Capital Income Taxes with Heterogeneous Discount Rates

Peter Diamond† Johannes Spinnewijn‡
MIT LSE
January 27, 2010

Abstract

With heterogeneity in both skills and discount factors, the Atkinson-Stiglitz theorem that savings should not be taxed does not hold. We consider a model with heterogeneity of preferences at each earnings level. With some assumptions on the equilibrium, a small savings tax on high earners and a small savings subsidy on low earners both increase welfare, regardless of the correlation between ability and discount factor. Key is that types who value future consumption less are more tempted to switch to a lower paid job. Extending Saez (2002), a uniform savings tax increases welfare if the correlation of skill with discount factor is sufficiently high. Some optimal tax results and empirical evidence to support the assumptions are presented.

Keywords: Optimal Taxation, Capital Income, Discount Rates

JEL Classification Number: H21

*We are grateful to Richard Blundell, Jesse Edgerton, Louis Kaplow, Emmanuel Saez, Ivan Werning and seminar participants at MIT, Berkeley and the NBER for valuable comments, and the National Science Foundation for financial support (Award 0648741). The research reported herein was supported by the Center for Retirement Research at Boston College pursuant to a grant from the U.S. Social Security Administration funded as part of the Retirement Research Consortium. The findings and conclusions are solely those of the authors and should not be construed as representing the opinions or policy of the Social Security Administration or any agency of the Federal Government; or the Center for Retirement Research at Boston College.

†Department of Economics, E52-344, 50 Memorial Drive, Cambridge, MA 02142, USA, pdiamond@mit.edu.

‡Department of Economics, STICERD R515, Houghton Street, WC2A 2AE, London, United Kingdom, j.spinnewijn@lse.ac.uk
1 Introduction

In the Mirrlees (1971) model, in the absence of bunching, all the workers at an earnings level are identical. The same property holds in the two-period extension (with one period of work) of Atkinson and Stiglitz (1976) to consider the taxation of capital income. This paper also analyzes two-period models with one period of work, but with the population varying in two dimensions - skill and preference for savings - resulting in heterogeneity in the population at each earnings level. The goal is to explore the implications of this heterogeneity for the welfare implications of introducing taxation of capital income, both uniformly and with rates possibly varying with earnings level.

The Atkinson-Stiglitz theorem states that when the available tax tools include nonlinear earnings taxes, optimal taxation is inconsistent with taxing savings when two key assumptions are satisfied: (1) that all consumers have preferences that are separable between consumption and labor and (2) that all consumers have the same sub-utility function of consumption. The models analyzed in this paper allow for differences in savings preferences as well as differences in ability. In the baseline model, these differences in savings preferences are introduced through differing discount factors in the (additive) utility function. The subutility functions of consumption thus vary in the population. The Atkinson-Stiglitz theorem does not apply.

Primary attention is focused on a model with four worker types - with two discount factors and two skill levels. Thus we are examining a particular example of a multidimensional screening problem. With this heterogeneity, equilibrium in the standard labor market model, where workers are free to choose hours, would generally exhibit four different earnings levels. To explore the implications of heterogeneity at individual earnings levels, the model assumes the existence of two jobs, rather than the standard model where each worker can select the number of hours to be worked.\footnote{A limited number of jobs was assumed in Diamond (2006).} This results in a setting where workers with the same skill but different discount factors choose the same job and so have the same earnings subject to the same earnings tax rate. We assume that at the optimum both high-skill types work at the high-skill job and that redistribution from high earners to low earners is the important redistribution. Given these assumptions social welfare increases with the introduction of a tax on the savings of high earners and with the introduction of a subsidy on the savings of low earners.

The relative frequencies of the four types in the population plays no role in the derivation of this result, conditional on the assumed structure of the optimum. The case for taxing the savings of high earners appears to be more robust than the case for subsidizing the savings.
of low earners in some extensions. While the focus of the paper is the introduction of small
taxes, we also consider optimal taxes under stronger assumptions. Savings tax policies, like
a saver’s credit for low-income households, as enacted in the US in 2001, or an absolute cap
on tax-favored retirement savings, are in line with the finding that the savings tax should
be progressive in earnings.\footnote{The analysis assumes rational savings by all workers. Concern about too little individual savings is also
relevant for retirement savings policies.}

The key underlying assumption is that those preferring to save more are more willing to
work than those preferring to save less, conditional on skill (the disutility of work). This
means that an incentive compatibility (IC) constraint just binding on a high skill worker who
saves a little is not binding on a high skill worker who saves a lot. Earnings-dependent taxes
and subsidies on savings allow an increase in redistribution by targeting types in a given job
with saving preferences different from those of types who are just tempted to switch jobs.
In particular, introducing taxation of savings of high earners (and transferring the revenue
back equally to all high earners) eases the binding IC constraint since it transfers resources
from the high saver to the low saver for whom the IC constraint is binding. Introducing a
subsidy on savings for low earners (…nanced by equal taxation on all low earners) also eases
the binding IC constraint by making switching to the lower job less attractive to the high
earner with low savings.

The assumption that those preferring to save more are more willing to work is implicit in a
standard model with heterogeneity in discounting, representing preferences over first-period
consumption x, second-period consumption c and output z by $u(x) + \delta_i u(c) - v(z/n_i)$. An
alternative specification $\frac{1}{\delta_i} u(x) + u(c) - v(z/n_i)$ would imply the exact opposite. That is,
types with higher δ_i would prefer to save more, but to work less. The relationship between
preferences for savings and willingness to work depends more generally on heterogeneity in
expected inheritances, medical expenditures, wealth, etc... The sign of the relationship is
sufficient in these models to determine the welfare effect of introducing earnings-dependent
savings taxes, with discount rate differences just one example.

We examine some empirical support for our assumption that the relationship is positive,
using data from the Survey of Consumer Finances (SCF). We find that conditional on ed-
cucation and age, people with higher savings preferences tend to earn more. To proxy for
savings, we use reported savings propensities and the time horizon people report having in
mind when making spending and savings decisions.

The main result is independent of whether those with higher ability are more likely to
have higher savings rates than those with lower ability, provided that the optimum has all
the high skilled workers on the more productive job. Introduction of a uniform savings tax,
however, only increases welfare if the correlation between ability and savings propensities is positive and sufficiently high. Empirical evidence suggests that on average those with higher skills do save at higher rates (Dynan, Skinner and Zeldes, 2004[3], Banks and Diamond, 2010[4]). We also use the proxies mentioned above to revisit the positive correlation between skills and savings propensities.

The result on the uniform savings tax builds on the analysis in Saez (2002). He derives conditions on endogenous variables to sign the effect on social welfare of introducing a uniform commodity tax or a subsidy, when consumers have heterogeneous sub-utility functions of consumption. With an optimal non-linear earnings tax, a small tax on savings increases welfare if either the net marginal social value is negatively correlated with savings, conditional on earnings, or on average those who choose to earn less save less than those who choose to earn more, if restricted to the same earnings.

This paper is part of the literature on the optimal choice of the tax base and the joint taxation of labor and capital incomes in particular. Banks and Diamond (2010) review the literature on the inclusion of capital income in the tax base. Gordon (2004) and Gordon and Kopczuk (2008) argue that capital income reveals information about earnings ability and thus should be included in the tax base. Blomquist and Christiansen (2008) analyze how people with different skills and different preferences for leisure who cannot be separated with an income tax, may be separated with a commodity tax. The four-types model with hours chosen by workers has been studied by Tenhunen and Tuomala (2008), which calculates a set of examples, but explores the analytics only in two- and three-type models. They consider both welfarist and paternalist objective functions. We relate the results in their calculated examples to some of our results below. We focus on the four-types model since the result in a two-types model, while striking, does not seem relevant for policy inferences[5]. While the focus of this paper is on capital taxation, the intuition generalizes to the taxation of other commodities for which the preferences are heterogeneous, since this heterogeneity may impact the labor choice as well (Kaplow, 2008a).

[3] While Dynan, Skinner and Zeldes find that high earners save more, they state that a standard model with only discount rate differences can not explain both higher savings when working and higher savings when retired (in a three-period model with two retirement periods). Our focus is just on the savings propensities of workers. We agree that there are multiple factors affecting savings heterogeneity, but think that different discount factors with a positive correlation with skill is one of them.

[4] Beyond looking at empirical studies of savings and earnings, Banks and Diamond discuss the wide finding in the cognitive psychology literature, typically using experimental designs, that higher ability individuals are more patient.

[5] Kocherlakota (2005) analyzes a model with asymmetric information about stochastically evolving skills, which is not present in this model. The mechanism design optimum has the inverse Euler condition as a discouragement to savings. He shows that the inverse Euler condition can be implemented with a linear wealth tax that is regressive in earnings when capital income is received. Werning (2009) shows that implementation can be done with a nonlinear wealth tax that does not vary with earnings when income is received.
The paper is organized as follows. Section 2 sets up the model with four types and two jobs. Section 3 characterizes respectively the first best and a restricted first best, with no taxation of savings and an ‘equal job, equal pay’ restriction. Section 4 introduces incentive compatibility constraints and characterizes the second best including the introduction of earnings-varying savings tax rates. Optimal savings tax rates and some extensions of the model are also considered. Section 5 considers a uniform savings tax, rather than one varying with the level of earnings. For comparison, Section 6 reviews a two-types model. Section 7 discusses empirical support for the assumptions and Section 8 has concluding remarks.

2 Model

We consider a model with two periods. Agents consume in both periods, but work only in the first period. Preferences are assumed to be separable over time and between consumption and work. Denoting first period consumption by x, second period consumption by c, and earnings by z, preferences satisfy

$$U(x, c, z) = u(x) + \delta u(c) - v(z/n),$$

with $u' > 0, u'' < 0$ and $v' > 0, v'' > 0$. An agent’s ability n determines the disutility of producing output z. An agent’s preference for future consumption depends on the discount factor δ.

We consider heterogeneity in both ability n and preference for future consumption δ. Although robust insights for optimal taxation have been derived in models with two types, considering heterogeneity in two parameters in a model with two types implies perfect correlation between the two parameters. The inference based on a simple two-types economy, although simple, may therefore be misleading. In order to allow for imperfect correlation, we consider a four-types model. We denote the four types by ll, lh, hl, hh with frequencies f_{ij} and welfare-weights n_{ij}. The first two types have low ability n_l, but differ in discount factors δ_l and δ_h, with $\delta_h > \delta_l$. The second two types have high ability n_h, with $n_h > n_l$, and also differ in discount factors δ_l and δ_h.

<table>
<thead>
<tr>
<th>high ability n_h</th>
<th>low discount factor δ_h</th>
<th>high discount factor δ_l</th>
</tr>
</thead>
<tbody>
<tr>
<td>high discount hh</td>
<td>low discount hl</td>
<td></td>
</tr>
<tr>
<td>low discount lh</td>
<td>high discount ll</td>
<td></td>
</tr>
</tbody>
</table>

There are only two jobs in the economy, h and l. The output z_i from job i is independent
of the worker’s type, while the disutility of holding a job varies with ability. The low-ability
types can only hold the low job. The high-ability types can hold either job. We assume that
redistribution to the low-skilled types is sufficiently important and the type mix sufficiently
balanced that all high-skilled workers hold high-skilled jobs at the various optima analyzed.
This requires a restriction on the weights in the social welfare functions and the population
distribution, which we do not explore.

We begin with the first best, which differs from the usual treatment in that the output
produced on a job is the same for everyone holding the job. We assume a linear technology.
The first best has the property that there is no marginal taxation of savings. Then we
consider a restricted first best (the term ‘first best’ refers to a lack of incentive compatibility
constraints, the term ‘restricted’ means limited tax tools, but not limited by IC constraints)
with zero taxation of savings and the requirement that everyone holding a job receives the
same pay (no taxes based on identity, only on potential earnings). We calculate whether
social welfare can be improved by taxing or subsidizing savings.

We then turn to the second best, with taxes based on earnings, not potential earnings,
so that there is an incentive compatibility constraint. We assume a zero taxation of savings
restriction, thus preserving the condition of equal pay for equal work. Again we ask about
potential gains from taxing or subsidizing savings.

3 First Best

In the first best, each worker is assigned to the matching job and the social welfare function
is maximized with respect to the type-specific consumption levels in the first and second
periods and the job-specific output levels, subject to a resource constraint. With the welfare
weight of type \(ij\) of \(\eta_{ij}\), the first best solves:

\[
\text{Maximize}_{x,c,z} \sum f_{ij} \eta_{ij} \left(u \left[x_{ij} \right] + \delta_j u \left[c_{ij} \right] - v \left[z_i / n_i \right] \right) \\
\text{subject to:} \quad E + \sum f_{ij} (x_{ij} + R^{-1}c_{ij} - z_i) \leq 0
\]

Forming a Lagrangian with \(\lambda\) the Lagrange multiplier for the resource constraint, we have

\[
\mathcal{L} = \sum_{i,j} f_{ij} \eta_{ij} \left(u \left[x_{ij} \right] + \delta_j u \left[c_{ij} \right] - v \left[z_i / n_i \right] \right) - \lambda \sum_{i,j} f_{ij} \left(x_{ij} + R^{-1}c_{ij} - z_i \right)
\]

We define the net marginal social value of first period consumption for an individual of
type ij as
\[g_{ij} \equiv \eta_{ij} u'[x_{ij}] - \lambda. \]

Along the relevant portion of the social welfare optima, we have the following properties:
\[g_{ij} = 0 \text{ and } u'[x_{ij}] = \delta_j R u'[c_{ij}] \text{ for all } i, j, \]
and
\[(f_i \eta_{il} + f_{ih} \eta_{ih}) \frac{v'[z_i/n_i]}{n_i} = (f_i + f_{ih}) \lambda = f_i \eta_{il} u'[x_{il}] + f_{ih} \eta_{ih} u'[x_{ih}], \]
for both the high-skilled and the low-skilled jobs. The net marginal social value of first period consumption for each type equals 0 and the saving of each type is undistorted. Given that the required output for a given job is independent of an individual’s type, the earnings are marginally distorted upward for one discount-factor type and downward for the other type, since $u'[x_{il}] \neq u'[x_{ih}]$, unless the welfare weights satisfy $\eta_{il} = \eta_{ih}$\footnote{Below we use welfare weights to permit the assumption that at the optimum, lump sum redistribution between workers with the same earnings but different discount rates would not be as important as redistribution to those with lower jobs (or even of zero importance in some results). This is similar to the approach in Saez (1999) which examined optimal taxes to minimize aggregate deadweight burden, assuming no value to lump sum redistributions at the optimum. In contrast, Weinzierl (2009) looks for formulations such that there is no interest in redistribution at a laissez faire equilibrium. We think normative evaluations of hypothetical alternatives are not as useful as normative evaluations of actual or optimized equilibria.} The output is undistorted ‘on average’ though.

3.1 Restricted First Best: Equal Pay for Equal Work and No Taxation of Savings

If the (after-tax) earnings on a job, y_i, is restricted to be type-independent and savings can not be taxed, there are further constraints, which we approach using the indirect utility-of-consumption function, $w_j[y, R]$. This function satisfies
\[w_j[y, R] \equiv \max u[x] + \delta_j u[c] \]
subject to: $x + R^{-1}c = y$.

For later use, we note that
\[\frac{\partial w_j}{\partial y} = u'[x] \]
\[\frac{\partial w_j}{\partial R} = R^{-2} c u'[x] = R^{-1} (y - x) u'[x] = R^{-1} s_j[y, R] u'[x] \]
where $s_j [y, R]$ is the savings function of someone with discount factor δ_j.

We continue to assume that the welfare weights and population fractions are such that all high skilled are on the more productive job at the optimum. The restricted first best solves the following problem,

$$\text{Maximize}_{y,z} \sum f_{ij} \eta_{ij} (w_j [y_i, R] - v [z_i/n_i])$$

subject to: $E + \sum f_{ij} (y_i - z_i) \leq 0$

(2)

Forming a Lagrangian, we have

$$\mathcal{L} = \sum_{i,j} f_{ij} \eta_{ij} (w_j [y_i, R] - v [z_i/n_i]) - \lambda \sum_{i,j} f_{ij} (y_i - z_i).$$

The first order conditions (FOC) are

$$\sum_j f_{ij} \eta_{ij} u' [x_{ij}] = \lambda \sum_j f_{ij}$$

$$\sum_j f_{ij} \eta_{ij} u' [z_i/n_i] / n_i = \lambda \sum_j f_{ij},$$

for $i = h, l$. Recalling the definition of the net marginal social utility, $g_{ij} \equiv \eta_{ij} u' [x_{ij}] - \lambda$, the population-weighted values add to zero at each job,

$$\sum_j f_{ij} g_{ij} = 0 \text{ for } i = h, l.$$

Thus, the welfare weights determine the direction of desired redistribution (given the equal pay condition) between workers on each job. Also, in the absence of savings taxation,

$$u' [x_{ij}] = \delta_j Ru' [c_{ij}] \text{ for all } i, j.$$

The FOC for job outputs, z_i, are the same as given above.

3.2 Restricted First Best with Small Earnings-Dependent Savings Taxes

Given the observability of earnings, small linear taxes on savings (collected in the first period) could be set differently for high and low earners. This can for instance be implemented by the rules on retirement savings accounts, like the IRA and 401(k) in the US. The (local)
desire to redistribute can be met by a small linear tax or subsidy on savings by workers on a given job with the revenues returned equally to them by raising net-of-tax earnings on the job.

Differentiating the Lagrangian with respect to a savings tax rate τ_i on those with earnings level y_i, evaluated at a zero tax level:

$$\frac{\partial L}{\partial \tau_i} = \lambda \left(\sum_j f_{ij} (y_i - x_{ij}) \right) - \sum_j f_{ij} \eta_{ij} u' [x_{ij}] (y_i - x_{ij}).$$

The impact of a savings tax on the Lagrangian is made up of two pieces: the impact on the revenue constraint and the impact on utilities. Using the FOC with respect to y_i, multiplied by y_i, the derivative can be written as:

$$\frac{\partial L}{\partial \tau_i} = \sum_j f_{ij} \left(\eta_{ij} u' [x_{ij}] - \lambda \right) x_{ij} = \sum_j f_{ij} g_{ij} x_{ij}.$$

Recall that

$$\sum_j f_{ij} g_{ij} = 0 \text{ for } i = h, l.$$

This implies that a tax on the savings by the two types on a given job increases welfare if the savings of the one type towards which redistribution is desirable saves sufficiently little compared to the other type.

The welfare weights imply the desired direction of redistribution within productivity types and so the signs of g_{ih} and g_{il} at each job i. With equal incomes and different discount factors, we have

$$x_{ih} < x_{il},$$

$$c_{ih} > c_{il}.$$

Thus, if first period utilities get the same weights for both types, $\eta_{il} = \eta_{ih}, g_{il} < 0 < g_{ih}$, implying a desire to redistribute to the high saver. In contrast, if second period utilities get the same weights for both types, $\eta_{il} \delta_l = \eta_{ih} \delta_h$, the signs are reversed, implying a desire to redistribute to the low saver. If there is no desire to redistribute for high (low) skill types we have $\eta_{hh} u' [x_{hh}] = \eta_{ht} u' [x_{ht}] (\eta_{hh} u' [x_{hh}] = \eta_{ht} u' [x_{ht}])$. In general, with uniform weights for given discount factors, $\eta_{hi} = \eta_{li}$, we do not satisfy both conditions.
4 Second Best

We draw a distinction between restricted first-best analyses and second-best ones based on the absence or presence of IC constraints involving taking a job with lower productivity (the reverse having been ruled out by assumption). That is, the distinction depends on the observability of productivity. The prime issue in second-best analyses is determining which IC constraints are binding. We start with the further restriction, as above, that savings not be taxed. With no taxation of savings and equal pay for equal work, the IC constraint of not imitating the other discount rate type who is holding the same job does not bind. Similarly, if a high productivity worker were to take the low productivity job, the person imitated would be the one with the same discount factor. Imitation is a misnomer here since there need not be such a worker for a high skill worker to optimize savings while taking a low skill job given the assumed policy tools and information.

We add the critical assumption that earnings distribution issues are sufficiently important that at the second-best optimum (with IC constraints) the net marginal social value of first period consumption \(g_{ij} \equiv \eta_{ij} u'[x_{ij}] - \lambda \) is negative for both of the worker types holding the high-skill job and positive for both of the types holding the low-skilled job. Without a binding IC constraint, this condition could not hold at the optimum as noted above.

Assumption 1 The net marginal social values of first period consumption satisfy

\[
g_{hj} < 0, g_{lj} > 0, \text{ for } j = h, l.
\]

4.1 Second best with No Taxation of Savings

We assume that the Pareto-weights and population fractions are such that all high-skilled workers work at the high-skilled job and the desired level of redistribution to lower earners is sufficient that at least one IC constraint is binding.

Maximize \(y_i z_i \sum f_{ij} \eta_{ij} (w_j [y_i, R] - v [z_i/n_i]) \)

subject to:

\[
\begin{align*}
E + \sum f_{ij} (y_i - z_i) & \leq 0 \\
wh [y_h, R] - v [z_h/n_h] & \geq wh [y_l, R] - v [z_l/n_h] \\
w_l [y_h, R] - v [z_h/n_h] & \geq w_l [y_l, R] - v [z_l/n_h].
\end{align*}
\]
Forming a Lagrangian with μ_j the Lagrange multiplier for the corresponding IC constraint, and assuming that at the optimum each worker is assigned to the matching job, we have

$$L = \sum_{i,j} f_{ij}\eta_{ij} (w_j [y_i, R] - v [z_i/n_i]) - \lambda \sum_{i,j} f_{ij} (y_i - z_i) + \sum_j \mu_j (w_j [y_h, R] - v [z_h/n_h] - w_j [y_l, R] + v [z_l/n_h]).$$

Since the first-period consumption of type hj if switching to the low job equals the first-period consumption of type lj, the FOC with respect to earnings are

$$\sum_j f_{hj}\eta_{hj}u'[x_{hj}] + \sum_j \mu_j u'[x_{hj}] - \lambda \sum_j f_{hj} = 0,$$

$$\sum_j f_{ij}\eta_{ij}u'[x_{ij}] - \sum_j \mu_j u'[x_{ij}] - \lambda \sum_j f_{ij} = 0.$$

Given the definition of the net social utility $g_{ij} \equiv \eta_{ij}u'[x_{ij}] - \lambda$, this implies

$$\sum_j f_{hj}g_{hj} = -\sum_j \mu_j u'[x_{hj}] < 0,$$

$$\sum_j f_{ij}g_{ij} = \sum_j \mu_j u'[x_{ij}] > 0.$$

The population-weighted values add to a positive expression

$$\sum_{i,j} f_{ij}g_{ij} = \sum_j \mu_j (u'[x_{ij}] - u'[x_{hj}]) > 0.$$

That is, transfers which would be worth doing without an IC constraint are restricted, raising the social marginal utilities of consumption, on average, above the value of resources in the hands of the government. Since the IC constraints are on the high skilled types, on average more redistribution from the high earners to the low earners is desirable.

IC constraints Given the equal pay constraint, it follows that only one of the IC constraints is binding, and it is the one on the low discount factor type. To see this consider the difference in consumption utility from different incomes,

$$\Delta [y_h, y_l, \delta_j, R] \equiv w_j [y_h, R] - w_j [y_l, R].$$
This difference in consumption utility is increasing in the discount factor,

\[
\frac{\partial \Delta [y_h, y_l, \delta_j, R]}{\partial \delta} = u [c_{hj}] - u [c_{lj}] > 0.
\]

The difference in labor disutility does not depend on the discount factor. Thus if the IC constraint is binding on the low discount factor type, it is not binding on the high discount factor type. The low discount factor type values earnings in the first period less and is therefore more tempted to switch to the less productive job.

4.2 Second Best with Small Earnings-Dependent Taxes on Savings

As above, the sign of the welfare impact of introducing a small linear savings tax or subsidy depends on the welfare weights. Given observability of earnings, the small linear taxes on savings could be different for high and low earners. The welfare impacts of introducing taxes on savings (collected in the first period) are obtained by differentiating the Lagrangian (with savings taxation included and the tax rates \(\tau_i \) set at zero):

\[
\frac{\partial L}{\partial \tau_h} = \lambda \left(\sum_j f_{hj} (y_h - x_{hj}) \right) - \sum_j f_{hj} \eta_{hj} u' [x_{hj}] (y_h - x_{hj}) - \mu_i u' [x_{hl}] (y_h - x_{hl}),
\]

\[
\frac{\partial L}{\partial \tau_l} = \lambda \left(\sum_j f_{lj} (y_l - x_{lj}) \right) - \sum_j f_{lj} \eta_{lj} u' [x_{lj}] (y_l - x_{lj}) + \mu_l u' [x_{ll}] (y_l - x_{ll}).
\]

That is, the impact on the Lagrangian is made up of three pieces: the impact on the revenue constraint, the impact on utilities, and the impact on the binding IC constraint.

The FOC for earnings are

\[
\sum_j f_{hj} g_{hj} + \mu_l u' [x_{hl}] = 0,
\]

\[
\sum_j f_{lj} g_{lj} - \mu_l u' [x_{ll}] = 0.
\]

Multiplying these by the earnings level at the job, \(y_i \), and substituting, we have

\[
\frac{\partial L}{\partial \tau_h} = \sum_j f_{hj} g_{hj} x_{hj} + \mu_l u' [x_{hl}] x_{hl},
\]

\[
\frac{\partial L}{\partial \tau_l} = \sum_j f_{lj} g_{lj} x_{lj} - \mu_l u' [x_{ll}] x_{ll}.
\]
Substituting for $\mu_i u'[x_{il}]$ from the FOC for earnings, we find

$$\frac{\partial L}{\partial \tau_h} = f_{hh} g_{hh} (x_{hh} - x_{hl}) > 0$$

and

$$\frac{\partial L}{\partial \tau_l} = f_{lh} g_{lh} (x_{lh} - x_{ll}) < 0.$$

The signs follow from the assumption on the net social marginal utilities and the differences in savings behavior by types ih and il for $i = h, l$. The correlation between skill and discount plays no role in signing these expressions. The Proposition immediately follows.

Proposition 1 At the second best optimum, assuming that all high skill workers hold high skill jobs and $g_{hj} < 0, g_{lj} > 0$, for $j = h, l$, then introduction of a small linear tax on savings that falls on high earners is welfare improving; and introduction of a small linear subsidy on savings that falls on low earners is welfare improving.

At the second best optimum, without a tax on savings, only the high earner/low saver’s IC constraint is binding. One can thus increase the redistribution from high earners/high savers by taxing savings, but increasing net-of-tax earnings just enough that the high earners/low savers remain indifferent to job change and thus the binding IC constraint is unchanged. One can also increase the redistribution towards the low earners/high savers by subsidizing their savings, but decreasing net-of-tax earnings such that the low earners/low savers remain indifferent so that it does not become more attractive for the high earners/low savers to take the low job.

4.3 Second Best with Optimal Linear Earnings-Dependent Taxes on Savings

We have considered the introduction of small savings taxes on high and low earners. Part of the interest in this analysis comes from the possible link to the signs of the optimal taxes. Derivation of the FOC for the optimal linear savings taxes is straightforward; we show that it matches the signs of the small improvements given the additional condition that workers save more if the after-tax return to savings are higher.

One difference in analysis is that changes in both the earnings and savings taxes have a first order effect on tax revenues through the behavioral change in savings. In first period units, the tax revenue from a linear savings tax τ_i levied on the savings of workers with

7 Consideration of earnings-dependent nonlinear savings taxation would raise the issue of the degree of complexity that is interesting for policy purposes.
discount factor \(\delta_j \) and earnings \(y_i \) equals \(\tau_i s_j [y_i; R(1 - \tau_i)] \). For notational convenience, denote optimal savings \(s_j [y_i; R(1 - \tau_i)] \) by \(s_{ij} \). (Given preference separability, there is no dependence on the effort to achieve gross earnings.) A second difference is that the relative size of the utility loss of a marginal increase in the savings tax compared to the utility gain of a marginal increase in earnings depends on the level of the savings tax. That is,

\[
\frac{\partial w_{ij}}{\partial \tau_i} = -s_{ij} u' [c_{ij}] \delta R = \frac{-s_{ij}}{1 - \tau_i} u'[x_{ij}] = \frac{-s_{ij}}{1 - \tau_i} \frac{\partial w_{ij}}{\partial y_i}.
\]

Forming a Lagrangian, and assuming that at the optimum each worker is assigned to the matching job, we now have

\[
L = \sum_{i,j} f_{ij} \eta_{ij} (w_j [y_i, (1 - \tau_i) R] - v [z_i/n_i]) - \lambda \sum_{i,j} f_{ij} \{(y_i - z_i) - \tau_i s_{ij} [y_i, (1 - \tau_i) R]\}
+ \mu_l (w_l [y_h, (1 - \tau_h) R] - v [z_h/n_h] - w_l [y_l, (1 - \tau_l) R] + v [z_l/n_l]).
\]

The FOC for earnings are

\[
\sum_j f_{hj} \eta_{hj} u'[x_{hj}] + \mu_l u'[x_{hl}] - \sum_j \lambda f_{hj} \left(1 - \tau_h \frac{\partial s_{hj}}{\partial y} \right) = 0,
\]

\[
\sum_j f_{lij} \eta_{lij} u'[x_{lij}] - \mu_l u'[x_{ll}] - \sum_j \lambda f_{lij} \left(1 - \tau_l \frac{\partial s_{lij}}{\partial y} \right) = 0.
\]

The FOC for savings tax rates are

\[
\sum_j f_{hj} \eta_{hj} u'[x_{hj}] \frac{s_{hj}}{1 - \tau_h} + \mu_l u'[x_{hl}] \frac{s_{hl}}{1 - \tau_h} - \sum_j \lambda f_{hj} \left\{s_{hj} + \tau_h \frac{\partial s_{hj}}{\partial \tau_h} \right\} = 0,
\]

\[
\sum_j f_{lij} \eta_{lij} u'[x_{lij}] \frac{s_{lij}}{1 - \tau_l} - \mu_l u'[x_{ll}] \frac{s_{ll}}{1 - \tau_l} - \sum_j \lambda f_{lij} \left\{s_{lij} + \tau_l \frac{\partial s_{lij}}{\partial \tau_l} \right\} = 0.
\]

Denote by \(R_h \equiv R(1 - \tau_h) \) and \(R_l \equiv R(1 - \tau_l) \) the after-tax returns to savings for respectively the high and low skill types. Combining the first order conditions as before, we find that the optimal linear savings tax is such that

\[
f_{hh} g_{hh} (x_{hh} - x_{hl}) = \tau_h \sum_j \lambda f_{hj} \left\{s_{hj} - \frac{\partial s_{hj}}{\partial y_h} s_{hl} + \frac{\partial s_{hj}}{\partial R_h} R_h \right\} \quad (4)
\]

and

\[
f_{lh} g_{lh} (x_{lh} - x_{ll}) = \tau_l \sum_j \lambda f_{lij} \left\{s_{lij} - \frac{\partial s_{lij}}{\partial y_l} s_{ll} + \frac{\partial s_{lij}}{\partial R_l} R_l \right\} \quad (5)
\]
The left-hand sides in equations (4) and (5) correspond to the welfare changes of introducing earnings-dependent taxes on the high earners and low earners respectively. Thus, if the sum of the terms in brackets on the right-hand side is positive, the optimal linear tax is positive if the introduction of a small tax is welfare-improving and vice versa. Since preferences are additive, \(\frac{\partial s_{ij}}{\partial y_i} < 1 \), and so \(s_{ij} - \frac{\partial s_{ij}}{\partial y_i} s_{il} > 0 \) for \(i = h, l \). Hence, a sufficient condition for the right-hand side term to be positive is that savings are increasing in the after-tax return, \(\frac{\partial s_{ij}}{\partial R_i} \geq 0 \).

Proposition 2 At the second best optimum, assuming that savings are increasing in the after-tax returns, all high skill workers hold high skill jobs, and \(g_{hj} < 0, g_{lj} > 0 \) for \(j = h, l \), the optimal linear savings tax is positive for the high earners and negative for the low earners.

4.4 Mechanism Design Optimum in Tenhunen and Tuomala (2008)

As noted above, Tenhunen and Tuomala (2008) consider two-, three- and four-types models with hours chosen by workers. They derive the mechanism design optimal allocations assuming CES preferences with varying correlations between discount and skill, with implicit marginal taxes shown in their Figure 1. For all but very high correlation, they find that savings are implicitly marginally taxed for the high skill worker with low discount factor, savings are implicitly subsidized for the low skill worker with high discount factor, and there are no other marginal savings distortions. With very high correlation, the low skill worker with low discount factor is implicitly taxed, which also happens in the two-type model, which has perfect correlation. The potential relevance of the pattern we find is enhanced by their findings. In contrast with the optimal tax model analyzed here, the mechanism design optimal allocation allows distortion of the savings of each type separately. As long as
the correlation is not too high, on average the savings tax is positive for the high skill and negative for the low skill types.

4.5 Robustness

We consider four extensions to highlight the extent of robustness of the propositions. First, we allow different ability levels for the two high earner types. Second, we allow different discount factors for all four types. Third, we show how the analysis extends to three skill levels in workers and jobs, preserving the various assumptions. Finally, we show how the propositions generalize when the heterogeneity in savings preferences comes from sources different from the heterogeneity in discount factors.

Different Ability Levels of the High Earners In the four-types model above, we assume that the two types with high skill have exactly the same skill. As long as the high skill type with high discount factor has higher skill than the high skill type with low discount factor, Proposition 1 continues to hold. However, if the type with low discount factor is sufficiently more skilled, the type with high discount factor may be more tempted to switch to the low earner job for which less output is required. For given skill of type hh, n_{hh}, this reversal of which IC constraint is binding holds when the ability level n_{hl} of type hl is higher than \hat{n}_{hl} ($> n_{hh}$), where the cut-off level \hat{n}_{hl} is such that the IC constraint is just binding on both types,

$$\{w_l [y_h, R] - v (z_h/\hat{n}_{hl})]\} - \{w_l [y_l, R] - v (z_l/\hat{n}_{hl})\} = \{w_h [y_h, R] - v (z_h/n_{hh})\} - \{w_h [y_l, R] - v (z_l/n_{hh})\}.$$

With $v [z/n]$ convex, the difference in labor disutilities between jobs, $\{v (z_l/n) - v (z_h/n)\}$, is decreasing in n. Hence, for values of n_{hl} higher than \hat{n}_{hl} the IC constraint is more stringent for the high discount saver. In this case, a savings subsidy on the high earners and a savings tax on the low earners are welfare improving. This is the opposite of Proposition 2. This extension makes clear the importance of the distribution of workers across jobs, an issue we plan to address in a setting with a continuum of skill levels.

Different Discount Factors among the High and Low Savers With job-specific earnings and no taxation of savings, a high skill worker considering switching to the low job chooses optimal savings without needing to match any particular worker holding the low job. Thus, with the same skill among high earners, the gain from switching to the low job is always higher for the high skill worker who has lower preference for savings, regardless of
the discount rates among the low skill workers. We continue to have a welfare gain from introducing taxation of savings among high earners as in Proposition 1.

Subsidization of savings of low earners will continue to generate a welfare gain as long as the discount factor of the high-skill low-saver is small enough relative to the distribution of discount factors among holders of the low skill job. Denoting by \bar{x}_{hl} the first-period consumption of the high-skilled low saver if taking the low skill job, the FOC for earnings on that job is:

$$\sum_j f_{lj} g_{lj} - \mu_l u' [\bar{x}_{hl}] = 0.$$

The impact of a savings tax on low earners is

$$\frac{\partial \mathcal{L}}{\partial \tau_l} = \sum_j f_{lj} g_{lj} x_{lj} - \mu_l u' [\bar{x}_{hl}] \bar{x}_{hl}.$$

Comparing the consumption in the IC constraint with a weighted average of consumptions among low earners, this derivative is negative (and the gain from the subsidization of the savings of low earners in Proposition 1 continues to hold) if and only if $\bar{x}_{hl} > \bar{x}_l$, where

$$\bar{x}_l = \frac{\sum_j f_{lj} g_{lj} x_{lj}}{\sum_j f_{lj} g_{lj}}.$$

With the net marginal social values assumption, $g_{lj} > 0$, for $j = h, l$, \bar{x}_l is a proper weighted average of the x_{lj}. Since the discount rates for the marginal high skill type may well be too high to meet this condition, we consider the tax of the savings of higher earners to be a more robust policy conclusion than the subsidization of the savings of low earners.

We are exploring two extensions to the basic model, one with an education choice and one with a continuum of worker types. In both cases, preliminary work suggests the same pattern of greater robustness of the taxation of higher earners than of the subsidization of lower earners.

Three Ability Levels, Three Jobs We introduce an intermediate skill level in the model. We extend the assumption that welfare weights and population fractions are such that at the optimum all the high skilled are on the most productive job to also have all the intermediate skilled on the intermediate job. We again consider the case in which agents may be tempted

8 With heterogeneity in discount factors, people who discount the future less may choose to invest more in education. If only education determines a worker’s skill level, high-skilled workers have higher discount factors than low-skilled workers.
to switch to jobs designed for less skilled people. Only two downward constraints are relevant though.

First, as above, for two agents with the same skill, but different discount factors, the IC constraint is slack for the type with the higher discount factor if it is binding for the type with the lower discount factor. The reason is that, with

\[\Delta [y_1, y_2, \delta_j, R] \equiv w_j [y_1, R] - w_j [y_2, R], \]

both \(\frac{\partial \Delta [y_m, y_i, \delta_j, R]}{\partial \delta} > 0 \) and \(\frac{\partial \Delta [y_h, y_i, \delta_j, R]}{\partial \delta} > 0 \) for \(i = m, l. \)

Second, with \(v [z/n] \) convex, we have a similar condition for the difference in the disutility of labor between jobs. That is, with

\[\Delta' [z_h, z_l, n] \equiv v [z_h/n] - v [z_l/n], \]

\[\frac{\partial \Delta' [z_h, z_l, n]}{\partial n} = (-v' [z_h/n] z_h + v' [z_l/n] z_l) / n^2 < 0. \]

Thus, for two agents with the same discount factor, the IC constraint of switching to the low-skilled job is slack for the type with the highest ability if it is satisfied for the type with the intermediate ability switching to the low-skilled job and for the type with highest ability switching to the intermediate job. That is, the local IC constraints imply the global IC constraint.

In a similar way as for the four-types model, we can set up the Lagrangian for the constrained maximization problem. The two relevant IC constraints are

\[w_l [y_h, R] - v [z_h/n_h] \geq w_l [y_m, R] - v [z_m/n_h], \]
\[w_l [y_m, R] - v [z_m/n_m] \geq w_l [y_l, R] - v [z_l/n_m]. \]

The impact of the introduction of earnings-dependent savings taxes on the Lagrangian equals respectively

\[\frac{\partial \mathcal{L}}{\partial \tau_h} = \int_{hh} g_{hh} (x_{hh} - x_{hl}) > 0, \]
\[\frac{\partial \mathcal{L}}{\partial \tau_m} = \int_{mh} g_{mh} (x_{mh} - x_{ml}) \geq 0, \]
\[\frac{\partial \mathcal{L}}{\partial \tau_l} = \int_{lh} g_{lh} (x_{lh} - x_{ll}) < 0. \]

This implies that Proposition 1 continues to hold for the high earners and the low earners.
The following Proposition applies for the intermediate earners.

Proposition 3 In a model with three ability levels and three jobs, the introduction of a small linear tax (subsidy) on savings that falls on the intermediate earners is welfare improving if redistribution from (to) the intermediate earners to (from) general revenues is welfare improving.

From Propositions 1 and 3 there is a single sign change as a function of earnings in the response of welfare to taxing savings. This result generalizes for more than three jobs as well, if the welfare weights are non-increasing in skill. The savings of workers with earnings below a given level are subsidized, the savings of workers with earning above that level are taxed. The result depends on the assumption that types with the same skill are all at the same job, which becomes increasingly strained with many jobs.

A single sign change of the welfare impact of introducing a savings tax as a function of earnings also holds for the optimal linear earnings-dependent savings taxes when workers have CRRA preferences, \(u[x] = \frac{x^{1-\gamma}}{1-\gamma} \), and \(\gamma < 1 \). With logarithmic preferences, \(u[x] = \log[x] \), the optimal savings tax rate is strictly increasing in the earnings of workers if they are uniformly distributed across jobs, \(f_{ij} = f_j \) for \(\forall i, j \). Since for logarithmic preferences \(s_{ij} = \frac{\partial s_{ij}}{\partial y_i} y_i \) and \(\frac{\partial s_{ij}}{\partial R_i} = 0 \), the optimal tax on the savings of earners at job \(i \) satisfies

\[
 f_{ih}g_{ih} (x_{ih} - x_{il}) = \tau_i \sum_j \lambda f_{ij} \frac{\partial s_{ij}}{\partial y_i} x_{il}.
\]

With \(f_{ij} = f_j \) for \(\forall i, j \) and first-period consumption \(x_{ij} = \frac{1}{1+\delta_j} y_i \), we find the following expression for the optimal savings tax,

\[
 \tau_i = \frac{f_h (\delta_l - \delta_h)}{\sum_j \lambda f_{j} \frac{\delta_j}{1+\delta_j}} \left(\frac{\eta_{ih}}{y_i} - \frac{\lambda}{1 + \delta_h} \right).
\]

Since \(\delta_h > \delta_l \), with the welfare weights non-increasing in skill, the optimal linear savings tax is increasing in earnings,

\[
 \frac{\partial \tau_i}{\partial y_i} > 0.
\]

Differences in Expected Payments We have introduced differences in preferences for savings by introducing heterogeneity in discount factors. Proposition 1 is driven by the fact that workers who prefer to save more are also more willing to work for more pay. Heterogeneity in discount factors is not the only source of heterogeneity affecting the relationship between willingness to save and work. We explore one such source - an anticipated second period expenditure.
Consider a model where workers expect to make either a high payment e_h or a low payment e_l in the second period, with $e_h > e_l$. Heterogeneity in future payments could come from heterogeneity in expected medical or long term care expenditures (when $e > 0$), but also heterogeneity in expected inheritances or other wealth transfer receipts (when $e < 0$). As in the baseline model, we consider four types:

<table>
<thead>
<tr>
<th>Ability</th>
<th>Future Payment</th>
<th>(e_h)</th>
<th>(e_l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>(hh)</td>
<td>(hl)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>(lh)</td>
<td>(ll)</td>
<td></td>
</tr>
</tbody>
</table>

With all workers having the same discount factor, the indirect utility-of-consumption for a type who expects a future payment e_j equals

$$w_j[y, R] \equiv \max u[x] + \delta u[c - e_j]$$

subject to: $x + R^{-1}c = y$.

A type who expects a larger future payment (or a lower future transfer) saves more and thus consumes less in the first period, $x_{ih} < x_{il}$. Moreover, the higher expected future payment increases the marginal value of earnings and thus the willingness to work for more pay. The difference in consumption utility from different incomes,

$$\Delta [y_h, y_l, e_j, R] \equiv w_j[y_h, R] - w_j[y_l, R],$$

is increasing in the expected payment e,

$$\frac{\partial \Delta [y_h, y_l, e_j, R]}{\partial e_j} = -\delta (u'[c_{hj} - e_j] - u'[c_{lj} - e_j]) > 0.$$

This implies that at an optimum in which high-skill types are on the more productive job, the IC constraint is binding only for the high-skill type who expects a low future payment (or a large future transfer), who is the type who saves less. Hence, Proposition 1 holds with heterogeneity in expected future transfers, while the opposite result holds with heterogeneity in current wealth. This suggests that the progressivity in earnings of the savings tax may be more desirable for younger workers than for older workers.

\[9\text{Empirical evidence, however, shows that people with high expected inheritances may accumulate too much wealth from a life-time perspective (Scholz, Seshadri and Khitatrakun 2006; Coe and Webb 2009)}\]
5 Second Best with Uniform Taxes on Savings

Proposition leaves the natural question of what to do with a Nordic dual income tax where the tax rate on savings is required to be the same for both earnings levels. Adding the responses to the two separate tax changes, we have

\[
\frac{\partial L}{\partial \tau} = \frac{\partial L}{\partial \tau_h} + \frac{\partial L}{\partial \tau_l} = f_{hh}g_{hh}(x_{hh} - x_{hl}) + f_{lh}g_{lh}(x_lh - x_{ll}) .
\]

In contrast with the earnings-varying tax on savings, the correlation between skill and discount factor plays a role here.

If there is no desire to redistribute within a job, \(g_{ih} = g_{il} \), for \(i = h, l \), then

\[
f_{hh}g_{hh} = \frac{f_{hh}}{\sum_j f_{hj}} \sum_j f_{hj}g_{hj} = -\frac{f_{hh}}{\sum_j f_{hj}} \mu_i u'[x_{hi}] ,
\]

\[
f_{lh}g_{lh} = \frac{f_{lh}}{\sum_j f_{lj}} \sum_j f_{lj}g_{lj} = \frac{f_{lh}}{\sum_j f_{lj}} \mu_l u'[x_{ll}] .
\]

Thus, the welfare impact of a change in the uniform tax on savings equals

\[
\frac{\partial L}{\partial \tau} = \mu_i \left(\frac{f_{hh}}{\sum_j f_{hj}} u'[x_{hi}] (x_{hi} - x_{hh}) - \frac{f_{lh}}{\sum_j f_{lj}} u'[x_{ll}] (x_{ll} - x_{lh}) \right) .
\]

It is convenient to write this as

\[
\frac{\partial L}{\partial \tau} = \mu_i \frac{f_{lh}/\sum_j f_{lj} \Omega - 1}{\sum_j f_{lj}} ,
\]

where

\[
\Omega = \frac{u'[x_{hi}]/(x_{hi} - x_{hh})}{u'[x_{ll}]/(x_{ll} - x_{lh})} > 0 .
\]

Since \(x_{ll} > x_{lh} \),

\[
\text{sign} \left(\frac{\partial L}{\partial \tau} \right) = \text{sign} \left(\frac{f_{hh}/\sum_j f_{hj} \Omega - 1}{f_{lh}/\sum_j f_{hj}} \right) .
\]

The sign of this expression depends on the distribution of types and the ratio of the weights, \(\Omega \). That is, \(\Omega \geq 1 \) is a sufficient condition for a positive correlation between aspects, \(\frac{f_{hh}}{\sum_j f_{hj}} > \frac{f_{lh}}{\sum_j f_{lj}} \), to imply that introducing a savings tax increases social welfare.

Assuming homothetic preferences, so that \(\frac{x_{hi}}{x_{ll}} = \frac{x_{hh}}{x_{lh}} \), the expression for \(\Omega \) becomes

\[
\frac{u'[x_{hi}]/x_{hi}}{u'[x_{ll}]/x_{ll}} .
\]

This expression is equal to one for the log utility function. For CRRA prefer-
ences, \(u[x] = \frac{x^{1-\gamma}}{1-\gamma} \), we find
\[
\Omega = \left(\frac{x_{hl}}{x_{ll}} \right)^{1-\gamma}.
\]
Thus, if the relative risk aversion \(\gamma \) is smaller than 1, then \(\Omega \geq 1 \) and a positive correlation between ability and discount factor (i.e., \(\frac{f_{hh}}{\sum_j f_{hj}} > \frac{f_{lh}}{\sum_j f_{lj}} \)) implies that \(\frac{\partial \xi}{\partial \tau} \) is positive. If \(\gamma \) is larger than 1, the sign of \(\frac{\partial \xi}{\partial \tau} \) depends on the size of the correlation and the magnitude of the earnings difference between jobs. Conversely, when the correlation is negative, \(\frac{\partial \xi}{\partial \tau} \) is negative if \(\gamma \) is greater than 1.\(^{10}\) This implies the following proposition.

Proposition 4 If there is no desire to redistribute within a job, \(g_{ih} = g_{it} \), for \(i = h, l \), with CRRA preferences, a uniform small tax on savings increases welfare if the relative risk aversion is smaller than one and the correlation between ability and discount factor is positive. A uniform small subsidy on savings increases welfare if the relative risk aversion is greater than one and the correlation between ability and discount factor is negative.

Corollary 1 If there is no desire to redistribute within a job, \(g_{ih} = g_{it} \), for \(i = h, l \), with logarithmic preferences, a uniform small tax (subsidy) on savings increases welfare if and only if the correlation between ability and discount factor is positive (negative).

As with the earnings-varying taxes, the sign result for introducing a uniform tax matches that for optimal linear taxation in some interesting cases. Denote by \(R_\tau \equiv R(1-\tau) \) the after-tax returns to savings and by \(s_{ij} \) the savings of type \(ij \) as a function of after-tax earnings and the after-tax interest rate. Setting the derivative of the Lagrangian with respect to \(\tau \) equal to zero, we find the following condition for the optimal linear tax,
\[
f_{hh}g_{hh}(x_{hh} - x_{hl}) + f_{lh}g_{lh}(x_{lh} - x_{ll}) = \tau \sum_{i,j} \lambda f_{ij} \left\{ s_{ij} - \frac{\partial s_{ij}}{\partial y_{ij}} s_{il} + \frac{\partial s_{ij}}{\partial R_\tau} R_\tau \right\}.
\]
If the sum of the terms in brackets is positive, we have that the optimal uniform tax is positive if the introduction of a small uniform tax is welfare improving. This is the case for logarithmic preferences and CRRA preferences with relative risk aversion \(\gamma < 1 \).

Proposition 5 If there is no desire to redistribute within a job, \(g_{ih} = g_{it} \), for \(i = h, l \), with logarithmic preferences or CRRA preferences with \(\gamma < 1 \), the optimal linear uniform tax on savings is positive if the correlation between ability and discount factor is positive.

\(^{10}\)For CARA preferences, \(\frac{\partial \xi}{\partial \tau} \) is negative when the correlation between ability and discount factor is negative. When the correlation is positive, \(\frac{\partial \xi}{\partial \tau} \) is positive if the absolute risk aversion is sufficiently small.
6 Two Types

Using a model with two types of workers, a high-skilled worker with high discount factor and a low-skilled worker with low discount factor, the empirical finding of a positive correlation between skill and savings rates is treated as a perfect correlation. In this model, if there is positive (negative) marginal earnings taxation then there is a gain from introducing positive (negative) marginal savings taxation. The corollary is that introducing savings taxation on the low earner is a gain if redistribution goes from the high earner to the low earner. The full mechanism design optimum has the same property. The source of this inference does not seem robust to realistic diversity in the economy. With two-dimensional heterogeneity, there are low earners with both high and low savings rates. If a high earner can imitate the savings of a low earner with the same savings propensities, a savings tax on the low earner has the same impact on the low earner and the high earner imitating a low earner and so does not help discourage the high earner from imitating. Thus to model less-than-perfect correlation, we use the four-types model with high and low earners with both high and low concern for the future. We report the results for two types here to mark the contrast with the four types model. The proof parallels that of the same result for the mechanism design optimum, which is in Diamond (2003)\[11\] We consider the second-best Pareto frontier with the types referred to as 1 and 2.

Proposition 6 In a two-types model without taxes on savings and with \[\text{sign} (\delta_1 - \delta_2) = \text{sign} (n_1 - n_2)\], the introduction of a small linear tax (subsidy) on savings at a given earnings level is welfare improving if and only if earnings at that level are marginally taxed (subsidized).

Corollary 2 In a two-types model without taxes on savings and with \[\text{sign} (\delta_1 - \delta_2) = \text{sign} (n_1 - n_2)\], the introduction of a savings tax on the lower earner is welfare improving if redistribution goes from the higher earner to the lower earner.

The proposition combines the properties of the mechanism design optima in the two separate two-types models with heterogeneity in one dimension. When both types have the same discount factor, but different abilities, the earnings of the potentially imitated type are marginally taxed or subsidized if the ability of that type is lower or higher respectively (Mirrlees, 1971). Similarly, when both types have the same ability, but different discount factors, the savings of the potentially imitated type are marginally taxed or subsidized if the discount factor for that type is lower or higher respectively. If both types have the same discount factor, distorting savings does not help separate the two types (Atkinson and

\[11\] Golosov, Tsyvinski and Weinzierl (2009) consider a model with a continuum of types and perfect correlation between ability and savings preference.
Similarly, if both types have the same ability, earnings are not subject to marginal taxation. However, when the two types differ in both ability and discount factor, both the marginal taxation (or subsidization) of earnings and the marginal taxation (or subsidization) of savings is used to separate types.

7 Preferences and IC Constraints

Above we used the utility functions \(u[x] + \delta_j u[c] - v[z/n_j] \). This family of utility functions has the property that those with higher savings rates (larger values of \(\delta_j \)) are more willing to increase work for a given amount of additional pay. But that is not the only way in which the savings and labor supply decisions can be connected in this simple setting. For example, with the utility functions \((u[x] + \delta_j u[c]) / \delta_j - v[z/n_j] = u[x] / \delta_j + u[c] - v[z/n_j] \), the relationship is reversed - those with higher savings rates are less willing to increase work for additional pay. If we had assumed this class of functions, then we would have reversed the pattern of desirable savings taxes in Proposition 1 - having the IC constraint bind for the high saver would imply that it is not binding for the low saver, implying, in turn, that there should be a subsidy of savings for high earners and a tax on savings for low earners.

That it is standard practice to write utility in the form employed does not, by itself, shed light on its empirical reality. More generally, a one-dimensional family of separable utility functions, \(U[\phi[x, c, j], z, j] \), can have any pattern between the variation in the subutility function of consumption and the variation in the interaction between consumption and labor. In the example of a distribution of inheritances or medical expenses, the IC constraint that is binding depends on the timing of the event - a future event fits with the proposition in the text; early events reverse it. This raises the question of identifying an empirical basis for distinguishing which case is more relevant.

It is not easy to find data applying directly to this issue. The models we have examined have two periods with one period of work. They can be thought of as modeling working life, and then retirement. The question we want to answer is whether, for a given level of skill, those with higher savings rates tend to have greater labor supply functions. While the model has only two types at each skill and so a perfect correlation between these two characteristics, presumably a more heterogeneous population and recognition of the stochastic nature of employment opportunities would move the empirical test to one of correlation.

\footnote{This can be considered an implication of the Atkinson-Stiglitz theorem, since there is separability and everyone has the same subutility function over first period earnings and consumption. Notice that if a savings tax is not allowed, the two types can be usefully separated by an earnings tax. The marginal tax on the earnings of the potentially imitated type is positive if and only if that type saves less for the same earnings.}
Perhaps the most direct empirical measure relating to this picture would be the willingness to work beyond age 62 being positively correlated with wealth for a given lifetime average wage level. The model leaves out many features that affect wealth accumulation, such as random returns on investments, and a proper test would need to recognize the variation in earnings opportunities at age 62 relative to earlier earnings opportunities. Attempting to control for these factors would require an empirical study well beyond what would fit as simple, direct support for this key assumption. Instead we look at properties within a single year as simply measured in the Survey of Consumer Finances (SCF).

Before turning to the data, we believe that there are also reasons based on casual empiricism for supporting the appropriateness of using our formulation and expecting a positive correlation more generally. Modeling savings with rationality and discounting combines underlying preferences and issues of self-control. As discussed in Banks and Diamond (2010), psychological analyses suggest these are mixed together. We see no reason to think that this does not apply to working as well as to consuming - whether that is working for later consumption or working to influence future work opportunities. That is, working (at a job with disutility) involves self-control for a future payoff. And saving involves self-control. So those with less difficulty in self-control may show greater willingness to both work and save, which would be captured in the standard utility function expression. In a richer model, human capital investment involves discounting in a similar way to savings decisions and so may generate the pattern in the standard model structure, although formal modeling would distinguish between human and financial capital accumulations.

7.1 Empirical Correlations

We use the SCF panels in 1998, 2001 and 2004, containing information on 13,266 households in total13 The tendency to save, in a way perhaps robust over time, is plausibly captured in whether subjects confirm the statement that they: “Save regularly by putting money aside each month.”14 First, we use this proxy to confirm the correlation of saving with potential for earnings. Of course, circumstances that can affect regular savings behavior vary with age, on average. So, we do the calculation using separate age cells. As shown in Table 1, the proportion of regular savers rises steadily with education, taken as a proxy for earnings potential (skill). The clear pattern supports the positive correlation between higher earnings potential and saving habits. This is consistent with the empirical evidence reviewed in Banks and Diamond (2010) and Dynan, Skinner and Zeldes (2004).

13Population weights are used to convert the SCF sample to a representative national sample.

14The results are similar (with sign reversal) with the statement “Don’t save - usually spend about as much as income.”
TABLE 1: Proportion of regular savers

<table>
<thead>
<tr>
<th>Age Group</th>
<th>30-34</th>
<th>35-39</th>
<th>40-44</th>
<th>45-49</th>
<th>50-54</th>
<th>55-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>< High School</td>
<td>.21</td>
<td>.16</td>
<td>.26</td>
<td>.25</td>
<td>.28</td>
<td>.27</td>
</tr>
<tr>
<td>High School</td>
<td>.34</td>
<td>.40</td>
<td>.37</td>
<td>.39</td>
<td>.41</td>
<td>.48</td>
</tr>
<tr>
<td>Some College</td>
<td>.37</td>
<td>.45</td>
<td>.50</td>
<td>.42</td>
<td>.45</td>
<td>.51</td>
</tr>
<tr>
<td>College Degree</td>
<td>.58</td>
<td>.54</td>
<td>.51</td>
<td>.57</td>
<td>.57</td>
<td>.50</td>
</tr>
<tr>
<td>Graduate Degree</td>
<td>.64</td>
<td>.56</td>
<td>.62</td>
<td>.59</td>
<td>.54</td>
<td>.52</td>
</tr>
</tbody>
</table>

Turning to our primary concern, whether for a given skill, those who save more are more willing to work, we look at the correlation between the savings proxy and earnings within the age-education cells in Table 2.

TABLE 2: Correlation log(earnings) and saving regularly

<table>
<thead>
<tr>
<th>Age Group</th>
<th>30-34</th>
<th>35-39</th>
<th>40-44</th>
<th>45-49</th>
<th>50-54</th>
<th>55-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>< High School</td>
<td>.30*</td>
<td>.17*</td>
<td>.22*</td>
<td>.20*</td>
<td>.31*</td>
<td>.40*</td>
</tr>
<tr>
<td>High School</td>
<td>.24*</td>
<td>.17*</td>
<td>.29*</td>
<td>.22*</td>
<td>.32*</td>
<td>.34*</td>
</tr>
<tr>
<td>Some College</td>
<td>.18*</td>
<td>.21*</td>
<td>.20*</td>
<td>.23*</td>
<td>.20*</td>
<td>.17*</td>
</tr>
<tr>
<td>College Degree</td>
<td>.22*</td>
<td>.34*</td>
<td>.20*</td>
<td>.28*</td>
<td>.19*</td>
<td>.10*</td>
</tr>
<tr>
<td>Graduate Degree</td>
<td>.30*</td>
<td>-.01</td>
<td>.17*</td>
<td>.15*</td>
<td>.15*</td>
<td>.13*</td>
</tr>
</tbody>
</table>

* denotes statistical significance at the 5 percent level

Except for one, all of the within-cell correlations in Table 2 are positive and significant. The correlation for the full sample between the logarithmic earnings and saving regularly, conditional on cell dummies, equals .22. The positive correlations are supportive of the positive correlation which fits with the assumptions in Proposition 1, which applies with both the discount rate interpretation and the future income interpretation.

The SCF offers a second proxy that relates directly to the model with different discount rates. We use the question asking: “In planning (your/your family’s) saving and spending, which of the following is most important to [you/you and your (husband/wife/partner)]: the next few months, the next year, the next few years, the next 5 to 10 years, or longer than 10 years?” To interpret the averages, we quantify this variable assigning 0.5, 1, 3, 7.5 and 15 to the respective answers. Table 3 shows the average time horizon per cell and Table 4 shows the correlation between time horizon and earnings within cells. Time horizon increases with education and so wage rate, which is supportive of the assumed positive correlation between
discount factor and skill used in analysis of the taxation of savings that is not earnings-varying.

<table>
<thead>
<tr>
<th>TABLE 3: Average time horizon (converted into years)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>< High School</td>
</tr>
<tr>
<td>High School</td>
</tr>
<tr>
<td>Some College</td>
</tr>
<tr>
<td>College Degree</td>
</tr>
<tr>
<td>Graduate Degree</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 4: Correlation log(earnings) and time horizon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>< High School</td>
</tr>
<tr>
<td>High School</td>
</tr>
<tr>
<td>Some College</td>
</tr>
<tr>
<td>College Degree</td>
</tr>
<tr>
<td>Graduate Degree</td>
</tr>
</tbody>
</table>

* denotes statistical significance at the 5 percent level.

As with regular savings, those with higher education have longer horizons and within education cells, earnings and time horizon are positively correlated. While this is a robust prediction of the two-period model, in a three-period model with consistent discount rates within the working years, types with higher discount factors will work relatively more while they are young but may not when older. In the appendix we look at hours worked per week, which gives a similar, but less clean answer, reflecting the role of uniform hours on many jobs. We consider again whether one reports to be saving regularly and the reported time horizon.

Education choices reflect both ex ante “skill” and discount rate and then affect wage rates, which matter for later taxation. Presumably, the level of completed education is increasing in both ex ante skill and discount factor, on average. In addition to affecting ex post skill, education may affect one’s discount rate thereafter. Thus education is a proxy for both skill.

\[^{15}\]Chabris et al. (2008) find that experimentally measured discount rates have strong predictive power for field behavior relative to other variables in their sample (e.g., sex, age, education). However, they find that the correlation between the discount rate and each field behavior is small; none exceeds 0.28 and many are near 0.
and discount rate and can not be used in a simple way to distinguish between them. A further difficulty in interpreting the correlations is that education is a discrete variable while skill is continuous and varying within education classes. In general, there are many factors that affect savings and work that are not in the basic model used for analysis. Thus, this evidence is merely suggestive.

8 Conclusion

Design of the taxation of capital income needs to reflect many factors. This paper focuses on heterogeneity in savings rates, an important dimension of heterogeneity for tax setting. The paper uses a model with jobs, rather than one with individual worker choices of hours, in order to have diversity in savings behavior at each earnings level in a tractable form. Neither labor market model describes the nature of opportunities for all workers, leaving room for learning from both types of models. In an hours model, workers make changes in response to small changes in marginal taxes. In a jobs model, there are many workers who are not at the margin of switching to a different job. Their lack of labor supply response to small changes in taxes is important for tax policy and seems plausible for many workers.

In keeping with the optimal tax literature the objective function in this paper has been defined in terms of individual lifetime utilities. Rather than considering how to weight the utilities of those with different discount factors (or preference differences more generally), we have reported some results in terms of different welfare weights.16 And we have used a model where the social objective function respects all preferences, not allowing for concerns that some people save too little for their own good.17 Moving from this analysis toward concrete policy recommendations calls for addressing these issues, as well as the more complex need to move from analyses based on lifetimes to ones that incorporate additional concerns that are relevant for taxes set annually, primarily on annual tax bases.

Appendix: Hours of Work

The results for the correlation between hours worked and the two proxies for the savings preferences are in Table A1 and Table A2 respectively. The question we use for hours of

16A number of other papers have considered optimal taxes with heterogeneous preferences. See, for example, Blomquist and Christiansen, 2004, Boadway et al, 2002, Cuff, 2000, Kaplow, 2008b, Sandmo, 1993, Tarkianiien and Tuomala, 2007.

17Addressing this concern would include consideration of mandatory retirement income programs and the effect of the design of savings incentives on consumer behavior, beyond the standard model of lifetime utility maximization.
work asks: “How many hours (do you/does [he/she]) work on (your/her/his) main job in a
normal week? (if not self-employed) How many hours (do you/does [he/she]) work in this
business in a normal week? (self-employed).”

<table>
<thead>
<tr>
<th></th>
<th>30-34</th>
<th>35-39</th>
<th>40-44</th>
<th>45-49</th>
<th>50-54</th>
<th>55-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>< High School</td>
<td>0.05</td>
<td>0.00</td>
<td>0.17*</td>
<td>0.02</td>
<td>0.24*</td>
<td>0.04</td>
</tr>
<tr>
<td>High School</td>
<td>0.07*</td>
<td>0.15*</td>
<td>0.05</td>
<td>0.01</td>
<td>0.10*</td>
<td>0.02</td>
</tr>
<tr>
<td>Some College</td>
<td>0.03</td>
<td>0.04</td>
<td>0.18*</td>
<td>0.13*</td>
<td>0.06*</td>
<td>0.18*</td>
</tr>
<tr>
<td>College Degree</td>
<td>0.11*</td>
<td>0.10*</td>
<td>0.05*</td>
<td>0.03</td>
<td>0.10*</td>
<td>0.14*</td>
</tr>
<tr>
<td>Graduate Degree</td>
<td>0.08</td>
<td>0.04</td>
<td>0.07*</td>
<td>0.04</td>
<td>0.01</td>
<td>0.10*</td>
</tr>
</tbody>
</table>

* denotes statistical significance at the 5 percent level

<table>
<thead>
<tr>
<th></th>
<th>30-34</th>
<th>35-39</th>
<th>40-44</th>
<th>45-49</th>
<th>50-54</th>
<th>55-59</th>
</tr>
</thead>
<tbody>
<tr>
<td>< High School</td>
<td>0.23*</td>
<td>0.22*</td>
<td>0.07</td>
<td>0.15*</td>
<td>0.01</td>
<td>0.08</td>
</tr>
<tr>
<td>High School</td>
<td>0.02</td>
<td>0.05</td>
<td>0.07*</td>
<td>0.03</td>
<td>0.19*</td>
<td>0.08*</td>
</tr>
<tr>
<td>Some College</td>
<td>0.03</td>
<td>0.07*</td>
<td>0.13*</td>
<td>0.15*</td>
<td>0.01</td>
<td>0.14*</td>
</tr>
<tr>
<td>College Degree</td>
<td>0.01</td>
<td>0.01</td>
<td>0.04</td>
<td>0.11*</td>
<td>0.07*</td>
<td>0.05</td>
</tr>
<tr>
<td>Graduate Degree</td>
<td>0.14*</td>
<td>0.14*</td>
<td>0.15*</td>
<td>0.02</td>
<td>0.05*</td>
<td>0.10*</td>
</tr>
</tbody>
</table>

* denotes statistical significance at the 5 percent level

Most of the correlations are positive. Many of them are significant as well. The correlations
for the full-sample using the two different proxies for saving preference, conditional on
cell dummies, are both .06.

References

the Tax System for the 21st Century: The Mirrlees Review, ed. Institute for Fiscal

The result for annual hours worked are very similar. This leaves out the role of second jobs.

