Directed Technological Change

Daron Acemoglu

MIT

September 19 and 24, 2013.
Introduction

Thus far have focused on a single type of technological change (e.g., Hicks-neutral).

But, technological change is often not neutral:

1. Benefits some factors of production and some agents more than others. Distributional effects imply some groups will embrace new technologies and others oppose them.

2. Limiting to only one type of technological change obscures the competing effects that determine the nature of technological change.

Directed technological change: endogenize the direction and bias of new technologies that are developed and adopted.
Skill-biased technological change

- As already discussed in the previous literature, over the past 60 years, the U.S. relative supply of skills has increased, but:
 1. there has also been an increase in the college premium, and
 2. this might have been an acceleration in the late 1960s, and the skill premium increased very rapidly beginning in the late 1970s.

- Standard explanation: skill bias technical change, and an acceleration that coincided with the changes in the relative supply of skills.

- But, late 18th and early 19th unskill-bias:
 “First in firearms, then in clocks, pumps, locks, mechanical reapers, typewriters, sewing machines, and eventually in engines and bicycles, interchangeable parts technology proved superior and replaced the skilled artisans working with chisel and file.” (Mokyr 1990, p. 137)

- Why was technological change unskilled-biased then and skilled-biased now?
Wage push and capital-biased technological change

- First phase. Late 1960s and early 1970s: unemployment and share of labor in national income increased rapidly continental European countries.

- Second phase. 1980s: unemployment continued to increase, but the labor share declined, even below its initial level.

- Blanchard (1997):
 - Phase 1: wage-push by workers
 - Phase 2: capital-biased technological changes.

Is there a connection between capital-biased technological changes in European economies and the wage push preceding it?
Importance of Biased Technological Change: more examples

- **Balanced economic growth:**
 - Only possible when technological change is asymptotically Harrod-neutral, i.e., purely labor augmenting.
 - Is there any reason to expect technological change to be endogenously labor augmenting?

- **Globalization:**
 - Does it affect the types of technologies that are being developed and used?
Directed Technological Change: Basic Arguments I

- Two factors of production, say L and H (unskilled and skilled workers).
- Two types of technologies that can complement either one or the other factor.
- Whenever the profitability of H-augmenting technologies is greater than the L-augmenting technologies, more of the former type will be developed by profit-maximizing (research) firms.
- What determines the relative profitability of developing different technologies? It is more profitable to develop technologies...
 1. when the goods produced by these technologies command higher prices (*price effect*);
 2. that have a larger market (*market size effect*).
Equilibrium Relative Bias

- Potentially counteracting effects, but the market size effect will be more powerful often.

- Under fairly general conditions:
 - Weak Equilibrium (Relative) Bias: an increase in the relative supply of a factor always induces technological change that is biased in favor of this factor.
 - Strong Equilibrium (Relative) Bias: if the elasticity of substitution between factors is sufficiently large, an increase in the relative supply of a factor induces sufficiently strong technological change biased towards itself that the endogenous-technology relative demand curve of the economy becomes upward-sloping.
Suppose the (inverse) relative demand curve:

\[\frac{w_H}{w_L} = D\left(\frac{H}{L}, A\right) \]

where \(\frac{w_H}{w_L} \) is the relative price of the factors and \(A \) is a technology term.

- \(A \) is \(H \)-biased if \(D \) is increasing in \(A \), so that a higher \(A \) increases the relative demand for the \(H \) factor.
- \(D \) is always decreasing in \(H/L \).
- Equilibrium bias: behavior of \(A \) as \(H/L \) changes,

\[A(H/L) \]
Equilibrium Relative Bias in More Detail II

- **Weak equilibrium bias:**
 - $A\left(\frac{H}{L}\right)$ is increasing (nondecreasing) in H/L.

- **Strong equilibrium bias:**
 - $A\left(\frac{H}{L}\right)$ is sufficiently responsive to an increase in H/L that the total effect of the change in relative supply H/L is to increase w_H/w_L.
 - i.e., let the endogenous-technology relative demand curve be
 \[
 \frac{w_H}{w_L} = D\left(\frac{H}{L}, A\left(\frac{H}{L}\right)\right) \equiv \tilde{D}\left(\frac{H}{L}\right)
 \]
 \[
 \rightarrow \text{Strong equilibrium bias: } \tilde{D} \text{ increasing in } H/L.
 \]
Factor-augmenting technological change

- Production side of the economy:

\[Y(t) = F(L(t), H(t), A(t)), \]

where \(\frac{\partial F}{\partial A} > 0. \)

- Technological change is \textit{L-augmenting} if

\[\frac{\partial F(L, H, A)}{\partial A} \equiv \frac{L \frac{\partial F(L, H, A)}{\partial L}}{A}. \]

- Equivalent to:
 - the production function taking the special form, \(F(AL, H). \)
 - Harrod-neutral technological change when \(L \) corresponds to labor and \(H \) to capital.

- \textit{H-augmenting} defined similarly, and corresponds to \(F(L, AH). \)
Factor-biased technological change

- Technological change change is \emph{L-biased}, if:

\[
\frac{\partial \frac{\partial F(L,H,A)}{\partial L}}{\partial A} \geq 0.
\]

Figure: The effect of \(H\)-biased technological change on relative demand and relative factor prices.
Equilibrium Bias

- **Weak equilibrium bias** of technology: an increase in H/L, induces technological change biased towards H. i.e., given (??):

$$\frac{d \left(\frac{A_H(t)}{A_L(t)} \right)}{dH/L} \geq 0,$$

so $A_H(t)/A_L(t)$ is biased towards the factor that has become more abundant.

- **Strong equilibrium bias**: an increase in H/L induces a sufficiently large change in the bias so that the relative marginal product of H relative to that of L increases following the change in factor supplies:

$$\frac{dMP_H}{MP_L} > 0,$$

- The major difference is whether the relative marginal product of the two factors are evaluated at the initial relative supplies (weak bias) or at the new relative supplies (strong bias).
Various different pieces of evidence suggest that technology is “directed” to words activities with greater profitability.

In the environmental context:

- Evidence that technological change and technology adoption respond to profit incentives
- Newell, Jaffe and Stavins (1999): energy prices on direction of technological change in air conditioning
- Popp (2002): relates energy prices and energy saving innovation

In the health-care sector:

- Finkelstein (2004): government demand for vaccines leads to more clinical trials.
- Acemoglu and Linn (2004): demographic changes increasing the demand for specific types of drugs increase FDA approvals and new molecular entities directed at these categories.
Market Size and Innovation: Market Size

- Market size for different drug categories driven by demographic changes:

![Graph showing share of population by age group from CPS, 1965–2000](image)
Market Size and Innovation: Market Size with Income

Figure II
Share of Income by Age Group from CPS, 1970–2000
Market Size and Innovation: Innovation Response

Figure III
Share of FDA Approvals by Age Group, 1970–2000
TABLE II
Effect of Changes in Market Size on New Drug Approvals

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: QML for Poisson model, dep var is count of drug approvals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market size</td>
<td>6.15</td>
<td>6.84</td>
<td>-2.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.23)</td>
<td>(4.87)</td>
<td>(4.12)</td>
<td></td>
</tr>
<tr>
<td>Lag market size</td>
<td>-0.61</td>
<td>3.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead market size</td>
<td>10.16</td>
<td>7.57</td>
<td>(4.28)</td>
<td>(1.99)</td>
</tr>
<tr>
<td>Panel B: QML for Poisson model, dep var is count of nongeneric drug approvals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market size</td>
<td>3.82</td>
<td>6.72</td>
<td>2.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.15)</td>
<td>(7.63)</td>
<td>(5.31)</td>
<td></td>
</tr>
<tr>
<td>Lag market size</td>
<td>-2.49</td>
<td>(5.97)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead market size</td>
<td>-1.77</td>
<td>1.73</td>
<td>(6.94)</td>
<td>(2.02)</td>
</tr>
<tr>
<td>Panel C: QML for Poisson model, dep var is count of new molecular entities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Market size</td>
<td>3.54</td>
<td>5.79</td>
<td>-1.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.19)</td>
<td>(6.66)</td>
<td>(5.16)</td>
<td></td>
</tr>
<tr>
<td>Lag market size</td>
<td>-1.99</td>
<td>(5.28)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lead market size</td>
<td>7.35</td>
<td>5.75</td>
<td>(5.11)</td>
<td>(2.37)</td>
</tr>
</tbody>
</table>
Baseline Model of Directed Technical Change I

- Framework: expanding varieties model with lab equipment specification of the innovation possibilities frontier (so none of the results here depend on technological externalities).
- Constant supply of L and H.
- Representative household with the standard CRRA preferences:

$$\int_0^\infty \exp(-\rho t) \frac{C(t)^{1-\theta} - 1}{1-\theta} dt,$$ \hspace{1cm} (1)

- Aggregate production function:

$$Y(t) = \left[\gamma_L Y_L(t)^{\frac{\varepsilon-1}{\varepsilon}} + \gamma_H Y_H(t)^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}},$$ \hspace{1cm} (2)

where intermediate good $Y_L(t)$ is L-intensive, $Y_H(t)$ is H-intensive.
Resource constraint (define \(Z(t) = Z_L(t) + Z_H(t) \)):

\[
C(t) + X(t) + Z(t) \leq Y(t),
\]

(3)

Intermediate goods produced competitively with:

\[
Y_L(t) = \frac{1}{1 - \beta} \left(\int_0^{N_L(t)} x_L(\nu, t)^{1 - \beta} \, d\nu \right) L^\beta
\]

(4)

and

\[
Y_H(t) = \frac{1}{1 - \beta} \left(\int_0^{N_H(t)} x_H(\nu, t)^{1 - \beta} \, d\nu \right) H^\beta,
\]

(5)

where machines \(x_L(\nu, t) \) and \(x_H(\nu, t) \) are assumed to depreciate after use.
Baseline Model of Directed Technical Change III

- Differences with baseline expanding product varieties model:
 1. These are production functions for intermediate goods rather than the final good.
 2. (4) and (5) use different types of machines—different ranges \([0, N_L(t)]\) and \([0, N_H(t)]\).

- All machines are supplied by monopolists that have a fully-enforced perpetual patent, at prices \(p^X_L(\nu, t)\) for \(\nu \in [0, N_L(t)]\) and \(p^X_H(\nu, t)\) for \(\nu \in [0, N_H(t)]\).

- Once invented, each machine can be produced at the fixed marginal cost \(\psi\) in terms of the final good.

- Normalize to \(\psi \equiv 1 - \beta\).
Baseline Model of Directed Technical Change IV

- Total resources devoted to machine production at time t are
 \[X(t) = (1 - \beta) \left(\int_0^{N_L(t)} x_L(\nu, t) \, d\nu + \int_0^{N_H(t)} x_H(\nu, t) \, d\nu \right). \]

- Innovation possibilities frontier:
 \[\dot{N}_L(t) = \eta_L Z_L(t) \text{ and } \dot{N}_H(t) = \eta_H Z_H(t), \quad (6) \]

- Value of a monopolist that discovers one of these machines is:
 \[V_f(\nu, t) = \int_t^\infty \exp \left[- \int_t^{s'} r(s') \, ds' \right] \pi_f(\nu, s) \, ds, \quad (7) \]
 where $\pi_f(\nu, t) \equiv p_f^X(\nu, t)x_f(\nu, t) - \psi x_f(\nu, t)$ for $f = L$ or H.

- Hamilton-Jacobi-Bellman version:
 \[r(t) V_f(\nu, t) - \dot{V}_f(\nu, t) = \pi_f(\nu, t). \quad (8) \]
Normalize the price of the final good at every instant to 1, which is equivalent to setting the ideal price index of the two intermediates equal to one, i.e.,

$$\left[\gamma_L^\varepsilon (p_L(t))^{1-\varepsilon} + \gamma_H^\varepsilon (p_H(t))^{1-\varepsilon} \right]^{\frac{1}{1-\varepsilon}} = 1 \text{ for all } t, \quad (9)$$

where $p_L(t)$ is the price index of Y_L at time t and $p_H(t)$ is the price of Y_H.

Denote factor prices by $w_L(t)$ and $w_H(t)$.

Equilibrium I

- Allocation. Time paths of
 \[[C(t), X(t), Z(t)]_{t=0}^\infty, \]
 \[[N_L(t), N_H(t)]_{t=0}^\infty, \]
 \[[p^X_L(\nu, t), x_L(\nu, t), V_L(\nu, t)]_{t=0}^\infty \quad \nu \in [0, N_L(t)] \]
 \[[\chi_H(\nu, t), x_H(\nu, t), V_H(\nu, t)]_{t=0}^\infty \quad \nu \in [0, N_H(t)] \]
 \[[r(t), w_L(t), w_H(t)]_{t=0}^\infty. \]

- Equilibrium. An allocation in which
 All existing research firms choose
 \[[p^X_f(\nu, t), x_f(\nu, t)]_{t=0}^\infty \quad \nu \in [0, N_f(t)] \]
 for \(f = L, H \) to maximize profits,
 \[[N_L(t), N_H(t)]_{t=0}^\infty \]
 is determined by free entry
 \[[r(t), w_L(t), w_H(t)]_{t=0}^\infty, \]
 are consistent with market clearing, and
 \[[C(t), X(t), Z(t)]_{t=0}^\infty \]
 are consistent with consumer optimization.
Equilibrium II

- Maximization problem of producers in the two sectors:

$$\max_{L, [x_L(\nu, t)]_{\nu \in [0, N_L(t)]}} p_L(t) Y_L(t) - w_L(t) L$$

(10)

$$- \int_0^{N_L(t)} p_L^x(\nu, t) x_L(\nu, t) d\nu,$$

and

$$\max_{H, [x_H(\nu, t)]_{\nu \in [0, N_H(t)]}} p_H(t) Y_H(t) - w_H(t) H$$

(11)

$$- \int_0^{N_H(t)} p_H^x(\nu, t) x_H(\nu, t) d\nu.$$

- Note the presence of $p_L(t)$ and $p_H(t)$, since these sectors produce intermediate goods.
Equilibrium III

Thus, demand for machines in the two sectors:

\[x_L(\nu, t) = \left[\frac{p_L(t)}{p_L^x(\nu, t)} \right]^{1/\beta} \quad L \quad \text{for all } \nu \in [0, N_L(t)] \text{ and all } t, \quad (12) \]

and

\[x_H(\nu, t) = \left[\frac{p_H(t)}{p_H^x(\nu, t)} \right]^{1/\beta} \quad H \quad \text{for all } \nu \in [0, N_H(t)] \text{ and all } t. \quad (13) \]

Maximization of the net present discounted value of profits implies a constant markup:

\[p_L^x(\nu, t) = p_H^x(\nu, t) = 1 \quad \text{for all } \nu \text{ and } t. \]
Equilibrium IV

- Substituting into (12) and (13):
 \[x_L(\nu, t) = p_L(t)^{1/\beta} L \quad \text{for all } \nu \text{ and all } t, \]
 and
 \[x_H(\nu, t) = p_H(t)^{1/\beta} H \quad \text{for all } \nu \text{ and all } t. \]

- Since these quantities do not depend on the identity of the machine, profits are also independent of the machine type:
 \[\pi_L(t) = \beta p_L(t)^{1/\beta} L \quad \text{and} \quad \pi_H(t) = \beta p_H(t)^{1/\beta} H. \quad (14) \]

- Thus the values of monopolists only depend on which sector they are, \(V_L(t) \) and \(V_H(t) \).
Combining these with (4) and (5), derived production functions for the two intermediate goods:

\[Y_L(t) = \frac{1}{1 - \beta} p_L(t) \frac{1-\beta}{\beta} N_L(t) L \] \hspace{1cm} (15)

and

\[Y_H(t) = \frac{1}{1 - \beta} p_H(t) \frac{1-\beta}{\beta} N_H(t) H. \] \hspace{1cm} (16)
Equilibrium VI

For the prices of the two intermediate goods, (2) imply

\[
p(t) \equiv \frac{p_H(t)}{p_L(t)} = \gamma \left(\frac{Y_H(t)}{Y_L(t)} \right)^{-\frac{1}{\varepsilon}}
\]

\[
= \gamma \left(p(t) {\frac{1-\beta}{\beta}} \frac{N_H(t) H}{N_L(t) L} \right)^{-\frac{1}{\varepsilon}}
\]

\[
= \gamma \frac{\varepsilon \beta}{\sigma} \left(\frac{N_H(t) H}{N_L(t) L} \right)^{-\frac{\beta}{\sigma}}, \quad (17)
\]

where \(\gamma \equiv \gamma_H / \gamma_L \) and

\[
\sigma \equiv \varepsilon - (\varepsilon - 1) (1 - \beta)
\]

\[
= 1 + (\varepsilon - 1) \beta.
\]
Equilibrium VII

- We can also calculate the relative factor prices:

\[
\omega(t) \equiv \frac{w_H(t)}{w_L(t)}
\]

\[
= p(t)^{1/\beta} \frac{N_H(t)}{N_L(t)}
\]

\[
= \gamma^{\frac{\xi}{\sigma}} \left(\frac{N_H(t)}{N_L(t)} \right)^{\frac{\sigma-1}{\sigma}} \left(\frac{H}{L} \right)^{-\frac{1}{\sigma}}. \tag{18}
\]

- \(\sigma \) is the (derived) elasticity of substitution between the two factors, since it is exactly equal to

\[
\sigma = - \left(\frac{d \log \omega(t)}{d \log (H/L)} \right)^{-1}.
\]
Equilibrium VIII

- Free entry conditions:
 \[\eta_L \dot{V}_L(t) \leq 1 \text{ and } \eta_L V_L(t) = 1 \text{ if } Z_L(t) > 0. \]
 (19)

 and

 \[\eta_H \dot{V}_H(t) \leq 1 \text{ and } \eta_H V_H(t) = 1 \text{ if } Z_H(t) > 0. \]
 (20)

- Consumer side:
 \[\frac{\dot{C}(t)}{C(t)} = \frac{1}{\theta} (r(t) - \rho), \]
 (21)

 and

 \[\lim_{t \to \infty} \left[\exp \left(- \int_0^t r(s) \, ds \right) \left(N_L(t) V_L(t) + N_H(t) V_H(t) \right) \right] = 0, \]
 (22)

 where \(N_L(t) V_L(t) + N_H(t) V_H(t) \) is the total value of corporate assets in this economy.
Consumption grows at the constant rate, g^*, and the relative price $p(t)$ is constant. From (9) this implies that $p_L(t)$ and $p_H(t)$ are also constant.

Let V_L and V_H be the BGP net present discounted values of new innovations in the two sectors. Then (8) implies that

$$V_L = \frac{\beta p_L^{1/\beta} L}{r^*} \quad \text{and} \quad V_H = \frac{\beta p_H^{1/\beta} H}{r^*},$$

Taking the ratio of these two expressions, we obtain

$$\frac{V_H}{V_L} = \left(\frac{p_H}{p_L} \right)^{\frac{1}{\beta}} \frac{H}{L}.$$
Note the two effects on the direction of technological change:

1. The price effect: V_H / V_L is increasing in p_H / p_L. Tends to favor technologies complementing scarce factors.
2. The market size effect: V_H / V_L is increasing in H / L. It encourages innovation for the more abundant factor.

The above discussion is incomplete since prices are endogenous. Combining (23) together with (17):

$$\frac{V_H}{V_L} = \left(\frac{1 - \gamma}{\gamma} \right)^{\frac{\varepsilon}{\sigma}} \left(\frac{N_H}{N_L} \right)^{-\frac{1}{\sigma}} \left(\frac{H}{L} \right)^{\frac{\sigma - 1}{\sigma}}. \tag{24}$$

Note that an increase in H / L will increase V_H / V_L as long as $\sigma > 1$ and it will reduce it if $\sigma < 1$. Moreover,

$$\sigma \gtrless 1 \iff \varepsilon \gtrless 1.$$

The two factors will be gross substitutes when the two intermediate goods are gross substitutes in the production of the final good.
Next, using the two free entry conditions (19) and (20) as equalities, we obtain the following BGP "technology market clearing" condition:

\[\eta_L V_L = \eta_H V_H. \]

(25)

Combining this with (24), BGP ratio of relative technologies is

\[\left(\frac{N_H}{N_L} \right)^* = \eta^\sigma \gamma^\varepsilon \left(\frac{H}{L} \right)^{\sigma - 1}, \]

(26)

where \(\eta \equiv \eta_H / \eta_L \).

Note that relative productivities are determined by the innovation possibilities frontier and the relative supply of the two factors. In this sense, this model totally endogenizes technology.
Summary of Balanced Growth Path

Proposition Consider the directed technological change model described above. Suppose

\[\beta \left[\gamma^e_H (\eta_H H)^{\sigma-1} + \gamma^e_L (\eta_L L)^{\sigma-1} \right] \frac{1}{\sigma-1} > (27) \]

and \((1 - \theta) \beta \left[\gamma^e_H (\eta_H H)^{\sigma-1} + \gamma^e_L (\eta_L L)^{\sigma-1} \right] \frac{1}{\sigma-1} < \rho. \)

Then there exists a unique BGP equilibrium in which the relative technologies are given by (26), and consumption and output grow at the rate

\[g^* = \frac{1}{\theta} \left(\beta \left[\gamma^e_H (\eta_H H)^{\sigma-1} + \gamma^e_L (\eta_L L)^{\sigma-1} \right] \frac{1}{\sigma-1} - \rho \right). \]
Transitional Dynamics

- Differently from the baseline endogenous technological change models, there are now transitional dynamics (because there are two state variables).
- Nevertheless, transitional dynamics simple and intuitive:

Proposition Consider the directed technological change model described above. Starting with any $N_H(0) > 0$ and $N_L(0) > 0$, there exists a unique equilibrium path. If $N_H(0)/N_L(0) < (N_H/N_L)^*$ as given by (26), then we have $Z_H(t) > 0$ and $Z_L(t) = 0$ until $N_H(t)/N_L(t) = (N_H/N_L)^*$. If $N_H(0)/N_L(0) < (N_H/N_L)^*$, then $Z_H(t) = 0$ and $Z_L(t) > 0$ until $N_H(t)/N_L(t) = (N_H/N_L)^*$.

- Summary: the dynamic equilibrium path always tends to the BGP and during transitional dynamics, there is only one type of innovation.
Directed Technological Change and Factor Prices

- In BGP, there is a positive relationship between H/L and N_H^*/N_L^* only when $\sigma > 1$.
- But this does not mean that depending on σ (or ε), changes in factor supplies may induce technological changes that are biased in favor or against the factor that is becoming more abundant.
- Why?

 - N_H^*/N_L^* refers to the ratio of factor-augmenting technologies, or to the ratio of *physical* productivities.
 - What matters for the bias of technology is the *value of marginal product* of factors, affected by relative prices.
 - The relationship between factor-augmenting and factor-biased technologies is reversed when σ is less than 1.
 - When $\sigma > 1$, an increase in N_H^*/N_L^* is relatively biased towards H, while when $\sigma < 1$, a decrease in N_H^*/N_L^* is relatively biased towards H.
Weak Equilibrium (Relative) Bias Result

Proposition Consider the directed technological change model described above. There is always weak equilibrium (relative) bias in the sense that an increase in H/L always induces relatively H-biased technological change.

- The results reflect the strength of the market size effect: it always dominates the price effect.
- But it does not specify whether this induced effect will be strong enough to make the endogenous-technology relative demand curve for factors upward-sloping.
Substitute for \((N_H/N_L)^*\) from (26) into the expression for the relative wage given technologies, (18), and obtain:

\[
\omega^* \equiv \left(\frac{w_H}{w_L} \right)^* = \eta^{\sigma-1} \gamma^\epsilon \left(\frac{H}{L} \right)^{\sigma-2}. \tag{29}
\]

Proposition Consider the directed technological change model described above. Then if \(\sigma > 2\), there is strong equilibrium (relative) bias in the sense that an increase in \(H/L\) raises the relative marginal product and the relative wage of the factor \(H\) compared to factor \(L\).
Relative Supply of Skills and Skill Premium

Skill premium

Relative Supply of Skills

ET$_2$--endogenous technology demand

ET$_1$--endogenous technology demand

CT--constant technology demand
Discussion

- Analogous to Samuelson’s *LeChatelier principle*: think of the endogenous-technology demand curve as adjusting the “factors of production” corresponding to technology.

- But, the effects here are caused by general equilibrium changes, not on partial equilibrium effects.

- Moreover ET_2, which applies when $\sigma > 2$ holds, is upward-sloping.

- A complementary intuition: importance of non-rivalry of ideas:
 - leads to an aggregate production function that exhibits increasing returns to scale (in all factors including technologies).
 - the market size effect can create sufficiently strong induced technological change to increase the relative marginal product and the relative price of the factor that has become more abundant.
Implications I

- Recall we have the following stylized facts:
 - Secular skill-biased technological change increasing the demand for skills throughout the 20th century.
 - Possible acceleration in skill-biased technological change over the past 25 years.
 - A range of important technologies biased against skill workers during the 19th century.

- The current model gives us a way to think about these issues.
 - The increase in the number of skilled workers should cause steady skill-biased technical change.
 - Acceleration in the increase in the number of skilled workers should induce an acceleration in skill-biased technological change.
 - Available evidence suggests that there were large increases in the number of unskilled workers during the late 18th and 19th centuries.
Implications II

- The framework also gives a potential interpretation for the dynamics of the college premium during the 1970s and 1980s.
 - It is reasonable that the equilibrium skill bias of technologies, N_H/N_L, is a sluggish variable.
 - Hence a rapid increase in the supply of skills would first reduce the skill premium as the economy would be moving along a constant technology (constant N_H/N_L).
 - After a while technology would start adjusting, and the economy would move back to the upward sloping relative demand curve, with a relatively sharp increase in the college premium.
Implications III

Figure: Dynamics of the skill premium in response to an exogenous increase in the relative supply of skills, with an upward-sloping endogenous-technology relative demand curve.
Implications IV

- If instead $\sigma < 2$, the long-run relative demand curve will be downward sloping, though again it will be shallower than the short-run relative demand curve.

- An increase in the relative supply of skills leads again to a decline in the college premium, and as technology starts adjusting the skill premium will increase.

- But it will end up below its initial level. To explain the larger increase in the college premium in the 1980s, in this case we would need some exogenous skill-biased technical change.
Implications V

Figure: Dynamics of the skill premium in response to an increase in the relative supply of skills, with a downward-sloping endogenous-technology relative demand curve.
Implications VI

Other remarks:

- Upward-sloping relative demand curves arise only when $\sigma > 2$. Most estimates put the elasticity of substitution between 1.4 and 2. One would like to understand whether $\sigma > 2$ is a feature of the specific model discussed here.
- Results on induced technological change are not an artifact of the scale effect (exactly the same results apply when scale effects are removed, see below).
Directed Technological Change with Knowledge Spillovers I

- The lab equipment specification of the innovation possibilities does not allow for state dependence.
- Assume that R&D is carried out by scientists and that there is a constant supply of scientists equal to S.
- With only one sector, sustained endogenous growth requires \dot{N}/N to be proportional to S.
- With two sectors, there is a variety of specifications with different degrees of state dependence, because productivity in each sector can depend on the state of knowledge in both sectors.
- A flexible formulation is

$$\dot{N}_L (t) = \eta_L N_L (t)^{1+\delta}/2 N_H (t)^{1-\delta}/2 S_L (t) \quad (30)$$

and

$$\dot{N}_H (t) = \eta_H N_L (t)^{1-\delta}/2 N_H (t)^{1+\delta}/2 S_H (t),$$

where $\delta \leq 1$.
Directed Technological Change with Knowledge Spillovers

- Market clearing for scientists requires that
 \[S_L(t) + S_H(t) \leq S. \] (31)

- \(\delta \) measures the degree of state-dependence:
 - \(\delta = 0 \). Results are unchanged. No state-dependence:
 \[\left(\frac{\partial \dot{N}_H}{\partial S_H} \right) / \left(\frac{\partial \dot{N}_L}{\partial S_L} \right) = \eta_H/\eta_L \]
 irrespective of the levels of \(N_L \) and \(N_H \).
 Both \(N_L \) and \(N_H \) create spillovers for current research in both sectors.
 - \(\delta = 1 \). Extreme amount of state-dependence:
 \[\left(\frac{\partial \dot{N}_H}{\partial S_H} \right) / \left(\frac{\partial \dot{N}_L}{\partial S_L} \right) = \eta_H N_H / \eta_L N_L \]
 an increase in the stock of \(L \)-augmenting machines today makes future labor-complementary innovations cheaper, but has no effect on the cost of \(H \)-augmenting innovations.
State dependence adds another layer of “increasing returns,” this time not for the entire economy, but for specific technology lines.

Free entry conditions:

\[\eta_L N_L(t)^{(1+\delta)/2} N_H(t)^{(1-\delta)/2} V_L(t) \leq w_S(t) \] \hspace{1cm} (32)

and \[\eta_H N_L(t)^{(1+\delta)/2} N_H(t)^{(1-\delta)/2} V_L(t) = w_S(t) \text{ if } S_L(t) > 0. \]

and

\[\eta_H N_L(t)^{(1-\delta)/2} N_H(t)^{(1+\delta)/2} V_H(t) \leq w_S(t) \] \hspace{1cm} (33)

and \[\eta_H N_L(t)^{(1-\delta)/2} N_H(t)^{(1+\delta)/2} V_H(t) = w_S(t) \text{ if } S_H(t) > 0, \]

where \(w_S(t) \) denotes the wage of a scientist at time \(t \).
When both of these free entry conditions hold, BGP technology market clearing implies

$$\eta_L N_L(t)^{\delta} \pi_L = \eta_H N_H(t)^{\delta} \pi_H, \quad (34)$$

Combine condition (34) with equations (14) and (17), to obtain the equilibrium relative technology as:

$$\left(\frac{N_H}{N_L} \right)^* = \eta^{\frac{\sigma}{1-\delta \sigma}} \gamma^{\frac{\epsilon}{1-\delta \sigma}} \left(\frac{H}{L} \right)^{\frac{\sigma-1}{\delta \sigma}}, \quad (35)$$

where $\gamma \equiv \gamma_H / \gamma_L$ and $\eta \equiv \eta_H / \eta_L$.
The relationship between the relative factor supplies and relative physical productivities now depends on δ.

This is intuitive: as long as $\delta > 0$, an increase in N_H reduces the relative costs of H-augmenting innovations, so for technology market equilibrium to be restored, π_L needs to increase relative to π_H.

Substituting (35) into the expression (18) for relative factor prices for given technologies, yields the following long-run (endogenous-technology) relationship:

$$\omega^* \equiv \left(\frac{w_H}{w_L} \right)^* = \eta \frac{\sigma-1}{1-\delta\sigma} \gamma \frac{(1-\delta)\epsilon}{1-\delta\sigma} \left(\frac{H}{L} \right)^{\frac{\sigma-2+\delta}{1-\delta\sigma}}. \quad (36)$$
The growth rate is determined by the number of scientists. In BGP we need \(\dot{N}_L(t) / N_L(t) = \dot{N}_H(t) / N_H(t) \), or

\[
\eta_H N_H(t)^{\delta-1} S_H(t) = \eta_L N_L(t)^{\delta-1} S_L(t).
\]

Combining with (31) and (35), BGP allocation of researchers between the two different types of technologies:

\[
\eta^{\frac{1-\sigma}{1-\delta\sigma}} \left(\frac{1 - \gamma}{\gamma} \right)^{-\frac{\epsilon(1-\delta)}{1-\delta\sigma}} \left(\frac{H}{L} \right)^{-\frac{(\sigma-1)(1-\delta)}{1-\delta\sigma}} = \frac{S_L^*}{S - S_L^*}, \quad (37)
\]

Notice that given \(H/L \), the BGP researcher allocations, \(S_L^* \) and \(S_H^* \), are uniquely determined.
Proposition Consider the directed technological change model with knowledge spillovers and state dependence in the innovation possibilities frontier. Suppose that

\[
(1 - \theta) \frac{\eta_L \eta_H (N_H / N_L)^{(\delta - 1)/2}}{\eta_H (N_H / N_L)^{\delta - 1} + \eta_L} S < \rho,
\]

where \(N_H / N_L\) is given by (35). Then there exists a unique BGP equilibrium in which the relative technologies are given by (35), and consumption and output grow at the rate

\[
g^* = \frac{\eta_L \eta_H (N_H / N_L)^{(\delta - 1)/2}}{\eta_H (N_H / N_L)^{\delta - 1} + \eta_L} S. \tag{38}
\]
Transitional dynamics now more complicated because of the spillovers.

The dynamic equilibrium path does not always tend to the BGP because of the additional increasing returns to scale:

- With a high degree of state dependence, when $N_H(0)$ is very high relative to $N_L(0)$, it may no longer be profitable for firms to undertake further R&D directed at labor-augmenting (L-augmenting) technologies.
- Whether this is so or not depends on a comparison of the degree of state dependence, δ, and the elasticity of substitution, σ.
Summary of Transitional Dynamics

Proposition Suppose that

\[\sigma < \frac{1}{\delta}. \]

Then, starting with any \(N_H(0) > 0 \) and \(N_L(0) > 0 \), there exists a unique equilibrium path. If
\(\frac{N_H(0)}{N_L(0)} < (\frac{N_H}{N_L})^* \) as given by (35), then we have
\(Z_H(t) > 0 \) and \(Z_L(t) = 0 \) until
\(\frac{N_H(t)}{N_L(t)} = (\frac{N_H}{N_L})^* \). \(N_H(0) / N_L(0) < (N_H / N_L)^* \),
then \(Z_H(t) = 0 \) and \(Z_L(t) > 0 \) until
\(\frac{N_H(t)}{N_L(t)} = (\frac{N_H}{N_L})^* \).

If

\[\sigma > \frac{1}{\delta}, \]
then starting with \(\frac{N_H(0)}{N_L(0)} > (\frac{N_H}{N_L})^* \), the economy tends to \(\frac{N_H(t)}{N_L(t)} \to \infty \) as \(t \to \infty \), and starting with \(\frac{N_H(0)}{N_L(0)} < (\frac{N_H}{N_L})^* \), it tends to
\(\frac{N_H(t)}{N_L(t)} \to 0 \) as \(t \to \infty \).
Proposition Consider the directed technological change model with knowledge spillovers and state dependence in the innovation possibilities frontier. Then there is always \(\textbf{weak equilibrium (relative) bias} \) in the sense that an increase in \(H/L \) always induces relatively \(H \)-biased technological change.

Proposition Consider the directed technological change model with knowledge spillovers and state dependence in the innovation possibilities frontier. Then if \(\sigma > 2 - \delta \),

there is \(\textbf{strong equilibrium (relative) bias} \) in the sense that an increase in \(H/L \) raises the relative marginal product and the relative wage of the \(H \) factor compared to the \(L \) factor.
Intuitively, the additional increasing returns to scale coming from state dependence makes strong bias easier to obtain, because the induced technology effect is stronger.

Note the elasticity of substitution between skilled and unskilled labor significantly less than 2 may be sufficient to generate strong equilibrium bias.

How much lower than 2 the elasticity of substitution can be depends on the parameter \(\delta \). Unfortunately, this parameter is not easy to measure in practice.
Models of directed technological change create a natural reason for technology to be more labor augmenting than capital augmenting. Under most circumstances, the resulting equilibrium is not purely labor augmenting and as a result, a BGP fails to exist. But in one important special case, the model delivers long-run purely labor augmenting technological changes exactly as in the neoclassical growth model. Consider a two-factor model with H corresponding to capital, that is, $H(t) = K(t)$. Assume that there is no depreciation of capital. Note that in this case the price of the second factor, $K(t)$, is the same as the interest rate, $r(t)$. Empirical evidence suggests $\sigma < 1$ and is also economically plausible.
Recall that when $\sigma < 1$ labor-augmenting technological change corresponds to capital-biased technological change.

Hence the questions are:

1. Under what circumstances would the economy generate relatively capital-biased technological change?
2. When will the equilibrium technology be sufficiently capital biased that it corresponds to Harrod-neutral technological change?
To answer 1, note that what distinguishes capital from labor is the fact that it accumulates.

The neoclassical growth model with technological change experiences continuous capital-deepening as $K(t) / L$ increases.

This implies that technological change should be more labor-augmenting than capital augmenting.

Proposition In the baseline model of directed technological change with $H(t) = K(t)$ as capital, if $K(t) / L$ is increasing over time and $\sigma < 1$, then $N_L(t) / N_K(t)$ will also increase over time.
But the results are not easy to reconcile with purely-labor augmenting technological change. Suppose that capital accumulates at an exogenous rate, i.e.,

$$\frac{\dot{K}(t)}{K(t)} = s_K > 0. \quad (39)$$

Proposition Consider the baseline model of directed technological change with the knowledge spillovers specification and state dependence. Suppose that $\delta < 1$ and capital accumulates according to (39). Then there exists no BGP.

- Intuitively, even though technological change is more labor augmenting than capital augmenting, there is still capital-augmenting technological change in equilibrium.
- Moreover it can be proved that in any asymptotic equilibrium, $r(t)$ cannot be constant, thus consumption and output growth cannot be constant.
Special case that justifies the basic structure of the neoclassical growth model: extreme state dependence ($\delta = 1$).

In this case:

$$\frac{r(t) K(t)}{w_L(t) L} = \eta^{-1}. \quad (40)$$

Thus, directed technological change ensures that the share of capital is constant in national income—similar to Cobb-Douglas.

In fact, from equation (??) implies that $\left(N_L(t) L \right) / \left(N_K(t) K(t) \right)$ is constant, thus $N_K(t)$ must also be constant.

Therefore, equation (??) implies that technological change must be purely labor augmenting.
Summary of Endogenous Labor-Augmenting Technological Change

Proposition Consider the baseline model of directed technological change with the two factors corresponding to labor and capital. Suppose that the innovation possibilities frontier is given by the knowledge spillovers specification and extreme state dependence, i.e., $\delta = 1$ and that capital accumulates according to (39). Then there exists a constant growth path allocation in which there is only labor-augmenting technological change, the interest rate is constant and consumption and output grow at constant rates. Moreover, there cannot be any other constant growth path allocations.
Stability

- The constant growth path allocation with purely labor augmenting technological change is globally stable if $\sigma < 1$.

- Intuition:
 - If capital and labor were gross substitutes ($\sigma > 1$), the equilibrium would involve rapid accumulation of capital and capital-augmenting technological change, leading to an asymptotically increasing growth rate of consumption.
 - When capital and labor are gross complements ($\sigma < 1$), capital accumulation would increase the price of labor and profits from labor-augmenting technologies and thus encourage further labor-augmenting technological change.
 - $\sigma < 1$ forces the economy to strive towards a balanced allocation of effective capital and labor units.
 - Since capital accumulates at a constant rate, a balanced allocation implies that the productivity of labor should increase faster, and the economy should converge to an equilibrium path with purely labor-augmenting technological progress.
The bias of technological change is potentially important for the distributional consequences of the introduction of new technologies (i.e., who will be the losers and winners?); important for political economy of growth.

Models of directed technological change enable us to investigate a range of new questions:

- the sources of skill-biased technological change over the past 100 years,
- the causes of acceleration in skill-biased technological change during more recent decades,
- the causes of unskilled-biased technological developments during the 19th century,
- the relationship between labor market institutions and the types of technologies that are developed and adopted,
- why technological change in neoclassical-type models may be largely labor-augmenting.
The implications of the class of models studied for the empirical questions mentioned above stem from the \textit{weak equilibrium bias} and \textit{strong equilibrium bias} results.

Technology should not be thought of as a black box. Profit incentives will play a major role in both the aggregate rate of technological progress and also in the biases of the technologies.
Introduction

- We still know relatively little about determinants of technology adoption and innovation.
- A classic question: *does shortage of labor encourage innovation?*
- Related: *do high wages encourage innovation?*
- Answers vary.
Different Answers?

- Neoclassical growth model: *No*, with technology embodied in capital and constant returns to scale, labor shortage and high wages always discourage technology adoption.
- Endogenous growth theory: *No*, it discourages innovation because of scale effects. True also in “semi-endogenous” growth models such as Jones (1995), Young (1999) or Howitt (1999).
- Ester Boserup: *No*, population pressure is a major factor in innovations.
Different Answers? (continued)

- John Hicks: Yes,
 “A change in the relative prices of the factors of production is itself a spur to invention, and to invention of a particular kind—directed to economizing the use of a factor which has become relatively expensive...” (Theory of Wages, p. 124).

- Habakkuk: Yes, in the context of 19th-century US-UK comparison
 “... it was scarcity of labor ‘which laid the foundation for the future continuous progress of American industry, by obliging manufacturers to take every opportunity of installing new types of labor-saving machinery.’ ” (quoted from Pelling),
 “It seems obvious— it certainly seemed so to contemporaries— that the dearness and inelasticity of American, compared with British, labour gave the American entrepreneur ... a greater inducement than his British counterpart to replace labour by machines.” (Habakkuk, 1962, p. 17).
Different Answers? (continued)

- Robert Allen: Yes, high British wages are the reason why the major technologies of the British Industrial Revolution got invented.

 “... Nottingham, Leicester, Birmingham, Sheffield etc. must long ago have given up all hopes of foreign commerce, if they had not been constantly counteracting the advancing price of manual labor, by adopting every ingenious improvement the human mind could invent.” (T. Bentley).

- Zeira; Hellwig-Irmen: Yes, high wages encourage switch to capital-intensive technologies.

- Alesina-Zeira and others: Yes, high wages may have encouraged adoption of certain capital-intensive technologies in Europe
Why the Different Answers?

- Different models, with different assumptions about technology adoption and market structure
- But which assumptions drive these results is not always clear
 - Thus, unclear which different historical accounts and which models we should trust more.
- In fact, theory leads to quite general results and clarifies conditions under which labor shortages will encourage technology adoption.
 - Partly building on Acemoglu (2007).
Framework

- Which framework for technology adoption?
- **Answer:** it does not matter too much.
- **First step:** a general tractable model of technology adoption
 - Competitive factor markets.
 - Technology could be one dimensional, represented by a scaler as in canonical neoclassical growth model or endogenous growth models, or multidimensional.
 - Technology could correspond to discrete choices (in many settings, more realistic, switch from one organizational form to another; adoption of a new general purpose technology)
- Wage push vs. labor scarcity: generally no difference
 - provided that factor prices proportional the marginal product
 - provided that equilibrium demand curves are downward sloping
 - we will see conditions under which this will be the case
We know quite a bit about the relationship between labor scarcity and bias of technology.

In particular:

Theorem (Acemoglu, 2007): Under some weak regularity conditions (to be explained below), a decrease in labor supply will change technology in a way that is biased against labor.

Theorem (Acemoglu, 2007): Under some weak regularity conditions, a decrease in labor supply will decrease wages if and only if the aggregate production possibilities set of the economy is locally nonconvex.
What Is (Absolute) Bias?

- Same as relative bias; but now “absolute,” i.e., shift of the usual demand curve.
Intuition For Bias

- An increase in employment (L), at the margin, increases the value of technologies that are “complementary” to L.
 - Denote technology by θ.
 - Suppose that L and θ are complements, then an increase in L increases the incentives to improve θ, but then this increases the marginal contribution of L to output and thus wages→*biased change*.
 - Suppose that L and θ are substitutes, then an increase in L reduces the incentives to improve θ, but then this increases the marginal contribution of L to output and thus wages→*biased change*

- But this intuition also shows that an increase in L could lead to an increase or decrease in θ.
- Thus implications for “technological advances” unclear.
Induced (Absolute) Bias

![Diagram showing wage vs. labor (L) with Endogenous technology demand (ET) and Constant technology demand (CT).]

- Endogenous technology demand ET_1
- Constant technology demand CT

Wage

ω_0

ω_{ET1}

ω_{CT}

0 \hspace{2cm} L
Motivation

Upward Sloping Demand Curves?

- Impossible in producer theory. But in general equilibrium, quite usual.
The above discussion suggests that we should not look for an unambiguous relationship.

Is there a simple unifying theme?

Suppose that aggregate output can be represented as $F(L, Z, \theta)$, where Z is a vector of other inputs.

Let us say that technological change is strongly labor saving if F exhibits *decreasing differences* in L and θ.

Conversely, technological change is strongly labor complementary if F exhibits *increasing differences* in L and θ.

Answer: labor scarcity will lead to technological advances if technology is strongly labor saving and will lead to technological regress if technology is strongly labor complementary.
What Does This Mean?

- At the margin, labor and the relevant technologies need to be “substitutes”.
- This is generally not the case in neoclassical models or endogenous growth models, but not unusual.
- Examples of models where technology is likely to be strongly labor saving:
 - CES model with the decreasing returns to scale and technology loosely “labor saving”.
Labor Scarcity vs. Wages

- What happens if there is “local nonconvexity”: then, the relationship between labor scarcity and wages reversed.
- Wage push can increase wages, labor supply, and technology.
Consider a static economy consisting of a unique final good and $N + 1$ factors of production, $Z = (Z_1, ..., Z_N)$ and labor L.

All agents’ preferences are defined over the consumption of the final good.

Suppose, for now, that all factors are supplied inelastically, with supplies denoted by $\bar{Z} \in \mathbb{R}_+^N$ and $\bar{L} \in \mathbb{R}_+$.

The economy consists of a continuum of firms (final good producers) denoted by the set \mathcal{F}, each with an identical production function.

Without loss of any generality let us normalize the measure of \mathcal{F}, $|\mathcal{F}|$, to 1.

The price of the final good is also normalized to 1.
Four Different Economies

1. Economy D (for *decentralized*) is a decentralized competitive economy in which technologies are chosen by firms themselves.
2. Economy E (for *externalities*), where firms are competitive but there is a technological externality.
3. Economy M (for *monopoly*), where technologies are created and supplied by a profit-maximizing monopolist.
4. Economy O (for *oligopoly*), where technologies are created and supplied by a set of oligopolistically (or monopolistically) competitive firms.

- Our main focus on Economies M and O.
Economy D

- All markets are competitive and technology chosen by firms.
- Each firm \(i \in \mathcal{F} \) has access to a production function

\[
Y^i = G(L^i, Z^i, \theta^i), \tag{41}
\]

- Here \(L^i \in \mathcal{L} \subset \mathbb{R}_+ \) and \(Z^i \in \mathcal{Z} \subset \mathbb{R}_+^N \).
- Most importantly, \(\theta^i \in \Theta \subset \mathbb{R}^K \) is the measure of technology.
- Suppose that \(G \) is twice continuously differentiable in \((L^i, Z^i, \theta^i) \)—to be relaxed later.
- Thus factor prices are well defined and denote them by \(w_L \) and \(w_{Z_j} \) (vector \(w_Z \)).
- The cost of technology \(\theta \in \Theta \) in terms of final goods is \(C(\theta) \), convex and twice differentiable
 - but \(C(\theta) \) could be increasing or decreasing.
Economy D (continued)

- Each final good producer maximizes profits, or in other words, solves:

\[
\max_{L^i \in \mathcal{L}, Z^i \in \mathcal{Z}, \theta^i \in \Theta} \pi(L^i, Z^i, \theta^i) = G(L^i, Z^i, \theta^i) - w_L L^i - \sum_{j=1}^{N} w_{Z_j} Z_{j}^i - C(\theta^i).
\]

(42)

- Factor prices taken as given by the firm.
- Market clearing:

\[
\int_{i \in \mathcal{F}} L^i \, di \leq \bar{L} \text{ and } \int_{i \in \mathcal{F}} Z_{j}^i \, di \leq Z_j \text{ for } j = 1, \ldots, N.
\]

(43)

Definition

An equilibrium in Economy D is a set of decisions \(\{L^i, Z^i, \theta^i\}_{i \in \mathcal{F}}\) and factor prices \((w_L, w_Z)\) such that \(\{L^i, Z^i, \theta^i\}_{i \in \mathcal{F}}\) solve (42) given prices \((w_L, w_Z)\) and (43) holds.
Economy D (continued)

Let us refer to any θ^i that is part of the set of equilibrium allocations, \(\left\{ L^i, Z^i, \theta^i \right\}_{i \in F} \), as *equilibrium technology*.

Also for future use, let us define the “net production function”:

\[
F(L^i, Z^i, \theta^i) \equiv G(L^i, Z^i, \theta^i) - C(\theta^i). \tag{44}
\]

For the competitive equilibrium to be well-defined, we introduce:

Assumption

Either $F(L^i, Z^i, \theta^i)$ *is jointly strictly concave in* (L^i, Z^i, θ^i) *and increasing in* (L^i, Z^i), *and* L, Z *and* Θ *are convex*; *or* $F(L^i, Z^i, \theta^i)$ *is increasing in* (L^i, Z^i) *and exhibits constant returns to scale in* (L^i, Z^i), *and we have* $(\bar{L}, \bar{Z}) \in L \times Z$. (*)
Proposition

Suppose Assumption 1 holds. Then any equilibrium technology θ in Economy D is a solution to

$$\max_{\theta' \in \Theta} F(\bar{L}, \bar{Z}, \theta'),$$

and any solution to this problem is an equilibrium technology.

Therefore, to analyze equilibrium technology choices, we can simply focus on a simple maximization problem.

Moreover, the equilibrium is a Pareto optimum (and vice versa).

Equilibria factor prices given by marginal products, in particular:

$$w_L = \frac{\partial G(\bar{L}, \bar{Z}, \theta)}{\partial L} = \frac{\partial F(\bar{L}, \bar{Z}, \theta)}{\partial L}.$$
Economy E

- We can also consider a variant on Economy D, where

\[Y^i = G(L^i, Z^i, \theta^i, \bar{\theta}) \]

(46)

- Here \(\bar{\theta} \) is some aggregate of the technology choices of all other firms in the economy.
- For simplicity, we can take \(\bar{\theta} \) to be the sum of all firms’ technologies.
- In particular, if \(\theta \) is a \(K \)-dimensional vector, then \(\bar{\theta}_k = \int_{i \in \mathcal{F}} \theta^i_k \, di \) for each component of the vector (i.e., for \(k = 1, 2, \ldots, K \)).
- Results here will be very similar to Economy O below
 - important differences from Economy D to be explained below.

The final good sector is competitive with production function

\[Y^i = \alpha^{-\alpha} (1 - \alpha)^{-1} G(L^i, Z^i, \theta^i)^\alpha q(\theta^i)^{1-\alpha}. \]

Now \(G(L^i, Z^i, \theta^i) \) is a subcomponent of the production function, which depends on \(\theta^i \), the technology used by the firm.

Assumption 2 now applies to this subcomponent.

The subcomponent \(G \) needs to be combined with an intermediate good embodying technology \(\theta^i \), denoted by \(q(\theta^i) \)—conditioned on \(\theta^i \) to emphasize that it embodies technology \(\theta^i \).

This intermediate good is supplied by the monopolist.

The term \(\alpha^{-\alpha} (1 - \alpha)^{-1} \) for normalization.
Economy M (continued)

- The monopolist can create technology θ at cost $C(\theta)$ from the technology menu.

- Suppose that $C(\theta)$ is convex, but for now, it could be increasing or decreasing in θ;
 - There is as yet no sense that the higher θ corresponds to “better technology”.

- Once θ is created, the technology monopolist can produce the intermediate good embodying technology θ at constant per unit cost normalized to $1 - \alpha$ unit of the final good (this is also a convenient normalization).

- It can then set a (linear) price per unit of the intermediate good of type θ, denoted by χ.
Each final good producer takes the available technology, θ, and the price of the intermediate good embodying this technology, χ, as given and maximizes

$$\max_{L^i \in \mathcal{L}, Z^i \in \mathcal{Z}, \quad q(\theta) \geq 0} \pi(L^i, Z^i, q(\theta) \mid \theta, \chi) = \frac{1}{(1 - \alpha)^{1-\alpha}} G(L^i, Z^i, \theta)^{\alpha} q(\theta)^{1-\alpha}$$

$$-w_L L^i - \sum_{j=1}^{N} w_{Zj} Z^i_j - \chi q(\theta), \quad (48)$$

This problem gives the following simple inverse demand for intermediates of type θ:

$$q^i(\theta, \chi, L^i, Z^i) = \alpha^{-1} G(L^i, Z^i, \theta) \chi^{-1/\alpha}. \quad (49)$$
Economy M (continued)

- The problem of the monopolist is then to maximize its profits:

\[
\max_{\theta, \chi, [q^i(\theta, \chi, L^i, Z^i)]_{i \in \mathcal{F}}} \Pi = (\chi - (1 - \alpha)) \int_{i \in \mathcal{F}} q^i (\theta, \chi, L^i, Z^i) \, di - C (\theta)
\]

subject to (49).

Definition

An equilibrium in Economy M is a set of firm decisions \(\{L^i, Z^i, q^i (\theta, \chi, L^i, Z^i)\}_{i \in \mathcal{F}} \), technology choice \(\theta \), and factor prices \((w_L, w_Z) \) such that \(\{L^i, Z^i, q^i (\theta, \chi, L^i, Z^i)\}_{i \in \mathcal{F}} \) solve (48) given \((w_L, w_Z) \) and technology \(\theta \), (43) holds, and the technology choice and pricing decision for the monopolist, \((\theta, \chi) \), maximize (50) subject to (49).

- Equilibrium easy to characterize because (49) defines a constant elasticity demand curve.
Economy M (continued)

- Profit-maximizing price of the monopolist is given by the standard monopoly markup over marginal cost and is equal to \(\chi = 1 \).
- Consequently, \(q^i(\theta) = q^i(\theta, \chi = 1, \bar{L}, \bar{Z}) = \alpha^{-1} G(L, Z, \theta) \) for all \(i \in \mathcal{F} \).
- Substituting this into (50), the profits and the maximization problem of the monopolist can be expressed as

\[
\max_{\theta \in \Theta} \Pi(\theta) = G(\bar{L}, \bar{Z}, \theta) - C(\theta). \tag{51}
\]

- Assumption 1 is no longer necessary. Instead only concavity in \((L, Z)\):

Assumption

Either \(G(L^i, Z^i, \theta^i) \) is jointly strictly concave and increasing in \((L^i, Z^i)\) and \(\mathcal{L} \) and \(\mathcal{Z} \) are convex; or \(G(L^i, Z^i, \theta^i) \) is increasing and exhibits constant returns to scale in \((L^i, Z^i)\), and we have \((\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z}\).
Proposition

Suppose Assumption 2 holds. Then any equilibrium technology θ in Economy M is a solution to

$$
\max_{\theta' \in \Theta} F(\bar{L}, \bar{Z}, \theta') \equiv G(\bar{L}, \bar{Z}, \theta') - C(\theta')
$$

and any solution to this problem is an equilibrium technology.
Economy M (continued)

- Relative to Economies D and C, the presence of the monopoly markup implies greater distortions in this economy.
- But equilibrium technology is still a solution to a problem identical to that in Economy D or C, that of maximizing

\[F(\bar{L}, \bar{Z}, \theta) \equiv G(\bar{L}, \bar{Z}, \theta) - C(\theta). \]

- Aggregate (net) output in the economy can be computed as

\[Y(\bar{L}, \bar{Z}, \theta) \equiv \frac{2 - \alpha}{1 - \alpha} G(\bar{L}, \bar{Z}, \theta) - C(\theta). \]

- Note that if \(C'(\theta) > 0 \), then \(\partial F(\bar{L}, \bar{Z}, \theta^*) / \partial \theta = 0 \) implies \(\partial Y(\bar{L}, \bar{Z}, \theta^*) / \partial \theta > 0 \) (since \((2 - \alpha) / (1 - \alpha) > 1 \)).
- Factor prices slightly different, but no effect on comparative statics:

\[w_L = \frac{1}{1 - \alpha} \frac{\partial G(\bar{L}, \bar{Z}, \theta)}{\partial L} = \frac{1}{1 - \alpha} \frac{\partial F(\bar{L}, \bar{Z}, \theta)}{\partial L} = \frac{1}{2 - \alpha} \frac{\partial Y(\bar{L}, \bar{Z}, \theta)}{\partial L}. \]
Similar results can also be obtained when a number of different firms supply complementary or competing technologies. In this case, some more structure needs to be imposed to ensure tractability.

Let θ^i be the vector $\theta^i \equiv (\theta^i_s)$, and suppose that output is now given by

$$Y^i = \alpha^{-\alpha} (1 - \alpha)^{-1} G(L^i, Z^i, \theta^i) \alpha \sum_{s=1}^{S} q_s \left(\theta^i_s \right)^{1-\alpha},$$

(52)

where $\theta^i_s \in \Theta_s \subset \mathbb{R}^{K_s}$ is a technology supplied by technology producer $s = 1, \ldots, S$, and $q_s \left(\theta^i_s \right)$ is an intermediate good (or machine) produced and sold by technology producer s, which embodies technology θ^i_s.
Factor markets are again competitive.

The inverse demand functions for intermediates is

$$q_s^i (\theta, \chi_s, L^i, Z^i) = \alpha^{-1} G(L^i, Z^i, \theta) \chi_s^{-1/\alpha},$$

(53)

where χ_s is the price charged for intermediate good $q_s (\theta_s^i)$ by technology producer $s = 1, ..., S$.

Definition

An equilibrium in Economy O is a set of firm decisions

$$\left\{ L^i, Z^i, \left[q_s^i (\theta, \chi_s, L^i, Z^i) \right]_{s=1}^S \right\}_{i \in \mathcal{F}},$$

technology choices $(\theta_1, ..., \theta_S)$, and factor prices (w_L, w_Z) such that

$$\left\{ L^i, Z^i, \left[q_s^i (\theta, \chi_s, L^i, Z^i) \right]_{s=1}^S \right\}_{i \in \mathcal{F}}$$

maximize firm profits given (w_L, w_Z) and the technology vector $(\theta_1, ..., \theta_S)$, (43) holds, and the technology choice and pricing decision for technology producer $s = 1, ..., S, (\theta_s, \chi_s)$, maximize its profits subject to (53).
Proposition

Suppose Assumption 2 holds. Then any equilibrium technology in Economy O is a vector \((\theta_1^*, \ldots, \theta_S^*)\) such that \(\theta_s^*\) is solution to

\[
\max_{\theta_s \in \Theta_s} G(\bar{L}, \bar{Z}, \theta_1^*, \ldots, \theta_s, \ldots, \theta_s^*) - C_s(\theta_s)
\]

for each \(s = 1, \ldots, S\), and any such vector gives an equilibrium technology.

- Difference: Nash equilibrium; equilibrium now solution to fixed point problem
 - but this is not important for the results here.
With this framework, now we can derive the basic results on equilibrium bias.

Take any of Economies D, M or O.

For simplicity, let us suppose that all of the functions introduced above are twice differentiable.

Definition

An increase in technology θ_j for $j = 1, \ldots, K$ is absolutely biased towards factor L at $(\bar{L}, \bar{Z},) \in \mathcal{L} \times \mathcal{Z}$ if $\frac{\partial w_L}{\partial \theta_j} \geq 0$.

Note the definition at current factor proportions.
Definition

Denote the equilibrium technology at factor supplies \((\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z}\) by \(\theta^* (\bar{L}, \bar{Z})\) and assume that \(\partial \theta_j^* / \partial L\) exists at \((\bar{L}, \bar{Z})\) for all \(j = 1, ..., K\). Then there is weak absolute equilibrium bias at \((\bar{L}, \bar{Z})\) if

\[
\sum_{j=1}^{K} \frac{\partial w_L}{\partial \theta_j} \frac{\partial \theta_j^*}{\partial L} \geq 0. \tag{54}
\]

- Note that what is important is “the sum of” all technological effects.
Main Result on Weak Bias

Theorem

(Weak Absolute Equilibrium Bias) Let the equilibrium technology at factor supplies \((\bar{L}, \bar{Z})\) be \(\theta^*(\bar{L}, \bar{Z})\) and assume that \(\theta^*(\bar{L}, \bar{Z})\) is in the interior of \(\Theta\) and that \(\partial \theta^*_j / \partial L\) exists at \((\bar{L}, \bar{Z})\) for all \(j = 1, \ldots, K\). Then, there is weak absolute equilibrium bias at all \((\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z}\), i.e.,

\[
\sum_{j=1}^{K} \frac{\partial w_L}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial L} \geq 0 \text{ for all } (\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z},
\]

(55)

with strict inequality if \(\partial \theta^*_j / \partial L \neq 0\) for some \(j = 1, \ldots, K\).
Why Is This True?

- The result is very intuitive.
- Consider the case where $\theta \in \Theta \subset \mathbb{R}$ (the general case is similar with more notation).
- In equilibrium we have $\partial F / \partial \theta = 0$ and $\partial^2 F / \partial \theta^2 \leq 0$.
- Then from the Implicit Function Theorem

$$\frac{\partial \theta^*}{\partial L} = -\frac{\partial^2 F / \partial \theta \partial L}{\partial^2 F / \partial \theta^2} = -\frac{\partial w_L / \partial \theta}{\partial^2 F / \partial \theta^2},$$ \hspace{1cm} (56)

- And therefore,

$$\frac{\partial w_L}{\partial \theta} \frac{\partial \theta^*}{\partial L} = -\frac{(\partial w_L / \partial \theta)^2}{\partial^2 F / \partial \theta^2} \geq 0.$$ \hspace{1cm} (57)

- Moreover, if $\partial \theta^* / \partial L \neq 0$, then from (56), $\partial w_L / \partial \theta \neq 0$, so (57) holds with strict inequality.
Intuition

- Similarity to the LeChatelier principle
 - but in *general equilibrium*, which is important as we will see.

- More detailed intuition:
 - Suppose that \(L \) and \(\theta \) are complements (i.e., \(\partial^2 F / \partial \theta \partial L \geq 0 \)), then an increase in \(L \) increases the incentives to improve \(\theta \), but then this raises the marginal contribution of to \(L \) output and thus wages→ *biased change*.
 - Suppose that \(L \) and \(\theta \) are substitutes (i.e., \(\partial^2 F / \partial \theta \partial L < 0 \)), then an increase in \(L \) reduces the incentives to improve \(\theta \), but then this increases the marginal contribution of \(L \) to output and thus wages→ *biased change*.
The main result above is “local” in the sense that it is true only for small changes.

Interestingly, it may not be true for large changes, because technological change that is biased towards labor at certain factor proportions may be biased against labor at certain other factor proportions.

We thus need to ensure that such “reversals” not happen.

These will be “supermodularity” type conditions.
Equilibrium Bias: Further Results (continued)

Let us define:

Definition

Let θ^* be the equilibrium technology choice in an economy with factor supplies (\bar{L}, \bar{Z}). Then there is global absolute equilibrium bias if for any $L', \bar{L} \in \mathcal{L}$, $L' \geq \bar{L}$ implies that

$$w_L(\bar{L}, \bar{Z}, \theta^*(L', \bar{Z})) \geq w_L(\bar{L}, \bar{Z}, \theta^*(\bar{L}, \bar{Z}))$$

for all $\bar{L} \in \mathcal{L}$ and $\bar{Z} \in \mathcal{Z}$.

Note: two notions of “globality” in this definition:
- Large changes
- Statement about factor prices at all intermediate factor proportions.
Global Results

Theorem

(Global Equilibrium Bias) Suppose that Θ is a lattice, let $\bar{\mathcal{L}}$ be the convex hull of \mathcal{L}, let $\theta^* (\bar{L}, \bar{Z})$ be the equilibrium technology at factor proportions (\bar{L}, \bar{Z}), and suppose that $F (Z, L, \theta)$ is continuously differentiable in Z, supermodular in θ on Θ for all $Z \in \bar{\mathcal{Z}}$ and $L \in \mathcal{L}$, and exhibits strictly increasing differences in (Z, θ) on $\bar{\mathcal{L}} \times \Theta$ for all $Z \in \mathcal{Z}$, then there is global absolute equilibrium bias, i.e., for any $\bar{L}', \bar{L} \in \mathcal{L}$, $\bar{L}' \geq \bar{L}$ implies

$$\theta^* (\bar{L}', \bar{Z}) \geq \theta^* (\bar{L}, \bar{Z}) \quad \text{for all } \bar{Z} \in \mathcal{Z}, \text{ and}$$

$$w_L (\bar{L}, \bar{Z}, \theta^* (\bar{L}', \bar{Z})) \geq w_L (\bar{L}, \bar{Z}, \theta^* (\bar{L}, \bar{Z})) \quad \text{for all } \bar{L} \in \mathcal{L} \text{ and } \bar{Z} \in \mathcal{Z},$$

(58) with strict inequality if $\theta^* (\bar{L}', \bar{Z}) \neq \theta^* (\bar{L}, \bar{Z})$.

This result follows from Topkis’s Monotonicity Theorem.
Definitions

Definition

Denote the equilibrium technology at factor supplies \((\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z}\) by \(\theta^* (\bar{L}, \bar{Z})\) and suppose that \(\partial \theta^*_j / \partial Z\) exists at \((\bar{L}, \bar{Z})\) for all \(j = 1, \ldots, K\). Then there is strong absolute equilibrium bias at \((\bar{L}, \bar{Z}) \in \mathcal{L} \times \mathcal{Z}\) if

\[
\frac{d w_L}{dL} = \frac{\partial w_L}{\partial L} + \sum_{j=1}^{K} \frac{\partial w_L}{\partial \theta_j} \frac{\partial \theta^*_j}{\partial L} > 0.
\]

- In this definition, \(d w_L / dL\) denotes the total derivative, while \(\partial w_L / \partial L\) denotes the partial derivative holding \(\theta = \theta^* (\bar{L}, \bar{Z})\).
- Recall also that if \(F\) is jointly concave in \((L, \theta)\) at \((L, \theta^* (\bar{L}, \bar{Z}))\), its Hessian with respect to \((L, \theta)\), \(\nabla^2 F_{(L, \theta)}(L, \theta)\), is negative semi-definite at this point (though negative semi-definiteness is not sufficient for local joint concavity).
Main Result

Theorem

(Nonconvexity and Strong Bias) Suppose that Θ is a convex subset of \mathbb{R}^K, F is twice continuously differentiable in (L, θ), let $\theta^* (\bar{L}, \bar{Z})$ be the equilibrium technology at factor supplies (\bar{L}, \bar{Z}) and assume that θ^* is in the interior of Θ and that $\partial \theta^*_j (\bar{L}, \bar{Z}) / \partial L$ exists at (\bar{L}, \bar{Z}) for all $j = 1, ..., K$. Then there is strong absolute equilibrium bias at (\bar{L}, \bar{Z}) if and only if $F (L, Z, \theta)^*$’s Hessian in (L, θ), $\nabla^2 F_{(L, \theta)}(L, \theta)$, is not negative semi-definite at (\bar{L}, \bar{Z}).

Corollary: There cannot be strong bias in a fully competitive economy such as Economy D.

- This is because competitive equilibrium exists only when the production possibilities set is locally convex.
Why Is This True?

- Again, for simplicity, take the case where $\Theta \subset \mathbb{R}$.
- The fact that θ^* is the equilibrium technology implies that $\partial F / \partial \theta = 0$ and that $\partial^2 F / \partial \theta^2 \leq 0$.
- Moreover, we still have
 \[
 \frac{\partial \theta^*}{\partial L} = - \frac{\partial^2 F / \partial \theta \partial L}{\partial^2 F / \partial \theta^2} = - \frac{\partial w_L / \partial \theta}{\partial^2 F / \partial \theta^2}.
 \]
- Substituting this into the definition for dw_L / dL and recalling that $\partial w_L / \partial L = \partial^2 F / \partial L^2$, we have the condition for strong absolute equilibrium bias as
 \[
 \frac{dw_L}{dL} = \frac{\partial w_L}{\partial L} + \frac{\partial w_L}{\partial \theta} \frac{\partial \theta^*}{\partial L}.
 \]
 \[
 = \frac{\partial^2 F}{\partial L^2} - \frac{(\partial^2 F / \partial \theta \partial L)^2}{\partial^2 F / \partial \theta^2} > 0.
 \]
Why Is This True?

- From Assumption 1 or 2, F is concave in Z, so $\frac{\partial^2 F}{\partial L^2} \leq 0$, and from the fact that θ^* is an equilibrium and $\frac{\partial \theta^*}{\partial L}$ exists, we also have $\frac{\partial^2 F}{\partial \theta^2} < 0$.

- Then the fact that F’s Hessian, $\nabla^2 F_{(L,\theta)}(L,\theta)$, is not negative semi-definite at (\bar{L}, \bar{Z}) implies that

$$\frac{\partial^2 F}{\partial L^2} \times \frac{\partial^2 F}{\partial \theta^2} < \left(\frac{\partial^2 F}{\partial L \partial L \theta} \right)^2,$$

(59)

- Since at the optimal technology choice, $\frac{\partial^2 F}{\partial \theta^2} < 0$, this immediately yields $\frac{dw_L}{dZ} > 0$, establishing strong absolute bias at (\bar{L}, \bar{Z}) as claimed in the theorem.

- Conversely, if $\nabla^2 F_{(L,\theta)}(L,\theta)$ is negative semi-definite at (\bar{L}, \bar{Z}), then (59) does not hold and this together with $\frac{\partial^2 F}{\partial \theta^2} < 0$ implies that $\frac{dw_L}{dL} \leq 0$.

Intuition

- Induced bias can be strong enough to overwhelm the standard “substitution effect” leading to downward sloping demand curves.
- Why is “local nonconvexity” sufficient?
- If there is local nonconvexity, then we are not at a global maximum but at a **saddle point**.
 - with technology and factor demands chosen by different firms/agents;
 - note that this is all that equilibrium requires.
- Then there exists a direction in which output can be increased locally.
- A change in L induces technology firms to move θ in that direction, and locally this increases the marginal contribution of L to all put (and thus wages).
Let us now turn to the effect of labor scarcity on “technological advances”.

Results so far silent on this, since either an “increase” or a “decrease” in θ may correspond to technology advances.

Let us focus on labor scarcity for simplicity, but the results apply to “wage push” provided that equilibrium labor demand downward is sloping (more on this below).
Definitions

- Suppose that $C(\theta)$ strictly increasing in θ everywhere, so that higher θ corresponds to technological advances.
- We write $\theta \geq \theta'$ when all components of θ are at least as large as those of θ'.

Assumption

Supermodularity $G(L, Z, \theta) [Y(L, Z, \theta)]$ is supermodular in θ on Θ for all $L \in \mathcal{L}$ and $Z \in \mathcal{Z}$.
Definitions (continued)

Definition

Technological progress is strongly labor saving at $\bar{\theta}$, \bar{L} and \bar{Z} if there exist neighborhoods B_Θ, B_L and B_Z of $\bar{\theta}$, \bar{L} and \bar{Z} such that $Y(L, Z, \theta)$ exhibits decreasing differences in (L, θ) on $B_L \times B_Z \times B_\Theta$.

Technological progress is strongly labor complementary at $\bar{\theta}$, \bar{L} and \bar{Z} if there exist neighborhoods B_Θ, B_L and B_Z of $\bar{\theta}$, \bar{L} and \bar{Z} such that $Y(L, Z, \theta)$ exhibits increasing differences in (L, θ) on $B_L \times B_Z \times B_\Theta$.

Note that $Y(L, Z, \theta)$ is increasing in θ on $B_L \times B_Z \times B_\Theta$ if θ is an equilibrium technology at \bar{L} and \bar{Z}, since $C(\theta)$ is strictly increasing.
Main Result

Theorem

Suppose that Y is supermodular in θ. Then labor scarcity starting from $\bar{\theta}$, \bar{L} and \bar{Z} will induce technological advances if technology is strongly labor saving at $\bar{\theta}$, \bar{L} and \bar{Z}. Conversely, labor scarcity will discourage technological advances if technology is strongly labor complementary.
Why Is This True?

- In Economy M, the result from Topkis’s Monotonicity Theorem.
- In Economy O, equilibrium technology results from the Nash equilibrium of a supermodular game.
 - Use comparative statics for supermodular games to obtain the result.
- Similar results can also be obtained for Economy E, with additional mild assumptions.
- Throughout, important ingredient is that in Economies M, O or E, the equilibrium condition \(\frac{\partial F(L, \bar{Z}, \theta^*)}{\partial \theta} = 0 \) implies
 \[
 \frac{\partial Y(L, \bar{Z}, \theta^*)}{\partial \theta} > 0.
 \]
But this result is not possible in Economy D.

Because by construction in this economy,

$$\frac{\partial F(L, Z, \theta^*)}{\partial \theta} = \frac{\partial Y(L, Z, \theta^*)}{\partial \theta} = 0,$$

so there cannot be “local technology advances” starting in equilibrium.

Note also that even when technologies strongly labor saving, this does not imply that an exogenous increase in wages will lead to a Pareto improvement.

But it is also possible to construct examples, in Economies M, and O, where this is the case.
Implications

What does this theorem imply?

1. Wage push and labor scarcity can easily induce technological advances.
2. But there is no guarantee that they will and the opposite is equally (or more) likely.

We need to understand what the condition “strongly labor saving” entails.

It turns out that technology is generally *not* strongly labor saving with Cobb-Douglas or CES production functions (in labor and capital or other factors of production).

But this is partly a shortcoming of these production functions. With other approaches to production structure, the situation is different as we see next.
Machines Replacing Labor

- Consider the following generalization of Zeira (1998).
- All markets are competitive.
- Output is produced as

\[Y = \left[\int_0^1 y(\nu) \frac{\epsilon-1}{\mu} \, d\nu \right]^\frac{\mu}{\epsilon-1}, \]

where \(y(\nu) \) is product of type \(\nu \) produced as

\[y(\nu) = \begin{cases} \frac{k(\nu)}{\eta(\nu)} & \text{if } \nu \text{ uses new technology} \\ \frac{l(\nu)}{\beta(\nu)} & \text{if } \nu \text{ uses old technology,} \end{cases} \]

- Suppose that \(\eta(\nu) \) is a continuous strictly increasing function, \(\beta(\nu) \) is a continuous and decreasing function, and \(k(\nu) \) is capital used in the production of intermediate \(\nu \).
Machines Replacing Labor (continued)

- Firms are competitive and can choose which product to produce with the new technology and which one with the old technology.
- Total labor supply is L and total supply of capital is K.
- Let the price of the final good be normalized to 1 and that of each intermediate good be $p(\nu)$.
- We write $n(\nu) = 1$ if ν is using the new technology. Clearly, $n(\nu) = 1$ whenever
 \[R\eta(\nu) < w\beta(\nu), \]
 where w is the wage rate and R is the endogenously determined rate of return on capital.

- Given the structure of the problem, it is clear that
 \[n(\nu) = 1 \text{ for all } \nu \leq \theta \]
 for some θ.
Therefore:

\[p(\nu) = \begin{cases} \eta(\nu) R & \text{if } \nu \leq \theta \\ \beta(\nu) w & \text{if } \nu > \theta \end{cases} \]

Profit maximization of final good producers is

\[
\max_{y(\nu) \in [0,1]} \left[\int_0^1 y(\nu)^{\frac{\epsilon-1}{\epsilon}} d\nu\right]^\frac{\epsilon-1}{\epsilon} - \int_0^\theta \eta(\nu) R y(\nu) d\nu - \int_\theta^1 \beta(\nu) w y(\nu) d\nu
\]

so

\[
y(\nu) = \begin{cases} (\eta(\nu) R)^{-\epsilon} Y & \text{if } \nu \leq \theta \\ (\beta(\nu) w)^{-\epsilon} Y & \text{if } \nu > \theta \end{cases}
\]
Market clearing for capital and labor implies

\[\int_0^\theta k(\nu) \, d\nu = \int_0^\theta \eta(\nu) y(\nu) \, d\nu = \int_0^\theta \eta(\nu)^{1-\epsilon} R^{-\epsilon} Y \, d\nu = K \]

and similarly,

\[\int_0^1 \beta(\nu)^{1-\epsilon} w^{-\epsilon} Y \, d\nu = L. \]
Machines Replacing Labor (continued)

- Let us define

\[A(\theta) \equiv \int_0^\theta \eta(\nu)^{1-\epsilon} \, d\nu \quad \text{and} \quad B(\theta) \equiv \int_\theta^1 \beta(\nu)^{1-\epsilon} \, d\nu \]

- Then we have

\[R^{1-\epsilon} = \left(\frac{Y}{K} A(\theta) \right)^{\frac{1-\epsilon}{\epsilon}} \quad \text{and} \quad w^{1-\epsilon} = \left(\frac{Y}{L} B(\theta) \right)^{\frac{1-\epsilon}{\epsilon}} \]

- Then total output can be written as

\[
Y = \left[\int_0^\theta \left(\eta(\nu) R^{1-\epsilon} \right)^{\frac{\epsilon-1}{\epsilon}} Y^{\frac{\epsilon-1}{\epsilon}} \, d\nu + \int_\theta^1 \left(\beta(\nu) w^{1-\epsilon} Y \right)^{\frac{\epsilon-1}{\epsilon}} \, d\nu \right]^{\frac{\epsilon}{\epsilon-1}} \\
= \left[A(\theta)^{\frac{1}{\epsilon}} K^{\frac{\epsilon-1}{\epsilon}} + B(\theta)^{\frac{1}{\epsilon}} L^{\frac{\epsilon-1}{\epsilon}} \right]^{\frac{\epsilon}{\epsilon-1}}
\]
Machines Replacing Labor (continued)

- Now in equilibrium, we have

\[
\frac{\partial Y}{\partial \theta} = \frac{1}{\varepsilon - 1} \left[\eta (\theta^*)^{1-\varepsilon} A (\theta^*)^{\frac{1-\varepsilon}{\varepsilon}} K^{\frac{\varepsilon-1}{\varepsilon}} - \beta (\theta^*)^{1-\varepsilon} B (\theta^*)^{\frac{1-\varepsilon}{\varepsilon}} L^{\frac{\varepsilon-1}{\varepsilon}} \right] Y^{\frac{1}{\varepsilon}}
\]

= 0,

which implies that the term square brackets must be equal to zero.

- Therefore

\[
\frac{\partial^2 Y}{\partial \theta \partial L} = -\frac{1}{\varepsilon} \beta (\theta^*)^{1-\varepsilon} B (\theta^*)^{\frac{1-\varepsilon}{\varepsilon}} L^{-\frac{1}{\varepsilon}} Y^{\frac{1}{\varepsilon}} < 0.
\]

- Thus a decrease in \(\bar{L} \) will increase \(\theta \).
- But in this case an increase in \(\theta \) is not a technological advance.
Machines Replacing Labor (continued)

- Now consider a related monopolistic economy, where
 \[G (L, Z, \theta) = \left[A (\theta) \frac{1}{\varepsilon} K^{\frac{\varepsilon-1}{\varepsilon}} + B (\theta) \frac{1}{\varepsilon} L^{\frac{\varepsilon-1}{\varepsilon}} \right], \]

 with cost \(C (\theta) \) and \(\varepsilon > 1 \).

- Then an increase in \(\theta \) is a technological advance.

- Moreover,
 \[G_{L\theta} = -\frac{\varepsilon - 1}{\varepsilon^2} \beta (\theta^*)^{1-\varepsilon} B (\theta^*) \frac{1-\varepsilon}{\varepsilon} L^{-\frac{1}{\varepsilon}} < 0, \]

 so that technology is strongly labor saving and a decrease in \(\bar{L} \) will induce technological advances.
Machines Replacing Labor (continued)

- However, this is not a general result even when machines replace labor.
- If
 \[
 G(L, Z, \theta) = \left[A(\theta) \frac{1}{\varepsilon} K^{\frac{\varepsilon-1}{\varepsilon}} + B(\theta) \frac{1}{\varepsilon} L^{\frac{\varepsilon-1}{\varepsilon}} \right]^{\frac{\varepsilon}{\varepsilon-1}},
 \]
 then, answer depends on \(\varepsilon, \eta(\theta), \beta(\theta)\) and \(C(\theta)\).
- In particular, in this case, we obtain
 \[
 G_{L\theta} \propto -\frac{1}{\varepsilon} \beta(\theta^*)^{1-\varepsilon} B(\theta^*)^{\frac{1-\varepsilon}{\varepsilon}} L^{\frac{\varepsilon-1}{\varepsilon}} G(L, Z, \theta)^{\frac{1}{\varepsilon}}
 \]
 \[
 + (2 - \alpha) C'(\theta^*) S_L,
 \]
 with \(S_L\) as the labor share of income.
- Therefore, technology will be strongly labor saving if labor share \(S_L\) or \(C'(\theta^*)\) is small.
A Simple Example

- The following is a simpler example along the same lines.
 \[G(L, Z, \theta) = 3\theta Z^{1/3} + 3(1 - \theta) L^{1/3}. \]

- \[C(\theta) = 3\theta^2 / 2. \]
- Normalize \(Z = 1. \)
- Equilibrium technology
 \[\theta^*(L) = 1 - L^{1/3}. \]

- Equilibrium wage
 \[w(L, \theta) = (1 - \theta) L^{-2/3}. \]

- Labor scarcity and wage work in the same direction, since
 \[w(L, \theta^*(L)) = L^{-1/3}. \]
So far we have equated labor scarcity and wage push. But because bias of technology is endogenous, this need not be the case. This has important implications both in its own right—general equilibrium demand curves very different from those implied by producer theory for the relationship between wage push and technological advances.
Implications I

- Labor scarcity and wage push can have very different effects in the presence of strong bias.
- Suppose the local nonconvexity condition is satisfied and also that F exhibits decreasing differences in (L, θ).
- Then labor scarcity will induce technological advances but reduce wages.
- In contrast, wage push will lead to technological regress.
Implications II

- Suppose that labor is supplied elastically and assume that it takes the form $L(w)$.
- Then multiple equilibria are possible.
- The higher technology equilibrium also has higher wages.
- Exogenous wage push, for example, minimum wages, can eliminate the “worse” equilibrium.
Implications II (continued)

![Graph showing demand and supply curves with a minimum wage line.]

- **demand**
- **supply**

The graph illustrates the relationship between supply, demand, and the minimum wage. The supply curve shows the relationship between the quantity of labor supplied and the price (wage). The demand curve shows the relationship between the quantity of labor demanded and the price. The minimum wage line indicates the lowest wage that employers are willing to pay, which affects the point at which the supply and demand curves intersect.
Conclusion

- Labor scarcity and wage push can have major implications for technological progress.
- Discussed in the economic history literature and other contexts.
- Different explanations and hypotheses boiled down to whether there are “decreasing differences” or “increasing differences” between labor and technology.
- Functional forms matter, so that theory is useful in clarifying the main countervailing forces.
 - Empirical evidence on the impact of labor scarcity and wage push on technology adoption necessary.
Empirical Evidence?

- Acemoglu and Finkelstein (2008):
 - Move from retrospective Medicare reimbursements to prospective payment system
 - Increase in labor costs, particularly for hospitals with a high share of Medicare patients.
 - Impact: an increase in technology adoption, again particularly in hospitals with high share of Medicare patients.
 - Various possible channels, but potentially related to the impact of changes in factor prices on technology adoption.

- Lewis (2007):
 - Impact of skill mix choice of technology across US metropolitan areas.