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AXIOMS FOR DEFERRED ACCEPTANCE

BY FUHITO KOJIMA AND MIHAI MANEA1

The deferred acceptance algorithm is often used to allocate indivisible objects
when monetary transfers are not allowed. We provide two characterizations of agent-
proposing deferred acceptance allocation rules. Two new axioms—individually rational
monotonicity and weak Maskin monotonicity—are essential to our analysis. An allo-
cation rule is the agent-proposing deferred acceptance rule for some acceptant sub-
stitutable priority if and only if it satisfies non-wastefulness and individually rational
monotonicity. An alternative characterization is in terms of non-wastefulness, popula-
tion monotonicity, and weak Maskin monotonicity. We also offer an axiomatization of
the deferred acceptance rule generated by an exogenously specified priority structure.
We apply our results to characterize efficient deferred acceptance rules.

KEYWORDS: Deferred acceptance algorithm, stable allocations, axioms, individu-
ally rational monotonicity, weak Maskin monotonicity, population monotonicity, non-
wastefulness.

1. INTRODUCTION

IN AN ASSIGNMENT PROBLEM, a set of indivisible objects that are collectively
owned need to be allocated to a number of agents, with each agent being en-
titled to receive at most one object. Student placement in public schools and
university housing allocation are examples of important assignment problems
in practice. The agents are assumed to have strict preferences over the ob-
jects (and being unassigned). An allocation rule specifies an assignment of the
objects to the agents for each preference profile. No monetary transfers are
allowed.

In many assignment problems, each object is endowed with a priority over
agents. For example, schools in Boston give higher priority to students who
live nearby or have siblings already attending. An allocation rule is stable with
respect to a given priority profile if there is no agent–object pair (i� a) such
that (i) i prefers a to his assigned object and (ii) either i has higher priority
for a than some agent who receives a or a is not assigned to other agents up
to its quota. In the school choice settings of Balinski and Sönmez (1999) and
Abdulkaḋıroğlu and Sönmez (2003), priorities represent a social objective. For
example, it may be desirable that in Boston students attend high schools within
walking distance from their homes or that in Turkey students with excellent
achievements in mathematics and science go to the best engineering univer-
sities. Stability is regarded as a normative fairness criterion in the following
sense. An allocation is stable if no student has justified envy, that is, any school
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that a student prefers to his assigned school is attended (up to capacity) by
students who are granted higher priority for it.

The deferred acceptance algorithm of Gale and Shapley (1962) determines
a stable allocation which has many appealing properties. The agent-proposing
deferred acceptance allocation Pareto dominates any other stable allocation.
Moreover, the agent-proposing deferred acceptance rule makes truthful re-
porting of preferences a dominant strategy for every agent. Consequently, the
deferred acceptance rule is used in many practical assignment problems such
as student placement in New York City and Boston (Abdulkaḋıroğlu, Pathak,
and Roth (2005), Abdulkaḋıroğlu, Pathak, Roth, and Sönmez (2005)) and uni-
versity house allocation at MIT and the Technion (Guillen and Kesten (2008),
Perach, Polak, and Rothblum (2007)), to name some concrete examples. There
are proposals to apply the rule to other problems such as course allocation in
business schools (Sönmez and Ünver (2009)) and assignment of military per-
sonnel to positions (Korkmaz, Gökçen, and Çetinyokuş (2008)).

Despite the importance of deferred acceptance rules in both theory and
practice, no axiomatization has yet been obtained in an object allocation set-
ting with unspecified priorities. Our first results (Theorems 1 and 2) offer two
characterizations of deferred acceptance rules with acceptant substitutable pri-
orities.

For the first characterization, we introduce a new axiom, individually ratio-
nal (IR) monotonicity. We say that a preference profile R′ is an IR monotonic
transformation of a preference profile R at an allocation μ if for every agent,
any object that is acceptable and preferred to μ under R′ is preferred to μ
under R. An allocation rule ϕ satisfies IR monotonicity if every agent weakly
prefers the allocation ϕ(R′) to the allocation ϕ(R) under R′ whenever R′ is an
IR monotonic transformation of R at ϕ(R). If R′ is an IR monotonic trans-
formation of R at ϕ(R), then the interpretation of the change in reported
preferences from R to R′ is that all agents place fewer claims on objects they
cannot receive at R, in the sense that each agent’s set of acceptable objects
that are preferred to ϕ(R) shrinks. Intuitively, the IR monotonicity axiom re-
quires that all agents be weakly better off when some agents claim fewer ob-
jects. The IR label captures the idea that each agent effectively places claims
only on acceptable objects; an agent may not be allocated unacceptable ob-
jects because he can opt to remain unassigned, so the relevant definition of an
upper contour set includes the IR constraint. IR monotonicity requires that al-
locations be monotonic with respect to the IR constrained upper contour sets.
IR monotonicity resembles Maskin monotonicity (Maskin (1999)), but the two
axioms are independent.

We also define a weak requirement of efficiency, the non-wastefulness ax-
iom. An allocation rule is non-wasteful if at every preference profile, any ob-
ject that an agent prefers to his assignment is allocated up to its quota to other
agents. Our first characterization states that an allocation rule is the deferred
acceptance rule for some acceptant substitutable priority if and only if it satis-
fies non-wastefulness and IR monotonicity (Theorem 1).
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To further understand deferred acceptance rules, we provide a second char-
acterization based on axioms that are mathematically more elementary and
tractable than IR monotonicity. An allocation rule is population monotonic
if for every preference profile, when some agents deviate to declaring every
object unacceptable (which we interpret as leaving the market unassigned),
all other agents are weakly better off (Thomson (1983a, 1983b)). Following
Maskin (1999), R′ is a monotonic transformation of R at μ if for every agent,
any object that is preferred to μ under R′ is also preferred to μ under R. An al-
location rule ϕ satisfies weak Maskin monotonicity if every agent prefers ϕ(R′)
to ϕ(R) under R′ whenever R′ is a monotonic transformation of R at ϕ(R).
Our second result shows that an allocation rule is the deferred acceptance
rule for some acceptant substitutable priority if and only if it satisfies non-
wastefulness, weak Maskin monotonicity, and population monotonicity (The-
orem 2).

We also study allocation rules that are stable with respect to an exogenously
specified priority profile C (Section 6). We show that the deferred acceptance
rule at C is the only stable rule at C that satisfies weak Maskin monotonicity
(Theorem 3).

In addition to stability, efficiency is often a goal of the social planner.
We apply our axiomatizations to the analysis of efficient deferred acceptance
rules. The Maskin monotonicity axiom plays a key role. Recall that an allo-
cation rule ϕ satisfies Maskin monotonicity if ϕ(R′) = ϕ(R) whenever R′ is a
monotonic transformation of R at ϕ(R) (Maskin (1999)). We prove that an
allocation rule is an efficient deferred acceptance rule if and only if it satisfies
Maskin monotonicity, along with non-wastefulness and population monotonic-
ity; an equivalent set of conditions consists of Pareto efficiency, weak Maskin
monotonicity, and population monotonicity (Theorem 4).

Priorities are not primitive in our model except for Section 6, and our ax-
ioms are “priority-free” in the sense that they do not involve priorities. The IR
monotonicity axiom conveys the efficiency cost imposed by stability with re-
spect to some priority structure.2 Whenever some agents withdraw claims for
objects that they prefer to their respective assignments, all agents (weakly)
benefit. In the context of the deferred acceptance algorithm, the inefficiency
is brought about by agents who apply for objects that tentatively accept, but
subsequently reject, them. While it is intuitive that deferred acceptance rules
satisfy IR monotonicity, it is remarkable that this priority-free axiom fully de-

2We do not regard IR monotonicity as a normative (either desirable or undesirable) re-
quirement, but as a positive comprehensive description of the deferred acceptance algorithm.
The reason is that priorities often reflect social objectives, and priority-free statements such
as IR monotonicity may lack normative implications for priority-based assignment problems.
The present welfare analysis disregards the social objectives embedded in the priorities. Nonethe-
less, it should be reiterated that for a given priority structure, the corresponding deferred accep-
tance rule attains constrained efficiency subject to stability.
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scribes the theoretical contents of the deferred acceptance algorithm (along
with the requirement of non-wastefulness).

The weak Maskin monotonicity axiom is mathematically similar to and is
weaker than (i.e., implied by) Maskin monotonicity. We establish that weak
Maskin monotonicity is sufficient, along with non-wastefulness and population
monotonicity, to characterize deferred acceptance rules. At the same time, if
we replace weak Maskin monotonicity by Maskin monotonicity in the list of ax-
ioms above, we obtain a characterization of efficient deferred acceptance rules.
The contrast between these two findings demonstrates that the inefficiency of
some deferred acceptance rules can be attributed entirely to instances where
weak Maskin monotonicity is satisfied while Maskin monotonicity is violated.

Our analysis focuses on substitutable priorities because priorities may
be non-responsive but substitutable in applications. Such priorities arise,
for example, in school districts concerned with balance in race distrib-
ution (Abdulkaḋıroğlu and Sönmez (2003)) or in academic achievement
(Abdulkaḋıroğlu, Pathak, and Roth (2005)) within each school. A case in point
is the New York City school system, where each Educational Option school
must allocate 16% of its seats to top performers in a standardized exam, 68%
to middle performers, and 16% to bottom performers. In the context of house
allocation, some universities impose bounds on the number of rooms or apart-
ments assigned to graduate students in each program (arts and sciences, busi-
ness, public policy, law, etc.).

Furthermore, substitutability of priorities is an “almost necessary” condition
for the non-emptiness of the core.3 When priorities are substitutable, the core
coincides with the set of stable allocations. Since the relevant restrictions on
priorities vary across applications, allowing for substitutable priorities is a nat-
ural approach.

Special instances of deferred acceptance rules have been characterized in the
literature. Svensson (1999) axiomatized the serial dictatorship allocation rules.
Ehlers, Klaus, and Papai (2002), Ehlers and Klaus (2004), Ehlers and Klaus
(2006), and Kesten (2009) offered various characterizations for the mixed dic-
tator and pairwise-exchange rules. Mixed dictator and pairwise-exchange rules
correspond to deferred acceptance rules with acyclic priority structures. For
responsive priorities, Ergin (2002) showed that the only deferred acceptance
rules that are efficient correspond to acyclic priority structures.

Other allocation mechanisms have been previously characterized. Papai
(2000) characterized the hierarchical exchange rules, which generalize the
priority-based top trading cycle rules of Abdulkaḋıroğlu and Sönmez (2003).

3Formally, suppose there are at least two proper objects a and b. Fix a non-substitutable pri-
ority for a. Then there exist a preference profile for the agents and a responsive priority for b
such that, regardless of the priorities for the other objects, the core is empty. The first version
of this result, for a slightly different context, appears in Sönmez and Ünver (2009). The present
statement is from Hatfield and Kojima (2008).
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In the context of housing markets, Ma (1994) characterized the top trading cy-
cle rule of David Gale described by Shapley and Scarf (1974). Kesten (2006)
showed that the deferred acceptance rule and the top trading cycle rule for
some fixed priority profile are equivalent if and only if the priority profile is
acyclic.4

When the priority structure is a primitive of the model as in Section 6, al-
ternative characterizations of the corresponding deferred acceptance rule are
known. The classic result of Gale and Shapley (1962) implies that the deferred
acceptance rule is characterized by constrained efficiency subject to stability.
Alcalde and Barbera (1994) characterized the deferred acceptance rule by sta-
bility and strategy-proofness. Balinski and Sönmez (1999) considered alloca-
tion rules over the domain of pairs of responsive priorities and preferences.
An allocation rule respects improvements if an agent is weakly better off when
his priority improves for each object. Balinski and Sönmez (1999) showed that
the deferred acceptance rule is the only stable rule that respects improvements.

2. FRAMEWORK

Fix a set of agents N and a set of (proper) object types O. There is one null
object type, denoted ∅. Each object a ∈ O ∪ {∅} has quota qa; ∅ is not scarce,
q∅ = |N|. Each agent i is allocated exactly one object in O ∪ {∅}. An allocation
is a vector μ = (μi)i∈N that assigns object μi ∈ O ∪ {∅} to agent i, with each
object a being assigned to at most qa agents. We write μa = {i ∈ N|μi = a} for
the set of agents who receive object a under μ.

Each agent i has a strict (complete, transitive, and antisymmetric) preference
relation Ri over O ∪ {∅}.5 We denote by Pi the asymmetric part of Ri, that is,
aPib if only if aRib and a �= b. An object a is acceptable (unacceptable) to agent
i if aPi∅ (∅Pia). Let R = (Ri)i∈N denote the preference profile of all agents. For
any N ′ ⊂ N , we use the notation RN ′ = (Ri)i∈N ′ .6 We write μRμ′ if and only if
μiRiμ

′
i for all i ∈ N .

We denote by A and R the sets of allocations and preference profiles, re-
spectively. An allocation rule ϕ : R → A maps preference profiles to alloca-
tions. At R, agent i is assigned object ϕi(R), and object a is assigned to the set
of agents ϕa(R).

4Kesten’s acyclicity condition is stronger than Ergin’s.
5The null object may represent private schools in the context of student placement in public

schools or off-campus housing in the context of university house allocation. Taking into con-
sideration preferences that rank the null object above some proper objects is natural in such
applications.

6Our analysis carries through if we do not stipulate that preferences rank pairs of unaccept-
able objects, but alternatively regard as identical all preferences that agree on the ranking of
acceptable objects.
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3. DEFERRED ACCEPTANCE

A priority for a proper object a ∈ O is a correspondence Ca : 2N → 2N , satis-
fying Ca(N

′) ⊂ N ′ and |Ca(N
′)| ≤ qa for all N ′ ⊂ N ; Ca(N

′) is interpreted as
the set of high priority agents in N ′ “chosen” by object a. The priority Ca is
substitutable if agent i is chosen by object a from a set of agents N ′ whenever
i is chosen by a from a set N ′′ that includes N ′; formally, for all N ′ ⊂ N ′′ ⊂ N ,
we have Ca(N

′′)∩N ′ ⊂ Ca(N
′). The priority Ca is acceptant if object a accepts

each agent when its quota is not entirely allocated; formally, for all N ′ ⊂ N ,
|Ca(N

′)| = min(qa� |N ′|).7 Let C = (Ca)a∈O denote the priority profile; C is
substitutable (acceptant) if Ca is substitutable (acceptant) for all a ∈ O.

The allocation μ is individually rational at R if μiRi∅ for all i ∈ N� The alloca-
tion μ is blocked by a pair (i� a) ∈N ×O at (R�C) if aPiμi and i ∈ Ca(μa ∪{i}).
An allocation μ is stable at (R�C) if it is individually rational at R and is not
blocked by any pair (i� a) ∈ N × O at (R�C). When C is substitutable, the
following iterative procedure, called the (agent-proposing) deferred acceptance
algorithm, produces a stable allocation at (R�C) (Gale and Shapley (1962); ex-
tended to the case of substitutable priorities by Roth and Sotomayor (1990)).

Step 1. Every agent applies to his most preferred acceptable object under R
(if any). Let Ñ1

a be the set of agents applying to object a. Object a tentatively
accepts the agents in N1

a = Ca(Ñ
1
a) and rejects the applicants in Ñ1

a \N1
a .

Step t (t ≥ 2). Every agent who was rejected at step t − 1 applies to his
next preferred acceptable object under R (if any). Let Ñt

a be the new set
of agents applying to object a. Object a tentatively accepts the agents in
Nt

a = Ca(N
t−1
a ∪ Ñt

a) and rejects the applicants in (Nt−1
a ∪ Ñt

a) \Nt
a.

The deferred acceptance algorithm terminates when each agent who is not
tentatively accepted by some object has been rejected by every object accept-
able to him. Each agent tentatively accepted by a proper object at the last step
is assigned that object and all other agents are assigned the null object. The de-
ferred acceptance rule ϕC is defined by setting ϕC(R) equal to the allocation
obtained when the algorithm is applied for (R�C). The allocation ϕC(R) is
the agent-optimal stable allocation at (R�C): it is stable at (R�C) and is weakly
preferred under R by every agent to any other stable allocation at (R�C) (The-
orem 6.8 in Roth and Sotomayor (1990)).

REMARK 1: It can be easily shown that no two distinct priority profiles in-
duce the same deferred acceptance rule. Therefore, the subsequent character-
ization results lead to unique representations.

7The acceptant responsive priority Ca for a linear order �a on N is defined as follows. For all
N ′ ⊂ N , Ca(N

′) is the set of min(qa� |N ′|) top ranked agents in N ′ under �a. The class of ac-
ceptant responsive priorities is a subset of the class of acceptant substitutable priorities. Studying
substitutable priorities is important because priorities may often be non-responsive but substi-
tutable in practice, as discussed in the Introduction.
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4. FIRST CHARACTERIZATION OF DEFERRED ACCEPTANCE RULES

We introduce two axioms—non-wastefulness and individually rational (IR)
monotonicity—that characterize the set of deferred acceptance rules. Priorities
are not primitive in our model except for Section 6, and our axioms are priority-
free in the sense that they do not involve priorities.

DEFINITION 1—Non-Wastefulness: An allocation rule ϕ is non-wasteful if

aPiϕi(R) ⇒ |ϕa(R)| = qa ∀R ∈ R� i ∈N�a ∈ O ∪ {∅}�

Non-wastefulness is a weak efficiency condition. It requires that an object
is not assigned to an agent who prefers it to his allocation only if the entire
quota of that object is assigned to other agents. Note that if ϕ is non-wasteful,
then ϕ(R) is individually rational at R for every R ∈ R, as the null object is not
scarce.

To introduce the main axiom, we say that R′
i is an individually rational

monotonic transformation of Ri at a ∈ O ∪ {∅} (R′
i i.r.m.t. Ri at a) if any ob-

ject that is ranked above both a and ∅ under R′
i is ranked above a under Ri,

that is,

bP ′
ia&bP ′

i∅ ⇒ bPia ∀b ∈O�

R′ is an IR monotonic transformation of R at an allocation μ (R′ i.r.m.t. R
at μ) if R′

i i.r.m.t. Ri at μi for all i.

DEFINITION 2—IR Monotonicity: An allocation rule ϕ satisfies individually
rational monotonicity if

R′ i.r.m.t. R at ϕ(R) ⇒ ϕ(R′)R′ϕ(R)�

In words, ϕ satisfies IR monotonicity if every agent weakly prefers ϕ(R′) to
ϕ(R) under R′ whenever R′ is an IR monotonic transformation of R at ϕ(R). If
R′ i.r.m.t. R at ϕ(R), then the interpretation of the change in reported prefer-
ences from R to R′ is that all agents place fewer claims on objects they cannot
receive at R, in the sense that each agent’s set of acceptable objects that are
preferred to ϕ(R) shrinks. Intuitively, the IR monotonicity axiom requires that
all agents be weakly better off when some agents claim fewer objects. The IR
label captures the idea that each agent effectively places claims only on accept-
able objects. An agent may not be allocated unacceptable objects because he
can opt to remain unassigned (∅ represents the outside option), so the rele-
vant definition of an upper contour set includes the IR constraint. Hence IR
monotonicity requires that allocations be monotonic with respect to the IR
constrained upper contour sets (ordered according to set inclusion).
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THEOREM 1: An allocation rule ϕ is the deferred acceptance rule for some
acceptant substitutable priority C, that is, ϕ = ϕC , if and only if ϕ satisfies non-
wastefulness and IR monotonicity.

The proof appears in the Appendix. Example 1 below, borrowed from Ergin
(2002), illustrates an instance where a deferred acceptance rule satisfies IR
monotonicity and provides some intuition for the “only if” part of the theorem.

IR monotonicity resembles Maskin (1999) monotonicity. R′
i is a monotonic

transformation of Ri at a ∈ O ∪ {∅} (R′
i m.t. Ri at a) if any object that is

ranked above a under R′
i is also ranked above a under Ri, that is, bP ′

ia ⇒
bPia ∀b ∈ O ∪ {∅}. R′ is a monotonic transformation of R at an allocation μ
(R′ m.t. R at μ) if R′

i m.t. Ri at μi for all i.

DEFINITION 3—Maskin Monotonicity: An allocation rule ϕ satisfies Maskin
monotonicity if

R′ m.t. R at ϕ(R) ⇒ ϕ(R′)= ϕ(R)�

On the one hand, IR monotonicity has implications for a larger set of
preference profile pairs (R�R′) than Maskin monotonicity, as R′ m.t. R at
ϕ(R) ⇒ R′ i.r.m.t. R at ϕ(R). On the other hand, for every preference profile
pair (R�R′) for which both axioms have implications (i.e., R′ m.t. R at ϕ(R)),
Maskin monotonicity imposes a stronger restriction than IR monotonicity (as
ϕ(R′) = ϕ(R) ⇒ ϕ(R′)R′ϕ(R)). Example 1 establishes the independence of
the IR monotonicity and Maskin monotonicity axioms. The example also shows
that deferred acceptance rules do not always satisfy Maskin monotonicity (cf.
Kara and Sönmez (1996)) and that some top trading cycle rules violate IR
monotonicity, but satisfy Maskin monotonicity.

EXAMPLE 1: Let N = {i� j�k}�O = {a�b}, and qa = qb = 1. Consider the
strict orderings �a and �b specified as

�a �b

i k
j i
k j

Let C denote the responsive priorities that correspond to these orderings de-
fined as in footnote 7. Consider the set of preferences for the agents:

Ri R′′
i Rj R′

j Rk

b ∅ a ∅ a
a b ∅ a b
∅ a b b ∅
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Let R= (Ri�Rj�Rk)�R
′ = (Ri�R

′
j�Rk)�R

′′ = (R′′
i �Rj�Rk).

In the first step of the deferred acceptance algorithm for (R�C), i applies
to b, and j and k apply to a; then k is rejected by a. In the second step, k applies
to b and i is rejected by b. At the third step, i applies to a and j is rejected
by a. The algorithm terminates after the third step and the final allocation is
given by ϕC(R) = (ϕC

i (R)�ϕ
C
j (R)�ϕ

C
k (R)) = (a�∅� b)� In the first step of the

deferred acceptance algorithm for (R′�C), i applies to b and k applies to a.
The algorithm ends at the first step and ϕC(R′)= (b�∅� a)�

All agents prefer ϕC(R′) to ϕC(R) under R′ (the preference is weak for j
and strict for i and k) due to the fact that R′ i.r.m.t. R at ϕC(R). Indeed, there
is a chain of rejections in the deferred acceptance algorithm for (R�C): k is
rejected by a because j claims higher priority to a; next, i is rejected by b
because k claims higher priority to b; then j is rejected by a because i claims
higher priority for a. Hence j receives the null object in spite of his initial
priority claim to a, which starts off the rejection chain. If j does not claim
higher priority to a and reports R′

j instead of Rj , then the rejection chain does
not occur, weakly benefiting everyone (with respect to R′). Also, note that ϕC

violates Maskin monotonicity since R′ m.t. R at ϕC(R) and ϕC
i (R

′) �= ϕC
i (R).

IR monotonicity is not satisfied by the top trading cycle rule (Abdulkaḋıroğlu
and Sönmez (2003)) associated with the priorities (�a��b).8 At R, i and k
trade their priorities for a and b; the top trading cycle allocation is μ =
(b�∅� a). At R′′, i is assigned the null object and then j receives a, for which he
has higher priority than k. The top trading cycle allocation is μ′′ = (∅� a�b). IR
monotonicity is violated as R′′ i.r.m.t. R at μ and agent k strictly prefers μ to μ′′

under Rk. At R′′, k does not receive a because he has lower priority than j for a
and cannot trade his priority for b with the priority of i for a since i does not
place claims for b. The top trading cycle rule considered here satisfies Maskin
monotonicity by Papai (2000) and Takamiya (2001).

The following examples show that non-wastefulness and IR monotonicity
are independent axioms if |N|� |O| ≥ 2 and there is at least one scarce object,
that is, qa < |N| for some a ∈O.

EXAMPLE 2: Consider the rule that allocates the null object to every agent
for all preference profiles. This rule trivially satisfies IR monotonicity, but vio-
lates non-wastefulness.

EXAMPLE 3: Let N = {1�2� � � � � n}. Suppose that a is one of the scarce ob-
jects (qa < n) and b is a proper object different from a (such a and b exist by
assumption). Let R denote a (fixed) preference profile at which every agent
ranks a first and ∅ second. Define the following allocation rule:

8We follow a definition of top trading cycles from Kesten (2006), which assumes the existence
of a null object and allows each agent to consider some objects unacceptable.
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(i) At any preference profile where agent qa reports Rqa , the assignment is
according to the serial dictatorship with the ordering of agents 1�2� � � � � n, that
is, agent 1 picks his most preferred object, agent 2 picks his most preferred
available object, and so on (an object is available for an agent if the number of
preceding agents who choose that object is smaller than its quota).

(ii) At any other preference profile, the assignment is specified by the serial
dictatorship with the agent ordering 1�2� � � � � qa − 1� qa + 1� qa�qa + 2� � � � � n,
defined analogously to (i).

The allocation rule described above clearly satisfies non-wastefulness, but
violates IR monotonicity. Indeed, let R′

qa
be a preference relation for agent qa

that ranks a first and b second. The profile (R′
qa
�RN\{qa}) i.r.m.t. R at the allo-

cation for R, but agent qa is assigned a at R and b at (R′
qa
�RN\{qa}), and aP ′

qa
b.

5. SECOND CHARACTERIZATION OF DEFERRED ACCEPTANCE RULES

We offer an alternative characterization of deferred acceptance rules in
terms of more elementary axioms. These axioms are mathematically more
tractable and contribute to further understanding of deferred acceptance rules.
For instance, in Section 7, we obtain a characterization of Pareto efficient de-
ferred acceptance rules via a simple alteration in the new collection of axioms.

We first define the weak Maskin monotonicity axiom. Recall that R′
i is a

monotonic transformation of Ri at a ∈ O∪{∅} (R′
i m.t. Ri at a) if any object that

is ranked above a under R′
i is also ranked above a under Ri, that is, bP ′

ia ⇒
bPia ∀b ∈ O ∪ {∅}. R′ is a monotonic transformation of R at an allocation μ
(R′ m.t. R at μ) if R′

i m.t. Ri at μi for all i.

DEFINITION 4—Weak Maskin Monotonicity: An allocation rule ϕ satisfies
weak Maskin monotonicity if

R′ m.t. R at ϕ(R) ⇒ ϕ(R′)R′ϕ(R)�

To gain some perspective, note that the implication of R′ m.t. R at ϕ(R) is
that ϕ(R′)= ϕ(R) under Maskin monotonicity, but only that ϕ(R′)R′ϕ(R) un-
der weak Maskin monotonicity. Therefore, any allocation rule that satisfies the
standard Maskin monotonicity axiom also satisfies weak Maskin monotonicity.

We next define the population monotonicity axiom (Thomson (1983a,
1983b)). As a departure from the original setting, suppose that the collection
of all objects (qa copies of each object type a ∈O∪{∅}) needs to be allocated to
a subset of agents N ′ or, equivalently, that the agents outside N ′ receive ∅ and
are removed from the assignment problem. It is convenient to view the new
setting as a restriction on the set of preference profiles, whereby the agents in
N \N ′ are constrained to report every object as unacceptable. Specifically, let
R∅ denote a fixed preference profile that ranks ∅ first for every agent. For any
R ∈ R, we interpret the profile (RN ′�R∅

N\N ′) as a deviation from R generated
by restricting the assignment problem to the agents in N ′.
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DEFINITION 5—Population Monotonicity: An allocation rule ϕ is population
monotonic if

ϕi

(
RN ′�R∅

N\N ′
)
Riϕi(R) ∀i ∈ N ′�∀N ′ ⊂N�∀R ∈ R�

The definitions of weak Maskin monotonicity and population monotonic-
ity are inspired by the connection between IR monotonicity and the deferred
acceptance algorithm. IR monotonicity clearly implies both weak Maskin
monotonicity and population monotonicity. Building on the intuition for The-
orem 1, we prove that the latter two axioms, along with non-wastefulness, are
sufficient to characterize deferred acceptance rules (the proof appears in the
Appendix).

THEOREM 2: An allocation rule ϕ is the deferred acceptance rule for some
acceptant substitutable priority C, that is, ϕ = ϕC , if and only if ϕ satisfies non-
wastefulness, weak Maskin monotonicity, and population monotonicity.

We show that the three axioms from Theorem 2 are independent if
|N|� |O| ≥ 2 and qa < |N| − 1 for at least one object a ∈O.9 The rule described
in Example 2 satisfies weak Maskin monotonicity and population monotonic-
ity, and violates non-wastefulness. The rule from Example 3 satisfies non-
wastefulness and population monotonicity, but not weak Maskin monotonic-
ity. Last, the following example defines a non-wasteful and weakly Maskin
monotonic rule, which is not population monotonic.

EXAMPLE 4: Let N = {1�2� � � � � n}. Consider the allocation rule defined as
follows:

(i) At any preference profile where agent 1 declares every object unaccept-
able, the assignment is according to the serial dictatorship allocation for the
ordering of agents 1�2� � � � � n− 2� n− 1� n.

(ii) Otherwise, the assignment is specified by the serial dictatorship for the
ordering 1�2� � � � � n− 2� n�n− 1.

The allocation rule so defined satisfies non-wastefulness and weak Maskin
monotonicity, but not population monotonicity. To show that the rule vio-
lates population monotonicity, suppose that a is an object with qa < n− 1 and
b �= a is a proper object (such a and b exist by assumption). Let R be a pref-
erence profile where the first ranked objects are b for agent 1; a for agents
2�3� � � � � qa�n − 1� n; and ∅ for the other agents. Note that agent n receives a
at R and some c with aPnc at (R∅

1�RN\{1}).

9If qa ≥ |N| − 1 for all a ∈ O, then non-wastefulness implies population monotonicity. In that
case, in any market that excludes at least one agent, every non-wasteful allocation assigns each of
the remaining agents his favorite object.
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IR monotonicity implies both weak Maskin monotonicity and population
monotonicity, and under the assumption of non-wastefulness, by Theorems 1
and 2, is equivalent to the conjunction of the latter two axioms. However,
the following example shows that weak Maskin monotonicity and population
monotonicity do not imply IR monotonicity if |N|� |O| ≥ 2.

EXAMPLE 5: Let N = {1�2� � � � � n}. Fix two proper objects a and b (such a
and b exist by assumption). Consider the allocation rule that, at every prefer-
ence profile R, specifies the following assignments:

(i) Agent 1 is assigned the higher ranked object between a and ∅ under R1.
(ii) Agent 2 is assigned the higher ranked object between b and ∅ under R2,

except for the case bP1∅P1a, when he is assigned ∅.
(iii) Agents in N \ {1�2} are assigned ∅.
One can check that this allocation rule satisfies weak Maskin monotonicity

and population monotonicity. To show that the rule violates IR monotonicity,
let R be a preference profile where agent 1 ranks b first and a second, and
agent 2 ranks b first, and let R′

1 be a preference for agent 1 that ranks b first
and ∅ second. Then IR monotonicity is violated since (R′

1�RN\{1}) i.r.m.t. R at
the allocation under R, but agent 2 is assigned b at R and ∅ at (R′

1�RN\{1}),
and bP2∅.

6. AXIOMS FOR STABLE RULES

In this section, we study stable allocation rules with respect to an exoge-
nously specified priority structure C. We say that an allocation rule ϕ is stable
at C if ϕ(R) is stable at (R�C) for all R. We show that the deferred acceptance
rule at C is the only allocation rule that is stable at C and satisfies weak Maskin
monotonicity.

THEOREM 3: Let C be an acceptant substitutable priority. Suppose that ϕ is a
stable allocation rule at C. Then ϕ is the deferred acceptance rule for C, that is,
ϕ = ϕC , if and only if it satisfies weak Maskin monotonicity.

PROOF: The “only if” part is a consequence of Theorem 2. The “if” part
follows from Lemma 2 in the Appendix. Q.E.D.

7. EFFICIENT DEFERRED ACCEPTANCE RULES

An allocation μ Pareto dominates another allocation μ′ at the preference
profile R if μiRiμ

′
i for all i ∈ N and μiPiμ

′
i for some i ∈ N . An allocation is

Pareto efficient at R if no allocation Pareto dominates it at R. An allocation
rule ϕ is Pareto efficient if ϕ(R) is Pareto efficient at R for all R ∈ R. An
allocation rule ϕ is group strategy-proof if there exist no N ′ ⊂ N and R�R′ ∈ R
such that ϕi(R

′
N ′�RN\N ′)Riϕi(R) for all i ∈ N ′ and ϕi(R

′
N ′�RN\N ′)Piϕi(R) for

some i ∈ N ′.
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In general, there are deferred acceptance rules that are neither Pareto effi-
cient nor group strategy-proof. Since deferred acceptance rules are often used
in resource allocation problems where efficiency is one of the goals of the social
planner (besides stability), it is desirable to develop necessary and sufficient
conditions for the efficiency of these rules.

PROPOSITION 1: Let C be an acceptant substitutable priority. The following
properties are equivalent.

(i) ϕC is Pareto efficient.
(ii) ϕC satisfies Maskin monotonicity.
(iii) ϕC is group strategy-proof.

The proof is given in the Appendix.
Proposition 1 generalizes part of Theorem 1 from Ergin (2002). Under the

assumption that priorities are responsive, Ergin established that a deferred
acceptance rule is Pareto efficient if and only if it is group strategy-proof, and
that these properties hold if and only if the priority is acyclic. Takamiya (2001)
showed that Maskin monotonicity and group strategy-proofness are equivalent
for any allocation rule.

THEOREM 4: Let ϕ be an allocation rule. The following conditions are equiva-
lent.

(i) ϕ is the deferred acceptance rule for some acceptant substitutable prior-
ity C, that is, ϕ = ϕC , and ϕ is Pareto efficient.

(ii) ϕ satisfies non-wastefulness, Maskin monotonicity, and population mono-
tonicity.

(iii) ϕ satisfies Pareto efficiency, weak Maskin monotonicity, and population
monotonicity.

The proof appears in the Appendix.
In view of Proposition 1, two additional characterizations of efficient de-

ferred acceptance rules are obtained by replacing the Pareto efficiency prop-
erty in condition (i) of Theorem 4 with Maskin monotonicity and, respectively,
group strategy-proofness.

Recall from Theorem 2 that weak Maskin monotonicity is sufficient, along
with non-wastefulness and population monotonicity, to characterize deferred
acceptance rules. Theorem 4 shows that if we replace weak Maskin monotonic-
ity by Maskin monotonicity in the list of axioms above, we obtain a character-
ization of efficient deferred acceptance rules. The contrast between these two
results demonstrates that the inefficiency of some deferred acceptance rules
can be attributed entirely to instances where weak Maskin monotonicity is sat-
isfied, but Maskin monotonicity is violated.
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8. CONCLUSION

Our axiomatizations provide a comprehensive description of the theoretical
contents of deferred acceptance rules. The intuition behind the axioms sheds
light on the mechanics of the deferred acceptance algorithm.

The present analysis only restricts the priorities to be acceptant and sub-
stitutable. When no additional information about the priority structure is
available, our axioms represent the strongest statements satisfied by deferred
acceptance rules. The axioms are priority-free and may prove useful in char-
acterizing deferred acceptance rules with restrictions on priorities relevant in
applications.

APPENDIX

PROOF OF THEOREM 1: Since IR monotonicity implies weak Maskin
monotonicity and population monotonicity, the “if” part of Theorem 1 fol-
lows from the “if” part of Theorem 2, which we establish later. We prove the
“only if” part here.

We need to show that a deferred acceptance rule ϕC with acceptant substi-
tutable priority C satisfies the non-wastefulness and IR monotonicity axioms.
ϕC is non-wasteful since C is acceptant and the deferred acceptance rule is
stable.

To prove that ϕC satisfies IR monotonicity, suppose that R′ i.r.m.t. R
at ϕC(R). We need to show that ϕC(R′)R′ϕC(R) =: μ0. Define μ1 by assign-
ing each agent i the higher ranked object between μ0

i and ∅ under R′
i.

For t ≥ 1, if μt can be blocked at (R′�C) we choose an arbitrary object at

that is part of a blocking pair and define μt+1 by

μt+1
i =

{
at� if i ∈ Cat (μ

t
at ∪ {j ∈N|atP ′

jμ
t
j}),

μt
i� otherwise.

(A.1)

If μt cannot be blocked, we let μt+1 = μt . Part of the next lemma establishes
that each μt is well defined, that is, μt is an allocation for all t ≥ 0. The se-
quence (μt)t≥0 is a variant of the vacancy chain dynamics of Blum, Roth, and
Rothblum (1997).10

LEMMA 1: The sequence (μt)t≥0 satisfies

μt ∈ A�(A.2)

μtR′μt−1�(A.3)

μt
a ⊂ Ca(μ

t
a ∪ {j ∈ N|aP ′

jμ
t
j}) ∀a ∈ O(A.4)

10As in Section 5, the exclusion of agent i with preferences Ri from the market can be mod-
eled as a change in i’s reported preferences, making every object unacceptable, which is an IR
monotonic transformation of Ri at every object.
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for every t ≥ 1. The sequence (μt)t≥0 becomes constant in a finite number of
steps T and the allocation μT is stable at (R′�C).

PROOF: We prove the claims (A.2)–(A.4) by induction on t.
We first show the induction base case, t = 1. The definition of μ1 immedi-

ately implies that μ1 ∈ A and μ1R′μ0, proving (A.2) and (A.3) (at t = 1). To
establish (A.4) (at t = 1), fix a ∈ O. We have that

μ0
a = Ca(μ

0
a ∪ {j ∈ N|aPjμ

0
j })(A.5)

because μ0 is stable at (R�C), and Ca is an acceptant and substitutable priority.
By construction,

μ1
a ⊂ μ0

a�(A.6)

Since R′ i.r.m.t. R at μ0, it must be that {j ∈ N|aP ′
jμ

1
j } ⊂ {j ∈ N|aPjμ

0
j }�11

Therefore,

μ1
a ∪ {j ∈ N|aP ′

jμ
1
j } ⊂ μ0

a ∪ {j ∈ N|aPjμ
0
j }�(A.7)

Ca’s substitutability and (A.5)–(A.7) imply

μ1
a ⊂ Ca(μ

1
a ∪ {j ∈ N|aP ′

jμ
1
j })�

To establish the inductive step, we assume that the conclusion holds for t ≥ 1
and prove it for t + 1. The only nontrivial case is μt �= μt+1.

By the inductive hypothesis (A.4) (at t), μt
at ⊂ Cat (μ

t
at ∪ {j ∈ N|atP ′

jμ
t
j}).

Then the definition of (μt)t≥0 implies that

μt+1
at = Cat (μ

t
at ∪ {j ∈ N|atP ′

jμ
t
j})�(A.8)

To prove (A.2) (at t + 1), first note that (A.8) implies |μt+1
at | = |Cat (μ

t
at ∪ {j ∈

N|atP ′
jμ

t
j})| ≤ qat � If a �= at , then by construction, μt+1

a ⊂ μt
a, and by (A.2) (at t),

we conclude that |μt+1
a | ≤ |μt

a| ≤ qa. Therefore, μt+1 ∈ A.
To show (A.3) (at t + 1), note that at = μt+1

j P ′
jμ

t
j for any j ∈ μt+1

at \ μt
at and

that each agent outside μt+1
at \μt

at is assigned the same object under μt+1 and μt .
Therefore, μt+1R′μt .

We show (A.4) (at t + 1) separately for the cases a= at and a �= at .
By construction of μt+1,

μt+1
at ∪ {j ∈N|atP ′

jμ
t+1
j } = μt

at ∪ {j ∈N|atP ′
jμ

t
j}�12

11Suppose that aP ′
jμ

1
j . Then μ1

jR
′
j∅ implies aP ′

j∅. By definition, μ1
jR

′
jμ

0
j , so aP ′

jμ
0
j . The assump-

tion that R′
j i.r.m.t. Rj at μ0

j , along with aP ′
j∅ and aP ′

jμ
0
j , implies that aPjμ

0
j .
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Then (A.8) implies that

μt+1
at = Cat (μ

t+1
at ∪ {j ∈N|atP ′

jμ
t+1
j })�

For any a �= at , we have μt+1
a ⊂ μt

a by construction, and {j ∈ N|aP ′
jμ

t+1
j } ⊂

{j ∈N|aP ′
jμ

t
j} since μt+1R′μt . Therefore,

μt+1
a ∪ {j ∈N|aP ′

jμ
t+1
j } ⊂ μt

a ∪ {j ∈N|aP ′
jμ

t
j}�(A.9)

Recall the inductive hypothesis (A.4) (at t): μt
a ⊂ Ca(μ

t
a ∪ {j ∈ N|aP ′

jμ
t
j}).

Then (A.9), along with the facts that Ca is substitutable and μt+1
a ⊂ μt

a, leads to

μt+1
a ⊂ Ca(μ

t+1
a ∪ {j ∈ N|aP ′

jμ
t+1
j })�

completing the proof of the induction step.
By (A.3), the sequence (μt)t≥0 becomes constant in a finite number of

steps T . The final allocation μT is individually rational at R′ and is not blocked
at (R′�C), so is stable at (R′�C). Q.E.D.

To finish the proof of the “only if” part, let μT be the stable matching iden-
tified in Lemma 1. We have that ϕC(R′)R′μT because ϕC(R′) is the agent-
optimal stable allocation at (R′�C). Therefore, we obtain

ϕC(R′)R′μTR′μT−1R′ · · ·R′μ1R′μ0 = ϕC(R)�

showing that ϕC satisfies IR monotonicity. Q.E.D.

PROOF OF THEOREM 2: Since weak Maskin monotonicity and population
monotonicity are implied by IR monotonicity, the “only if” part of Theorem 2
follows from the “only if” part of Theorem 1 shown above. We only need to
prove the “if” part here.

Fix a rule ϕ that satisfies the non-wastefulness, weak Maskin monotonicity,
and population monotonicity axioms. To show that ϕ is a deferred acceptance
rule for some acceptant substitutable priority, we proceed in three steps. First,
we construct a priority profile C and verify that it is acceptant and substitutable.
Second, we show that for every R ∈ R, ϕ(R) is a stable allocation at (R�C).
Third, we prove that ϕ(R) is the agent-optimal stable allocation at (R�C).

For a ∈ O∪{∅}, let Ra be a fixed preference profile which ranks a as the most
preferred object for every agent. For each a ∈ O�N ′ ⊂ N , define

Ca(N
′) = ϕa

(
Ra

N ′�R
∅
N\N ′

)
�

12We have μt
at ⊂ μt+1

at by construction and {j ∈ N|atP ′
jμ

t+1
j } ⊂ {j ∈N|atP ′

jμ
t
j} since μt+1

j R′
jμ

t
j for

every j ∈N . At the same time, an inspection of (A.1) reveals that μt+1
at \μt

at = {j ∈N|atP ′
jμ

t
j}\{j ∈

N|atP ′
jμ

t+1
j }.
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We have that Ca(N
′)⊂N ′ because ϕ is non-wasteful and the null object is not

scarce.
Step 1—Ca is an acceptant and substitutable priority for all objects a ∈ O.
Ca is an acceptant priority because ϕ is non-wasteful.
To show that Ca is substitutable, consider N ′ ⊂ N ′′ ⊂ N . Assume that

i ∈ Ca(N
′′) ∩ N ′. By definition, ϕi(R

a
N ′′�R∅

N\N ′′) = a� Since i ∈ N ′ ⊂ N ′′, pop-
ulation monotonicity for the subset of agents N ′ and the preference pro-
file (Ra

N ′′�R∅
N\N ′′) implies that ϕi(R

a
N ′�R∅

N\N ′)Ra
i ϕi(R

a
N ′′�R∅

N\N ′′) = a. Hence
ϕi(R

a
N ′�R∅

N\N ′) = a, which by definition means that i ∈ Ca(N
′). This shows

Ca(N
′′)∩N ′ ⊂ Ca(N

′).
Step 2—ϕ(R) is a stable allocation at (R�C) for all R ∈ R.
For all R, ϕ(R) is individually rational because ϕ is non-wasteful and the

null object is not scarce.
To show that no blocking pair exists, we proceed by contradiction. Assume

that (i� a) ∈ N ×O blocks ϕ(R), that is,

aPiϕi(R)�(A.10)

i ∈ Ca(ϕa(R)∪ {i})�(A.11)

Let N ′ = ϕa(R). N ′ has qa elements by non-wastefulness of ϕ and (A.10).
Fix a preference R

aϕi(R)
i for agent i, which ranks a first and ϕi(R) second. Note

that (Raϕi(R)
i �Ra

N ′�RN\(N ′∪{i})) m.t. R at ϕ(R) (Raϕi(R)
i m.t. Ri at ϕi(R) by (A.10),

Ra
j m.t. Rj at ϕj(R) for j ∈ N ′ because ϕj(R) = a by the definition of N ′, and

the preferences of the agents outside N ′ ∪ {i} are identical under the two pref-
erence profiles). As ϕ satisfies weak Maskin monotonicity, it follows that for
all j ∈ N ′,

ϕj

(
R

aϕi(R)
i �Ra

N ′�RN\(N ′∪{i})
)
Ra

j ϕj(R) = a� hence

ϕj

(
R

aϕi(R)
i �Ra

N ′�RN\(N ′∪{i})
) = a�

Using ϕ’s population monotonicity for the subset of agents N ′ ∪ {i} and the
preference profile (R

aϕi(R)
i �Ra

N ′�RN\(N ′∪{i})), we obtain

∀j ∈N ′� ϕj

(
R

aϕi(R)
i �Ra

N ′�R∅
N\(N ′∪{i})

)
Ra

j ϕj

(
R

aϕi(R)
i �Ra

N ′�RN\(N ′∪{i})
)

= a�

From the definition of Ra, it follows that

∀j ∈N ′� ϕj

(
R

aϕi(R)
i �Ra

N ′�R∅
N\(N ′∪{i})

) = a�(A.12)

From the construction of Ca, (A.11) is equivalent to ϕi(R
a
N ′∪{i}�

R∅
N\(N ′∪{i})) = a. Note that (R

aϕi(R)
i �Ra

N ′�R∅
N\(N ′∪{i})) m.t. (Ra

N ′∪{i}�R
∅
N\(N ′∪{i})) at

ϕ(Ra
N ′∪{i}�R

∅
N\(N ′∪{i})) (Raϕi(R)

i m.t. Ra
i at ϕi(R

a
N ′∪{i}�R

∅
N\(N ′∪{i})) = a and the pref-
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erences of all other agents are identical under the two preference profiles). As
ϕ satisfies weak Maskin monotonicity, it follows that

ϕi

(
R

aϕi(R)
i �Ra

N ′�R
∅
N\(N ′∪{i})

)
R

aϕi(R)
i ϕi

(
Ra

N ′∪{i}�R
∅
N\(N ′∪{i})

) = a� hence(A.13)

ϕi

(
R

aϕi(R)
i �Ra

N ′�R∅
N\(N ′∪{i})

) = a�(A.14)

By (A.12) and (A.14), ϕa(R
aϕi(R)
i �Ra

N ′�R∅
N\(N ′∪{i}))⊃ N ′ ∪ {i}, hence ϕ(R

aϕi(R)
i �

Ra
N ′�R∅

N\(N ′∪{i})) allocates a to at least |N ′| + 1 = qa + 1 agents, which is a con-
tradiction with the feasibility of ϕ.

Step 3—ϕ(R)= ϕC(R) for all R ∈ R.
We state and prove the main part of this step as a separate lemma so that we

can use it in the proof of Theorem 3 as well.

LEMMA 2: Let C be an acceptant substitutable priority and suppose that ϕ is a
stable allocation rule at C that satisfies weak Maskin monotonicity. Then ϕ is the
deferred acceptance rule for C, that is, ϕ = ϕC .

PROOF: Fix a preference profile R. For each i ∈ N , let R′
i be the truncation

of Ri at ϕC
i (R), that is, Ri and R′

i agree on the ranking of all proper objects,
and a proper object is unacceptable under R′

i if and only if it is less preferred
than ϕC

i (R) under Ri.
We first establish that ϕC(R) is the unique stable allocation at (R′�C). Since

ϕC(R) is stable at (R�C), it is also stable at (R′�C). By definition, ϕC(R′) is
the agent-optimal stable allocation at (R′�C), thus ϕC(R′)R′ϕC(R). This leads
to

ϕC(R′)RϕC(R)�

as R′
i is the truncation of Ri at ϕC

i (R) for all i ∈ N . Then the stability of ϕC(R′)
at (R′�C) implies its stability at (R�C). But ϕC(R) is the agent-optimal stable
allocation at (R�C), so it must be that

ϕC(R)RϕC(R′)�

The series of arguments above establishes that

ϕC(R) = ϕC(R′)�

Thus ϕC(R) is the agent-optimal stable allocation at (R′�C).
Let μ be a stable allocation at (R′�C). We argue that μ = ϕC(R). Since

ϕC(R) is the agent-optimal stable allocation at (R′�C), we have that ϕC
i (R)R

′
iμi

for all i ∈N . Since μ is stable at (R′�C) and R′
i is the truncation of Ri at ϕC

i (R),
it follows that μi ∈ {ϕC

i (R)�∅} for all i ∈ N . If μi �= ϕC
i (R) for some agent i ∈N ,

then ϕC
i (R)P

′
iμi = ∅ and |μϕC

i (R)
| < |ϕC

ϕC
i (R)

(R)| ≤ qϕC
i (R)

, which is a contradic-
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tion with the stability of μ at (R′�C) (as CϕC
i (R)

is acceptant). It follows that
μ= ϕC(R), hence ϕC(R) is the unique stable allocation at (R′�C).

By hypothesis, ϕ is a stable allocation rule at C, thus ϕ(R′) is a stable allo-
cation at (R′�C). As ϕC(R) is the unique stable allocation at (R′�C), we need

ϕ(R′) = ϕC(R)�

We have that R m.t. R′ at ϕ(R′) because R′
i is the truncation of Ri at ϕi(R

′) =
ϕC

i (R) for all i ∈ N . As ϕ satisfies weak Maskin monotonicity, it follows that
ϕ(R)Rϕ(R′) = ϕC(R). Since ϕ(R) is a stable allocation at (R�C) and ϕC(R)
is the agent-optimal stable allocation at (R�C), we obtain that ϕ(R) = ϕC(R),
finishing the proof of the lemma. Q.E.D.

We resume the proof of Step 3. By assumption, ϕ satisfies weak Maskin
monotonicity. Step 1 shows that C is an acceptant substitutable priority and
Step 2 proves that ϕ is a stable allocation rule at C, so ϕ satisfies all the hy-
potheses of Lemma 2. Therefore, ϕ = ϕC , which completes the proof of Step 3
and of the “if” part of the theorem. Q.E.D.

PROOF OF PROPOSITION 1: We prove each of the three implications (i) ⇒
(ii) ⇒ (iii) ⇒ (i) by contradiction.

To show (i) ⇒ (ii), assume that ϕC is Pareto efficient, but not Maskin
monotonic. Then there exist preference profiles R�R′ such that R′ m.t. R at
ϕC(R) and ϕC(R′) �= ϕC(R). As ϕC satisfies weak Maskin monotonicity by The-
orem 2, it follows that ϕC(R′) Pareto dominates ϕC(R) at R′. Since R′ m.t. R
at ϕC(R), this implies that ϕC(R′) Pareto dominates ϕC(R) at R, which con-
tradicts the assumption that ϕC is Pareto efficient.

To show (ii) ⇒ (iii), assume that ϕC is Maskin monotonic, but not group
strategy-proof. Then there exist N ′ ⊂ N and preference profiles R�R′ such
that ϕC

i (R
′
N ′�RN\N ′)Riϕ

C
i (R) for all i ∈ N ′, with strict preference for some i.

For every i ∈ N ′, let R′′
i be a preference relation that ranks ϕC

i (R
′
N ′�RN\N ′) first

and ϕC
i (R) second.13 Clearly, (R′′

N ′�RN\N ′) m.t. (R′
N ′�RN\N ′) at ϕC(R′

N ′�RN\N ′)
and (R′′

N ′�RN\N ′) m.t. R at ϕC(R). Then the assumption that ϕC is Maskin
monotonic leads to

ϕC
(
R′

N ′�RN\N ′
) = ϕC

(
R′′

N ′�RN\N ′
) = ϕC(R)�

which is a contradiction with ϕC
i (R

′
N ′�RN\N ′)Piϕ

C
i (R) for some i ∈ N ′.

To show (iii) ⇒ (i), suppose that ϕC is group strategy-proof, but not Pareto
efficient. Then there exist a preference profile R and an allocation μ such
that μ Pareto dominates ϕC(R) at R. For every i ∈ N , let R′

i be a prefer-
ence that ranks μi as the most preferred object. Clearly, μ is the agent-optimal
stable allocation at (R′�C), hence ϕC(R′) = μ. The deviation for all agents

13If ϕC
i (R

′
N ′ �RN\N ′)= ϕC

i (R), then we simply require that R′′
i rank ϕC

i (R
′
N ′ �RN\N ′) first.
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in N to report R′ rather than R leads to a violation of group strategy-proofness
of ϕC . Q.E.D.

PROOF OF THEOREM 4: We prove the three implications (i) ⇒ (ii) ⇒
(iii) ⇒ (i).

To show (i) ⇒ (ii), assume that ϕ = ϕC for some acceptant substitutable pri-
ority C and that ϕ is Pareto efficient. By the equivalence of properties (i) and
(ii) in Proposition 1, ϕ satisfies Maskin monotonicity. By Theorem 2, ϕ satisfies
non-wastefulness and population monotonicity.

To show (ii) ⇒ (iii), suppose that ϕ satisfies non-wastefulness, Maskin
monotonicity, and population monotonicity. Since Maskin monotonicity im-
plies weak Maskin monotonicity, Theorem 2 shows that ϕ = ϕC for some ac-
ceptant substitutable priority C. As ϕC satisfies Maskin monotonicity by as-
sumption, the equivalence of conditions (i) and (ii) in Proposition 1 implies
that ϕ is Pareto efficient.

To show (iii) ⇒ (i), assume that ϕ satisfies Pareto efficiency, weak Maskin
monotonicity, and population monotonicity. As Pareto efficiency implies non-
wastefulness, by Theorem 2 we obtain that ϕ = ϕC for some acceptant substi-
tutable priority C. Q.E.D.
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ABDULKADİROĞLU, A., P. A. PATHAK, AND A. E. ROTH (2005): “The New York City High School
Match,” American Economic Review Papers and Proceedings, 95, 364–367. [634,636]
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