

then there is a T ′ ≥ T such that |Yt+T ′ − Y0| < δ

Values of ωK close to zero mean that it is very unlikely that entrepreneurs will observe the

outcomes of projects that were not sold. If this is the case, negative productivity shocks that

are sufficiently large to lead to market shutdowns will imply an almost complete interruption

of the learning process, and entrepreneurs’ understanding of the information structure will

deteriorate. If positive amounts of information are indispensable for trade and the shock lasts

long enough, then when the shock is over financial market activity will not recover because the

information needed to sustain it will have been destroyed. The bounds on n in the statement

of the proposition ensure that the shock lasts long enough for knowledge to depreciate but

not long enough so that the capital stock falls below the informationless steady state level.

Reconstructing the stock of knowledge will require learning mostly from non-sold projects,

and small sample sizes imply that this process will be slow. Hence the levels of output can

remain close to those of the informationless steady state for a long time. As long as the steady

state of the economy with signals was originally above that of the economy without signals,

then Proposition 10 implies that temporary shocks can lead to arbitrarily long recessions. By

Proposition 9, this will be true whenever the economy with signals has enough information so

that there is a positive amount of financial transactions.
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5.6 Simulations

In this section I compute examples of how the economy responds to various shocks, taking into

account the endogenous learning process. The examples are intended as explorations of the

effects that are possible in the model and rough indications of potential magnitudes rather than

as quantitatively precise estimates. To highlight the role of learning, in each case I compare the

impulse responses to those of an economy with no learning where H is fixed at its steady state

value. The parameter values I use differ from those in the simulations in section 4.4 because

Parameter Value
β 0.92
γ 1.78
λ 0.5
σ 0.2
µ̄ 0.9
F (A) Gamma distribution with E (A) = 1 and std (A) = 2
Y Z [(1 − λ) K]α L1−α with α = 0.3
L 1
Z 1

I wish to focus on economies where information is indispensable for trade, so that markets

shut down when there is no information. I do this by choosing λ = 0.5, which makes lemons

abundant and the asymmetric information problem severe. The length of the period is about a

year. β = 0.92 leads to an implicit gross risk-free rate of 0.63 for Buyers and 1.27 on average.

γ = 1.78 and λ = 0.5 imply an annual rate of depreciation of 11%. σ parameterizes the Markov

process followed by µl. Define the half-life of that Markov process as the number of periods of

no learning that it would take for E [µl] to mean-revert half way back to 1
2
. A simple calculation

shows that it is given by − log 2
log(1−2σ)

. σ = 0.2 implies a half-life of 1.36 periods. µ̄ = 0.9 implies

that the true correlation between signals an asset quality is very high, so learning it well has the

potential to greatly reduce informational asymmetry. As to the intensity-of-learning parameters

ωS and ωK , different examples use different values.

The first simulation is an illustration of Proposition 10. I assume that the probability

of observing the outcomes of sold projects is very large (ωS = 400). Whenever a given l, s

market is open, agents will have many observations from which to learn whether µl,t = µ̄ or

µl,t = 1 − µ̄. It turns out that in steady state Il [(1 − σ) µ̄ + σ (1 − µ̄)] > ε (X), i.e. learning

µl,t very precisely provides sufficient information to sustain trade at t + 1. Therefore an l such

that the market is open at t will be open at t + 1 with very high probability, making market

openness close to an absorbing state. It is not quite absorbing because, due to the assumption

that Nl is Poisson, there is always a small probability there will be few observations and µ̂l

will move towards 1
2
. I also assume that the probability of observing the outcome of nonsold
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projects is very low (ωK = 0.007). Whenever markets l, Blue and l, Green are shut for a given

l, it is very likely that Nl = 0, so there will be no learning and l-markets will remain shut the

following period. Hence market shutdown will also be nearly absorbing.

Figures 10 and 11 illustrate the response of this economy to a negative 10% productivity

shock taking place at t = 2 and lasting only one period, starting from steady state.

Begin with the evolution of H , shown in figure 11. It is initially highly concentrated at

either µ̂l = (1 − σ) µ̄+σ (1 − µ̄) = 0.74 (and symmetrically µ̂l = 0.26), where markets are open

or µ̂l = 1
2
, where markets are shut. The shock is sufficiently large to shut down all markets for

one period; in this period ωl is close to zero for all markets, so µ̂l shifts towards 1
2
, according

to equation (34). The distribution H becomes more concentrated around 1
2
, corresponding to

less informative signals. This loss of information turns out to be sufficient to prevent most

markets from reopening at t = 3 when the productivity shock is over. Hence the distribution

H continues to concentrate towards 1
2
. Eventually the percentage of markets with µ̂l away from

1
2

begins to recover as some observations emerge even from shut markets.

Panel 2 of figure 10 shows the response of output. The response to the initial shock at t = 2

is mechanical and is reverted at t = 3. Then the impact of increased informational asymmetry

on capital accumulation is felt and output drops steadily for several periods. Thus the model

is able to generate the long recessions following financial crises that have been documented

by Cecchetti et al. (2009), Claessens et al. (2009) and Cerra and Saxena (2008). In this

(admittedly extreme) example, output remains close to 5% below its steady state value for over

twenty periods.

Increased informational asymmetry affects capital accumulation by lowering both invest-

ment, shown n panel 4, and the average marginal rate of transformation of consumption goods

into capital (average A), shown on panel 5. Average A drops because informational asymmetry

interferes with the flow of coconuts towards higher-A entrepreneurs. The return to buying

(shown on panel 6) drops, persuading marginal Buyers to become Keepers and undertake some

investment. In contrast, the marginal Sellers in each submarket, who have relatively higher

A decide to become Keepers due to lower asset prices and therefore reduce their investment.

Finally, those very-high A entrepreneurs who decide to remain Sellers reduce their investment

because lower asset prices reduce their wealth. This may provide an explanation for the pattern

identified by Justiniano, Primiceri and Tambalotti (2008b) who find, in an estimated quanti-

tative model, that productivity in the investment sector is correlated with disturbances to the

functioning of financial markets.

One summary measure of whether investment is being carried out by the most efficient

entrepreneurs is to compute the standard deviation of physical investment across entrepreneurs.

This should be high if investment is concentrated in the best entrepreneurs and low if mediocre

entrepreneurs also undertake investment. Consistent with the drop in average A, this measure,
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shown on panel 7, drops after the shock and recovers gradually.

The model is silent about whether entrepreneurs with higher A will transform a given

amount of coconuts into more machines or better machines. In reality it is likely that both

effects are present to some extent. Panel 8 shows the result of the following exercise. Assume

that all the effect of different values of A is due to better machines. An econometrician does not

observe how good the machines are and measures capital formation by just adding investment,

using the steady state average rate of transformation (which can be normalized to 1). Using

this mismeasured capital stock, the econometrician then proceeds to compute Solow residuals.

Since average A has decreased, the econometrician’s procedure overestimates capital formation

and leads to lower estimated Solow residuals. This may help explain the long periods of low

(measured) productivity growth that follow some financial crises, as documented for instance

by Hayashi and Prescott (2002) for Japan in the 1990s. In this example, low measured Solow

residuals account for about half the decrease in output and lower investment accounts for the

rest.

The final panel of the figure tracks the drop and then recovery of financial activity as

knowledge of the information structure is first destroyed and then reconstructed.

Beyond the immediate impact, the effects of the productivity shock are due to the deterio-

ration of the economy’s stock of financial knowledge. The next exercise is to consider a shock

to that affects that knowledge directly. Suppose that σ increases from 0.2 to 0.5 for one period.

σ = 0.5 means that Pr [µl,t+1 = µ̄|µl,t = µ̄] = Pr [µl,t+1 = µ̄|µl,t = 1 − µ̄] = 1
2
. There is a 50%

chance that signals will change meaning between periods, which makes any knowledge of the

time-t information structure irrelevant as of time-t+1. Effectively, the shock destroys the stock

of financial knowledge. Figures 12 and 13 show that, aside from the initial period, the effects

on the quality of information and therefore on other variables in the economy are very similar

to those of a large productivity shock.

Due to the extreme values of the parameters ωS and ωK , the response of the economy

changes in a highly nonlinear way with the size of the shock. The next exercise (figures 14 and

15) looks at a productivity shock of only 5% rather than 10% which, for these parameter values,

is not enough to shut down the market completely. The number of projects sold decreases in

response to the shock, as seen on panel 9 of figure 14, but is not close to the point where the

market shuts down. Sample sizes for learning about µ decrease roughly in the same proportion

as the drop in the number of sold projects, but since ωS is very high they are still large enough

that there is virtually no effect on the learning process and there is no information-induced

recession.

Learning effects can also lead to high persistence after positive shocks. Consider an economy

with ωK = 0, so there is never any learning from markets that are shut, making market

shutdown an absorbing state. The rest of the parameters are as before, except that λ = 0.35
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and γ = 1.37, so that informational asymmetry is slightly less severe but the rate of depreciation

is the same.24 For any level of capital above the informationless steady state, Lemma 16 implies

ε (X) > 0, so there always exists a region near 1
2

such that if µ̂l falls in that region, the l-markets

shut down. Since ωS < ∞, µ̂l could always fall into that region even if l−markets are open,

so market openness is not absorbing. This implies that the only steady state of this economy

will be one with no trade and no information. However, a positive productivity shock that

led markets to reopen for one period would lead to a large amount of learning, which could

sustain financial market activity for a long time. Figures 16 and 17 illustrate the response of

the economy to such a shock. Thanks to the restarting of the learning process, information

improves a lot at first and, because ωS is high, it depreciates very slowly. This leads to a

sustained increase in output. If the capital stock is computed without adjusting for the higher

average A, around a third of the increase in output would be attributed to higher TFP.

The final experiment consists of modeling a stabilization of the information structure, i.e.

a decrease in σ. This helps the learning process by slowing the rate at which knowledge of the

information becomes outdated. I simulate a permanent decrease in σ from 0.2 to 0.1, using less

extreme parameters for the Poisson sample sizes: ωS = 3 and ωK = 1. The results are shown

in figures 18 and 19.

As a result of the stabilization, the distribution of H gradually spreads out, improving the

quality of information. This increases the average productivity of investment, leading to a new

steady state with higher output. Around half the increase in output would be attributed to

higher TFP. This experiment is suggestive of some of the channels by which a more stable

economic environment, which does not need to be re-learned every period can lead to higher

levels of output.

6 Final remarks

This paper has explored the macroeconomic implications of asymmetric information about asset

quality when assets are necessary collateral for financial transactions. Informational asymmetry

acts like a tax on transactions, which has the potential to greatly distort the flow of investment.

Furthermore, the distortions are sensitive to macroeconomic shocks and amplify their effects.

Public information about asset quality may alleviate informational asymmetry, provided

agents have the experience necessary to interpret this information. By modeling the gaining

of experience as the result of financial market activity, the model captures a new notion of

market liquidity that emphasizes an economy’s accumulated financial knowledge. The dynam-

ics of gaining and losing experience can create a powerful propagation mechanism that leads

24With these parameters, markets still shut down in the informationless steady state but the size of the
positive shock that would be required to reopen them is smaller than with λ = 0.5.
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from temporary shocks to long-lasting consequences for market liquidity, capital-accumulation,

productivity and output, in ways that are consistent with stylized facts about financial crises.

At the center of the learning mechanism lies an externality: by choosing to sell their projects,

entrepreneurs contribute to the generation of knowledge. The externality is especially strong

when financial markets are close to shutting down. Is there something the government should

do to correct this? The model abstracts from any costs of preparing information for Sellers or

of analyzing it for Buyers. If these costs were literally zero, then it would be simple to compel

agents to produce and analyze information regardless of market conditions, severing the link

between learning and financial activity and eliminating the externality. If instead knowledge

generation is costly and is only undertaken as a side-product of financial transactions, there

may be a case for the government to try to prevent a complete market shutdown in order to

preserve the stock of financial knowledge.

The idea that learning-by-doing about how to interpret information may affect informational

asymmetries could have wider applicability beyond the types of setting explored in this paper.

Exploring whether these mechanisms may account for differing levels of liquidity across different

markets is a promising question for further research.

A Increasing AM(p) and rationing

Define

pm (p) ≡ arg max
p̃≥p

AM (p̃)

pM ≡ pm (0)

P m ≡ {p ∈ R+ : p ∈ pm (p)}

pm(p) is the price (or prices) above p that maximize the return for Buyers. If AM(p) has multiple

local maxima, there may be values of p such that pm(p) contains more than one element.

Assumption 2. AM(p) may have many local maxima, but no two are equal

Assumption 2 implies that pm(p) contains at most two elements and if it contains two, one

of them must be p. The results in this appendix would still hold without it, but making this

assumption simplifies the proofs without ruling out any cases of economic interest. pM is the

global maximizer of AM(p), which exists because AM (p) is bounded and continuous and must

be unique by Assumption 2. P m is the set of prices such that Buyers cannot be made better

off with higher prices. Suppose Assumption 1 does not hold, i.e. p∗ /∈ P m, where p∗ is defined

by (21). What should we expect from an equilibrium? Stiglitz and Weiss (1981) argue that the

Buyers will offer to pay a price pm (p∗) and ration the excess supply (and possibly if AM (p) has
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multiple maxima, buy the projects rationed out of the market at some lower price pl(p∗) < p∗).

This is illustrated in Figure 9.

a

c d

b

pa pb pl(pc) ppdpm(pa) pm(pc)pc

A∗(p)

Figure 9: AM(p) and equilibrium prices with rationing

Here P m = [pm(pa), p
l(pc)]∪[pm(pc),∞). If the highest Walrasian (nonrationing) equilibrium

price lies at a point like pb ∈ P m or pd ∈ P m, then these are reasonable equilibrium prices.

If the highest Walrasian equilibrium price lies at a point like pa, then Buyers prefer to offer

pm(pa), which improves the proportion of nonlemons enough to improve their returns. At that

price, there is excess supply, so a fraction of Sellers are rationed out of the market. No matter

how cheaply they offer to sell their projects, no one will be willing to buy them. If the highest

Walrasian equilibrium price lies at a point like pc, then Buyers prefer to raise prices up to

pm(pc) and ration the excess supply. Unlike case a, if those rationed out of the market offer

to sell their projects at a price below pl(pc), then this provides a return to Sellers which is

better than that obtained at price pm(pc). In equilibrium, Buyers anticipate the possibility of

a second round market, which implies that the return from buying in each round must be the

same. Therefore the second-round price must be pl(pc), such that AM(pm(pc)) = AM(pl(pc)).

The number of projects actually bought in the first round must be exactly such that, given the

projects that remain unsold, the second-round market clears.

Formally, this notion of equilibrium is captured as follows.25 Let ρn (X) be the fraction of

25Arnold (2005) applies this equilibrium concept to the Stiglitz and Weiss (1981) model
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Sellers who manage to sell in each of the two rounds, at a price pn(X).The entrepreneur solves

V (k, A, X) = max
c,k′,l,sL,n,sNL,n,dn

[u (c) + βE [V (k′, A′, X ′) |X]] (35)

s.t.

c + l +
∑

n=1,2

pn (X) [dn − ρn (X) (sL,n + sNL,n)] ≤ (1 − λ) r (X) k

k′ = γ

[

(1 − λ) k +
∑

n=1,2

[(

1 − λM
n (X)

)

dn − rn (X) sNL,n

]

]

+ Ai

l ≥ 0, dn ≥ 0

sL,1 ∈ [0, λk] , sNL,1 ∈ [0, (1 − λ) k]

sL,2 ∈ [0, λk − ρ1 (X) sL,1] , sNL,2 ∈ [0, (1 − λ) k − ρ1 (X) sNL,1]

In this formulation, sL,n and sNL,n represent the lemons and nonlemons respectively that the

entrepreneur attempts to sell in round n; he only manages to sell ρn (X) sL,n and ρn (X) sNL,n

respectively.

Supply and demand are defined in the obvious way

SL,n (X) ≡
∫

sL,n (k, A, X) dΓ(k, A)

SNL,n (X) ≡
∫

sNL,n (k, A, X) dΓ(k, A)

Sn (X) ≡ SL,n (X) + SNL,n (X)

Dn (X) ≡
∫

dn (k, A, X) dΓ(k, A)

Definition 4. A recursive competitive equilibrium with rationing consists of prices {pn (X) ,

r (X) , w (X)}; rationing coefficients ρn(X); market proportions of lemons λM (X); a law of

motion Γ′(X) and associated transition density Π (X ′|X); a value function V (k, A, X) and

decision rules {cw (X) , c (k, A, X) , k′ (k, A, X) , l (k, A, X) , sL,n (k, A, X) , sNL,n (k, A, X) ,

dn (k, A, X)} such that (l) factor prices equal marginal products: w (X) = YL (X), r (X) =

YK (X); (ii) workers consume their wage cw (X) = w (X); (iii) {c (k, A, X) , k′ (k, A, X) ,

l (k, A, X) , sL,n (k, A, X) , sNL,n (k, A, X) , dn (k, A, X)} and V (k, A, X) solve program (35)

taking pn (X) , ρn (X) , r (X) , λM
n (X) and Π (X ′|X) as given; (iv) either (a) the market clears

at a price that Buyers do not wish to increase, i.e. S1(X) = D1(X), S2(X) = D2(X) = 0,

ρ1(X) = ρ2(X) = 1, p1(X) = p2(X) ∈ P m (d) there is rationing at pM , i.e. p1(X) = p2(X) =

pM , ρ1(X) = D1(X)
S1(X)

≤ 1, ρ2(X) = D2(X)
S2(X)

= 0 or (c) there is rationing in the first round and

market clearing in the second, i.e. ρ1(X) = D1(X)
S1(X)

≤ 1, ρ2(X) = D2(X)
S2(X)

= 1, p1(X) ∈ P m,

p2(X) ∈ P m; (v) the market proportions of lemons are consistent with individual selling deci-
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sions: λM
n (X) =

SL,n(X)

Sn(X)
and (vi) the law of motion of Γ is consistent with individual decisions:

Γ′(k, A)(X) =
∫

k′(k̃,Ã,X)≤k
dΓ(k̃, Ã)F (A)

Lemma 17. The equilibrium exists and is unique

Proof. Take any state X and Let A∗ be the investment opportunity of the marginal Buyer.

Total spending on projects is

TS (p1, p2, ρ1, ρ2, A
∗) = K

[

β [λ [ρ1p1 + ρ2(1 − ρ1)p2] + (1 − λ) r] − (1 − β) (1 − λ)
γ

A∗

]

F (A∗)

and total revenue from sales is

TR (p1, p2, ρ1, ρ2) = K





ρ1p1

[

λ + (1 − λ)
(

1 − F
(

γ

p1

))]

+

ρ2p2

[

λ + (1 − λ)
(

1 − F
(

γ

p2

))

− ρ1

[

λ + (1 − λ)
(

1 − F
(

γ

p1

))]]





Equilibrium condition (iv) implies

E (p1, p2, ρ1, ρ2, A
∗) ≡ TS (p1, p2, ρ1, ρ2, A

∗) − TR (p1, p2, ρ1, ρ2) = 0

The function E (p1, p2, ρ1, ρ2, A
∗) is increasing in A∗ and decreasing in p1, p2, ρ1 and ρ2.

Let

ph(A∗) ≡
{

the highest solution to AM(p) = A∗ if a solution exists

pM otherwise

ρh(A∗) ≡
{

1 if a solution exists

0 otherwise

Both ph(A∗) and ρh(A∗) are decreasing, which implies that Eh(A∗) ≡ E(ph(A∗), ph(A∗), ρh(A∗),

ρh(A∗), A∗) is increasing in A∗. By definition, in equilibrium either Eh(A∗) = 0 or Eh(A∗) = 0

crosses zero discontinuously at A∗ Since Eh(A∗) is increasing, this implies uniqueness.

To establish existence, distinguish three cases:

1. Eh(A∗) = 0 for some A∗. Then the following values constitute an equilibrium: p∗1 = p∗2 =

ph(A∗), ρ∗
1 = 1, ρ∗

2 = 0.

2. Eh(A∗) crosses zero discontinuously at A∗ = A∗(pM). Then E
(

pM , pM , 1, 0, A∗) < 0 <

E
(

pM , pM , 0, 0, A∗) so there exists a value of ρ∗
1 ∈ (0, 1) such that E

(

pM , pM , ρ1, 0, A
∗) =

0. Then the following values constitute an equilibrium: p∗1 = p∗2 = pM , ρ∗
1, ρ∗

2 = 0

3. Eh(A∗) crosses zero discontinuously at some other value of A∗. This implies that ph(A∗) is

discontinuous at A∗, which, by Assumption 2, implies that AM(p) = A∗ must have exactly
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two solutions in P m, the higher one of which of which is local maximum. Denote them

ph(A∗) and pl(A∗). We have that E(ph(A∗), ph(A∗), 1, 1, A∗) < 0 < E
(

pl(A∗), pl(A∗), 1, 1, A∗),

which implies there is a value of ρ∗
1 ∈ (0, 1) such that E

(

ph(A∗), pl(A∗), ρ1, 1, A
∗) = 0.

Then the following values constitute an equilibrium: p∗1 = ph(A∗), p∗2 = pl(A∗), ρ∗
1, ρ∗

2 = 1.

Lemma 18. Consider the equilibrium with signals (Definition 5), given by conditions (31) and

(28) and suppose µl = 1
2
+ ǫ(l− 1

2
). In the limit as ǫ → 0, the equilibrium with signals converges

to the rationing equilibrium.

Proof. Suppose in a given state X the rationing equilibrium is given by {A∗, p1, p2, ρ1, ρ2}, with

AM(p1) = AM(p2) = A∗. Recall that the function AM
l,s(p; µl) is continuous in µl and equal to

AM(p) when µl = 1
2
. Consider any δA > 0, δp > 0 and ρ1, ρ2 ∈ [0, 1]. By continuity, there exists

ǫ (δA, δp) small enough that, for any ǫ < ǫ (δA, δp), there exists A∗′
1 (ǫ) satisfying

∣

∣A∗′(ǫ) − A∗∣
∣ <

δA such that the fraction of submarkets l, s where the equation AM
l,s(p; µl(ǫ)) = A∗′ has a solution

pl,s(A
∗′) with

∣

∣pl,s(A
∗′) − p1

∣

∣ < δp is exactly ρ1 and the fraction of the remaining submarkets

where the equation AM
l,s(p; µl(ǫ)) = A∗′ has a solution pl,s(A

∗′) with
∣

∣pl,s(A
∗′) − p2

∣

∣ < δp is

exactly ρ2. The result then follows from noting that if for every ǫ a fraction ρ1 of submarkets

have prices p∗l,s(ǫ) satisfying limǫ→0 p∗l,s(ǫ) = p1, a fraction ρ2 of the remaining ones have prices

p∗l,s(ǫ) satisfying limǫ→0 p∗l,s(ǫ) = p2 and the rest have p∗l,s(ǫ) = 0, and limǫ→0 A∗′(ǫ) = A∗, then

lim
ǫ→0

E
(

p∗l,s(ǫ), A
∗′(ǫ); µl(ǫ)

)

≡ E(p1, p2, ρ1, ρ2, A
∗)

B Liquidity premia

Entrepreneurs in the model do not face a portfolio problem. If they wish to carry wealth from

one period to the next, the only way to do it is to buy or create projects. For each coconut they

save, they obtain max
{

A, AM
}

projects at t + 1, which they consider equivalent to obtaining

a (risky) amount of max
{

A, AM
}

Wk (A′, X ′) coconuts at t + 1. Still, it is possible to define

the implicit risk-free rate Rf for entrepreneur j by assuming he has access to an alternative

safe technology that converts t-dated coconuts into t + 1-dated coconuts (and hence faces a

portfolio problem) and asking what the return on that technology would need to be for him

not to change his equilibrium decisions.

Formally, consider an entrepreneur who has access to a technology that delivers R coconuts

tomorrow in exchange for a coconut today. Letting m be the coconuts he receives from this
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safe investment, he solves

V (k, m, A, X) = max
c,k′,m′,i,sL,sNL,d

[u (c) + βE [V (k′, m′, A′, X ′) |X]]

s.t.

c + i + p (X) [d − sL − sNL] +
m′

R
≤ (1 − λ) r (X) k + m

k′ = γ
[

(1 − λ) k +
(

1 − λM (X)
)

d − sNL

]

+ Ai

i ≥ 0, d ≥ 0, m′ ≥ 0

sL ∈ [0, λk] , sNL ∈ [0, (1 − λ) k]

Assume for concreteness that the equilibrium is such that p > 0 and the solutions of

programs (13) and (16) coincide26 and define W (k, m, A, X) = W (k, A, X) + m. The en-

trepreneur’s (relaxed) problem reduces to

V (W, A) = max
c,π,W ′

[u (c) + βE [V (W ′, A′, X ′) |X]]

s.t.

W ′ =
[

π max
{

A, AM
}

Wk (A′, X ′) + (1 − π)R
]

(W − c)

π ∈ [0, 1]

where π is the fraction of his savings W − c that he invests in projects. Define Rf as the

maximum value of R that is consistent with π = 1 being an optimal choice.

Proposition 11.

1. Rf < max
{

A, AM
}

E [Wk (A′, X ′)]

2. If there was symmetric information and X ′ was deterministic, then Rf = max
{

A, AM
}

E [Wk (A′, X ′)]

Proof.

1. The first order condition for π is

π =











1 if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

> 0

anything if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

= 0

0 if E
[

VW (W ′, A′, X ′)
(

max
{

A, AM
}

Wk (A′, X ′) − R
)

|X
]

> 0

26Proposition 11 below does not depend on this assumption; it is straightforward to adapt the proof to the
case where markets shut down.
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so Rf must satisfy:

Rf =
E
[

VW (W ′, A′, X ′)max
{

A, AM
}

Wk (A′, X ′) |X
]

E [VW (W ′, A′, X ′) |X ]
(36)

= E
[

max
{

A, AM
}

Wk (A′, X ′) |X
]

+
cov

[

VW (W ′, A′, X ′) , max
{

A, AM
}

Wk (A′, X ′) |X
]

E [VW (W ′, A′, X ′) |X ]

when evaluated at π = 1. Using c = (1 − β)W and uc = VW and evaluating at π = 1:

VW (W ′, A′, X ′) =
1

(1 − β) W ′
=

1

(1 − β) [π max {A, AM}Wk (A′, X ′) + (1 − π) Rf ] (W − c)

=
1

(1 − β) max {A, AM}Wk (A′, X ′) (W − c)
(37)

Equation (37) implies that the covariance term in (36) is weakly negative, strictly so if

Wk (A′, X ′) is not a constant. Finally, equation (15) implies that Wk (A′, X ′) is indeed

not constant as long as p(X) 6= γ

AM (X)
⇐⇒ λM(X) 6= 0.

2. Under symmetric information the price of nonlemons is pNL = γ

AM and the price of lemons

is zero, so Wk =
[

(1 − λ)
(

r (X) + γ

AM (X)

)]

, which does not depend on the realization of

A′. If in addition X is deterministic, then Wk is constant and therefore the covariance

term in equation (36) is zero, which gives the result.

C Equilibrium with signals

With a continuum of submarkets and signals, the entrepreneur’s program becomes

V (k, A, X) = max
c,k′,i,sL,l,s,sNL,l,s,dl,s

[u (c) + βE [V (k′, A′, X ′) |X]] (38)

s.t.

c + i +

∫ 1

0

∑

s

pl,s (X) [dl,s − (sL,l,s + sNL,l,s)] dl ≤ (1 − λ) r (X) k

k′ = γ

[

(1 − λ) k +

∫ 1

0

∑

s

[(

1 − λM
l,s (X)

)

dl,s − sNL,l,s

]

dl

]

+ Ai

i ≥ 0, dl,s ≥ 0

sL,l,B ∈ [0, λµlk] , sL,l,G ∈ [0, λ (1 − µl) k]

sNL,l,B ∈ [0, (1 − λ) (1 − µl) k] , sNL,l,G ∈ [0, (1 − λ) µlk]

Denote the vector of market proportions of lemons by λM =
{

λM
l,s

}

l=[0,1],s=B,G
and define
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supply and demand for a submarket l, s as:

SL,l,s (X) ≡
∫

sL,l,s (k, A, X) dΓ(k, A)

SNL,l,s (X) ≡
∫

sNL,l,s (k, A, X) dΓ(k, A)

Sl,s (X) ≡ SL,l,s (X) + SNL,l,s (X)

Dl,s (X) ≡
∫

dl,s (k, A, X)dΓ(k, A)

Definition 5. A recursive equilibrium with signals consists of prices {p(X), r (X) , w (X)};
market proportions of lemons λM (X); a law of motion Γ′(X) and associated transition density

Π (X ′|X); a value function V (k, A, X) and decision rules {cw (X) , c (k, A, X) , k′ (k, A, X) ,

i (k, A, X) , sL,l,s (k, A, X) , sNL,l,s (k, A, X) , ds (k, A, X)} such that (i) factor prices equal marginal

products: w (X) = YL (X), r (X) = YK (X); (ii) workers consume their wage cw (X) = w (X);

(iii) {c (k, A, X) , k′ (k, A, X) , i (k, A, X) , sL,l,s (k, A, X) , sNL,l,s (k, A, X) , dl,s (k, A, X)} and

V (k, A, X) solve program (38) taking p (X), r (X), λM (X) and Π (X ′|X) as given; (iv) each

submarket l, s clears: Sl,s (X) ≥ Dl,s (X), with equality whenever pl,s (X) > 0; (v) in each

market the proportion of lemons is consistent with individual selling decisions: λM
l,s (X) =

SL,l,s(X)

Sl,s(X)
and (vi) the law of motion of Γ is consistent with individual decisions: Γ′(k, A)(X) =

∫

k′(k̃,Ã,X)≤k
dΓ(k̃, Ã)F (A).

Given A∗ and p, aggregate capital accumulation can be found by simply adding

k′(k, A, X) = β max{A, A∗}W (k, A, X) (39)

across all entrepreneurs, where

W (k, A, X) = k















∫















λ [µpB(µ) + (1 − µ) pG(µ)]

+(1 − λ)r

+(1 − λ)µ max
{

γ

max{A,A∗} , pG(µ)
}

+(1 − λ)(1 − µ) max
{

γ

max{A,A∗} , pB(µ)
}















dH(µ)















(40)

and ps(µ) denotes the price pl,s in submarkets with index l such that µl = µ. Using the linearity

of policy functions:
K ′

K
=

∫

β max{A, A∗}W (1, A, X)dF (A) (41)
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D Proofs

Proof of Lemma 1. r(X) does not depend on the distribution of k because Y does not. For

any given p and λM , linearity of the policy functions and the fact that Aj is independent of kj

imply that SL SNL and D do not depend on the distribution of k and therefore neither do the

market clearing values of p(X) and λM(X). Linearity then implies that neither do aggregate

quantities.

Proof of Lemma 3. The first order and envelope conditions are

uc = β max
{

A, AM (X)
}

E [Vk′ (k′, A′, X ′) |X]

Vk (k, A, X) = Wk (k, A, X)uc

and the Euler equation is:

uc = β max
{

A, AM (X)
}

E [Wk′ (k′, A′, X ′) |X] uc′

With logarithmic preferences, the Euler equation becomes

1

c
= β max

{

A, AM (X)
}

E

[

Wk′ (k′, A′, X ′)

c′
|X
]

Conjecture that c = aW (k, A, X), which implies

W (k′, A′, X ′) = Wk′ (k′, A′, X ′)max
{

A, AM (X)
}

(1 − a) W (k, A, X)

and replace in the Euler equation:

1

aW (k, A, X)
= β max

{

A, AM (X)
}

E

[

Wk′ (k′, A′, X ′)

aWk′ (k′, A′, X ′)max {A, AM (X)} (1 − a)W (k, A, X)
|X
]

which reduces to a = 1 − β.

Proof of Lemma 4.

Assume there is an entrepreneur for whom the solutions to both programs differ. For Sellers

both programs are identical so it must be that at least one Buyer or Keeper chooses k′ <

(1 − λ) γk. Then by revealed preference all Buyers choose k′ < (1 − λ) γk. Replacing in 14

yields a negative demand.

Proof of Proposition 2.

1. This follows immediately from Lemma 4. Whenever the solutions to the two programs

do not coincide, p∗ = 0 satisfies (21), which therefore holds in either case.
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2. In the text.

3. Take any X. For sufficiently large p, S(p) > D (p). If there exists a price such that

D(p) ≥ S(p), then the result follows by continuity. If D(p) < S(p) for all p, then p∗ = 0

is a solution.

Proof of Proposition 3. Take any state X and let r∗, p∗, λM∗ and AM∗ represent equilibrium val-

ues under asymmetric information in that state. Multiplying supply and demand by
(

1 − λM∗)

to express them in quantities of nonlemons rather than total projects, market clearing condition

(21) can be reexpressed as

[

β

γ
AM∗ [λp∗ + (1 − λ) r∗] − (1 − β) (1 − λ)

]

F
(

AM∗)K ≤ (1 − λ)

[

1 − F

(

γ

p∗

)]

Turn now to the economy with symmetric information and taxes. Virtual wealth is

W (k, A, X) ≡
[

T + (1 − λ)

(

r (X) + max

{

p (X) ,
γ

max {A, AM(X)}

})]

k

At price p∗ the supply of projects is S = (1 − λ)
(

1 − F
(

γ

p∗

))

and tax revenue is

T = τp∗ (1 − λ)

(

1 − F

(

γ

p∗

))

=
λM∗

1 − λM∗ (1 − λ) p∗
(

1 − F

(

γ

p∗

))

= λp∗

The return to buying projects is AM = γ

p∗(1+τ)
=

γ(1−λM)
p∗

= AM∗ and, because K is the same,

r = r∗. Therefore the virtual wealth is

W =















[

λp∗ + (1 − λ)
(

r∗ + γ

AM∗

)]

k if A ≤ AM∗
[

λp∗ + (1 − λ)
(

r∗ + γ

A

)]

k if A ∈
(

AM∗, γ

p

]

[λp∗ + (1 − λ) (r∗ + p∗)] k if A > γ

p

which is the same as with asymmetric information. This implies that demand for nonlemons

is the same as with asymmetric information and the market clearing condition must hold,

confirming that p∗ is an equilibrium price. Since this is true for every state X, programs (13)

and (23) are identical and allocations also coincide.

Proof of Lemma 5.
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1. Market clearing implies
dp

dτ
=

∂S
∂τ

− ∂D
∂τ

∂D
∂p

− ∂S
∂p

where

D (p, τ) =

[

β

γ
AM (p)

[

τ (1 − λ) p

(

1 − F

(

γ

p

))

+ (1 − λ) r

]

− (1 − β) (1 − λ)

]

F
(

AM (p)
)

S (p, τ) = (1 − λ)

[

1 − F

(

γ

p

)]

AM (p, τ) =
γ

p (1 + τ)

Taking derivatives and substituting:

dp

dτ
= −

β
γ

F(AM)AM

1+τ

[

r − p
(

1 − F
(

γ
p

))]

+
[

β
γ
AM

[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f
(

AM
)

AM

1+τ

β
γ
rF (AM ) AM

p
+
[

β
γ
AM

[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f (AM ) AM

p
+ f

(

γ
p

)

γ
p2

[

1 − βF (AM )τ
1+τ

] < 0

2. Market clearing implies
dAM

dτ
=

∂S
∂τ

− ∂D
∂τ

∂D
∂AM − ∂S

∂AM

where

D
(

AM , τ
)

=

[

β

γ
AM

[

τ (1 − λ) p
(

AM , τ
)

(

1 − F

(

γ

p (AM , τ)

))

+ (1 − λ) r

]

− (1 − β) (1 − λ)

]

F
(

AM
)

S
(

AM , τ
)

= (1 − λ)
[

1 − F
(

AM (1 + τ)
)]

p
(

AM , τ
)

=
γ

AM (1 + τ)

Taking derivatives and substituting:

dAM

dτ
= −

f
(

AM (1 + τ)
)

AM
[

1 − τ
1+τ

βF
(

AM
)

]

+
βF (AM )
(1+τ)2

(

1 − F
(

AM (1 + τ)
))

β
γ

F (AM ) r +
[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

f (AM ) + f (AM (1 + τ)) [1 + τ − τβF (AM )]
< 0

3. Integrating k′ over all entrepreneurs, K ′ is given by

K ′ =

∫ AM

0

[

βAM (T + (1 − λ) r) + β (1 − λ) γ
]

dF (A)

+

∫ γ
p

AM

[βA (T + (1 − λ) r) + β (1 − λ) γ] dF (A)

+

∫ ∞

γ
p

[βA (T + (1 − λ) r) + βA (1 − λ) p] dF (A)
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where

T = τ (1 − λ) p

(

1 − F

(

γ

p

))

Taking derivatives:

dK ′

dτ
= (1 − λ)β





p
(

1 − F
(

γ
p

))

[

AMF
(

AM
)

+
∫

∞

AM AdF (A)
]

+
(

τp
(

1 − F
(

γ
p

))

+ r
)

dAM

dτ

+
[

∫

∞

γ
p

AdF (A) + τ
[

1 − F
(

γ
p

)

+ pf
(

γ
p

)

γ
p2

]

[

AMF
(

AM
)

+
∫

∞

AM AdF (A)
]

]

dp
dτ





Replacing with the expressions from parts 1 and 2 and rearranging:

x

(1 − λ) β

dK′

dτ
=









[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

p
1+τ

(

(

1 − F
(

γ
p

)) [

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

−

∫

∞
γ
p

AdF (A)

)

−
p

1+τ

[

β
γ

AM
[

τp
(

1 − F
(

γ
p

))

+ r
]

− (1 − β)
]

τp
γ

p2

[

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

f
(

γ
p

)









f
(

A
M
)

+







([

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

− AM
)

[

p
(

1 − F
(

γ
p

))

[

τ −
τ2

1+τ
βF

(

AM
)

]

−
rτ

1+τ
βF

(

AM
)

]

+
[

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

p
(

1 − F
(

γ
p

))

− AM r






f

(

γ

p

)

+









β
γ

F
(

AM
)

(1+τ)
pr

[

−AM
(

1 − F
(

AM
)) (

1 − F
(

γ
p

))

+
(

1 − F
(

γ
p

))

∫

∞

AM AdF (A) −

([

1 −
p
r

(

1 − F
(

γ
p

))])

∫

∞
γ
p

AdF (A)

]

+ τ
1+τ

[

p
(

1 − F
(

γ
p

))]2 β
γ

F
(

AM
) ([

AM F
(

AM
)

+
∫

∞

AM AdF (A)
]

− AM
)









where

x ≡ β

γ
F
(

AM
)

r+

[

β

γ
AM

[

τp

(

1 − F

(

γ

p

))

+ r

]

− (1 − β)

]

f
(

AM
)

+f

(

γ

p

)

(1 + τ)

[

1 − βF
(

AM
) τ

1 + τ

]

> 0

Using the market clearing condition and the fact that as τ → 0, F
(

AM
)

→ F
(

γ

p

)

and

f
(

AM
)

→ f
(

γ

p

)

, this expression reduces to

x

(1 − λ) β

dK ′

dτ
= −

[(

r

p
− β

[

r

p
+ 1

]

(

1 − F
(

AM
))

F
(

AM
)

)

pAM

]

f
(

AM
)

−
[

β

γ
F
(

AM
)

pr

[

AM
(

1 − F
(

AM
))2

+ F
(

AM
)

(p

r
+ 1
)

(1 − β)

∫

∞

AM

AdF (A)

]]

< 0

Proof of Proposition 4. 1. Fixing p, higher r increases demand but has no effect on supply.

If ∂[D(p)−S(p)]
∂p

< 0 the equilibrium price must rise to restore market clearing. While this

inequality need not hold for every p, it holds at the p that constitutes the highest solution

to (21).

2. The result follows from part 1 and Assumption 1.

3. The result follows from part 1 and (18).

4. By part 1, the terms inside the integrals of equation 22 are increasing in r. By part 3,

AM is decreasing in r. Since both terms inside the integrals are positive but the second

is greater than the first, the results follows.
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Proof of Proposition 5. Denote the original equilibrium by
{

p∗, λM∗, AM∗} and decompose the

effect of an increase in φ into two steps: (i) the effect of increasing φ while decreasing r to

leave φr constant and (ii) the effect of restoring r to its original value. For step (i), equation

(21) implies that
{

p, λM , AM
}

=
{

p∗

φ
, λM∗, φAM∗

}

is an equilibrium for any φ. Furthermore,

equation (15) implies that each entrepreneur’s proportional increase in max
{

AM , A
}

is exactly

offset by a proportional decrease in virtual wealth and K ′

K
does not change with φ. Step (ii)

consists of increasing r, so the results follow from Proposition 4.

Proof of Proposition 6. The effect of r on each of the endogenous variables in the asymmetric

information economy can be decomposed into the effect it has in the fixed-wedge symmetric

information economy plus the effect of the change in the implicit τ . By part 3 of Proposition

4, the implicit τ is decreasing in r. The inequalities then follow from Lemma 5.

Proof of Proposition 7.

1. Rearranging (20):

D (p) =
1

p

[

β [λp + (1 − λ) r] − γ (1 − β) (1 − λ)

AM (p)

]

F
(

AM (p)
)

Condition (24) ensures that

D (p) < βλF
(

AM (p)
)

for any p. Since the supply of lemons from Buyers is λF
(

AM (p)
)

> D (p), there is no

price that equalizes supply and demand, which implies p∗ = 0.

2. First note that AM (p) is bounded because (i) it is continuous in p, (ii) limp→∞ AM (p) = 0

and (iii) using l’Hôpital’s Rule

lim
p→0

AM (p) = lim
p→0

f
(

γ

p

)

p2

γ2 (1 − λ)

λ

which must be equal to zero for A to have a finite mean.

Since AM (p) is bounded, condition (24) is met for sufficiently low r, which proves the

result for coconut-productivity shocks. Also because AM (p) is bounded, then

AM (p, φ) =
γ

p

(1 − λ)
(

1 − F
(

γ

pφ

))

λ + (1 − λ)
(

1 − F
(

γ

pφ

))
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converges uniformly to zero as φ → 0, so a sufficiently large project-productivity shock

also ensures that condition (24) is met.

Proof of Proposition 8. For given prices, equation (18) implies that λM∗ is increasing in λ. In

addition, D (p) − S (p) is decreasing in λ, so p must fall to restore market clearing. By (18),

this reinforces the increase in λM∗.

Proof of Lemma 6. In equilibrium, r = YK , which is decreasing in K. By part 4 of Proposition

4, K ′

K
is decreasing in K. For K large enough, r will be arbitrarily close to zero and, by equation

(21), p = 0, which implies K ′

K
< 1. For K small enough, r will be arbitrarily large and equation

(21) implies p will also be arbitrarily large, so K ′

K
> 1. It remains to show that K ′

K
is continuous

in r. To see this, define

E(p, r) ≡ p[D(p; r) − S(p; r)]

E(p, r) represents the value of excess demand, which must be zero in equilibrium. E(p, r) is

continuous in p and r and, under Assumption 1, decreasing in p, so p∗(r) defined by E(p∗, r) = 0

is continuous in r. Since K ′

K
(p, r) is continuous in p and r, then K ′

K
(p∗(r), r) is continuous in r

and therefore there is a unique value of r such that K ′

K
(p(r), r) = 1

Proof of Lemma 7. The result follows from the fact that AM
l,s(pl,s) is continuous in pl,s, limpl,s→∞

AM
l,s(pl,s) = 0 and the definition of pl,s(A

∗).

Proof of Lemma 9. Dropping the l subscript for clarity By (28),

∂pG

∂µ
= −

∂AM
G

∂µ

∂AM
G

∂pG

,
∂pB

∂µ
= −

∂AM
B

∂µ

∂AM
B

∂pA

The denominators in both expressions are negative by lemma 7 and, replacing (25) and (26) in

(27) and differentiating, the numerators are

∂AM
B

∂µ
= − γ

pB

λ (1 − λ)
(

1 − F
(

γ

pB

))

[

λµ + (1 − λ) (1 − µ)
(

1 − F
(

γ

pB

))]2 < 0

∂AM
G

∂µ
=

γ

pG

λ (1 − λ)
(

1 − F
(

γ

pG

))

[

λ(1 − µ) + (1 − λ) µ
(

1 − F
(

γ

pG

))]2 > 0

so the result follows.
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Proof of Lemma 10. Using equations (25), (26) and (27), the market return in submarkets Blue

and Green are respectively

AM
l,B (pl,B) =

γ

pl,B

(1 − λ) (1 − µl)
(

1 − F
(

γ

pl,B

))

λµl + (1 − λ) (1 − µl)
(

1 − F
(

γ

pl,B

))

AM
l,G (pl,G) =

γ

pl,G

(1 − λ)µl

(

1 − F
(

γ

pl,G

))

λ (1 − µl) + (1 − λ) µl

(

1 − F
(

γ

pl,G

))

By the same argument used in the proof of Proposition 7, both AM
l,B and AM

l,G are bounded.

AM
l,B is decreasing and continuous in µl with limµl→1 AM

l,B = 0, so for sufficiently highµl,

maxpl,B
AM

l,B (pl,B) < A∗. AM
l,G is increasing in µl with limµl→1 AM

l,G = γ

pl,G
, so for sufficiently

highµl, maxpG AM
l,G (pl,G) > A∗.

Proof of Lemma 8. A robust equilibrium requires that p∗l,s = pl,s (A∗) for all l, s. Letting

E(A∗) ≡ E(p(A∗), A∗), (31) can be rewritten as E(A∗) = 0. For sufficiently low A∗, pl,s (A∗)

is arbitrarily large for all l, s, so E(A∗) is necessarily negative. For sufficiently high A∗,

pl,s (A∗) = 0, so E(A∗) is necessarily positive. If E(A∗) is continuous, this implies that a

solution exists and if it is monotonically increasing, the solution must be unique. Continuity

follows because E(p, A∗) is continuous in all its arguments and, since AM
l,s (p; µl) is continuous

in µl and H (µ) is continuous, then pl,s (A∗) can only be discontinuous on a zero-measure set.

Monotonicity follows because E(p, A∗) is increasing in A∗ and decreasing in pl,s and, by lemma

7, pl,s (A∗) is decreasing.

Proof of Lemma 11.

1. Suppose w.l.o.g. that the change in H consists of ∆h = H (µ1 + δ) − H (µ1 − δ) =

− [H (µ0 + δ) − H (µ0 − δ)] for some small δ, with the probability that µ lies in any other

interval unchanged, with 1
2
≤ µ0 < µ1. Fixing A∗, the change in the value of excess

demand is

∆E ≈





pB(µ0)
[

λµ0 (1 − βF (A∗)) + (1 − λ)(1 − µ0)
(

1 − F
(

γ

pB(µ0)

))]

+

pG(µ0)
[

λ(1 − µ0) (1 − βF (A∗)) + (1 − λ)µ0

(

1 − F
(

γ

pG(µ0)

))]



∆h

−





pB(µ1)
[

λµ1 (1 − βF (A∗)) + (1 − λ)(1 − µ1)
(

1 − F
(

γ

pB(µ1)

))]

+

pG(µ1)
[

λ(1 − µ1) (1 − βF (A∗)) + (1 − λ)µ1

(

1 − F
(

γ

pG(µ1)

))]



∆h

where ps(µ) denotes pl,s for l such that µl = µ. By Lemma (9), pB(µ1) < pB(µ0) ≤
pG(µ0) < pG(µ1), so the sign of ∆E is ambiguous in general. Since E is increasing in
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A∗, ∆A∗ must have the opposite sign as ∆E to restore E = 0, so the effect on A∗ is also

ambiguous.

2. In this case, by assumption the shift can only be from a µ such that both Blue and Green

markets are close to one where the Green one is open, so pB(µ0) = pG(µ0) = pB(µ1) = 0

and pG(µ1) > 0. This implies that ∆E < 0, so A∗ must rise.

Proof of Proposition 9. Using (39) and (40),

k′(k, A, X) = k













∫













λ [µpB(µ) + (1 − µ) pG(µ)] max{A, A∗}
+(1 − λ)r max{A, A∗}

+(1 − λ)µ max {γ, pG(µ) max{A, A∗}}
+(1 − λ)(1 − µ) max {γ, pB(µ) max{A, A∗}}













dH(µ)k













Every term in the integral is increasing in A∗ and ps(µ). The result then follows because, by

Lemma 11, the shift in probability increases A∗ and also shifts probability from shut markets

to markets where prices are positive.

Proof of Lemma 12. Assume w.l.o.g. that s = G and drop the l subscript for clarity.

λG ≡ Pr [Lemon|G]

= Pr [G|Lemon]
λ

Pr [G]

=

∫

Pr [G|Lemon, µ] dB(µ)
λ

∫

Pr [G|µ] dB(µ)

=

∫

(1 − µ)dB(µ)
λ

∫

[λ(1 − µ) + (1 − λ)µ] dB(µ)

=
λ(1 − µ̂)

λ(1 − µ̂) + (1 − λ) µ̂

An equivalent reasoning applies when s = B.

Proof of Lemma 13. Denote the unconditional distribution of χ by Fχ. The expected informa-

tiveness of signals conditional on having observed χ is

EI (χ̃) =

∫
(

µ̂l (χ̃) − 1

2

)2

dFχ (χ̃)

where µ̂l (χ̃) ≡ E (µl|χ = χ̃) is the informativeness of signals given the updated beliefs about
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µl conditional on χ having the realized value χ̃. Using the law of iterated expectations

EI (χ̃) − I =

∫
(

µ̂l (χ̃) − 1

2

)2

dFχ (χ̃) −
(

µ̂l −
1

2

)2

=

∫

µ̂l (χ̃)2 dFχ̃ (χ̃) − µ̂2
l

= V ar [µ̂l (χ)] ≥ 0

and therefore any information that χ provides about the true value of µl increases the expected

informativeness of the signals.

Proof of Lemma 14. Conjecture that p(X, µ) does not depend on µ. This immediately implies

that µ̂p = µ̂. Since λM
l,s is independent for each value of l and agents are risk averse, they will

be effectively risk neutral when buying projects. This implies that the expected return in every

submarket where demand is positive must be the same, which implies that (28) must hold and

p(A∗) indeed does not depend on µ. It remains to show that the value of A∗ that ensures

market-clearing does not depend on realized µ. The market clearing condition is

E(p(A∗), A∗, µ) = K

[
∫ 1

0

µlϕl(A
∗)dl + κ(A∗)

]

= 0

where

ϕl(A
∗) ≡βλ (pl,B(A∗) − pl,G(A∗))F (A∗)

+pl,B(A∗)

[

λ − (1 − λ)

(

1 − F

(

γ

pl,B(A∗)

))]

−pl,G(A∗)

[

λ − (1 − λ)

(

1 − F

(

γ

pl,G(A∗)

))]

and

κ(A∗) =

[

β

[

λ

∫ 1

0

pl,G(A∗)dl + (1 − λ)r

]

− (1 − β) (1 − λ)
γ

A∗

]

F (A∗)

+

∫ 1

0

[

pl,B(A∗) (1 − λ)

(

1 − F

(

γ

pl,B(A∗)

))

+ λpl,G(A∗)

]

dl

Since the values of µl are independent draws from Bl (µl) and ϕl is bounded, then by the

law of large numbers E(p(A∗), A∗, µ) is a constant and therefore so is the value of A∗ that

ensures market clearing. The capital accumulation equation (41) holds because entrepreneurs

are diversified both with respect to the projects they hold and those they buy.
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Proof of Lemma 15.

H ′(µ̂) ≡
∫

I [µ̂l,t+1 ≤ µ̂] dl

=

∫

I

[

bl,t+1 ≤
µ̂ − (1 − µ̄)

2µ̄ − 1

]

dl

bl,t+1 is a function of the random variables µl, Nl and nl. The distributions of µl, Nl and nl are

a function of the state (up to a reordering of the indices) and the realizations are independent

across l. The result then follows from the law of large numbers.

Proof of Proposition 16. By equation (29), total spending is increasing in r, which implies A∗ is

decreasing in r. This implies that the set values of µ such that AM
l,s (pl,s; µ) = A∗ has a solution

increases.

Proof of Proposition 10. Since σ > 0, no signal in the economy is perfectly informative and

there is some residual informational asymmetry in all submarkets. This implies that, by the

same reasoning used in the proof of Lemma 7, a sufficiently large negative productivity shock

will lead all submarkets to shut down for n periods. Suppose ωK = 0, so there is no learning

while markets shut down. Equation (34) implies that for any submarket l

bl,t+n =

[

bl,t −
1

2

]

(1 − 2σ)n +
1

2

Since bl,t ≤ 1 − σ for all l, this implies

bl,t+n ≤ 1

2
(1 − 2σ)n+1 +

1

2
(42)

for all l. Using that µ̂l,t = bl,t [2µ̄ − 1] + (1 − µ̄) and Il,t =
(

µ̂l,t − 1
2

)2
, equation (42) implies

Il,t+n ≤
((

1

2
(1 − 2σ)n+1

)

[2µ̄ − 1]

)2

for all l. Condition n >
log(µ̄− 1

2)−log(
√

ε0)

− log(1−2σ)
− 1 then ensures that

Il,t+n < ε0 (43)

for all l.

Furthermore, condition n < log Kss−log K0

− log[γ(1−λ)]
ensures that Kt+n > K0 and therefore, by Lemma
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16, this implies that ε (Xt+n) > ε0. Using equation (43):

Il,t+n < ε0 < ε (Xt+n)

for all l. Therefore, all submarkets continue to be shut after the shock is over, and will continue

to be shut as long as K ≥ K0. Therefore the economy will converge to X0. Convergence implies

that there is a T̃ such that for m > T̃ , |Yt+m − Y0| < δ, so setting T ′ = max
{

T̃ , T
}

, the result

would hold if ωK = 0.

Pr [µl ∈ ξ (X)] is continuous in ωK so for ωK sufficiently close to zero the condition Il,t+m <

ε (Xt+m) holds for an arbitrarily high proportion of submarkets for all m ≤ T ′. Since K ′ is

continuous in H , the result follows.
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Ordoñez, G. L.: 2009, Larger crises, slower recoveries: the asymmetric effects of financial

frictions, Technical report.

Riley, J. G.: 1987, Credit rationing: A further remark, American Economic Review 77(1), 224–

27.

Stiglitz, J. E. and Weiss, A.: 1981, Credit rationing in markets with imperfect information,

American Economic Review 71(3), 393–410.

van Nieuwerburgh, S. and Veldkamp, L.: 2006, Learning asymmetries in real business cycles,

Journal of Monetary Economics 53(4), 753–772.

Veldkamp, L. L.: 2005, Slow boom, sudden crash, Journal of Economic Theory 124(2), 230–

257.

65



10 20 30
−0.1

−0.05

0

0.05

0.1
1. TFP

t

%
 d

ev
 fr

om
 s

s

 

 

Learning
Fixed H

10 20 30
−0.15

−0.1

−0.05

0

0.05
2. Y

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.06

−0.04

−0.02

0

0.02
3. Net K growth

t

%

10 20 30
−0.6

−0.4

−0.2

0

0.2
4. I

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.1

−0.05

0

0.05

0.1
5. Average A

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.2

−0.1

0

0.1

0.2
6. A*

t

%
 d

ev
 fr

om
 s

s
10 20 30

−0.1

−0.05

0

0.05

0.1
7. Measured Solow

t

%
 d

ev
 fr

om
 s

s

10 20 30
0

0.01

0.02

0.03

0.04
9. % of projects sold

t

%
10 20 30

1

2

3

4
x 10

−3 8. sd(i/k)

t

%

Figure 10: Transitory TFP shock that leads to market shutdown
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Figure 11: Evolution of H after a transitory TFP shock that leads to market shutdown
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Figure 12: A shock that destroys the stock of financial knowledge
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Figure 13: Evolution of H after a shock that destroys the stock of financial knowledge
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Figure 14: Transitory TFP shock that does not lead to market shutdown
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Figure 15: Evolution of H after a transitory TFP shock that does not lead to market shutdown
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Figure 16: Positive TFP shock that leads markets to reopen
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Figure 17: Evolution of H after a positive TFP shock that leads markets to reopen
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Figure 18: A stabilization of the information structure
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Figure 19: Evolution of H after a stabilization of the information structure
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