The Economic Returns to Social Interaction: Experimental Evidence from Microfinance

Benjamin Feigenberg, Erica Field and Rohini Pande*

February 23, 2013

Abstract

Microfinance clients were randomly assigned to repayment groups that met either weekly or monthly during their first loan cycle, and then graduated to identical meeting frequency for their second loan. Long-run survey data and a follow-up public goods experiment reveal that clients initially assigned to weekly groups interact more often and exhibit a higher willingness to pool risk with group members from their first loan cycle nearly two years after the experiment. They were also three times less likely to default on their second loan. Evidence from an additional treatment arm shows that, holding meeting frequency fixed, the pattern is insensitive to repayment frequency during the first loan cycle. Taken together, these findings constitute the first experimental evidence on the economic returns to social interaction, and provide an alternative explanation for the success of the group lending model in reducing default risk.

JEL: C81,C93, O12, O16

*The authors are from MIT (Feigenberg), Duke University (Field) and Harvard University (Pande). We thank Max Bode, Emmerich Davies, Sean Lewis Faupel, Sitaram Mukherjee and Anup Roy for superb field work and research assistance, Alexandra Cirone and Gabe Scheffler for editorial assistance and Village Financial Society and Centre for Micro Finance for hosting this study, Theresa Chen, Annie Duflo, Nachiket Mor and Justin Oliver for enabling this work and ICICI, Exxon Mobil Educating Women and Girls Initiative (administered through WAPP/CID at Harvard) and the Dubai Initiative for financial support. We thank the editor, two anonymous referees and Attila Ambrus, Abhijit Banerjee, Tim Besley, Amitabh Chandra, Esther Duflo, Raquel Fernandez, Seema Jayachandran, Dean Karlan, Asim Khwaja, Dominic Leggett, Muriel Niederle, Aloysius Sioux, Jesse Shapiro and numerous seminar participants for helpful comments.

© The Author 2013. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.
1 Introduction

Social capital, famously defined by Putnam (1993) as “features of social organization, such as trust, norms and networks, that can improve the efficiency of society by facilitating coordinated actions,” is considered particularly valuable in low-income countries where formal insurance is largely unavailable and institutions for contract enforcement are weak.\(^1\) Since economic theory suggests that repeat interaction among individuals can help build and maintain social capital, encouraging interaction may be an effective tool for development policy. Indeed, numerous development assistance programs emphasize social contact among community members under the assumption of significant economic returns to regular interaction. But can simply inducing individuals to interact with one another actually facilitate economic cooperation?

Rigorous evidence on this question remains limited, largely due to the difficulty of accounting for endogenous social ties (Manski, 1993, 2000). For instance, if more trustworthy individuals or societies are characterized by denser social networks, we cannot assign a causal interpretation to the positive association between community-level social ties and public good provision. For similar reasons, it is also not possible to assign a causal interpretation to the higher levels of cooperation observed among friends relative to strangers in laboratory public goods games.\(^2\) In short, without randomly varying social distance, it is difficult to validate the model of returns to repeat interaction and even harder to determine whether small changes in social contact can produce tangible economic returns.

The first contribution of this paper is to undertake exactly this exercise. By randomly varying how often individuals meet, we provide causal evidence on the returns to repeat social interaction. We do so in the context of a development program that emphasizes

\(^1\)For instance, Guiso et al. (2004) demonstrate that residents in high social capital regions undertake more sophisticated financial transactions, and Knack and Keefer (1997) show that a country’s level of trust correlates positively with its growth rate.

\(^2\)The community ties literature includes Costa and Kahn (2003); Alesina and La Ferrara (2002); DiPasquale and Glaeser (1999); Miguel et al. (2005); Olken (2009), while laboratory games literature includes Glaeser et al. (2000); Carter and Castillo (2004b); Do et al. (2009); Karlan (2005); Ligon and Schechter (2011).
group interaction: microfinance. In the typical “Grameen Bank”-style microfinance program, clients meet weekly in groups to make loan payments. Our experiment varied social interaction by randomly assigning 100 first-time borrower groups of a typical microfinance institution (MFI) in India to either meet on a weekly or a monthly basis throughout their ten-month loan cycle. Using administrative and survey data we study the effect of short-run increases in group meeting frequency on long-run social contact and an important measure of economic vulnerability: default incidence in the subsequent loan cycle.

A second contribution of this paper is to identify a key mechanism through which group lending sustains high repayment rates: risk-pooling among clients. While the theoretical literature largely emphasizes the importance of joint-liability contracts for reducing default in microfinance, recent experimental evidence suggests that joint liability per se has little impact on default (Gine and Karlan, 2011), raising anew the question of how exactly group lending achieves risk reduction without collateral. Since our clients received individual-liability debt contracts, we can isolate how a less noted feature of the classic group lending contract – encouraging social interaction via group meetings – reduces default. In other words, even absent the explicit incentives for monitoring and enforcement that joint liability provides, frequent group meetings can lower lending risk by increasing social interaction among group members and, as a consequence, strengthening

3Related work include Dal Bo (2005) who provide laboratory game evidence on returns to repeat economic interaction, where the likelihood of future rounds of exchange is randomly assigned and Humphreys et al. (2009)’s field experiment which shows that community development programs randomly assigned to villages encourage pro-social behavior (but cannot isolate the influence of social interaction from other program aspects).

4The remarkable success of microfinance in achieving very high repayment rates on collateral-free loans to poor individuals is widely recognized, as evidenced by awarding of the Nobel Peace Prize to the Grameen Bank founder. Our findings complement theoretical research on the role of social collateral in microfinance and empirical work that identifies a significant correlation between social connections and default risk (Besley and Coate, 1995; Ghatak and Guinnane, 1999; Karlan, 2005). For instance, MFI clients in Peru who are more trustworthy in a trust game are less likely to default, and group-level default is lower in groups where clients have stronger social connections (Karlan, 2005, 2007). In Gine and Karlan (2011), the shift from joint to individual liability increased default among borrowers with ex-ante weak social ties. Fischer and Ghatak (2010) show that microfinance repayment schedules are attractive to present-biased borrowers and consistent with this, Bauer et al. (2012) shows that microfinance borrowers are relatively more likely to be present-biased. It is likely that microfinance induced gains in social collateral, which improve informal insurance arrangements, are particularly valued by these borrowers. In our setting, Field et al. (forthcoming) show that impatient borrowers benefit less from added flexibility in the form of a grace period.
risk-pooling arrangements within social networks.

Our evidence consists of several striking changes in client behavior associated with experimentally increasing the frequency of client contact. First, clients assigned to weekly groups during their first loan cycle increased social contact with group members outside of meetings, and sustained it in the long run. More than a year after the experiment ended, clients who had met on a weekly basis during their first loan saw each other 37% more often outside of group meetings. If client groups remained fixed for multiple loan cycles, then treatment and control groups should converge in terms of their degree of connectedness, in which case we would no longer observe long-run differences in the degree of social interaction according to first-intervention meeting frequency. Instead, the persistence of the difference makes sense in our setting given that, due to a policy change immediately after our experiment that reduced loan groups from ten to five members, the majority of pairs (68%) of first loan group members were no longer in the same loan group at follow-up. As our long-run social contact data show, clients continue to interact outside of loan groups and treatment clients do so at a significantly higher rate.

Second, greater social interaction among clients on a weekly schedule was accompanied by increased willingness to pool risk relative to monthly clients. Here, our evidence comes from a field-based lottery game conducted roughly 16 months after the first loan cycle ended. The lottery operated much like a laboratory trust or solidarity game, but in a real-world setting. Each client was entered into a (separate) promotional lottery for the MFI’s new retail store. The client started with a 1 in 11 chance of winning the lottery prize, a voucher redeemable at the MFI store. She was then offered the opportunity to give out additional lottery tickets to any number of members of her first loan group.

Since ticket-giving reduces a client’s individual chances but increases the probability that someone from the group would win, it captures either her unconditional altruism towards or willingness to risk-share with members of her initial group. To distinguish insurance motivations from unconditional altruism, we randomized the divisibility of the lottery prize. Assuming the more easily divisible prize reduces transaction costs of sharing and/or is perceived as more conducive to sharing, then a client should give more tickets
when the prize is divisible if she is motivated at least in part by risk-sharing considerations, but should not if her sole motivation is unconditional altruism.\(^5\)

Relative to a monthly client, a client who had been assigned to a weekly group two years prior was 32\% more likely to enter a group member into the lottery when the prize was divisible, but only 16\% more likely when it was not.

Finally, we show that clients on a weekly schedule were, in the long run, better able to endure financial shocks. Those who met weekly during their first loan cycle were three times (5.2 percentage points) less likely to default on their subsequent loan, despite the fact that all clients had reverted to the same repayment schedule.

To disentangle the role of meeting frequency from repayment frequency, we use a second treatment arm in which clients were assigned to meet weekly but maintained a monthly repayment schedule. To address variation in actual occurrence of non-repayment meetings in this arm, we implement an Instrumental Variable (IV) strategy, which exploits the fact that loan officers were more likely to cancel a non-repayment meeting on days with heavy rainfall. Our IV estimates show that the default rate difference remains in magnitude and significance when we compare monthly clients to clients randomly assigned to meet weekly but repay monthly. Based on this evidence, we conclude that default risk falls on account of meeting more frequently rather than differences in fiscal habits that could arise from requiring clients to initially repay at more frequent intervals.

To summarize, a higher degree of short-run interaction is associated with increased social interaction in the long run, improved risk-sharing arrangements among clients and lower default. Our findings are consistent with several mechanisms through which social interactions reduces default, including improved monitoring, better information flows, lower transaction costs for risk-sharing and better ability to punish potential deviations from risk-sharing, which we are unable to disentangle. However, our findings substantiate theoretical claims that repeat interaction can yield economic returns by facilitating

\(^5\)Similar variations of dictator or trust games have been used to parse out motives for giving (Ligon and Schechter, 2011; Do et al., 2009; Carter and Castillo, 2004a). Most similar to us, Gneezy et al. (2000) use a sequence of trust games with varying constraints on the amount that can be returned to show that individuals contribute more when large repayments are feasible.
informal economic exchange, and provide an alternative explanation for the success of the group lending model. More generally, the findings demonstrate that tweaking the design of standard development programs to encourage social interaction can generate economically valuable social capital.

The paper is structured as follows: Section 2 describes the experimental design. Section 3 examines how randomized differences in meeting frequency, implemented only during the first loan cycle, influenced long-run social interaction and client willingness to share in the field lottery. Section 4 documents changes in long-run default rates and separates the role of meeting frequency from that of repayment frequency. Section 5 concludes.

2 Experimental Design

2.1 Setting

Our MFI partner, Village Financial Services (VFS), operates in the Indian state of West Bengal. In 2006 when we began our field experiment, it had $6.75 million in outstanding loans to over 56,000 female clients. VFS’ gross loan portfolio to total asset ratio of 78% placed it slightly below the median Indian MFI (84%) while its portfolio at risk of 0.47% (defined as payments outstanding in excess of 30 days) was identical to the median Indian MFI (MIX Market, 2012).

Our study population consisted of first-time VFS clients living in peri-urban slums of the city of Kolkata. At the time of joining the MFI, over 70% of client households owned a business and the median client’s household income placed her just below the dollar-a-day poverty line. Study population demographics, such as income, home ownership and home size, are largely comparable with similar MFIs operating in other Indian cities (Online Appendix Table 2). However, consistent with cross-city differences in MFI penetration, clients in our sample exhibit significantly lower rates of borrowing outside of the MFI.
2.2 Sample

Between April and September 2006 we recruited 100 first-time microfinance groups from neighborhoods in the catchment areas of three VFS branches. Following VFS protocol, the loan officer first surveyed the neighborhood and then conducted a meeting to inform female residents about the VFS loan product. Interested women were invited for a five-day training program, where clients met for an hour each day and learned about the benefits and responsibilities of the loan. At the end of the five days, the loan officer assigned women into groups of ten and identified a leader of each group. Thus, clients in a single loan group lived in close proximity and were typically acquainted prior to joining. Although 63% of group members in our sample knew one another at group formation, most described their relationship with other group members as neighbors (48%) rather than friends (7%) or family (8%).

2.3 Experimental Design

Group Assignment At the end of the group formation process, each group member was offered an individual-liability loan of Rs. 4,000 (~$100) and told that her repayment schedule would be assigned at the time of loan disbursal. Prior to loan disbursal, groups were randomized into either weekly or monthly schedules. In total, 38 groups were assigned to the control arm in which group meetings were held on a monthly basis, and 30 groups were assigned to the treatment arm in which group meetings occurred weekly (Treatment 1). In addition, 32 groups were assigned to an alternative treatment in which they met weekly but repaid monthly (Treatment 2), an artificial contract design for the purpose of microfinance delivery, but one that allows us to disentangle the influence of meeting frequency from the influence of repayment frequency for scientific purposes.

At loan disbursal, Treatment 1 groups were informed that they were to repay their loans in 44 weekly installments of Rs. 100 (a reasonably small amount given average weekly household earnings of Rs. 1,167), while Control and Treatment 2 groups were told...

6Loan officers aimed to form ten-member groups. In practice, group size ranged between nine and thirteen members, with 77% ten-member groups.
that they would repay in 11 monthly installments of Rs. 400. No client dropped out after her repayment schedule was announced.

Meeting Protocol Repayment in a group setting is an integral part of MFI lending practice, and VFS followed a relatively standard “Grameen Bank” group meeting model. Each group was assigned a loan officer who conducted the meeting in the group leader’s house. The average meeting lasted 18 minutes, during which clients took an oath promising regular repayment, and deposited payment with the loan officer and had their passbooks marked.\(^7\) Thus, a client’s repayment behavior was observable to other group members, although in practice most clients socialized while awaiting their turn. Anecdotally, socializing happens en route to meetings, while waiting for the loan officer to arrive and begin meetings and while waiting for one’s turn to pay.\(^8\)

Overall, Control and Treatment 1 groups closely followed the assigned meeting schedule: No Control group met less than five or more than eleven times and no Treatment 1 group met less than 23 or more than 44 times, which were the minimum and maximum meetings allowed by the respective contracts.\(^9\) While in theory clients could skip meetings and send their payment with another group member, it was rare for clients to do so, and average attendance at repayment meetings was 81%.

Treatment 2 groups did not strictly adhere to the experimental protocol: Only half of the groups met at least the minimum required number of times (23) and average attendance at meetings was only 56%. As this compliance issue necessitates a more complicated econometric strategy, we first present experimental estimates which compare Control and Treatment 1 groups only. Then, in order to identify the channels of influence, in Section 4.1.2 we reintroduce Treatment 2 and describe our econometric approach to isolate compliers in this arm.

\(^7\)While the oath encourages group responsibility for loans, the loan contract is individual liability.
\(^8\)Anthropologists have also documented that group lending increases women’s opportunities for social interaction with members of their community (Larance, 2001).
\(^9\)Variation in number of meetings within a repayment schedule reflects the fact that VFS allows a client to repay her outstanding balance in a single installment starting 23 weeks after loan disbursement. Once a majority of group members have repaid, remaining clients typically repay at the VFS office.
2.4 Data

We tracked our experimental clients over two and a half loan cycles (on average 176 weeks). Figure 1 provides a detailed study timeline. Our analysis makes use of several data sources, which we describe in turn.

Baseline and Endline Data After group formation, we administered a baseline survey to 1016 out of 1028 clients. The short time period between group formation and loan disbursement led to a significant fraction of baseline surveys taking place after loan disbursement. We therefore exclude any potentially endogenous baseline variables from the analysis. Roughly 13 months after first loan disbursement, we conducted an endline survey with 961 clients that provides data on transfers and loan use. We observe similar attrition in both surveys across treatment and control clients (Online Appendix Table 3).

Short-run Social Contact To gauge social interaction among group members, loan officers collected data at repayment meetings during the first loan cycle. The protocol was as follows: After marking passbooks, each client was pulled aside and asked broad questions about social ties with other group members, in order to provide multiple indicators of short-run contact. The first two of these indicators measure social interaction and are constructed as the maximum values of client responses to the two questions – “Have all of your group members visited your house?” and “Have you visited the houses of all group members?” The next two indicators measure knowledge of group members: whether the client knew the names of her group members’ immediate family and whether she knew if group members had relatives visit over the previous month. Here, we report the average effect size across these measures, defined as the short-run social contact index.

\[\text{Short-run social contact index} = \frac{1}{4} \left(\frac{z_1 + z_2 + z_3 + z_4}{4} \right) \]

To preserve anonymity (given potential observability of responses by group members) we did not ask about interactions with specific group members. We consider the maximum value for all variables, except the relative visit variable for which we take the average (only the latter was reported for an explicit recall period). To account for the delay in starting the survey and the fact that groups could choose to repay early and stop meeting after week 23 of the loan cycle, we use data collected between week 9 and week 23 of the loan cycle. The index is the equally weighted average of its components’ z-scores, where each measure is oriented so that more beneficial outcomes have higher scores. The z-scores are calculated by subtracting the Control group mean and dividing by the Control group standard deviation. By construction, the index has a mean of 0 for the Control group (for further details, see Kling et al., 2007).
Long-run Social Contact and Lottery Data collection during group meetings allowed us to gather high frequency data in an economical way. However, collecting data in a group setting could create reporting bias that confounds experimental comparisons. For instance, when responses are potentially overheard, a client may be subject to conformity bias wherein she answers questions in a similar manner to others in the group, which could potentially bias experimental estimates. To gather more reliable data on interactions, roughly 16 months after the experimental loan cycle ended, we implemented a lottery game and survey with 866 clients in their homes.\(^{12}\) Surveying occurred in two phases, and client assignment to phase was random. Section 3.2.1 describes the lottery protocol and data. After the lottery was conducted, the client was surveyed about her current contact with every member of her first loan cycle group. On average we have nine observations per client. In cases where both members of a pair were surveyed, we keep the maximum value (since social contact cannot vary, in the absence of measurement error or differences in survey timing, within a pair), giving 3,026 pairwise observations.\(^{13}\) The survey questions included: number of times over the last 30 days the client had visited or been visited by a group member (outside of repayment meetings), whether she talked to the group member about family and whether they celebrated the Bengali festival (Durga Puja) together. We report all three outcomes and, for comparability with the short-run index, also report a long-run social contact index defined at the pair level.

Default Data Our primary outcome of interest is default in the loan cycle subsequent to the experimental loan cycle (from now on, second loan cycle), during which all clients reverted to the same repayment and meeting frequency. Bank administrative records show that all clients (except one deceased) took out a loan within 176 weeks of their first loan due date. Online Appendix Table 1 shows that time between due date of first loan and disbursement of second loan does not differ by experimental arm, and we have confirmed that our default results are robust to controlling for this variable.

\(^{12}\)We excluded a randomly selected 130 clients with whom we piloted the lottery game and 32 clients could not be tracked.

\(^{13}\)82\% of pair member provided the same response on having spent the previous Durga Puja together. This is the only long-run social contact variable in which pair-member responses should coincide, absent measurement error (since pair members were not surveyed on the same day).
We define a client as having defaulted if she has not repaid her loan in full by 44 weeks after the official loan end date (i.e., one full loan cycle duration later).\footnote{Although we cannot track all second loan clients for more than 44 weeks, we have verified that second loan default rates are relatively constant at the 64-week mark among those clients whom we can observe for this long. This, combined with the fact that the portfolio at risk statistic officially used for MFI credit rating is defined as the share of portfolio with loan payments outstanding 30 days after due date (CGAP, 2012) makes our default definition relevant.}

\section*{2.5 Randomization Balance Check}

Panel A in Table 1 reports time-invariant characteristics from the baseline survey as a function of treatment assignment. Columns (1)-(3) report the randomization check for the full sample and columns (4)-(6) for clients in the lottery/long-run social interaction survey. On average, randomization created balance between treatment and control groups on observed characteristics. There is one statistically significant difference between Control and Treatment 1 clients: On average, Treatment 1 clients have lived in their neighborhood for two fewer years. With respect to the comparison between Control and Treatment 2, a higher fraction of Muslim clients fell into Treatment 2. This imbalance reflects residential segregation by religion, combined with a relatively small number of Muslim clients: 93\% of our clients report living in religiously homogenous neighborhoods (90\% Hindu; 3\% Muslim). Our 55 Muslim clients are concentrated in eight groups, of which six were assigned to Treatment 2. Since Muslim clients tend to come from larger households, we observe a corresponding imbalance on household size. Since no variable is imbalanced in both treatment arms, the robustness of our results to alternative treatment arms provides strong evidence that imbalances are not driving our results. Nonetheless, throughout this paper we report regressions with and without the controls listed in Panel A of Table 1. Online Appendix Table 4 shows that our main results are robust to excluding groups with Muslim clients.\footnote{The reduction of groups makes the IV default result more noisily estimated (p-value of 0.12) but the point estimates with and without Muslim groups are of similar size and statistically indistinguishable.}

Panel B reports an additional set of variables from the baseline survey that are potentially (though not likely, given the short amount of time between loan disbursement and
data collection) influenced by loan receipt. We observe no systematic differences between control and treatment groups. Of the 20 comparisons, the only two (weakly) significant differences in means are that Treatment 1 clients were less likely to have a household member earning a fixed salary, and Treatment 2 clients were slightly less likely to report experiencing an illness during the last 12 months. Finally, comparing across columns we see similar patterns of mean differences in observables across the full sample and the client sample for the lottery/long-run survey.

3 Meeting Frequency and Client Relationships

In this section, we use data on social interactions to examine whether requiring first-time VFS clients to meet and repay weekly (Treatment 1) as opposed to monthly (Control) increased social interactions outside of group meetings, both during and beyond the experiment. To investigate whether clients also experienced long-run improvements in risk-sharing arrangements, we implemented a follow-up lottery game that measured willingness to pool risk. For ease of exposition, we restrict the sample to Control and Treatment 1 clients only, since compliance (in terms of meeting protocol) was perfect in these two arms.

In Section 4, we examine the economic impact of these changes by testing whether clients who met weekly in the first loan cycle exhibit lower default on their subsequent loan. Long-run financial behavior (and default) may be directly influenced by initial repayment frequency. We, therefore, complement our experimental analysis by an IV analysis in which we compare default outcomes across clients who paid monthly in the first loan cycle but differ in whether they met on a weekly or monthly basis (that is we compare Treatment 2 to Control). The IV strategy is needed to address noncompliance in the Treatment 2 arm, and exploits the fact that weekly non-repayment meetings were more likely to be canceled if they were scheduled to occur on a day of heavy rainfall. Our IV estimates verify that differences in meeting frequency not repayment frequency underlie changes in default.
3.1 Impact on Social Interaction

Data obtained during repayment meetings provide a summary measure of a client’s interaction with other group members during the experimental loan cycle.

For client i in group g with short-run contact index y_{gi} we estimate:

$$y_{gi} = \beta T_{1,g} + X_{gi} \gamma + \epsilon_{gi}$$

where $T_{1,g}$ is an indicator for assignment to the Weekly-Weekly treatment arm (Treatment 1) and X_{gi} represents individual covariates (those variables included in Panel A of Table 1). β is interpretable as the effect of switching from a monthly to a weekly group meeting and repayment model on a client’s contact with group members outside of meetings. Standard errors are clustered by group.

As reported in Table 2, switching a client from monthly to weekly meetings increases her social contact with group members by over 3 standard deviations (column 1). We observe similar results with and without controls (throughout the paper, Panels A and B report estimates without and with controls, respectively).16 This impact is large but plausible. As the questions ask about a client’s social contact with all group members, the estimated treatment effect depends on the response to treatment of the weakest pairwise tie within a group. Since 76% of clients have at least one person in their group who is a stranger at baseline and 40% have at least one member who is a distant (geographically) stranger at baseline, the estimates are consistent with a scenario in which it takes 5-20 meetings for two strangers to become sufficiently connected to initiate social interaction (hence the index is low for Control groups after five months, but by week 23 virtually every pair of Treatment 1 clients has connected).

However, some caveats apply. First, the presence of other clients during the survey raises the concern of aggregation and reporting biases in client responses. Second, the

16Component-wise regression results show large and significant effects of assignment to the Treatment 1 arm. For instance, while only 10% of Control clients report having met all group members outside of meetings, almost 100% of Treatment 1 members report having visited (or having been visited by) all other group members by the same point (see Online Appendix Table 5).
frequency of surveying may have influenced responses and generated artificial differences across treatment groups in reported interactions. A related concern is that surveying clients about social interactions may itself encourage friendship formation. Two pieces of evidence suggest that survey frequency did not directly influence real or reported interactions. First, delays in fieldwork initiation meant that group meeting surveys were implemented more than five weeks after meetings began for 26 of the 68 groups. Data on social interactions from the first group meeting survey for these groups show significant differences across experimental arms in the reported level of interaction. Second, in a later intervention we randomized groups (typically on their third loan cycle) into Weekly-Weekly and Monthly-Monthly groups and loan officers surveyed them during meetings at the same frequency (monthly). We continue to see greater increases in social contact among groups that met weekly. See Online Appendix Table 6 for results.

That said, even in the absence of data quality concerns, our interest is in lasting, not transient, changes in social networks. Therefore, we turn to long-run measures of social interaction, collected 16 months after the experimental loan cycle ended. These data have the additional advantage of being collected through careful surveying, where each client was asked in the privacy of her home about her ongoing interactions with each member of her first loan group. As before, we compare clients assigned to the Weekly-Weekly (Treatment 1) schedule to those assigned to the Monthly-Monthly (Control) schedule. For member i matched with group member m in group g we estimate:

$$y_{gi}^m = \beta T_{1.g} + X_{gi} \gamma + s_{gi} + \epsilon_{gi}^m$$ (2)

s_{gi} is a stratification indicator for whether individual i was surveyed in the first phase of surveying. The other variables are defined as in Equation (1) and standard errors clustered by group.17

17Factors common across observations involving a single member imply observations in a pairwise (dyadic) regression are not independent (Fafchamps and Gubert, 2007). The error covariance matrix structure may also exhibit correlations varying in magnitude across group members. Group-level clustering of standard errors (which subsumes individual clustering) accounts for this potential pattern: With roughly equal sized clusters, if the covariate of interest is randomly assigned at the cluster level, then
Columns (2)-(5) of Table 2 reveal that clients engaged in a significant amount of social interaction with their first loan cycle group members at the time of the follow-up survey, and that this interaction was significantly higher among clients who met on a weekly basis during the first loan cycle. In column (2) we see that the average Control pair met 5.5 times over the last 30 days (outside of repayment meetings), and that the average Treatment 1 client pair met 37% more often than their Control counterpart. In total, 15% of Control client pairs versus 22% of Treatment 1 pairs celebrated the last Durga Puja festival together, and 23% of Control client pairs compared to 30% of Treatment 1 pairs report discussing family matters (column 4). Finally, for comparability with the short-run index we report the long-run social contact index, which aggregates outcome variables in columns (2)-(4), and see that Treatment 1 assignment increased long-run social contact by 0.19 standard deviations.

The persistence of differences in social interaction is particularly striking given that all clients took out at least one additional loan with VFS and roughly half report having a VFS loan outstanding at the time of the follow-up survey. Thus, we might expect social interaction rates to converge as monthly members slowly get to know one another over the long run. However, an important reason not to anticipate convergence is churning in group membership: Due to a VFS policy change implemented immediately after our experiment that reduced group size from ten to five members, the majority (68%) of client pairs were not in the same group for their second loan.18 Hence, many clients lost the opportunity to get to know one another at group meetings after the experimental loan cycle ended. Put differently, the relatively low level of group membership persistence allows us to more clearly identify differences in meeting frequency during the first loan cycle as the channel for long-run differences in social interaction (which occurred \textit{outside} of meetings).

18On average, three out of four of a client’s second loan group members were from her first loan group, so there is also some degree of change in group membership that is unrelated to the policy change. Anecdotally, the main reason for changes in group membership across cycles is that clients from the same group differed in the timing of their demand for the next loan.
The policy change raises the possibility that treatment assignment influenced the likelihood that group members remain together in future loan cycles, which could be an independent channel through which average levels of social interaction between treatment groups diverge over time. We are able to track group membership of clients in 51 groups. For these clients, Online Appendix Table 1 shows no difference across experimental arms in the likelihood of being paired with first group members in the second loan cycle. Thus, our experimental differences in long-run contact are likely driven by the higher propensity of Treatment 1 (Weekly-Weekly) clients to stay in touch with members of their first group who did not remain with them for a subsequent loan.

3.2 Impact on Risk-sharing

Clearly, the increases in social interaction documented in Table 2 are meaningful if they were tangibly welfare-improving, for instance by enabling information spillovers or facilitating economic exchange. For poor clients who face many shocks and rigid debt contracts, informal risk-sharing arrangements are likely to be particularly valuable. Hence, we directly examine whether increasing social interaction facilitated informal risk-sharing arrangements through a series of field-based lottery games. These lotteries, a variant of laboratory dictator and trust games (Forsythe et al., 1994; Berg et al., 1995), were designed to elicit client willingness to form risk-sharing arrangements.

Our methodology contributes to a growing experimental literature on risk-sharing, which finds that increased opportunity for commitment across individuals is associated with a higher willingness to undertake profitable but riskier investments, and that close interpersonal relationships predict risk pooling (Barr and Genicot, 2008; Attanasio et al., 2012). Evidence from games conducted in an experimental economics laboratory also suggests that group contracts improve implicit insurance against investment losses (Gine et al., 2010). Experimental approaches to measuring risk-sharing, inside or outside of the laboratory, depart considerably from non-experimental empirical tests which most often

19Indeed, in and of itself, being encouraged to spend time with strangers may be utility-decreasing if one does so out of convention or social pressure.
examine differences in networks’ ability to smooth consumption in response to shocks (e.g. Townsend, 1994; Mace, 1991). While the latter may provide a more direct test of standard hypotheses derived from models of risk-sharing, the experimental approach, in which outcomes are financially incentivized rather than merely reported, arguably enables a more reliable method of establishing risk-sharing between specific pairs of individuals.

That said, we complement our experimental measure of risk-sharing with survey data on financial transfers into and out of client households, and demonstrate similar patterns across the two types of data.20

Below, we describe the lottery protocol, and then key predictions of increased risk-sharing for client behavior in the lottery. Then we test these predictions using the lottery data and finally check for consistency of patterns in the financial transfers data.

3.2.1 Lottery Protocol and Data

Main Lottery Surveyors approached each client in her house and invited her to enter a promotional lottery for a new VFS retail store. The lottery prize consisted of gift vouchers worth Rs. 200 ($5) redeemable at the store (see Appendix for the surveyor script). The client was informed that, in addition to her, the lottery included 10 clients from different VFS branches, whom she was therefore unlikely to know. If she agreed to enter the draw (all agreed), she was given the opportunity to enter any number of members of her first VFS group into the same draw. Each chosen group member would receive a lottery ticket and be told whom it was from (typically within one day).21 To clarify how ticket-giving influenced her odds of winning, the client was shown detailed payoff matrices (Figure 2), and told that the other ten lottery participants could not add individuals to the lottery.

20We lack information on consumption and, therefore, cannot directly link potential improvements in risk-sharing with consumption smoothing (for related work which links risk-sharing and social networks, see Angelucci et al., 2012). Our findings on the comparability of survey and experimental estimates is consistent with Barr and Genicot (2008) and Ligon and Schechter (2012); both show that behavior of network members is correlated across laboratory and real-world settings.

21Only clients who received a ticket were told of the group members’ decision. In this sense, the lottery departs from most laboratory trust games in which individuals are not given the opportunity to “opt out” of playing the game. By not giving a ticket, individuals in our sample opt out of participating in the cooperative game with the other member, which is beneficial in a non-anonymous trust game since otherwise behavior could be heavily influenced by social norms rather than pure trustiness.
Hence, she could potentially increase the number of lottery participants from 11 to as many as 20, thereby increasing the fraction of group members in the draw from 9% to up to 50% while decreasing her individual probability of winning from 9% to as low as 5%.

We randomized divisibility of the lottery prize at the client level (randomization balance check is provided in Online Appendix Table 7). For half of the sample, the prize was one Rs. 200 voucher, while for the other half it consisted of four Rs. 50 vouchers. Appendix Figure 1 provides pictures of these vouchers. A voucher could only be redeemed by one client and all vouchers expired within two weeks.

Supplementary Lottery Frequent interaction with group members could cause a client to either expand and strengthen her existing social network or to substitute microfinance group members for existing members of her network. To examine the nature of network change, we implemented a supplementary lottery with a sample drawn from five-member VFS groups formed between January and September 2008 (roughly a year and half after the experimental loan groups were formed). As before, groups were randomly assigned to either a weekly or a monthly schedule. For comparability with previous estimates, our lottery was restricted to new (first-time) borrowers, which encompasses 55 Control (Monthly-Monthly) and 51 Treatment 1 (Weekly-Weekly) clients (from 39 and 35 groups respectively). Clients were approached in the same manner as in the original lottery. The difference was that the new lottery asked each client how many tickets she wanted to give to group members (up to four), and how many tickets she wanted to give to individuals outside of the group (up to four). As in the main lottery, if an individual was given a ticket by the client then he or she was informed by the surveyor (typically on the same day). The voucher prize in this lottery was always divisible.

Lottery Data We use data on ticket-giving by a client. For each client in the main lottery, we have, on average, nine pairwise observations on whether she gave a ticket to each of her group members, and for each client in the supplemental lottery, we have eight pairwise observations.

How Artifactual Was the Lottery? Our lottery game shares many design features of the trust game. In using a lottery game in place of a trust game, our primary interest
was to avoid triggering client awareness of being a participant in an experiment. Aside from banking, VFS undertakes many community interventions and conducts regular promotional activities in order to attract and retain clients. Thus, it is likely that clients perceived the invitation to participate in a VFS lottery as a natural VFS activity. The potential for the lottery to seem artifactual arises from the invitation to give tickets to other group members. However, the fact that client selection for the lottery was described as a reward for survey participation during her first loan cycle and the fact that the lottery was linked to the VFS store made it more natural that clients were offered the chance to give tickets to their very first loan cycle group members.

3.2.2 Testable Predictions

Since group members who receive a ticket from a client are not obligated to share their winnings (as in a trust game), no ticket-giving is a Nash outcome. Risk-pooling via ticket-giving increases a client’s expected payoff only if she anticipates that informal enforcement mechanisms will ensure sharing of resources (such as lottery winnings).

To see this, suppose the client gives one group member a ticket. The pair’s joint chances of winning the lottery rise from 9% to 17%. There are mutual gains from risk-pooling (e.g., if the pair equally shares winnings then giving a ticket increases a client’s expected lottery winnings from Rs. 18 to 25 and the pair member’s expected winnings rise from Rs. 0 to 8.3), but costs to the client if there is no sharing (since her individual probability of winning the lottery declines from 9% to 8% as the pool of lottery entrants rises to 12; see Appendix Figure 2 for a graphical illustration).

We use the lottery game to test the hypothesis that higher frequency of interaction can improve a client’s ability to enforce risk-pooling arrangements with group members.

22Furthermore, in the supplementary lottery, we expanded the set of people clients could give tickets to and, as described below, our findings are very similar across the two lotteries.

23The top and bottom lines show a client’s expected payoff with full and no sharing, respectively. The idea that risk-sharing can increase potential winnings is shared by a trust game, though the increase occurs with certainty in the trust game but stochastically in the lottery game. In addition, unlike a trust game, pairwise returns in the lottery depend on total ticket-giving, generating more subtle predictions on ticket-giving as a function of group composition, which we do not exploit.
(on this mechanism, also see Karlan et al., 2009; Besley and Coate, 1995 Ambrus et al, forthcoming). We have already shown that higher meeting frequency in the first loan cycle strengthened long-run social ties between group members. Hence,

Prediction 1 Higher meeting frequency in the first loan cycle will increase ticket-giving. However, a positive correlation between meeting frequency and ticket-giving is also consistent with a model in which more frequent interaction simply increases a client’s unconditional altruism towards group members or increases her desire to signal willingness to share.

To isolate the importance of meeting frequency for risk-sharing arrangements we exploit random variation in the divisibility of the lottery prize. Divisibility reduces the transaction costs associated with sharing tickets. In addition, framing the prize as easily divisible may prime the first mover to think of the lottery in terms of potential gains from cooperation as opposed to a purely altruistic effort. However, in both cases a more divisible lottery prize will increase ticket-giving if and only if the client cares about reciprocal transfers.\(^{24}\) Hence,

Prediction 2 If ticket-giving only reflects (unconditional) altruism or signaling, then incidence of ticket-giving will be independent of receiver’s perceived ability to reciprocate.

Finally, we consider potential crowd-out of reciprocal arrangements with non-group members. The crowding out force that we consider of interest is the possibility that more time spent with individual group members reduces time spent with people outside the group, given overall time constraints on socializing. The idea is that spending more time with people either encourages or facilitates risk-sharing, so if you spend less time with non-group members, you will be less likely to pool risk with them. To examine whether higher meeting frequency caused clients to substitute social ties with group members for ties with non-group members, we use the supplementary lottery in which a client could choose to give tickets to non-group members. Hence,

\(^{24}\)The behavioral response to the divisibility of the lottery prize could potentially reflect the fact that framing the prize as divisible, and therefore shareable, primes a participant to think in terms of reciprocal arrangements. However, this possibility leaves our prediction unchanged: Divisibility should not matter if motivations for giving are purely altruistic or driven by signaling.
Prediction 3 If ticket-giving to group members is accompanied by substitution away from social ties with non-group members, then ticket-giving to non-group members will be lower for Treatment 1 (Weekly-Weekly) clients than for Control (Monthly-Monthly) clients.

3.2.3 Results

Our outcome of interest is ticket-giving: 67.2% of main lottery participants gave at least one ticket. Figure 3 shows the ticket distribution across Control and Treatment 1 clients (in percentage terms to account for group size differences) for the main lottery. After zero tickets, the fraction of group members that received tickets declines gradually and levels off after 60%. Control clients are more likely to not give tickets and less likely to give tickets to more than 60% of their group. Ticket-giving patterns in the supplementary lottery are qualitatively similar, with Control clients more likely to not give tickets and less likely to give multiple tickets.

In Table 3 we provide regression results from the specifications given by Equation (2). Looking across all clients, we see that Treatment 1 clients gave 23.8% more tickets than the Control group (column 1), consistent with stronger social ties among clients who meet weekly translating into higher willingness to risk-share in the lottery game.

Next, we evaluate the importance of risk-sharing relative to either unconditional altruism or a desire to signal reciprocity (independent of willingness to risk-share) in explaining the link between ticket-giving and meeting frequency.

In columns (2) and (3) we show results for clients who were randomized into either the indivisible or divisible prize lottery, respectively. Relative to the Control group, Treatment 1 clients were significantly more likely to give a ticket to a group member if and only if the lottery prize was divisible. Among clients offered the divisible voucher, Treatment 1 clients were 31.9% more likely to give tickets than Control clients (9.1 percentage points). We observe no significant difference between experimental arms when the prize was a single indivisible voucher. Furthermore, for clients in the Control group, ticket-giving behavior was similar across voucher categories.

We have posited that ticket divisibility led to actual or perceived reductions in the
transaction costs associated with reciprocal behavior. A first potential explanation for the differential impact of ticket divisibility across experimental arms is non-risk-sharing motivation for ticket-giving among Control clients. Consistent with this, 76% of ticket-giving in the Control group was to either individuals that clients had not seen in the last 30 days, individuals not identified as sources of help in the case of emergency, or immediate family members. A second possibility is that only marginal risk-sharing arrangements were sensitive to the reductions in the transaction costs of reciprocal behavior which were induced by prize divisibility. If there was heterogeneity in the extent to which a client’s risk-sharing network was affected by assignment to the weekly group, then the transaction cost reductions may be particularly salient for weekly clients who were less strongly affected by the treatment.

If clients are only able to sustain a fixed number of reciprocal arrangements, then one may worry that stronger ties with group members lead to crowd-out. We use the supplementary lottery to test whether greater risk-pooling among group members was accompanied by substitution away from risk-pooling arrangements with non-group members. For each client we have eight observations, four pertaining to non-group members (we capped ticket-giving to non-group members at four tickets) and four pertaining to group members. We estimate:

\[y^{m}_{gi} = \beta_1 T_{i,g} + \beta_2 D^{m}_{gi} + \beta_3 T_{i,g} \times D^{m}_{gi} + X_{gi} \gamma + \epsilon^{m}_{gi} \]

where \(y^{m}_{gi} \) reflects client \(i \)'s ticket-giving decision, and \(D^{m}_{gi} \) is an indicator variable for whether individual \(m \) is \(i \)'s group member. We anticipate that \(\beta_3 \) is positive, i.e., ticket-giving is higher among group members of Treatment 1 clients. If there is substitution then \(\beta_1 \) (which captures ticket-giving to non-members) will be negative.

Column (4) shows that, consistent with the main lottery, treatment clients are significantly more likely to give tickets to group members in the supplementary lottery (\(\beta_3 > 0 \)). However, \(\beta_1 \) is close to zero and insignificant, suggesting no corresponding decline in the propensity to give tickets to non-group members. Hence, strengthening social ties among
group members does not appear to cause clients to substitute away from risk-pooling arrangements with non-group members.\(^{25}\)

The lack of substitution could reflect several factors: if sharing with non-group members is entirely altruistic, or if the individual time constraint is not binding (so they do not spend less time with people outside the group), or if risk-sharing arrangements with outsiders are not sensitive to small changes in time spent together because they are so well-entrenched, then we would not see any crowd-out.

While we cannot definitively identify which of the above are responsible the absence of a change, qualitative evidence suggests that traditional norms of female isolation rather than time constrains friendship formation in this setting. In interviews, study clients stated that meetings provided them with a reason to leave their home and interact with others in the community. To measure this more systematically, in December 2011 we conducted a detailed time-use survey with 50 women (randomly selected from those who entered the supplementary lottery). The survey collected hourly data over the past 24 hours on what a respondent did and with whom they spent their time. On average, a woman spent 45 minutes per day watching television by herself, 45 minutes per day resting by herself and 26 minutes engaging in other leisure time activities alone. At the end of the survey, each respondent was asked whether she would like to spend more time per week socializing with other women in her community and whether she had the spare time to do so. On average, 86% reported having time to speak with someone who wanted to talk with them, and 66% desired more friends with whom they could spend time.

Finally, we turn to financial transfers data from the endline survey conducted at the end of the first loan cycle. This both provides a consistency check on our risk-sharing interpretation of ticket-giving and tests whether behavior in the potentially artifactual field experiment correlates with behavior outside of the experiment. Since 43% of clients report no transfers, we focus on a binary outcome of whether the client reported transfers to or from individuals over the last year, grouped into three self-reported categories: (i)

\(^{25}\)Since the in-group sharing option was always first (for both treatment and control), it is difficult to interpret differences in levels of in-group versus out-group sharing (β_2), although the interpretation of treatment-control differences (β_1) is still valid.
close family and friends, (ii) other relatives and neighbors and (iii) other non-relatives.26 Unfortunately, unlike in the lottery data, we cannot identify transfers to VFS members.

Columns (5) and (7) show that transfers with close family members or friends and “other non-relatives” are equally likely among Treatment 1 and Control clients. However, Treatment 1 clients are 39\% more likely to report transfers to other relatives and neighbors (column 6). Thus, consistent with the supplementary lottery ticket-giving results, we see increased risk-sharing and no displacement of risk-sharing arrangements within the immediate family or with other non-relatives.

4 Meeting Frequency and Loan Default

Mandating more frequent group meetings during the first loan cycle led to a persistent increase in social interactions and greater risk-pooling by group members. We now examine whether these impacts reduced household vulnerability to economic shocks.

In our setting, a carefully measured indicator of economic vulnerability that is observed for an extended period for all clients is loan default. While default reflects more than vulnerability to shocks, shocks are a strong predictor of default in our data and elsewhere, and informal insurance can be assumed to decrease the likelihood of individual default in the event of a shock (Besley and Coate, 1995; Wydick, 1999).27

We focus on default in the second loan cycle.28 All clients (except one who died) took out a second loan and were placed on an identical fortnightly (every two weeks) repayment schedule for the second loan cycle. Online Appendix Table 1 Panel B reports summary statistics pertaining to clients’ second loan cycle, and verifies that they do not

26Close Family/Friend includes the following relationship types: sibling, parent, child, child-in-law, sibling-in-law, parent-in-law, uncle/aunt, cousin, grandchild and friend. Neighbor/Other Relative includes all other relatives and unrelated neighbors. Other Non-Relative includes any other type of acquaintances.

27In our data, illness episodes are strong predictors of default, and transfers are associated with lower default risk. Also, home ownership increases default risk, which likely reflects associated illiquidity. Higher levels of savings are negatively correlated with default risk, but corresponding point estimates are noisy (Online Appendix Table 8).

28Field and Pande (2008) show that loan delinquency and failure to fully repay loan 16 weeks after the first loan cycle ended do not differ by experimental arms.
vary systematically with treatment status in the first loan cycle. Clients took out a second loan roughly three months after the end of their first loan. The typical second loan was 85% larger than the first, reflecting VFS policy that has clients start well below credit demand and graduate slowly to larger loans. Loan size and timing of disbursement is uncorrelated with first loan repayment schedule. We also have second loan use data for a subset of clients, which reveals that most clients used the loan for business-related purposes. This also does not differ by treatment status during first loan cycle.

4.1 Results

4.1.1 Experimental Estimates: Control versus Treatment 1

Table 4 presents regression estimates for default outcomes. Our regression specification parallels Equation (1), but the outcome of interest is now an indicator variable Y_{gi} which equals one if client i who belonged to group g in her first loan cycle defaulted on her second loan. We report both Probit and OLS specification.

As before, we first consider the sample of Control and Treatment 1 clients. In columns (1) and (2) we see that, despite the fact that all individuals faced the same loan terms for their second loan, a client who was previously assigned to a Treatment 1 schedule during her first loan cycle is nearly three times (5.2%) less likely to default on her second loan relative to a Control client who was previously assigned to meet on a monthly basis. The difference is strongly significant with or without controls, and is virtually unchanged across Probit and OLS specifications.

29Given that we observe no short-run impacts of treatment on client income we do not anticipate that the variation in the timing of second loan demand should be correlated with social capital, and indeed, in Online Appendix Table 1 we do not observe significantly different time periods between first and second loan cycles across treatment and control. Since the number of first-time group members in a client’s second loan group is primarily driven by variation in wait times between loans, we also do not anticipate (or observe) any treatment effect on second loan group composition.
4.1.2 IV Estimates: Meeting versus Repayment Frequency

By considering default in the subsequent loan cycle, we avoid the possibility that contemporaneous differences in repayment frequency influence default outcomes.30 However, while initial differences in repayment frequency are unlikely to influence differences in social interactions per se, they may change long-run financial habits and, thereby, default.

To isolate the long-run influence of initial differences in meeting frequency from that of repayment frequency, we now examine whether the influence of higher meeting frequency remains when we compare second loan default outcomes across clients who all repaid on a monthly basis in their first loan cycle but differed in whether they met weekly or monthly.

As described in Section 2, for the purpose of disentangling these influences, our experimental design included a treatment arm in which clients were required to meet weekly but repay on a monthly basis (Treatment 2). To achieve this, we interspersed the standard monthly group repayment meetings with somewhat artificial weekly “non-repayment group meetings.” During non-repayment meetings, loan officers recorded attendance and collected survey data from each individual. In addition, during the first eight meetings, loan officers led a brief (ten-minute) discussion on a topic of common interest, which varied from social concerns, like street safety, to social topics such as recipe exchange.31

Appendix Figure 3 documents the number of meetings held by repayment schedule. Roughly half of the Treatment 2 groups met less frequently than the minimum required by protocol, and thus can be considered non-compliers. According to interviews with loan officers (conducted after the experiment ended when noncompliance was detected), the fact that they did not need to collect and deliver money to VFS after a non-repayment meeting reduced their sense of accountability and made them more inclined to cancel non-

30There was no default among Control or Treatment 1 clients during the first loan cycle. This is unsurprising given low loan repayment burden.

31For ethical reasons, we were requested to provide information useful to clients during non-repayment meetings to justify the cost they were being asked to incur by attending the meetings. We chose topics that we did not expect to directly influence business or social outcomes. Loan officers were provided scripts for each session and required only to read information from the script. Topics covered were: awareness about street safety; geographical knowledge about India; general knowledge about family ancestry; recipe exchange; questions on how they spend vacations or holidays; information on bus routes in their neighborhoods; basic physiology; basic information on state politics.
repayment meetings (relative to repayment meetings) when inconvenient. Loan officers also acknowledged that meeting cancellations early in the loan cycle caused clients to view the institution of non-repayment meetings as dispensable, making it harder to sustain non-repayment meetings later in the loan cycle. An important reason for early cancellations was monsoon rains which caused waterlogging of neighborhoods and roads, increasing both loan officer and client commute time (50% of our loan groups were formed during monsoon months; on the impact of monsoon rains on daily life in Kolkata also see Beaman and Magruder, 2012)\(^{32}\)

To address imperfect compliance in Treatment 2, we use an IV specification that makes use of this exogenous variation in monsoon rainfall shocks early in the loan cycle in order to predict Treatment 2 groups that met at least 23 times. This is the minimum number of times required by protocol, and also happens to be the median meeting rate for Treatment 2 groups. Our analysis sample for the IV estimates includes only Control and Treatment 2 clients, all of whom repaid monthly. If, among clients who repaid monthly, those who met weekly exhibit lower default incidence, then we will have identified an independent role for meeting frequency.\(^{33}\) The first stage of our IV regression is:

\[
M_{g_i}^{23+} = \beta_1 T_{2,g} + \beta_2 Heavy_g + \beta_3 T_{2,g} \times Heavy_g + X_{g_i} \gamma + \epsilon_{g_i}
\]

\(^{32}\)A VFS loan officer’s average work day lasts 12 hours, and consists of conducting group meetings in the morning and then returning to the branch office by early afternoon to deposit the repayments that had been collected and complete paperwork. On an average day, a loan officer would conduct five to six group meetings and cover a distance of 20 kms on bicycle.

\(^{33}\)Importantly, weekly-monthly clients did not take oaths during non-repayment meetings, so we can rule out the possibility that frequency of oath-taking influenced repayment behavior for these clients.

\(^{34}\)We define a meeting as having occurred if at least two group members attended.
rainfall distribution for the city) during the first four weeks of meetings. While it is possible that rainfall has a direct effect on social or economic outcomes, it is unlikely that rainfall shocks over such a short time period directly influence long-run social interactions and/or economic activity and, therefore, client ability to repay in the subsequent loan cycle. Hence, our exclusion restriction is likely to be satisfied. Furthermore, we have confirmed with baseline data that an additional day of heavy rain over the seven days before a client is surveyed does not influence a household’s wage income or likelihood of employment (see Online Appendix Table 9).

Column (3) of Table 4 reports this first stage regression. Treatment 2 clients at the mean value of days of heavy rain (5.1) were 47% less likely to meet the minimum required number of times than those who experienced zero days of heavy rain 29–56 days after group formation. Thus heavy rainfall very significantly influenced the sustainability of non-repayment meetings over the loan cycle.

Given this first stage, we turn to the IV estimate of the impact of increased meeting frequency, holding constant repayment frequency. Our structural equation of interest (i.e., second stage) is:

\[y_{gi} = \beta M_{gi}^{23} + X_{gi} \gamma + \epsilon_{gi} \]

Column (4) reveals a negative and significant impact of higher meeting frequency in first loan cycle on default for the second loan. The coefficient estimate is similar in magnitude (even slightly larger) than the experimental estimate in columns (1) and (2). Thus, we can rule out the possibility that lower long-run default rates among clients assigned to a weekly meeting schedule reflect improvements in their financial habits or business practices associated with having repaid their first loan on a weekly basis.

We conclude that higher meeting frequency in first loan cycle underlies the subsequent default reduction and, based on our results, posit that increased social interactions

\[35\] This corresponds to days 29–56 after group formation.

\[36\] Our results are also robust to extending the definition of Heavy Rain to include the first eight weeks of the loan cycle, or to using the 80th or 85th percentile of the rainfall distribution as the cutoff (results are shown in Online Appendix Table 9).

\[37\] We employ a linear IV specification given the strong functional form assumptions associated with the biprobit model (Angrist and Pischke, 2009).
among group members is the primary channel of influence. The potential mechanisms through which social interactions influenced default potentially include better ability to monitor (and punish) group members, lower transaction costs for sharing and improved information flows across members.

5 Conclusions

A widely held belief among social scientists across many disciplines is that social interactions encourage norms of reciprocity and trust, which deliver economic returns. In fact, participation in groups is often used to measure individuals’ or communities’ degree of economic cooperation (see, for instance, Narayan and Pritchett, 1999). While theoretically well-grounded, it is not clear from previous work whether the correlation between social distance and trust reflects the causal effect of interaction on economic cooperation.

We provide experimental evidence that a development program that encourages repeat interactions can increase long-run social ties and enhance social capital among members of a highly localized community in a strikingly short amount of time. With only the outside stimulus of MFI meetings, close neighbors from similar socioeconomic backgrounds got to know each other well enough to cooperate in an economically meaningful way, which provided a buffer against economic shocks that lead to default. While many studies have suggested a link between social capital and MFI default rates, ours is the first to provide rigorous evidence on the role of microfinance in building social capital, and thereby broaden our understanding of the channels through which MFIs achieve low default rates without the use of physical collateral. Arguably, the improvements in risk-sharing we observe are even more striking because they were obtained in the absence of joint-liability contracts, and provide a rationale for the current trend among MFIs of maintaining repayment in group meetings despite the transition from joint- to individual-liability contracts (Gine and Karlan, 2011). While it is difficult to account for all of the increased transaction costs of weekly meetings with higher loan recovery rates alone, direct cost savings from lowering default go a long way towards explaining why weekly
meetings persist as the standard MFI practice. Furthermore, there are many reasons to believe that the typical MFI is sufficiently delinquency- and/or default-averse to make weekly meetings cost effective.

Using meetings to improve risk-sharing in a setting characterized by weak formal institutions for contract enforcement is a potentially important source of welfare gains, at least for first-time clients. Although encouraging social interaction entails higher participation costs for clients, the benefits from social network expansion are likely to outweigh the cost. We estimate that weekly compared to monthly meetings entail approximately 15 additional hours of client time over the course of an average loan cycle. The benefits are likely to include, in addition to lower default risk, utility gains from consumption smoothing and other positive externalities from social interaction such as information sharing. In addition, we anticipate that lower propensity to default improves clients’ long-term financial access (both ability to take out future loans and loan amount).

By broadening and strengthening social networks, the group-based lending model used by MFIs may provide a valuable vehicle for the economic development of poor communities and the empowerment of women. While we cannot expect all communities to respond equally to such stimuli, our findings are likely to be most readily applicable to the fast-growing urban and peri-urban areas of cities in developing countries (such as Kolkata) where microfinance is spreading most rapidly. An important goal of future research would be to understand how other development programs and public policies can be designed to enhance the social infrastructure of poor communities.

38 We estimate an additional average cost per client of Rs. 85 for a weekly relative to a monthly meeting schedule. Loan officers spend additional three hours per month per group (one hour in meeting time and two hours in commute time), which amounts to 1.9% of their monthly wage for the average group (of ten clients), or Rs. 85. Meanwhile, our data indicate that the average client who met and repaid monthly during her initial loan cycle defaulted on only Rs. 30 more than one previously on a weekly repayment schedule.

39 For instance, even delinquency reduces MFI liquidity and ability to expand lending, and MFI credit ratings are typically calculated based on share of MFI portfolio in arrears.

40 The estimate of two additional hours per month is based on meeting length of 20 minutes and an average client commute of ten minutes to and from meeting. As a client repays her loan, on average, after 7.5 months this adds up to 15 hours over the course of a loan cycle. While client cost is likely higher than just this time cost of meeting attendance, including, for instance financial and psychic burden of making regular repayments Field et al. (2012), these costs are likely less important cost first time clients who receive very small loans.
References

Table 1. Randomization Check

<table>
<thead>
<tr>
<th></th>
<th>All Clients</th>
<th>Lottery/Long-Run Survey Clients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control Mean</td>
<td>Treatment 1</td>
</tr>
<tr>
<td>(1) (2) (3) (4) (5) (6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>33.969</td>
<td>-0.593</td>
</tr>
<tr>
<td></td>
<td>(8.553)</td>
<td>(0.813)</td>
</tr>
<tr>
<td>Literate</td>
<td>0.865</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.342)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Married</td>
<td>0.862</td>
<td>0.013</td>
</tr>
<tr>
<td></td>
<td>(0.345)</td>
<td>(0.031)</td>
</tr>
<tr>
<td>Household Size</td>
<td>3.821</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>(1.335)</td>
<td>(0.106)</td>
</tr>
<tr>
<td>Muslim</td>
<td>0.023</td>
<td>-0.023</td>
</tr>
<tr>
<td></td>
<td>(0.151)</td>
<td>(0.021)</td>
</tr>
<tr>
<td>Years Living in Neighborhood</td>
<td>17.423</td>
<td>-2.010</td>
</tr>
<tr>
<td></td>
<td>(10.473)</td>
<td>(0.889)</td>
</tr>
<tr>
<td>Number of Clients in Group</td>
<td>10.364</td>
<td>-0.086</td>
</tr>
<tr>
<td></td>
<td>(0.727)</td>
<td>(0.185)</td>
</tr>
<tr>
<td>Group Formed in Rainy Season</td>
<td>0.595</td>
<td>-0.147</td>
</tr>
<tr>
<td></td>
<td>(0.492)</td>
<td>(0.122)</td>
</tr>
<tr>
<td>Heavy Rain Days</td>
<td>5.265</td>
<td>-0.128</td>
</tr>
<tr>
<td></td>
<td>(2.070)</td>
<td>(0.545)</td>
</tr>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Client Worked for</td>
<td>0.525</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>(0.500)</td>
<td>(0.053)</td>
</tr>
<tr>
<td>Pay in Last 7 Days</td>
<td>0.442</td>
<td>-0.079</td>
</tr>
<tr>
<td>Fixed Salary</td>
<td>(0.497)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Household Owns</td>
<td>0.717</td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td>(0.451)</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Business</td>
<td>1636.2</td>
<td>325.7</td>
</tr>
<tr>
<td></td>
<td>(5793.7)</td>
<td>(564.8)</td>
</tr>
<tr>
<td>Household Savings</td>
<td>0.808</td>
<td>-0.033</td>
</tr>
<tr>
<td></td>
<td>(0.395)</td>
<td>(0.044)</td>
</tr>
<tr>
<td>Education Expenditures</td>
<td>4183.9</td>
<td>559.5</td>
</tr>
<tr>
<td></td>
<td>(4868.2)</td>
<td>(407.8)</td>
</tr>
<tr>
<td>Health Expenditures</td>
<td>3311.4</td>
<td>-35.0</td>
</tr>
<tr>
<td></td>
<td>(5262.1)</td>
<td>(522.2)</td>
</tr>
<tr>
<td>Illness in Past 12 Months</td>
<td>0.314</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>(0.465)</td>
<td>(0.048)</td>
</tr>
<tr>
<td>Number of Transfers into</td>
<td>1.388</td>
<td>0.172</td>
</tr>
<tr>
<td>Households</td>
<td>(6.796)</td>
<td>(0.542)</td>
</tr>
<tr>
<td>Number of Transfers out of</td>
<td>2.613</td>
<td>0.282</td>
</tr>
<tr>
<td>Households</td>
<td>(4.693)</td>
<td>(0.604)</td>
</tr>
<tr>
<td>Days between Loan</td>
<td>788.312</td>
<td>-0.211</td>
</tr>
<tr>
<td>N</td>
<td>385</td>
<td>306</td>
</tr>
</tbody>
</table>

Notes
1. Group Formed in Rainy Season is an indicator variable for whether the group was formed in June, July, August, or September. Heavy Rain Days is a count variable representing the number of days within 29-56 days (5-8 weeks) after group formation in which rain was above the 90th decile for daily rainfall (14.3 mm). Illness in Past 12 Months is an indicator variable for whether any household member has been ill in past 12 months.
2. Columns (2)-(3) are the regression results of the characteristics in the title column on the two treatments for the full sample. The omitted group is clients in Control groups. In columns (5)-(6) we report the same coefficients for the sample that received the lottery. All lottery sample regressions control for survey phase. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Standard errors are clustered by group.
Table 2. Meeting Frequency and Social Interactions in the Short Run and Long Run

<table>
<thead>
<tr>
<th></th>
<th>Short Run</th>
<th></th>
<th>Long Run</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Social Contact Index</td>
<td>Total Times Met</td>
<td>Attend Durga Puja</td>
<td>Talk Family</td>
</tr>
<tr>
<td>Panel A: No Controls</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>3.005***</td>
<td>2.045**</td>
<td>0.069*</td>
<td>0.070*</td>
</tr>
<tr>
<td>(Weekly-Weekly)</td>
<td>(0.107)</td>
<td>(1.001)</td>
<td>(0.038)</td>
<td>(0.039)</td>
</tr>
<tr>
<td>Panel B: Controls Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1</td>
<td>3.052***</td>
<td>2.054**</td>
<td>0.081**</td>
<td>0.071**</td>
</tr>
<tr>
<td>(Weekly-Weekly)</td>
<td>(0.092)</td>
<td>(0.891)</td>
<td>(0.039)</td>
<td>(0.035)</td>
</tr>
<tr>
<td>Control Mean</td>
<td></td>
<td>5.475</td>
<td>0.153</td>
<td>0.229</td>
</tr>
<tr>
<td>(Monthly-Monthly)</td>
<td></td>
<td>[10.386]</td>
<td>[0.360]</td>
<td>[0.421]</td>
</tr>
<tr>
<td>Specification</td>
<td>OLS</td>
<td>OLS</td>
<td>Probit</td>
<td>Probit</td>
</tr>
<tr>
<td>N</td>
<td>684</td>
<td>3026</td>
<td>3023</td>
<td>3026</td>
</tr>
</tbody>
</table>

Notes
1 Short-Run Social Contact Index generates average effect size from four client questions: (1) "Have you ever visited houses of all group members?" (2) "Have all of your group members visited your house?" (3) "Do you know the names of the family members of your group members?" and (4) "Do you know if any of your group members had relatives come over in the last 30 days?" The first three variables equal one if client responds yes at least once between week 9 and week 23 of her loan cycle, and the fourth is the mean value of client responses over this period. Long-Run Social Contact Index generates average effect size from three questions asked to each client during the lottery survey: (1) Total Times Met, (2) "Do you still talk to X about her family?" and (3) "During the most recent Durga Puja, did you attend any part of the festival with X?"

2 The sample is clients assigned to Treatment 1 (Weekly-Weekly) and Control (Monthly-Monthly) groups.

3 Regressions with controls include the variables in Table 1, Panel A. All long-run regressions also control for survey phase. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Standard errors are clustered by group.
Table 3. Meeting Frequency and Risk-Sharing: Ticket-Giving and Transfers

<table>
<thead>
<tr>
<th></th>
<th>Main Lottery</th>
<th></th>
<th>Supplementary Lottery</th>
<th></th>
<th>Transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-Rs. 200 Voucher</td>
<td>4-Rs. 50 Vouchers</td>
<td></td>
<td>Close Family/Friend</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>0.067**</td>
<td>0.043</td>
<td>0.091*</td>
<td>-0.005</td>
<td>0.016</td>
</tr>
<tr>
<td>(Weekly-Weekly)</td>
<td>(0.034)</td>
<td>(0.041)</td>
<td>(0.048)</td>
<td>(0.069)</td>
<td>(0.065)</td>
</tr>
<tr>
<td>Group Member</td>
<td>0.068**</td>
<td></td>
<td>0.157**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td></td>
<td>(0.079)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1*Group Member</td>
<td></td>
<td></td>
<td>0.157**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.079)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel A: No Controls

Panel B: Controls Included

<table>
<thead>
<tr>
<th></th>
<th>Main Lottery</th>
<th></th>
<th>Supplementary Lottery</th>
<th></th>
<th>Transfers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-Rs. 200 Voucher</td>
<td>4-Rs. 50 Vouchers</td>
<td></td>
<td>Close Family/Friend</td>
</tr>
<tr>
<td>Treatment 1</td>
<td>0.072**</td>
<td>0.044</td>
<td>0.105**</td>
<td>0.0001</td>
<td>0.019</td>
</tr>
<tr>
<td>(Weekly-Weekly)</td>
<td>(0.033)</td>
<td>(0.039)</td>
<td>(0.048)</td>
<td>(0.071)</td>
<td>(0.066)</td>
</tr>
<tr>
<td>Group Member</td>
<td>0.073**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1*Group Member</td>
<td></td>
<td></td>
<td>0.158*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.081)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control Mean</td>
<td>0.281</td>
<td>0.277</td>
<td>0.285</td>
<td>0.223</td>
<td>0.426</td>
</tr>
<tr>
<td>(Monthly-Monthly)</td>
<td>[0.450]</td>
<td>[0.448]</td>
<td>[0.452]</td>
<td>[0.417]</td>
<td>[0.495]</td>
</tr>
<tr>
<td>Specification</td>
<td>Probit</td>
<td>Probit</td>
<td>Probit</td>
<td>Probit</td>
<td>Probit</td>
</tr>
<tr>
<td>N</td>
<td>5282</td>
<td>2695</td>
<td>2587</td>
<td>847</td>
<td>651</td>
</tr>
</tbody>
</table>

Notes

1 For the lottery, the dependent variable equals one for a group member if the client gave her a ticket. For each client in the sample we have (on average) nine observations for columns (1)-(3). In column (4), we include only clients borrowing for the first time during the Third Loan Cycle (see Figure 1 for details). For this column, we have eight observations for each client (four for group member ticket-giving and four for non-group member ticket-giving). In columns (5)-(7), Transfers are indicator variables for whether client's household gave or received any transfers to or from the relevant groups in the 12 months before the first loan endline survey. We divide transfers into three categories based on client's stated relationship with transfer recipient/sender at time of survey. Close Family/Friend includes the following relationship types: sibling, parent, child, child-in-law, sibling-in-law, parent-in-law, uncle/aunt, cousin, grandchild, and friend. Neighbor/Other Relative includes all other relatives and unrelated neighbors. Other Non-Relative includes any other type of acquaintances.

2 The sample is clients assigned to Treatment 1 (Weekly-Weekly) and Control (Monthly-Monthly) groups.

3 Regressions with controls include the variables in Table 1, Panel A. All lottery regressions also control for survey phase. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Standard errors are clustered by group.
<table>
<thead>
<tr>
<th></th>
<th>Default (1)</th>
<th>Default (2)</th>
<th>Group Met Weekly (3)</th>
<th>Default (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: No Controls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1 (Weekly-Weekly)</td>
<td>-0.052**</td>
<td>-0.052**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 2</td>
<td></td>
<td>-0.118***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)*Heavy Rain Days</td>
<td>(0.020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Rain Days</td>
<td></td>
<td>1.086***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)</td>
<td></td>
<td>(0.152)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Met Weekly</td>
<td>-0.077**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B: Controls Included</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1 (Weekly-Weekly)</td>
<td>-0.036**</td>
<td>-0.045**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)</td>
<td>(0.016)</td>
<td>(0.021)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 2</td>
<td></td>
<td>-0.125***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)*Heavy Rain Days</td>
<td>(0.020)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy Rain Days</td>
<td></td>
<td>1.087***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Weekly-Monthly)</td>
<td></td>
<td>(0.146)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Met Weekly</td>
<td>-0.092**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.042)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F Statistic</td>
<td></td>
<td></td>
<td>20.16</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td></td>
<td></td>
<td>[0.000]</td>
<td></td>
</tr>
<tr>
<td>Control Mean</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Monthly-Monthly)</td>
<td>0.072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specification</td>
<td></td>
<td></td>
<td>Probit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OLS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Linear IV</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>698</td>
<td>698</td>
<td>720</td>
<td>720</td>
</tr>
</tbody>
</table>

Notes
1. A client is defined as having defaulted if she has not repaid the total loan amount within 44 weeks after due date. Group Met Weekly is an indicator variable for whether a group met at least 23 times during First Loan Cycle. Heavy Rain Days is as defined in Table 1.
2. Column (3) provides the first stage regression for the IV regression in column (4).
3. Columns (1)-(2) include clients assigned to Treatment 1 (Weekly-Weekly) and Control (Monthly-Monthly) groups, and columns (3)-(4) include clients assigned to Treatment 2 (Weekly-Monthly) and Control (Monthly-Monthly) groups.
4. Panel A regressions in columns (3)-(4) include a control for Group Formed in Rainy Season, and regressions with controls (Panel B) include the variables in Table 1, Panel A and also control for second loan size. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively. Standard errors are clustered by group.
Notes: Dates reflect the start of each loan cycle and of lottery surveying. Our sample population consisted of 1028 clients who joined VFS in 2006. For their first loan cycle 392 of these clients were randomly assigned to monthly meeting and monthly repayment (38 Control groups), 307 were assigned to weekly meeting and weekly repayment (30 Treatment 1 groups), and 329 were assigned to weekly meeting and monthly repayment (32 Treatment 2 groups). All but one client continued to a second loan cycle during which all clients met for repayment on a fortnightly basis. We use this sample to evaluate second loan cycle default outcomes. Finally, clients in the third loan cycle were randomized into Weekly-Weekly or Monthly-Monthly groups. To examine the effects of meeting frequency on giving to non-group members, we restrict our sample to clients who were borrowing for the first time in the third loan cycle and who were in groups with at least one returning borrower. There are 106 such clients.
Notes:
This picture was used to explain how ticket-giving affected lottery probabilities. The explanation provided was "In Picture 1 in which you don't give out any tickets to members of your VFS group, you have a 1 in 11 chance of winning.
In Picture 2, you choose to have us give a ticket to four other members of your VFS group and there are 15 tickets total. In that case, you would have a 1 in 15 chance of winning and each of the members of your VFS group you gave a ticket to would have a 1 in 15 chance of winning.
In Picture 3, you choose to have us give a ticket to nine other members of your VFS group and there are 20 tickets total. In that case, you would have a 1 in 20 chance of winning and each of the members of your VFS group you gave a ticket to would have a 1 in 20 chance of winning." In each picture, those outside of the red circle are non-group members.
Figure 3: Client-Level Distribution of Ticket-Giving