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Abstract

This paper describes the correlations between inequality and the growth rates in cross-

country data. Using non-parametric methods, we show that the growth rate is an inverted

U-shaped function of net changes in inequality: Changes in inequality (in any direction) are

associated with reduced growth in the next period. The estimated relationship is robust to

variations in control variables and estimation methods. This inverted U-curve is consistent

with a simple political economy model but it could also reflect the nature of measurement er-

rors, and, in general, efforts to interpret this evidence causally run into difficult identification

problems. We show that this non-linearity is sufficient to explain why previous estimates of

the relationship between the level of inequality and growth are so different from one another.

1 Introduction

It is often that the most basic questions in economics turn out to be the hardest to answer

and the most provocative answers end up being the bravest and the most suspect. Thus it is

with the empirical literature on the effect of inequality on growth. Many have felt compelled to

try to say something about this very important question, braving the lack of reliable data and

the obvious problems with identification: Benabou (2000) lists 12 studies on this issue over the
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Robert Barro, Roland Benabou, Olivier Blanchard, Michael Kremer, Debraj Ray, and Emmanuel Saez for useful
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previous decade, based on cross-sectional ordinary least squares (OLS) analyses of cross-country

data.

More recently, the literature received a substantial boost from the important work of Deininger

and Squire (1996), who put together a much larger and more comprehensive cross-country data

set on inequality than was hitherto available. Most importantly, their data set has a panel struc-

ture with several consecutive measures of income inequality for each country. This has made

it possible to use somewhat more advanced techniques to investigate the effect of inequality on

growth: Benhabib and Spiegel (1998), Forbes (2000), and Li and Zou (1998) all look at this

relationship using fixed effects estimates, arguing that there are omitted country specific effects

that bias the OLS estimates. In contrast, Barro (2000) uses a three-stage least squares (3SLS)

estimator which treats the country-specific error terms as random, arguing that the differencing

implicit in running fixed effects (or fixed effect-like) regressions exacerbates the biases due to

measurement errors.

Somewhat surprisingly, both approaches yield new results. While the OLS regressions using

one cross-section typically found a negative relationship between inequality and subsequent

growth, the fixed effect approach yields a positive relationship between changes in inequality

and changes in the growth rate, which has been interpreted as saying that as long as one looks

within the same country, increases in inequality promote growth.1 Barro, by contrast, finds no

relationship between inequality and growth. However, he then breaks up his sample into poor

and rich countries and finds a negative relationship between inequality and growth in the sample

of poor countries and a positive relationship in the sample of rich countries.

It is not clear that it is possible to interpret any of this evidence causally. Variations in

inequality are likely to be correlated with a range of unobservable factors associated with growth.

Moreover, as we argue later, none of the underlying theories give strong reasons to believe

that the omitted variable problem can be solved by including a country fixed effect in a linear

specification (as in Forbes (2000), and Li and Zou (1998))

Indeed, when we examine the data without imposing a linear structure, it quickly becomes

clear that the data does not support the linear structure that has routinely been imposed on

it. In particular, we find that changes in inequality (in any direction) are associated with

lower future growth rates. There is also a non-linear relationship between inequality and the
1The authors note that this is not necessarily inconsistent with the cross-sectional relationship.
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magnitude of changes in inequality. Finally, there seems to be a negative relationship between

growth rates and inequality lagged one period. These facts taken together, and in particular the

non-linearities in these relationships (and not differences in the control variables, the sample, and

the lag structure), explain why different variants of the basic linear model (OLS, fixed effects,

random effects) have generated very different conclusions: In many cases, it turns out that

the differences arise out of giving different structural interpretations to the same reduced-form

evidence.

In the end, our paper is probably best seen as a cautionary tale: Imposing a linear structure

where there is no theoretical support for it can lead to serious misinterpretations.

The remainder of this paper proceeds as follows. In Section 2, we review the existing empirical

specifications of the relationship between inequality and growth in the literature. In Section 3,

we discuss the different approaches to modelling the relationship between inequality and growth,

and observe that there is little support for any of the specifications that have been used. In

Section 4, we present our empirical results. In Section 5, we show that these results help us to

understand why different methods of estimating the same relationship led to different results.

We conclude in Section 6.

2 Specifications in the Literature

The standard procedure for estimating the relationship between inequality and growth in the

literature is to assume a simple linear relationship between inequality and subsequent growth:

(yit+a − yit)/a = αyit +Xitβ + γgit + υi + ²it. (1)

As we noted in the introduction, and will elaborate on later, ordinary least squares estimation

of this equation are likely to be biased by a correlation between inequality and the error term.

If this is indeed the real structure of the data, it is possible to solve some of these identification

problems by exploiting the panel structure of the data. Essentially, taking out period averages

of variables eliminates the (additive) country fixed effect, thus allowing the interpretation of the

estimated coefficients as the causal effect of inequality on growth, under the assumption that

innovations in the error term are not correlated with changes in inequality.
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Alternatively, one could first difference equation (1):

(yit+a − yit)
a

− (yit − yit−a)
a

= α(yit − yit−a) + (Xit −Xit−a)β + γ(git − git−a) + ²it − ²it−a. (2)

This is a relationship between changes in the gini coefficient and changes in the growth rate.

As long as α = 0, the OLS estimate of this relationship gives an unbiased measure of α and is

statistically equivalent to the fixed effect estimate of equation (1).

One problem is that when α is not equal to zero, the presence of lagged dependent variables

on the right-hand side biases the OLS estimate of the differenced equation (as well as the fixed

effect estimate of equation (1)). The literature (notably Forbes (2000) and Benhabib and Spiegel

(1998)) has therefore followed the lead of Caselli, Esquivel and Lefort (1996) in using a GMM

estimator developed by Arellano and Bond (Arellano and Bond (1991)). The idea is to multiply

equation (1) by a, to put yt on the right side, and to take first differences of the resulting

equation. This leads to the following equation:

yit+a − yit = (aα+ 1)(yit − yit−a) + a(Xit −Xit−a)β + aγ(git − git−a) + a²it − a²it−a. (3)

An unbiased estimate of γ can be generated if this equation is estimated using yit−a, Xit−a, git−a

and all earlier lags available as instruments for (yit − yit−a), (Xit −Xit−a) and (git − git−a).
Results of estimating equation (1) with random effects, fixed effects, first difference, and

Arellano and Bond estimators are presented in Table 1, assuming that the length of a period is

5 years. We restrict the data set to the Deininger and Squire “high quality” sample.2 Both the

results for the set of control variables (Xit) used in Perotti (1996) (and used by Forbes (2000)),

and the set of control variables used in Barro (2000), which is much larger, are presented. The

results are very consistent. Random effects are insignificant. First differences, fixed effects,

and Arellano and Bond coefficients are positive and significant in both specifications. This

stands in sharp contrast with the results obtained when estimating the same effect in a long

cross-section.3 Forbes (2000) and Li and Zou (1998), who first made this observation, have
2This is the data set use by Forbes (2000). We describe the data construction in more detail below. Table A1

in appendix shows the list of countries in the sample and some descriptive statistics.
3 In this sample of countries, and using either Perotti or Barro control variables, the coefficient of inequality in

1960 on growth between 1960 and 1995 is -0.46, with a standard error of 0.028.
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shown that this result is robust to a wide variety of changes in specifications.4 Li and Zou

(1998) propose a theoretical explanation based on a political economy model. Forbes (2000)

rightly notes that the estimated coefficient indicates a short-run positive relationship between

growth and inequality, which might not directly contradict the long-run negative relationship,

and concludes that her results suggest that “in the short and medium term, an increase in a

country’s level of income inequality has a significant and positive relationship with subsequent

economic growth”.

Barro (2000) notes that taking out fixed effects exacerbates the measurement error problem,

especially for a variable like the gini coefficient, for which the variation across countries is more

important than the variation over time. Classical measurement errors alone cannot, however,

explain why the coefficient of inequality should change signs, becoming positive and significant.

Furthermore, the GMM estimator instruments first differences with lagged levels, which should,

in principle, attenuate the classical measurement error problem. Therefore, there is probably

more to this reversal in sign than simple measurement error. In the empirical section, we will

investigate this result in more detail. We now turn to the theoretical foundation of equation (1).

3 The Inequality-Growth Relationship

Our goal in this section is to understand what alternative theories tell us about the appropriate

choice of specifications to be used when describing the data on inequality and growth, and in

particular whether the specifications in (1) and (3) can easily be generated. There are essentially

two classes of arguments in the literature that suggest a causal relation between inequality and

growth: political economy arguments, and wealth effect arguments. Most empirical studies of the

relationship between inequality and growth refer to these arguments, without always taking their

precise implications seriously. To these we add a third argument which is essentially statistical

and emphasizes the role of measurement error in generating a relation between inequality and

growth.
4We were not able to exactly replicate Forbes (2000) result for the Arellano and Bond estimator (she obtains

with the Perotti specification a coefficient of 0.13). The coefficients of the other regressors are similar.
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3.1 Political Economy Arguments

Political economy models, in their simplest version, start with the premise that inequality leads

to redistribution and then it is argued that redistribution hurts growth.5 Since our goal is to

illustrate what can happen in this class of models, we present a version of the argument that

minimizes institutional detail.

3.1.1 A Very Simple Model Based on “Hold-up”

Consider an economy constituted of two classes, A and B, which function as competing political

groups. Assume that the economy at any point of time is characterized by a single number g

which represents the sharing rule for the economy: Group A gets g% of the output.

In each period, this economy is presented with an opportunity which, if availed of, can lead

to growth. These opportunities could be a new technology, a trade agreement, an internal

reform, or a major foreign investment. The potential growth generated by the opportunity

will be denoted by ∆y, which is a random variable that is independent over time and has the

distribution F (∆y).

The growth opportunity does not, however, automatically translate into growth. Some

structural changes need to be implemented in order to benefit from the opportunity, and the

political system allows for the possibility that these changes would be blocked by one of the

groups. To keep matters simple, assume that in every period once the potential growth rate is

known, one of the groups, chosen at random, gets to hold up the rest of the economy. More

specifically, assume that this group has the option of either acquiescing immediately to the

changes, in which case the changes are made and the full growth opportunity is realized, or

demanding a transfer from the other group (i.e., an increase in its share) before the changes can

be made. The other group, in turn, can agree to make the transfer or refuse. If it refuses to

make the transfer, status quo is maintained and there is no growth. If it agrees, the changes are

made and growth takes place, but by now a part of the growth opportunity has been lost and

the economy only grows by αI∆y (αI ≤ 1) where I = A, B is the identity of the group being

held up. αI is a random variable which is drawn independently from the distribution GI(αI)
5For versions of this argument see Alesina and Rodrik (1994), Persson and Tabellini (1991), Benhabib and

Rustichini (1998). For a contrarian point of view, arguing that neither of the two premises of this argument are

true in the data, see Benabou (1996).
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in every period, and is known to both groups at the beginning of the period (i.e., before the

hold-up “game” is played).

The assumption that there is some efficiency loss in the process of bargaining (i.e., the fact

that αI may be less than 1) plays an important role in our analysis. Delay may be one reason

for the loss: It is plausible that the process of getting all members of the losing group to agree

to the transfer would take quite some time. Making a credible demand for a transfer typically

takes time and resources–as we know, a group might have to resort to industrial action, street

protests, and even civil war in order to establish their claim. On the other side, making a

credible transfer may require involving third parties (such as the state) and/or changing the

institutional framework,6 which has potential costs of its own. Finally, there are the standard

arguments explaining why transfers tend to be distortionary.7

To complete the description of the model, we assume that all agents are either short-lived

or have short horizons. When they decide whether or not to resist, they ignore the effect it will

have on output in future periods.

3.1.2 Results and Implications for Empirical Work

Let us assume, without loss of generality, that in a given period it is group B that has the

chance to hold up the rest of the economy. Whether or not it does depends on how much it

can extract from group A. To figure this out, we need to look at the decision of group A when

faced with a demand for transfers worth ∆g. If they acquiesce to the transfer their payoff will

be (g − ∆g)(1 + αA∆y) (the growth rate is αA∆y because group B has already demanded a

transfer). If they do not acquiesce, their payoff will be g, as there will be no growth. Comparing

the two, it is clear that the maximum transfer that can be extracted from group A is given by

αA∆y

(1 + αA∆y)
=
∆g

g
, (4)

which, reassuringly, tells us that ∆g < g, so the transfer is always feasible. Group B makes its

decision taking this as given–it never pays for them to demand more since group A will never
6As in, for example, Acemoglu and Robinson (2000).
7 It must be kept in mind that the transfer could involve abolishing a distortionary tax. For this reason, the

rest of the examples suggested above fit our purpose better–in those examples, the fact that there is an efficiency

loss is independent of the direction of the transfer.
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acquiesce and there will be less growth in the bargain. They will demand a transfer of size ∆g

if and only if

(1− g +∆g)(1 + αA∆y) ≥ (1− g)(1 +∆y),

which implies

(1− g)αA∆y +∆g(1 + αA∆y) ≥ (1− g)∆y.

Using the expression for ∆g from above, this reduces to:

αA ≥ 1− g.

Then, αA ≥ 1− g is the condition under which group B always demands a transfer when it
gets a chance. By a similar argument, the corresponding condition for group A is

αB ≥ g.

These two conditions ought to be intuitive: They say that each group will hold up the rest

of economy when its share of output is low, which is when they have the least stake in the

growth of the overall economy. This is essentially the same reason why the poor in Alesina and

Rodrik (1994), Persson and Tabellini (1991), Benhabib and Rustichini (1998) choose high levels

of redistribution even though it hurts growth.

Note also that both of these conditions make no mention of ∆y. The potential growth rate

for the economy does not influence the probability of growth-reducing bargaining/conflict. The

growth rate in our economy only depends on whether there is a hold-up: If there is no hold-up,

the rate is ∆y, while if there is a hold-up it is αI∆y, where αI is the expectation of αI . In the

world of this model, hold-ups only happen when there are redistributive transfers that result

from the hold-up. Therefore:

Result 1: As long as αA and αB are less than one, the expected growth rate in

this economy in any period following a distributional change is lower than when

there is no conflict.

In order to interpret the variable g as a measure of inequality, we need to assume that one

of the groups (say group A) is substantially richer than the other in terms of per capita income

(in other words, group B has a much larger share of the population than group A). In this case,

an increase in g in our model would correspond to an increase in inequality.8

8This interpretation clearly only makes sense if g is not too small.
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The relationship between distributional changes and expected growth implied by the above

result is, however, highly discontinuous. This is because our model clearly makes an excessively

strong distinction between the case where there are no distributional changes and the case

where there are some distributional changes. A smoother relationship could be derived if we

assumed instead that the hold-up problem only determines the planned transfer, whereas the

actual transfer is determined ex post by adding a random shock to the planned transfer. This

allows the possibility that there will be some small distributional changes even when there is

no conflict. Combined with the assumption that growth is higher when the planned transfer is

zero, this would give us a smooth inverted U-shaped relation between expected growth and actual

changes in inequality.

If we were prepared to take this model literally, it would allow us to estimate a (non-linear)

causal relationship between growth and changes in inequality. There are, however, many rea-

sons why this model is special: Most importantly perhaps, growth here does not have any direct

distributional effect. If more growth leads to more redistribution, then the anticipation of a

large growth shock could raise the likelihood that there is a hold-up problem. More redistri-

bution could then be associated with higher growth and the relationship would no longer be

U-shaped. More importantly, there would be reverse causality–running from growth to antici-

patory changes in the distribution–making it impossible to interpret the relationship between

growth and distributional changes causally. A possible source of reverse causality comes from

the idea that the lack of growth opportunities makes the environment more conflictual (say,

because people feel frustrated), and conflicts lead to changes in inequality.9 We therefore only

offer this model as a possible way to interpret the data.

The discussion above suggests that, at least in terms of data description, if not causal

interpretation, we should estimate a relationship of the form:

(yit+a − yit)
a

= αyit +Xitβ + k(git − git−a) + υi + ²it , (5)

where yit represents the logarithm of GDP in country i at date t, a is the length of the time

period we choose, 5 or 10 years in the examples we will consider ((yit+a− yit)/a is therefore the
9Note that we are not worried about the direct effect of growth on distribution (the Kuznets curve effect)

because that is presumably subsequent or contemporaneous to the growth episode. What worries us is the fact

that there may also be an effect on the distribution prior to the growth episode.
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growth rate), Xit is a set of control variables, git is the gini coefficient in country i at date t,

and k(·) is a generic function. At this point we do not impose any structure on the shape of the
k(·) function. The error term is modelled as a country-specific time invariant effect (υi) and a

time varying error term (²it). yit is included among the controls in order to capture convergence

effects, and Xit controls for possible sources of spurious correlation.

However, the political economy literature has not taken this route. Instead, the approach has

been to derive a relationship between the level of inequality and changes in inequality, which,

combined with a relationship between growth and changes in inequality (such as the one just

derived), generates a relation between growth and the level of inequality.10 We could also take a

similar approach here. To do this, observe that in our model changes in inequality are causally

related to the level of inequality. The expected increase in the share of group A

∆ge =
1

2
[

Z 1

g

αB∆y

(1 + αB∆y)
(1− g)dGB(αB)−

Z 1

1−g
αA∆y

(1 + αA∆y)
gdGA(αA)],

is obviously decreasing in g, which tells us that:

Result 2: The relation between the level of inequality and the expected change

in inequality in our model is broadly negative.

This suggests estimating the following relationship:

git+a − git = αyit +Xitβ + h1(git−a) + υi + ²it. (6)

What matters for growth in our model, however, is not the actual change in inequality but

the absolute value of that change (as both positive and negative changes reduce growth), which

is given by:

1

2
[

Z 1

g

αB∆y

(1 + αB∆y)
(1− g)dGB(αB) +

Z 1

1−g
αA∆y

(1 + αA∆y)
gdGA(αA)].

As g goes up, the first term of this expression goes down but the second goes up, making it

difficult to predict the sign of the relationship. However, as long as max{αA}+max{αB} ≤ 1,
there exist values of g satisfying max{αB}≤ g ≤ 1−max{αA}, and for such intermediate values
of g, there are no planned changes in inequality. There are planned changes in inequality for
10See Alesina and Rodrik (1994), Persson and Tabellini (1991) and Alesina and Perotti (1996). The argument

in Alesina and Perotti (1996) is most closely related to ours: Income inequality leads to political instability and

hence to lower growth; indeed, instability may be a symptom of what we call grabbing.

10



g ≤ αB, to the extent of 12 [
R 1
g

αB∆y
(1+αB∆y)

(1−g)dGB(αB)] and, as is apparent from this expression,
these changes are bigger the closer g is to 0. Likewise, inequality falls when g is bigger than

1−max{αA}, and it falls faster when g is closer to 1. We state these conclusions as:
Result 3: The relation between the level of inequality and the expected value of

the absolute changes in inequality for the economy in our model is U-shaped when

max{αA} + max{αB} ≤ 1. The (expected) absolute value of changes in inequality is
first decreasing with inequality, then flat over a range and then increasing with

inequality.

This tells us that planned changes in inequality, and therefore hold-ups, become more com-

mon as we move towards the two extremes of complete equality and maximum inequality. More-

over, the threshold level of αI at which people are willing to hold the other side up, goes down as

we approach either extreme, with the implication that as we approach either extreme, hold-ups

become more costly (in terms of lost growth) on average. The net result is:

Result 4: The relation between the level of inequality and future growth for the

economy in our model is inverted U-shaped when max{αA}+max{αB} ≤ 1, i.e., there
is less growth when inequality is either very high or very low.

What happens when max{αA}+max{αB} > 1 is less straightforward. However, one special
case that is easily understood is where both αA and αB are constants, with αA + αB > 1. In

this case, there is range of values of g between 1 − αA and αB where both sides are going to

try to hold the other side up. This has the consequence that there are more hold ups in the

middle than at either extreme. Changes in inequality are more common in the middle and the

growth rate is lowest for intermediate values of inequality, generating a U-shaped rather than

an inverted U-shaped relation between inequality and growth.

Another interesting special case is where αA and αB are constants and αA < αB = 1. This

is the case where the rich can costlessly hold up the poor, with the consequence that they do so

whenever they are given a chance. However, since it is costly to hold up the rich, the poor only

initiate a hold-up when their share is low enough. Therefore, the frequency of hold-ups (and

distributional changes) goes up as inequality rises, and the growth rate falls. This gives us a

monotonic relationship between inequality and growth, which could justify estimating something

like (1) or its differenced version, (3). This is consistent with the fact that estimating (1) is often

justified in terms of a model where redistribution towards the rich takes place through a tax

11



cut, and it is assumed that tax cuts create no upheavals and therefore have no efficiency costs

(in fact they raise efficiency), which is very much in the spirit of our assumption that αB = 1.11

In general, however, there seems to be no grounds for the presumption that the right equation

to estimate is linear. Taking our model seriously would suggest estimating equation (5) as well

as the following flexible specifications that correspond broadly to our Results 3 and 4. The first

relationship relates the square (or, alternatively, the absolute level) of changes in inequality to

the level of inequality:

(git+a − git)2 = αyit +Xitβ + h2(git−a) + υi + ²it. (7)

The second relationship is a “reduced-form relationship”, which relates the level of inequality

(lagged one period) to the growth rate:

(yit+a − yit)/a = αyit +Xitβ + h(git−a) + υi + ²it, (8)

where once again h(·) may be non-monotonic.
It is worth noting that estimating these relationships using cross-country data introduces a

number of additional problems. First,∆y and the distributions of αA and αB may be different for

different countries and the initial level of inequality may be correlated with these (unobserved)

differences in ∆y, αA and αB. Second, the shape of the relationships may vary across countries:

They may be U-shaped in some and the reverse in others. Finally, the value of measured

inequality that corresponds to g = 1
2 may vary from country to country, and therefore the

relationship may peak (and bottom out) at different points in different countries. For all of

these reasons, interpreting these relationships estimated from cross-country data is, at best, a

perilous undertaking. It remains, however, that the correspondence between Results 3 and 4

should hold even when these countries are heterogenous. In other words, as long as our basic

model is correct, it is always a prediction of our model that our estimates of the functions h(·)
and h2(·) in equations (8) and (7) should have the opposite shape.

The right structure of time lags for estimating this model is also an issue. For example, in

our model high inequality is bad for growth because it creates incentives for hold-ups, intended
11See Alesina and Rodrik (1994), Persson and Tabellini (1991), and Benhabib and Rustichini (1998) for models

of this class.
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to reduce inequality. But the resulting reduction in inequality makes it less likely that in the

subsequent period there will be a hold up and therefore the expected growth rate in that period

will be higher than what it would have been, absent the costly change in inequality in the

previous period. Averaged over the two periods, the net effect on growth coming from the initial

reduction in inequality is obviously much smaller than the impact effect, and we can clearly have

shocks to inequality that are costly in the short run but beneficial over a longer horizon.

3.2 Wealth Effect Arguments

3.2.1 A Model

Wealth effect arguments for why inequality should have an effect on growth start with the premise

that there is some relation between wealth now (wt) and future wealth (wt+1): wt+1 = f(wt, p),

where p is a vector of market prices, which include the wage rate and the rate of interest.12

It is reasonable to assume that fw is positive, but to say anything robust about the effect of

inequality we also need to know fww. If we assume fww < 0, it immediately follows (since f

is concave in w) that if G
0
t(w) is a mean preserving spread of Gt(w), the current distribution

of wealth, aggregate future wealth under Gt,
R
f(w, p)dGt(w), will be greater than aggregate

future wealth under G0t,
R
f(w, p)dG

0
t(w). In other words, a more equal economy grows faster

than a less equal one. The problem with this formulation is that the f function telescopes a

number of separate economic decisions, including those about savings, investment and bequests.

To understand what is reasonable to assume about the shape of the f function we need to

“unpack” the f function.

One simple formulation is to consider a model where everyone is identical in all respects

except possibly in wealth, and there is only intergenerational transmission of wealth. Let capital

be the only marketed factor of production. Assume people live for one period. Assume in

addition, that capital markets are imperfect and as a result individuals can only borrow up to

λ times their wealth, where λ is a function of rt, the current rate of interest (λ0 < 0).13 Finally,
12 It should stated at the outset that the effects of inequality on growth through these channels is unlikely to

be realized over the time-scale of 5 or even 10 years. Therefore it is unlikely to provide a convincing justification

for estimating a relation between short-run changes in inequality and changes in the growth rate. On the other

hand, it tell us a lot about the more long run effects of inequality on growth.
13For such a model of the capital market, see Aghion, Banerjee and Piketty (1999).
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assume that corresponding to each individual, there is a strictly concave production function

h(k), which tells us the amount of income he generates when his total investment is k.14

If we assume that each individual starts with a certain bequest from his parent, invests it

during his lifetime and dies at the end of the period after consuming a fraction 1 − β of his

end-of-period wealth and bequeathing the rest to his child, this model turns out to give us a

very simple f function. At the current rate of interest, people will want to invest an amount

k∗, which is given by the usual marginal condition h0(k∗) = rt. Therefore, those who start with

enough wealth, i.e., (λ + 1)wt > k∗, will invest k∗, while the rest will invest all that they can,

i.e., (λ+ 1)wt. They will earn a net income of:

min{h(k∗) + (wt − k∗)rt, h((λ+ 1)wt)− λwtr
∗}.

Out of this income, a fraction β will be left to their children, which gives us wt+1, the beginning

of period wealth for the next period.

3.2.2 Results and Implications for Empirical Work

The map from current wealth to future wealth generated by this model is represented in Diagram

1 and is indeed concave. This immediately gives us:

Result 5: An exogenous mean-preserving spread in the wealth distribution in

this economy will reduce future wealth and by implication the growth rate.

The extent to which inequality is costly will depend, however, on the mean wealth in this

economy: The map in Diagram 1 is linear for wealth levels above k∗/(λ + 1) and therefore

inequality will have no effect as long as no one has wealth less than k∗/(λ+1). More intuitively,

once the economy is rich enough that everyone can afford the optimal level of investment,

inequality should not matter. The estimated relationship between inequality and growth should

therefore allow for an interaction term between inequality and mean income.

Note that the same diagram also tells us something about the dynamics of this economy.

On the assumption that the rate of interest does not vary over time, the diagram summarizes

the process of evolution of the wealth of a dynasty. As is evident, this economy embodies a

very strong convergence property: Everyone’s wealth eventually converges to a steady state at
14This model is a close relative of the model in Banerjee and Newman (1994).
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the point marked by w∗, implying that the long-run average wealth is independent of initial

conditions. We state this as:

Result 6: Starting with any initial distribution of wealth, both inequality and

the growth rate must, on average, go down over time, with the consequence that in

the long run there is no inequality and no growth.

This has two implications for the estimation of the inequality-growth relationship. First,

the fact that the economy becomes more equal as it grows tends to generate a mechanical

positive relation between growth and inequality, both in the cross-section and in the time series.

As a result, both the cross-sectional and the first differenced (or fixed effects) estimates of

the effect of inequality on growth run the risk of being biased upwards, compared to the true

negative relation that we might have found if we had compared economies at the same mean

wealth levels. Moreover, consider a variant of the model where there are occasional shocks that

increase inequality. Since the natural tendency of the economy is towards convergence, we should

expect to see two types of changes in inequality: Exogenous shocks that increase inequality and

therefore reduce growth, and endogenous reductions in inequality that are also associated with

a fall in the growth rate. In other words, measured changes in inequality in either direction will

be associated with a fall in growth, suggesting that the right equation to estimate is the one

in (5), or the following more general specification that nests both a direct effect of the level of

inequality and an effect of changes in inequality:

(yit+a − yit)
a

= αyit +Xitβ + k(git − git−a) + h(git) + υi + ²it. (9)

This of course assumes that we have not eliminated the convergence effect by adequately

controlling for mean wealth (or mean income). In fact most specifications that are estimated

do try to control for the convergence effect, as is standard in growth regressions, by including a

linear function of the mean level of income at the beginning of the period (as in equations (1),

(9)). In first differences, one controls for past growth (as in equation (3)). For most functions

f(wt, p), however, the convergence term does not enter linearly. Moreover, it seems plausible

that different economies will have different λs and therefore will converge at different rates.

Therefore, controlling linearly for past level (in the level equation) or past growth (in the first

differences equation) will not necessarily help in solving the non-monotonicity of the relationship
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between growth and changes in inequality.

The model also tells us that while initial distribution matters for the growth rate, it only

matters in the short run. Over a long enough period, two economies starting at the same mean

wealth level will exhibit the same average growth rate, since they both would have gone from

the initial mean wealth to a mean wealth of w∗. In other words, the length of the time period

over which growth is measured will affect the strength of the relationship between inequality

and growth.15

Note that all this is still in the context of what is, more or less, the best-behaved model

we could come up with. There is, for example, no very good reason to assume that h(k), the

production function in the above example, is globally concave - most machines, for one, come

in a few discrete sizes.16 Consider a simple variant of the model above where there is a second

technology requiring a minimum investment of k > (λ + 1)w∗ but yielding a far higher return

than the h(·) technology.
Assuming the yields from this new technology are sufficiently high that those who can afford

it want to invest in it, the resulting map from wt to wt+1 is represented in Diagram 2. It is

clear that the map is no longer concave, and while it is not convex it behaves like a convex

function over certain ranges (and like a concave function over others).17 In particular, starting

with an economy where everyone is at w∗, a small increase in inequality, shown in Diagram 2

by [−∆w1,∆w1], leads to a fall in the growth rate (i.e., the mean wealth shrinks).18 But a

larger increase, shown by [−∆w2,∆w2], will actually increase the growth rate, because those
who gain from the increase in inequality will be able to take advantage of the very rewarding

second technology. Even larger increases in inequality, shown by [−∆w3,∆w3], may, however,
15 It may be objected that this conclusion rests on the clearly unreasonable prediction of convergence at the

individual level, but this is not the case. There could be idiosyncratic shocks to the wealth of individuals which

would prevent long-run convergence at the individual level, but without affecting the fact of long-run convergence

for the economy as a whole.
16 It has also been argued that the production function for human capital derived from health is S-shaped (see

Dasgupta and Ray (1986) and the response by Srinivasan (1994)). There is some debate about the actual shape

of the production function for human capital derived from education, with the current weight of opinion leaning

towards the view that it is fairly linear, at least in developed economies (Angrist and Krueger (1999)).
17There are other ways to generate this shape: For example, the assumption that bequests are a luxury good,

and therefore subject to strong income effects will also give us this shape.
18The exact experiment is moving half the population to w∗ −∆w1 and the rest to w∗ +∆w1.
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be counterproductive.

The relation between inequality and growth delivered by this model is clearly non-monotonic.

Moreover, the strong convergence property that holds in the simpler model is now only true if

everyone starts with a wealth less than k/(λ + 1). Anyone who starts with more wealth than

k/(λ + 1), that is, more wealth than he needs to be able to invest an amount k, will converge

to a different steady state, represented by w∗∗ in Diagram 2.19 In other words, the growth rate

of wealth will jump up at wt = k/(λ + 1), with the obvious implication that economies with

higher mean wealth will not necessarily grow more slowly. In other words, the effect of mean

wealth, that is the so-called convergence effect, may not be monotonic in this economy. Linearly

controlling for mean wealth therefore does not guarantee that we will get the correct estimate of

the effect of inequality.20 It is worth noting that this economy will have a connected continuum

of steady states. This means that after a shock the economy will not typically return to the same

steady state. However, since it does converge to a nearby steady state this is not an additional

source of non-linearity.

So far, we have assumed that the evolution of the economy leaves the interest rate unchanged.

Making the interest rate endogenous complicates matters substantially: Variants of the simple

concave economy may no longer converge, even in the weaker sense of the long-run mean wealth

being independent of the initial distribution of wealth. Intuitively, poor economies will tend

to have high interest rates, and this in turn will make capital accumulation difficult (note that

λ0 < 0) and tend to keep the economy poor.21 This effect reinforces the claim made above

that inequality matters most in the poorest economies.22 This economy can have a number of

distinct steady states that are each locally isolated. This means that small changes in inequality

can cause the economy to move towards a different and further away steady state, making it

more likely that the relationship will be non-linear.
19The possibility of divergence in this type of economy was first formalized in Galor and Zeira (1993).
20 In principle, this is also true in our basic model, but there the effect is likely to be monotonic and there is no

obvious source of non-linearity (though there is also no reason to believe it is linear).
21See Piketty (1997). For a more general discussion of the issue of convergence in this class of models, see

Banerjee and Newman (1993).
22There is, however, a counteracting effect: Poorer economies with high levels of inequality may actually have

low interest rates because a few people may own more wealth than they can invest in their own firms, and the

rest may be too poor to borrow. For a model where this effect plays an important role, see Aghion and Bolton

(1997).
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Even if we could agree on a specification that is worth estimating, it is not clear how we

can use cross-country data to estimate it. Countries, like individuals, are different from each

other. Even in a world of perfect capital markets, countries can have very different distributions

of wealth because, for example, they have different institutions or distributions of ability. In

this case, we run the risk of misinterpreting a purely non-causal association between inequality

and growth as a causal relationship: For example, cultural structures (such as a caste system)

may restrict occupational choices and therefore may not allow individuals to make proper use

of their talents, causing both higher inequality and lower growth. Conversely, if countries use

technologies that are differently intensive in skilled labor, those countries using the more skill-

intensive technology can have both more inequality and faster growth.

Countries may also have different kinds of financial institutions, implying differences in the

λ’s in our model. Our basic model would predict that the country with the better capital

markets is likely both to be more equal and to grow faster (at least once we control for the mean

level of income). The correlation between inequality and growth will therefore be a downwards

biased estimate of the causal parameter, if the quality of financial institutions differs across

countries.23 Changes in inequality may also be systematically related to changes in growth

rates: For example, skill-biased technological progress will lead both to a change in inequality

and a change in growth rates, causing a spurious positive correlation between the two. To make

matters worse, we have to recognize the fact that λ itself (and therefore the effect of inequality

on growth at a given point in time) may be varying over time as a result of monetary policies

or financial development, and may itself be endogenous to the growth process.24

The more general point that comes out of the discussion above is that unless we assume

capital markets are extremely efficient (which, in any case, removes one of the important sources

of the effect of inequality), changes in inequality will be partly endogenous and related to country

characteristics which are themselves related to changes in the growth rate. Even in the simplest

model, controlling for convergence effects linearly is not adequate, and relationships such as
23Allowing λ to vary also implies that the causal effects of inequality will vary with financial development

(which is how Barro (2000) explains his results). The OLS coefficient is therefore a weighted average of different

parameters, where the weights are the country-specific contributions to the overall variance in inequality (Krueger

and Lindahl (1999)). It is not at all clear that we are particularly interested in this set of weights.
24See Acemoglu and Zilibotti (1994) and Greenwood and Jovanovic (1999) for theories of growth with endoge-

nous financial development.
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equations (1) and (3) cannot be derived from the model. In particular, one would expect strong

non-monotonicity in the observed relationship between inequality (and changes in inequality)

and growth even if the underlying mechanism implies a negative relationship between inequality

and growth.

3.3 Measurement Error Arguments

Inequality is not easy to measure, and while the Deininger and Squire (Deininger and Squire

(1996)) high quality data set is a considerable improvement over the data that was previously

available, substantial scope for error remains. Atkinson and Brandolini (1999) carefully discuss

the Deininger and Squire data for the OECD countries, and find that it has important problems.

Most worrisome is the fact the data may be especially ill-suited for comparison over time and

within countries. For example, the Deininger and Squire data for France shows a sharp drop in

inequality from 1975 to 1980. As Atkinson and Brandolini (1999) show, this is due to a rupture

in the series rather than to a genuine change in the underlying inequality. As shown in Table 2,

several countries where the Deininger and Squire high quality data set show a large increase in

inequality over a 5-year period seem to also have a large decrease in inequality over the following

or the previous 5-year period, which seems unlikely in the absence of measurement error.25

To see why this matters, assume that all apparent changes in inequality arise out of mis-

measurement by the statistical agency. Assume also that the statistical agency is more likely to

mis-measure when the society as a whole is under stress, because of an economic or a political

crisis, or a war. These are also times when the growth rate is likely to fall. We will therefore

expect an inverted U-shaped relation between measured changes in inequality and changes in

the growth rate–measured changes in inequality in any direction will be associated with a

subsequent fall in the growth rate.
25For example, in Bulgaria, the gini coefficient went down by 3.7 percentage points between 1975 and 1980, and

up by 7.2 between 1980 and 1985. In Brazil, it went up by 4.3 percentage point between 1970 and 1975, down

by 4.2 percentage point between 1975 and 1980, and up again by 4 percentage point between 1980 and 1985.

Columbia, Hong-Kong, Sri Lanka, Sweden, and Venezuela are the other countries with consecutive increases and

decreases in the gini coefficient of more than 3 percentage points.
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3.4 Summary

This section makes the case that there is no reason to expect that we can learn about the

relationship between inequality and growth by running linear cross-country regressions. There

are no strong grounds for thinking that the right specification would be monotonic, let alone

linear. Finally, none of the theories give us any confidence that the effect will be properly

identified. In the remainder of this paper, we focus on the functional form issue, to show that

this issue enough is sufficient to cast doubt on the validity of the results in the previous literature,

as well as to reconcile the different results that have been obtained with different specifications.

4 Estimation and Results

In this section, we start by presenting estimates of equations (5) to (9). After having estab-

lished the importance of non-linearities, we turn to their consequences for the interpretation of

equations (1) and (3).

4.1 Data and Variables

Our main focus in this paper is on the potentially non-linear effects of distributional changes,

and therefore we have chosen to sidestep a number of important and natural questions. First,

the question of what should be the right set of control variables. The choice of these variables

is clearly critical, since a central concern for the empirical literature is that the gini coefficient

could proxy for omitted variables. For example, Barro (2000) criticizes earlier studies on their

choice of control variables and shows, in particular, that their results are sensitive to the in-

clusion of fertility in the regression. But the choice of the variables entails making judgements

about causality that are not easy to defend. We therefore avoid taking a position on this sub-

ject. Instead, we present all the results for the set of control variables (Xit) used in Perotti

(1996) and the set of control variables used in Barro (2000). These specifications are useful

benchmarks for two reasons. First, the Perotti specification has been used by most subsequent

studies. Second, they represent two extremes: The Perotti specification uses the smallest num-

ber of control variables and the Barro specification the largest. The list of variables included

in both specifications is included as a note to Table 1. The Perotti specification excludes most

variables (in particular, investment and government spending) through which the influence of
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inequality could be channelled. The only variables included are male and female education and

the purchasing power parity of investment goods, a measure of distortion. Barro, on the other

hand, includes investment share of GDP, fertility, education, and government spending, which

are plausible channels through which inequality could affect growth.26 The interpretation of the

coefficient of inequality in the two regressions is therefore different.

Second, the question of what the right definition of inequality (interquartile range, measure of

poverty, etc.) ought to be. There are reasons to doubt that the gini coefficient is the appropriate

measure of inequality from the point of view of growth regressions. However, most empirical

work on growth and inequality focuses on the gini coefficient. Therefore, our focus in this paper

is also on the relationship between the gini coefficient and economic growth.

A distinct but related question concerns the reliability of the measure of the gini coefficient. A

new data set, compiled by Deininger and Squire (Deininger and Squire (1996)), has substantially

improved the reliability and the comparability of available measures of inequality. They have

compiled an extensive data set for a large panel of countries. They also identify a sub-set of

their data as a “high quality” data set.27 Most recent studies have used this new high quality

data set (or its extended version). Therefore, despite the problems we noted above with this

data set, we will present most results in the Deininger and Squire high quality data set restricted

to countries with at least two consecutive observations.28 It should be noted that, depending
26 In addition, Barro includes the average growth of terms of trade over the period, indices of democracy and

the rule of law, the square of the logarithm of GDP, the square of the democracy index, and the average inflation

in the period. He implements a three stage least squares method, where he uses lagged values of the regressor as

an instrument for current values. As inequality is an instrument for itself in his specification, we will focus on the

reduced form and use the instruments as control variables. In particular, we follow Barro and control for yit−a,

not yit, in the regression (although this does not affect our results to control for yit instead).
27The high quality data set includes only those observations which satisfy the following criteria: The survey

comes from a national coverage, the information is based on direct surveys of incomes, the surveys sample the

complete population (not only those earning an income), the data does not come from tax records, and, finally,

the data gives a clear reference to the primary source. The list of countries in the sample, as well as the summary

statistics for the log(GDP) and the gini coefficients, are shown in Table A1.
28This is the sample used in Forbes (2000) and Li and Zou (1998). The Deininger and Squire data set provides

the year in which the observation was taken. To construct a measure of inequality every 5 years, we follow Forbes

(2000) and we chose the closest measure in the 5 years preceding the relevant date if the measure was not available

for this particular year. We also follow previous studies in adding 6.6 to the gini when it was constructed from

expenditure instead of income. However, still following the other studies, we did not attempt to correct the gini
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on the data source, the data refers either to ex post inequality (i.e., to income measured net

of redistribution, or to expenditure inequality) or to gross inequality. The distinction is less

strong than it appears, however, since a substantial fraction of the redistribution does not occur

through the tax system but through other mechanisms (minimum wages, labor laws, inflation,

etc.). An additional drawback is that the “high quality” data set is small, and includes very

few poor countries, especially when it is limited to countries where at least two observations are

available.29

Finally there is the question of the relevant time period (the choice of a). As we emphasized

in the previous section, the theory predicts different effects over different lags. The first set of

empirical papers studied growth over a long time period (25 to 30 years). Subsequent papers

have exploited the richness of the Deininger and Squire data set and have chosen shorter lags (5

or 10 years) in an attempt to increase the number of available observations. Since using longer

lags substantially reduces the number of changes in inequality in our data set, we will focus on

5 year lag periods.

4.2 Basic Results

Table 3 presents the results from estimating various versions of equation (5) and (9).30 In

columns (1) and (5), we regress growth on the change in inequality and the change in inequality

squared. Past variation in inequality is related to subsequent growth, in a very non-linear way:

While the linear term is insignificant, the quadratic term is negative and significant with both

sets of control variables.

We then introduce the level of the gini coefficient into the regression (columns (2) and

(6)). The coefficients of (git − git−a) and (git − git−a)2 are not affected by the introduction of
the gini coefficient.31 To explore the non-linearity further, we use a kernel regression, and we

coefficient for whether it was gross or net of taxes, and whether the unit of measurement was the household or

the individual.
29 In an attempt to expand the sample size, Barro proposed adding some observations that were rejected by

Deininger and Squire on the grounds that they were not identified by a clear primary source. The coverage

increases substantially, at the expense of an additional reduction in the accuracy of measurement.
30All of these equations are estimated using a random effect specification, to allow for correlation of growth

rates between countries over time.
31We present the results with only a linear term in the gini coefficient because we did not find any strong non-

linearity when we looked at the h(·) function separately, but the exact same results are obtained if we introduce
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“partial out” the linear part of the model (i.e., yit, git and Xit) using a method analogous to that

developed by Robinson (1988) and applied in Hausman and Newey (1995).32 The results are

shown in Figures 1 (with Perotti variables) and 2 (with Barro variables). The kernel regression

line is shown as a solid line. This relationship has the shape of an inverted U, with a maximum

around 0 and a relatively flat section at the top. Changes in inequality, in any direction, are

associated with reduced growth in inequality, and larger changes are associated with larger

decline in growth.

This result is striking, and we investigated its significance using a variety of methods. First,

we estimated the relationship using series estimation. In Figure 1, we show the predicted value

using a quartic specification for the function h(·). This polynomial is maximized when the value
of lagged change in inequality is 0.012 (using Perotti variables), which is very close to 0. To test

whether the non-linearity is statistically significant, we present in columns (4) and (8) the F-test

for the joint significance of the non-linear terms in the partially linear model. Linearity is rejected

in both cases, at 3% in the Perotti specification and 12% in the Barro specification. Given the

limited amount of data (128 and 98 observations, respectively) and the fact that it is very noisy,

this result is a surprisingly strong rejection of linearity. Finally, we estimate a piece-wise linear

specification for h(·) (columns (3) and (7)), where we treat the effects of increases and decreases
in inequality separately. The coefficients of decreases and increases in inequality are positive

and negative, respectively. The positive coefficient in the decreasing range is significant in both

specifications. The negative coefficient in the increasing range is significant (at the 10% level)

only in Perotti’s specification. We also ran these specifications using the Barro expanded data

set, and 10-year lags instead of 5-year lags, and we find the same inverted U-shaped relationship

between changes in inequality and growth, albeit estimated with less precision, which is not

surprising given that we are left with only 78 observations (results not reported).

On balance, there is no strong evidence of a direct correlation of inequality on growth in

higher-ordered polynomials as well.
32This is implemented by first regressing all the control variables ( yit, git and Xit) and the dependent variable

∆yit+a = yit+a − yit non-parametrically on ∆git = git − git−a and forming the residuals of this non-parametric
regression. Estimates of the parameters α and β are then obtained from the OLS regression of the residual of

the dependent variables on the residuals of the control variables. Finally, the function ah(·) is estimated by
estimating non-parametrically the function: Ê(∆y+a|∆g), Ê(∆y|∆g), Ê(X|∆g)β̂ and forming the difference

Ê(∆y + a|∆g)− (aα̂+ 1)Ê(∆y|∆g)− aÊ(X|∆g)β̂.
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the short run (over a 5-year lag period), but there seems to be an association between changes

in inequality and growth. Changes in inequality, whatever their direction, are associated with

lower growth in the next period. We discuss at the end of this section whether any causal

interpretation can be given to this result, but before that we report the results from our reduced

form estimates.

4.3 The Effect of Lagged Inequality

In Table 4 (columns (1) to (6)), we present the results of the estimation of equation (8). The

difference between the specifications estimated in this table and the first column in the previous

table is that the independent variable is not the beginning-of-period level of inequality (g(t))

but the lagged level of inequality (g(t− a)).
The coefficient of g(t−a) entered linearly is now negative (around -4%), but still insignificant

in both Perotti’s and Barro’s specifications (Table 4, columns (1) and (4)). Columns (3) and

(6) show the results obtained when we lag the other regressors by one period as well, which, as

we show below, is similar to the reduced form of the models of Barro (2000) and Forbes (2000).

The coefficient of lagged inequality is similar in these specifications. It is significant with the

Barro control variables. In the quadratic specification, the squared term is negative, though

non-significant (Table 4, columns (2) and (5)). The corresponding Kernel regression (shown in

Figure 4) is indeed a U-shaped relationship, with the correlation between lagged inequality on

growth turning positive when the gini coefficient is larger than 0.45.

In columns (7) to (10) of Table 4, we estimate the relationship between changes in inequality

and past inequality described by equations (6) and (7). In both the Perotti and Barro specifi-

cations, changes in inequality are strongly negatively correlated with past inequality, while the

square of the change in inequality is positively related to inequality.

The kernel regression corresponding to equation (7) is shown in Figure 3. The relationship

between inequality and squared changes in inequality is non-linear with a peak around 0.45.

The shape is very similar if we replace the square of the change with its absolute value.

Interestingly, the non-parametric partial relationships between growth and inequality, on

the one hand, and change in inequality and growth, on the other hand, do appear to be mirror

images of each other, with a peak at about the same level. This corresponds fairly closely to

the prediction of the political economy model, although given the identification problems we
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discussed, we stop short of committing to this explanation of the results.

5 Relationship with the Literature

Regardless of how we interpret these results, it is clear that they have important implications

for how we read the existing results in the literature. In particular, we will show that the

striking results obtained by those who have estimated the growth-inequality relationship with

fixed effects arise from giving a different and misleading interpretation to the same reduced-form

evidence that is presented here.

5.1 Non-Linearity

As we noted in Section 2, all the approaches based on differencing the data rely heavily on the

linearity of equation (1) and the exclusion of the differenced term. If either of these conditions

are violated, the fixed effect and first difference estimates of γ will not be identical, and both will

be different from the OLS estimate of equation (1) even if all the other conditions for the validity

of the OLS estimate are satisfied. It will then be important to be very careful in interpreting

each of these coefficients.

The results in the previous section suggest that changes in inequality were negatively cor-

related with subsequent growth. Assuming the relationship between the level of inequality and

growth is indeed linear (h(g) = γg), and differencing equation (9), one obtains:

yit+a − yit = (aα+ 1)(yit − yit−a) + a(Xit −Xit−a)β +
aγ(git − git−a) + ak(git − git−a)) + ak(git−a − git−2a)) + a²it − a²it−a,

or:

yit+a−yit = (aα+1)(yit−yit−a)+a(Xit−Xit−a)β+aφ(git−git−a))+k(git−a−git−2a))+a²it−a²it−a
(10)

where φ(x) = k(x) + γx.

In principle, this equation could be estimated. Using methods similar to those derived

in Porter (1996), one could also recover k(·) and γ, but the data requirement would make
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the exercise senseless in the present context (there are too few countries with three successive

measures of inequality).

However, if equation (10) is indeed the correct way to represent the relationship between

changes in inequality and growth in the first differenced equation, it suggests that the inter-

pretation of the fixed effects, first difference and GMM estimates of equation (1) could be very

misleading. In order to investigate this point without relying on our (potentially biased) esti-

mates of equation (9), we estimate a modified version of equation (3), which does not restrict the

coefficient of the difference git − git−a to be linear. In other words, we estimate the relationship

yit+a − yit = (aα+ 1)(yit − yit−a) + a(Xit −Xit−a)β + aφ(git − git−a) + a²it − a²it−a, (11)

where φ(·) is a function that we want to estimate flexibly. Under the hypothesis that the model
in equation (1) is the correct model, we should not be able to reject the linearity of φ(·).

We use kernel regression, and we “partial out” the linear part of the model using the same

methodology we used before. The results are presented in Figure 5 for the Perotti variables

(we obtain a very similar graphs when we use the Barro variables). The linearity seems, once

again, to be rejected. To further explore this, we used the same specifications as in Section

3. We present them in Table 5. To test whether the non-linearity is statistically significant,

we present in panel C of Table 5 the F-test for the joint significance of the non-linear terms in

the partially linear model (columns (1) and (2)). Linearity is rejected in both cases, at the 9%

and 3% levels of confidence, respectively. Panel D presents the results of estimating a quadratic

specification for φ(·). Finally, we estimate a piece-wise linear specification for φ(·) (in panel B).
The coefficients of decreases and increases in inequality are positive and negative, respectively.

The positive coefficient in the decreasing range is significant. The negative coefficient in the

increasing range is smaller in absolute value and insignificant.

To ensure that the non-linearity of the relationship between inequality and growth that we

are finding here is not driven by some mis-specification in our estimation of the partially linear

model,33 we then test for linearity under the assumption that the model in the literature we are

critiquing was actually correctly estimated.

To do so, we estimate the main equation (1) using the Arellano and Bond method, and then
33For example, we did not deal with the inconsistency introduced by the lagged endogenous regressor.
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compute:

(yit+a − yit)∗ = yit+a − yit − (aα̂+ 1)(yit − yit−a)− a(Xit −Xit−a)β̂, (12)

where α̂ and β̂ are the values of α and β obtained by estimating equation (1) using the Arellano

and Bond estimator. If the assumptions necessary for the validity of each method are satisfied, α

and β will be estimated consistently. Then, according to equation (3), the relationship between

(yit+a − yit)∗ and git − git−a should be linear.
The next step is to make sure that the estimates of γ obtained if we regress (yit+a − yit)∗/a

linearly on the difference (git − git−a) are similar to those obtained using a fixed-effects type
estimator. OLS estimates are presented in panel A of Table 5. They are alternative estimates

of γ, consistent if equation (3) is correctly specified and if the innovation in inequality is not

correlated with the innovation in the error term. They are not identical to the estimate of γ

reported in Table 1, since they use different estimation methods. However, they are also positive

and significant, and their magnitude is similar to that of the fixed effect and Arellano and Bond

estimates. In other words, as long as we impose linearity, the results are very similar to what

the literature finds.

Finally, we test the linearity assumption. We start by allowing the coefficient to vary with

the sign of the difference (git − git−a). The results indicate that there is a sharp non-linearity.
As before, we find that both increases and decreases in inequality are associated with lower

subsequent growth (panel B). This suggests that the conclusions of Forbes (2000), and Li and

Zou (1998) are not warranted: There is no evidence in the data that increases in inequality are

good for growth. In fact, the bulk of the evidence goes in the opposite direction.

In Figure 6, we present a kernel regression of 1/a∗(yit+a−yit)∗ on the difference (git−git−a) for
the Perotti control variables. The shape of the curve is similar across specifications, and similar

to what we had found when we estimated the partially linear model. We have experimented with

a variety of other specifications which we do not report here (Barro control variables, different

lags, different way to estimate the other coefficients in the regression, etc.). The results are

always similar. In panel C of Table 5, we report the F-statistic of the significance of the non-

linear terms in a quartic regression of 1/a ∗ (yit+a − yit)∗ on (git − git−a). Here also, the data
clearly rejects linearity in almost all specifications.
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5.2 Consequences for Estimated Coefficients

5.2.1 Random Effects and Fixed Effects

The results suggest that equation (1) is mis-specified. Non-linear terms in past changes are

omitted in the regression. Since current levels and past changes are correlated, this introduces

a bias in the coefficient of inequality when equation (1) is estimated using random effects.

This mis-specification is accentuated when the equation is estimated in first differences or

using fixed effects. The fixed effect estimation imposes a linear structure on the relationship

between the deviation of the growth rate from its average across all the periods and the deviation

of the gini coefficient from its average. Since the relationship between growth and inequality is

not monotonic in first differences, it is also not monotonic when period averages are taken out.

The fixed effect estimator is, in effect, a weighted average of negative and positive coefficients,

which can be positive if the weight given to positive coefficients is larger. As it turns out, there

are more decreases than increases of inequality in the data. The majority of the data points are

therefore in the region where changes are positively correlated with growth, which means that

the positive coefficient gets more weight.

5.2.2 Estimation Using the Arellano and Bond Technique

The Arellano and Bond estimator uses lagged levels of inequality to instrument for changes in

inequality with lags. Ignoring longer lags, the reduced form equation implicitly estimated when

using the Arellano and Bond technique has the form:

(yit+a − yit)/a = λyit−a +Xit−aκ+ δgit−a + νi + ξit. (13)

This reduced form is very similar to the equation we had estimated in Section 3. The only

difference is that income levels and the control variables are lagged one period. In columns (3)

and (6) of Table 4, we present the coefficient of git−a in this specification. As before, we find a

negative, but insignificant, coefficient.

The Arellano and Bond GMM estimator in effect takes the ratio of this negative reduced

form coefficient and the negative coefficient from estimating the effect of the level of inequality

on changes in inequality. This naturally leads to the positive coefficient in the “structural”

equation. For example, dividing -0.033 (column (3), Table 4) by -0.087 (column (7), Table 4)
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leads to 0.38, close to the Arellano and Bond coefficient of 0.58 reported in column (4) in Table 1.

Therefore, the seemingly dramatic difference in results obtained when we use the Arellano and

Bond method are in fact a different interpretation of the same reduced form evidence presented

in this paper or in , for example, Barro (2000).

This interpretation of the reduced form is clearly misleading, because equation (3) is mis-

specified. The effect of changes in inequality is not constant. There is also an asymmetry between

increases in inequality and decreases in inequality: When we regress reductions in inequality on

lagged inequality, the coefficient is negative (-0.083) and very significant, indicating that higher

inequality is associated with larger declines in inequality. However, when we repeat this exercise

with increases in inequality, and the contrast is striking: Increases in inequality are not correlated

with lagged levels (the coefficient is -0.011 and is insignificant). As a result, the Arellano and

Bond estimator gives more weight to the effect of decreases in inequality, which are positively

related to growth, and therefore finds a positive effect on average.

6 Conclusion

The main goal of this paper is to investigate the pertinence of the linear relationships that have

been used in the literature to investigate the effect of inequality on growth. We find that there

are strong a priori reasons to doubt their validity, and that the data does seem inconsistent

with a linear structure.

This paper is primarily an attempt to forestall a potentially influential misinterpretation of

the data on inequality and growth. If it serves any purpose beyond that, it is to serve as a

broader warning against the automatic use of linear models in settings where the theory does

not necessarily predict a linear or even a monotonic relationship.

On the more fundamental question of whether inequality is bad for growth, our data has

little to say. It is clear that the most compelling evidence on this point has to come from micro

data. While some interesting evidence is beginning to trickle in,34 we are only at the beginning

of an enormous enterprise.
34For example, Banerjee and Ray (2001) show, using a panel of data from sugar cooperatives in India, that the

most unequal cooperatives (in terms of land ownership among cooperative members) are the least productive,

with a difference of more than 50% (measured by capacity, which is a proxy for output) between the most and

least egalitarian cooperatives.
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Random First Fixed Arellano Random First Fixed Arellano
Effects Difference effect & Bond Effects Difference effect & Bond

(1) (2) (3) (4) (5) (6) (7) (8)

Gini(t) 0.021 0.298 0.297 0.56 -0.03 0.158 0.155 0.27
(0.09) (0.18) (0.16) (0.039) (0.043) (0.068) (0.063) (0.016)

N 128 128 128 128 98 98 98 98
Note: 
Standard errors in parentheses; a is equal to 5 (Five-year periods)
Control variables: 
Perotti specification: Log(GDP(t),PPP I (t), male education (t), female education (t)
Barro's specification: Log(GDP(t-1)), log(GDP(t-1)) squared, government consumption(t-1), secondary education(t),

higher education(t), fertility(t), (term of trade(t+1)-terms of trade(t)), rule of law, democ(t), 
democt(t) squared, spanish or portuguese colony, other colony, investment share (t-1)

Specification
Barro 

Specification

Table 1
Relationship between growth and changes in Gini, linear specifications

Dependent variable: (y(t+a)-y(t))/a
Perotti 



Country Period Beginning of period Change in gini Country Period Beginning of period Change in gini
gini (in %) (percentage points) gini (in %) (percentage points)

(1) (2) (3) (4) (5) (6) (7) (8)

Bangladesh 65-70 37.3 -3.1 Australia 85-90 37.6 4.1
Bulgaria 70-75 21.5 -3.7 Bulgaria 75-80 17.8 7.2
Brazil 75-80 61.9 -4.2 Brazil 80-85 57.8 4.0
Canada 85-90 32.8 -5.3 Brazil 70-75 57.6 4.3
Colombia 70-75 52.0 -6.0 Chile 75-80 46.0 7.2
Spain 75-80 37.1 -3.7 China 85-90 31.4 3.2
Finland 70-75 31.8 -4.8 Colombia 75-80 46.0 8.5
Finland 85-90 30.8 -4.7 Germany 65-70 28.1 5.4
France 75-80 43.0 -8.1 Dominican Republic 85-90 43.3 7.2
Hong Kong 85-90 45.2 -3.2 Finland 75-80 27.0 3.9
Hungary 65-70 25.9 -3.0 United Kingdom 85-90 27.1 5.2
Indonesia 80-85 42.2 -3.2 Hong Kong 80-85 37.3 7.9
Ireland 75-80 38.7 -3.0 Sri Lanka 75-80 35.3 6.7
Italy 75-80 39.0 -4.7 Sri Lanka 80-85 42.0 3.3
Korea, Republic80-85 38.6 -4.1 Mexico 85-90 50.6 4.4
Sri Lanka 85-90 45.3 -8.6 New Zealand 85-90 35.8 4.4
Sri Lanka 65-70 47.0 -9.3 New Zealand 75-80 30.0 4.8
Mexico 75-80 57.9 -7.9 Sweden 75-80 27.3 5.1
Norway 75-80 37.5 -6.3 Thailand 85-90 43.1 5.7
Portugal 75-80 40.6 -3.8 Venezuela 80-85 39.4 3.4
Sweden 70-75 0.4 -6.1 Venezuela 85-90 42.8 11.0
Trinidad and To 75-80 51.0 -4.9
Trinidad and To 80-85 46.1 -4.4
Turkey 70-75 56.0 -5.0
Venezuela 75-80 47.7 -8.2
Deininger and Squire high quality sample

Decrease in gini coefficient larger than 3 percentage points Increase in gini coefficient larger than 3 percentage points

Table 2
Countries with large changes in gini coefficients



(1) (2) (3) (4) (5) (6) (7) (8)
gini (t) 0.05 0.064 0.094 -0.042 -0.039

(0.10) (0.099) (0.11) (0.045) (0.043)
gini(t)-gini(t-a) 0.065 0.36 0.053 0.073

(0.16) (0.17) (0.063) (0.066)
(gini(t)-gini(t-a))2 -5.09 -5.37 -2.47 -2.33

(2.95) (3.06) (1.16) (1.17)
gini(t)-gini(t-a)* 1(gini(t)-gini(t-a))<0 0.63 0.27

(0.30) (0.10)
gini(t)-gini(t-a)* 1(gini(t)-gini(t-a>)=0 -0.59 -0.11

(0.33) (0.13)
F test for  (gini(t)-gini(t-a))2, 9.02 5.72
(gini(t)-gini(t-a))3, (gini(t)-gini(t-a))4 (0.029) (0.12)
(p value in parentheses)

Number of observations 128 128 128 128 98 98 98 98
Note: Coefficient obtained using random effect specifications.
Standard errors in parentheses; a is equal to 5 (Five-year periods)
Control variables: see note to Table 2

Table 3

Perotti Specification Barro Specification
Dependent variable:(y(t)-y(t-a))/a

Relationship between inequality and changes in inequality and growth



g(t)-g(t-a) (g(t)-g(t-a))2 g(t)-g(t-a) (g(t)-g(t-a))2

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

g(t-a) -0.047 0.77 -0.033 -0.043 -0.21 -0.10 -0.087 0.0067 -0.25 0.0076
(0.076) (0.66) (0.082) (0.039) (0.21) (0.043) (0.038) (0.0025) (0.066) (0.0038)

g(t-a)^2 -0.94 0.26
(0.81) (0.27)

Control variables X(t) X(t) X(t-a) X(t) X(t) X(t-a) X(t-a) X(t-a) X(t-a) X(t-a)
Note: Coefficient obtained using random effect specifications.
Standard errors in parentheses; a is equal to 5 (Five-year periods)
Control variables: X(t) stands for control variable not lagged.

X(t-a) stands for control variables lagged one period (5 years).
For a list of control variables see note to Table2.

Table 4
Estimation of the reduced form model

Dependent variable: (y(t+a)-y(t))/a Dependent variable: change in gini coefficient
Perotti Barro Perotti Barro



Control variables Perotti Barro Perotti Barro
(1) (2) (3) (4)

 A. Linear assumption: OLS coefficient of (Gini(t)-Gini(t-a) ) 
Gini(t)-Gini(t-a) 0.298 0.158 0.36 0.17

(0.18) (0.068) (0.18) (0.07)
B. Piecewise linear assumption: OLS coefficients of (Gini(t)-Gini(t-a) )

if Gini(t)-Gini(t-a) <=0 0.79 0.39 0.69 0.4
(0.30) (0.13) (0.38) (0.13)

if (Gini(t)-Gini(t-a) )>=0 -0.3 -0.13 -0.49 -0.11
(0.35) (0.11) (0.38) (0.14)

C. Quartic specification
F-test for non-linear 2.21 3.37 2.55 3.3

terms jointly significant (0.09) (0.02) (0.059) (0.02)

D. Quadratic specification
Gini(t)-Gini(t-a) 0.23 0.13 0.311 0.15

(0.18) (0.067) (0.19) (0.66)
(Gini(t)-Gini(t-a) )2 -5.88 -3.24 -5.94 -3.28

(3.39) (1.26) (3.43) (1.23)
Number of observations 128 98 128 98

Note: 
Standard errors in parentheses; a is equal to 5 (Five-year periods)
For a list of control variables see note to Table2.
For a definition of residual growth, see the text

(1/a*[y(t+a)-y(gdp(t)]*)

Table 5
Non-linearity of the relationship between change in gini and growth in models based on first differences

(y(t+a)-y(t))/a
Dependent variable



Table A1
Descriptive statistics and countries in the sample

Countries in the sample
Australia Japan
Bangladesh Korea, Republic of
Belgium Malaysia
Brazil Mexico
Bulgaria Netherlands
Canada New Zealand
Chile Norway
China Pakistan
Colombia Peru
Costa Rica Philippines
Denmark Poland
Dominican Republic Portugal
Finland Singapore
France Spain
Germany Sri Lanka
Greece Sweden
Hong Kong Thailand
Hungary Trinidad and Tobago
India Tunisia
Indonesia Turkey
Ireland United Kingdom
Italy United States

Venezuela
Means (standard deviation)

Log(gdp per capita) in 1980 dollars
(Summers and Heston)

1965 8.03
(0.86)

1975 8.37
(0.85)

1985 8.58
(0.82)

1995 8.82
(0.79)

Gini coefficient
1965 0.38
1970 0.4
1975 0.4
1980 0.38
1985 0.37
1990 0.38

Source: Deininger and Squire "high quality sample". For the construction of the
sample and variable, see text. 
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Figure 1: Relationship between income growth and lagged gini growth: partially linear model (Perotti variables)

kernel regression
quadratic fitting
quartic fitting  
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Figure 2: Relationship between income growth and lagged gini growth: partially linear model (Barro variables)

kernel regression
quadratic fitting
quartic fitting  
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Figure 3: Relationship between gini and square of gini changes
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Figure 4: Reduced form, with Perotti variables
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Figure 5: Relationship between income growth and lagged Gini growth: partially linear model

kernel regression
quartic fitting  
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Figure 6: Relationship between income growth and lagged Gini growth: using Arellano and Bond coefficients

kernel regression
quartic fitting  


