This course covers empirical strategies for applied microeconometric research. The agenda includes regression and matching, instrumental variables, differences-in-differences, regression discontinuity designs, and standard errors.

All 14.381 participants are expected to:

- Miss no more than two classes
- Take an out-of-class final during MIT exam week
- Complete 3 problem sets with a grade of at least 7/10
- Answer questions when called upon in class

MIT Economics Ph.D. (MEP) students seeking credit for the econometrics core also complete a structured empirical project. 14.381 is open to MIT graduate students and full-time RAs, and to MIT undergraduates who have completed 14.32 with distinction. Others looking for an introductory econometrics experience are encouraged to consider 14.32. Unsure whether 381 or 32 is right for you? Try the 381 qualifying exam; 381-ready students should ace the test (this also serves as an ungraded review problem set).

Grading: 3 problem sets (10 points each); out-of-class final (60 points); attendance (10 points); empirical project (10 points)

The atmosphere is informal, but we ask you to put electronic devices away when class is in session.

We use the following texts:

Articles are posted on LMOD at [14.381 Class home](#).

READINGS

Articles, handbook chapters are available through LMOD. Books are also on reserve. An (M) flags studies done as part of an MIT thesis.

I. RCT AND REGRESSION RECAP

MM Chapter 1 and MHE 1-2 introduce our experimentalist perspective on applied econometrics. MM Chapter 2 covers regression basics. MHE Chapter 3 presents more advanced material related to regression and matching.

MM, Chapters 1-2; MHE, Chapters 1-2 and 3.1-3.2

Bad control and measurement error

MM, 6.1-6.2; Appendix to Chapter 6

Limited dependent variables and marginal effects

MHE, Section 3.4.2

II. Conditional Independence Assumptions

Matching vs regression

MHE, Section 3.3.1

The propensity score

MHE, Sections 3.3.2-3.3.3

New ways to use the CIA

III. INSTRUMENTAL VARIABLES

2SLS with constant effects; the Wald estimator, grouped data

MM, Chapter 3; *MHE*, Section 4.1

Two-Sample IV and related estimators

MHE, Section 4.3

2SLS details

2SLS mistakes: *MHE*, Section 4.6.1

The bias of 2SLS: *MHE*, Section 4.6.4

IV with heterogeneous potential outcomes

MHE, Section 4.4

Models with variable, continuous, and multiple treatments

MHE, Section 4.5.3

External validity

Spec Tests Come LATEly

MHE, Section 4.2.2

IV. REGRESSION-DISCONTINUITY DESIGNS

Basics, sharp and fuzzy

*M*M, Chapter 4; *MHE*, Chapter 6

Heaping

Nonpara-metrics

Regression kinks

Extrapolation

V. **NON-STANDARD STANDARD ERROR ISSUES**

Review of large-sample theory

MHE, Section 3.1.3

Finite-sample and cluster-robust inference

MHE, Chapter 8

Hansen, C., “Asymptotic Properties of a Robust Variance estimator for Panel Data When T is Large”, *Journal of Econometrics* 141(2), 2007, 597-620. (M)

Permutation inference

V. MACHINE LABOR

Time-permitting/TBD

Mullainathan/Spiess JEP 2017
BCCH ECMA 2012
BCH ReStud 2014
BCFH ECMA 2017
Chernozhukov, Hansen, and Spindler Annual Review 2015
Athey, Tibishrani, and Wager AMS 2019