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11 Allocation Mechanisms,
/Asymmetric Information
and the ‘Revelation Principle’

MILTON HARRIS
and ROBERT M. TOWNSEND*

INTRODUCTION

The purpose of this chapter is to explain a new approach for predicting
both the allocation of resources and the resource allocation mechanism
in cértain environments in which agents are asymmetrically informed
prior to any trading.’ We illustrate this approach by applying it to a simple
pure-exchange environment in which an information asymmetry is present.

The central element of this approach (which is described in more detail
below) is to define the concept of an optimal resource allocation mechanism
and to characterize such optimal mechanisms and their associated optimal
allocations for given economic environments. There are two reasons for
approaching the problem in this way, that is, searching for optimal re-
source allocation mechanisms. The first is simply that one would like to
have a theory that explaing observed mechanisms (or processes or insti-
tutional arrangements — we use these terms synonymously). For example,
one might wish to explain why auctions are used in certain environments,
but not in others.> The second is that one would like to have a theory
that explains the final allocation of resources in environments with asym-
metric information, and to do so, we argue that one must begin with an
explicit consideration of mechanisms. To sketch this argument briefly,
let us start with the premise that in any economic envifonment, the ob-
served allocation of resources actually is achieved by some mechanism.
We then assert that in some asymmetric information environments there
are allocations conmsistent with the resource constraints (i.e. techno-
logically feasible) which, nevertheless, cannot be achieved by any mechanism,

* This research has benefited from the support of the National Science
Foundation.
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That is, we assert that the presence of information asymmetries imposes
certain incentive constraints on achievable allocations.® The point here i
that these constraints can only be revealed by an explicit consideration
of the processes by which allocations are achieved. Of course, once these
constraints are revealed, one can contemplate generating optimal alloca-
tions in the usual way as solutions to programming problems that incor-
porate the constraints. Obviously one way of making sure that information
constraints are accounted for in an economic model is simply to analyse
the equilibrium of some particular (and explicit) mechanism. This approach
is certainly suitable for positive purposes if one believes that the chosen
mechanism is a good model of actual arrangements in the environment
of interest, and if one is not interested in explaining these arrangements.
Yet if one does seek to explain observed arrangements, or if one is in-
terested in normative implications, then one would like to establish that
the constraints on allocations of the chosen mechanism cannot be circum-
vented by some alternative process. This leads us to consider a fairly
broad class of available mechanisms.*

The approach we describe here uses what has now come to be known
as the ‘Revelation Principle’.> This principle, or results similar to it, has
been developed by Harris and Townsend (1978, 1981), Holmstrom (1978),
and Myerson (1979). It can be stated simply as:

The Revelation Principle. Any equilibrium allocation of any mechanism
can be achieved by a truthful, direct mechanism,

By a direct mechanism, we mean a game in which all agents first simul-
taneously declare values for whatever parameters they have observed,
for example, parameters describing their own tastes, etc. After these
‘messages’ or ‘signals’ are sent, some allocation is effected as a function
of the declarations of all players. This allocation rule is specified in ad-
vance. Players in a direct mechanism need not tell the truth about their
observed parameters. In a fruthful, direct mechanism, however, there is
an equilibrium in which all players do tell the truth: a truthful mechanism,
then, is one in which each player is given an incentive (by the allocation
rule) not to lie, provided that he expects all other players to tell the truth,

The power of the Revelation Principle is that it enables one to limit
his search for optimal mechanisms to direct mechanisms without fear
“of ignoring a more complicated mechanism that could have produceda
better outcome. Specifying a mechanism can, in general, be quite com-
plicated, involving a specification of what strategies are feasible for each
agent at each stage, what each agent knows at each stage, and how the
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final allocation depends on the whole history of signals of the agents.
A direct mechanism can, however, be completely specified by its allocation
rule. This is simply a function from the set of values of observable para-
meters to the set of feasible allocations.

The Revelation Principle also implies that we can restrict attention to
direct mechanisms in which truth-telling is an equilibrium. This imposes
a set of constraints on the allocation rules that guarantee that, for each
agent ahd for each value of his observed parameters, it i3 optimal to tell
the truth given that all other agents are telling the truth. These constraints
are generally called ‘self-selection’ or, following Hurwicz (1972), ‘incentive
compatibility’ conditions. Thus, using the Revelation Principle, an optimal
mechanism, and its associated equilibrium allocation, can be found by
choosing an allocation rule that maximizes some social welfare function
{e.s. a weighted average of the utilities of the players) subject to techno-
logical feasibility conditions and incentive compatibility conditions.
In effect, then, one can search for optimal allocations directly. An example
of how this is done is given in the third section.®

In the second section, we attempt to motivate the general results,
primarily the Revelation Principle. Readers are referred elsewhere for
proofs. In the third section, we analyse a specific two-person, two-good,
pure exchange environment using the results of the second sections. The
fourth section provides a summary and conclusion.

GENERAL RESULTS

First let us specify the general type of economic environment to which
the results will apply. Suppose there are a finite number of economic
agents, say V, indexed by i=1,..., N. Further suppose that there is a
set A of technologically feasible allocations. An element g of 4 is a vector
that specifies each agent’s allocation bundle, The set 4 will incorporate
constraints due to the technology of production and exchange and due
1o resource availability. In order to introduce asymmetric information
into the environment, we shall assume that each agent i may privately
observe the value of a parameter §; which affects his tastes.” We model
agent i’s lack of information about the parameters of other agents by
assuming that i has a well-defined joint prior distribution over 0,)i1.
This prior may depend on the observed value of i’s parameter, §;, Finally,
we denote by Ua, 6;) the utility of agent i for an allocation ¢ if his
parameter has value 0;. When i’s parameter value is 0;, i is said to be
of type 0.




382 Allocation, Information and the ‘Revelation Principle’

Our next step is to define more carefully the concept of a mechanism.
In this chapter we will, as in Myerson (1979), define a mechanism to be
what game theorists call a ‘game in normal form’. A game in normal form
is a particular way of formalizing the intuitive notion of a game. This
formalization specifies the set of signals each agent can send and ao
outcome that depends on the signals sent.®

To be somewhat more formal, a normal-form game specifies a set of
feasible signals S; for each agent / and an allocation rule F which associates
with each vector of signals (s¢,..., Sy) in S$=S5; x...x Sy an alloca-
tion F(sy, . .., sy) in4.° We may now define a mechanism as any normal-
form game, that is, signal sets S; and allocation rule .

Our next task is to define what is meant by an equilibrium of amechanism.
This is simply an hypothesis concerning the way we expect players to be-
have and the outcome that will result. The equilibrium concept we use
here is called the Bayesian equilibrium (by Harsanyi, 1967—68) because
players’ strategies are based on their prior beliefs about the ‘types’ of the
other agents.

The first point to recognize in defining equilibrium is that each player
i will choose his signal s; from his signal set .S; based on the value of his
parameter, that is, on his type 8;. Thus player 7’s strategy is a function
that depends on 6; and whose value is a signal in S;. Let us denote s
strategy by 6;(6;).

The second point to recognize is that s optimal strategy, that is, his
optimal signal as a function of his type, depends on what signals he be-
lieves other players will send. Other players’ signals are, in turn, defer-
mined by their strategies, o;, and their types, ;. Therefore, player i's
beliefs about player j’s signal reflect the strategy that i believes j will
use and #’s prior on 8;. In a Bayesian equilibrium, it is assumed that each
player i chooses his best strategy given the strategies of the other players
and given i’s prior beliefs about their types.

More formally, a vector of strategies (7, ..., ox) is a Bayesian equi
librium of the mechanism defined by the signal sets S;,..., Sy and the
allocation rule F if, for each player i and each possible value of his type
8;, the signal sf = 07 (6;) maximizes i’s expected utility given that he
believes that each other agent j will be using strategy a}“ and given his

beliefs about ;. In equation form, for each player 7 and 8;,07(8;) solves:

max Ej; { Ui[F(UT(el)o cees 0?—1(9i—1)> St 075 1(0301)s - - -

on(On)), 0;116;} s;inS;
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where E 19;) denotes i’s expectation over 6 =(8,, ..., 8y) given that
his type is 6; and using his prior beliefs. Naturally, the equilibrium strate-
gies result in an equilibrium allocation that depends on the actual vector
of agent types, 6, that is:

a*(0) = F[a*(®)]

where/ a*(8) is the equilibrium allocation and o*(0)=[o¥(0y), ...,
an(On)]-

We are now in a position to motivate part of the Revelation Principle,
In particular, we can show how to derive a direct mechanism from any
given mechanism. Consider a mechanism represented by signal sets S;
(i=1,...,N) and allocation rule F. Think of the allocation rule ¥ as
being a computer program that uses the signals s, ..., s; as inputs and
produces an allocation ¢ =F(sy, ..., sy) as output. Suppose that o* =
(0F,....0%) is an equilibrium of this mechanism. Instead of having
each player compute his optimal signal, based on his type, then feeding
this signal into the computer to compute the aflocation, suppose we pro-
gramme the computer to compute signals using ¢* and have each player
simply input a value of his parameter. The computer could then use the
signals that result from this calculation to compute an allocation using the
allocation rule F. This would save the players from computing their
optimal signals; the mechanism embodied in the computer program
would do it for them. The result is a new mechapism in which players
send signals that are interpreted as declared values of their parameters
instead of the, possibly much more complicated, signals in the sets S;.
Thus, in the new mechanism, the signal sets are the sets of possible values
of the parameters, that is, the new mechanism is a direct mechanism!

Now, what is the relationship between the direct mechanism con-
structed in the previous paragraph and the original mechanism? In par-
ticular, does it yield the same equilibrium outcome a*(8) = F[0*(0)]
as the one induced by the equilibrium strategies ¢* of the original mecha-
nism? The answer to this question is, happily yes. To see this, suppose
player i believes that, in the new, direct mechanism, all the other players
will ‘tell the truth’, that is, the strategy of agent j is Vi(8;) = 0; (we use
Y; to distinguish strategies in the direct mechanism from those of the
original mechanism). Now if player i is of type 8;, and he reports 4;,
then he believes the resulting allocation (as a function of 8) will be:

a%(6) = Flo*(6)]
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just as in the original mechanism. On the other hand, reporting seme
other value of his parameter, say 6;, would result in the outcome:

Flo¥(01), ..., 05 1(0:1), 6780, 0% 1(011), . . ., o8 (O]

But the expected utility of this outcome is lower than that of a*(6) by
definition of ¥, that is, when player i is of type 8;, 07(6;), not oi(8;).
maximizes:

Ei { UI[F(UT(BI): ° 009 U?—l(ei—l)a Sis O—l?il(ei+l)a v UJAC/'(GN))y
6:116;}

over s;. Reporting 8; in the direct mechanism would be just like fying to
himself in the original mechanism, that is, acting as if he were some other
type. This shows that player i will report truthfully in the direct mechanism,
provided he believes that everyone else will also. In game theory language,
telling the truth (y§(6;)=0;) is a Bayesian equilibrium of the direct
mechanism. Moreover, as mentioned above, the equilibrium outcome
corresponding to these equilibrium strategies is simply a*(8) when the
vector of types is 8. This is exactly as in the original mechanism.

The above argument is the essential idea behind the Revelation Principle
which we repeat here for convenient reference;

The Revelation Principle. Any equilibrium allocation of any mechanism
can be achieved by a truthful, direct mechanism.

As mentioned above, this result is an extremely useful tool if one i
searching for an optimal mechanism or simply an optimal allocation in an
asymmetric information environment. This is because the Revelation
Principle implies that equilibrium allocations of any mechanism must
satisfy certain self-selection (or incentive compatibility) constraints.
Suppose that a*(#) is an allocation of some mechanism. We know from
the Revelation Principle that a*(8) is also the fruthful equilibrium of a
direct mechanism. What does it mean for a*(f) to be the truthful equi
librium of a direct mechanism? It means first of all that the direct mechanism
has an allocation rule G which gives each player an incentive to reveal his
type truthfully provided everyone else behaves similarly. Formally, we
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must have:
E; { UG8y, . .., 0N), 0;]119;}

>E{UG®Oy, ..., 0, 1,05 051, ...,08),0:116;} (11.1)
for each i, 0;, and 5,-
/

Condition (11.1) states that for any player i and any two values of his
type ; and 8, if his true type is 8;, then he prefers the allocation associated
with his reporting 6; to the one associated with his reporting 8;, provided
all other players are reporting truthfully. This last caveat is embodied in
the fact that the expectations in (11.1) are taken with respect to player
i’s prior beliefs about the rrue 6,’s. Equation (11.1) is almost the self-
selection condition we seek.

The second step in the argument is to recall that if everyone reports
truthfully, the direct mechanism represented by G will result in the
allocatjon a*(8), for any vector of types, 8. Thus we must have:

G(0) = a*(9)

Substituting 4* for G in (11.1) gives the self-selection (SS) conditions:

E A Ui[a*(0,, ..., 0x),0,118;} >

Ei{Uda*(01, ..., 0i_1,0:0i1,...6x),0,16;}

for all 7, 6;, and 9;

Thus the (SS) conditions are satisfied by the outcome of any mechanism.
These conditions in effect become constraints on technologically feasible
allocations as noted in the introduction to this chapter.

Finally, note that the direct mechanism whose truthful equilibrium
allocation implements the original allocation ¢* is simply the direct
mechanism whose allocation rule G =ga*. This makes it trivial to con-
struct a direct mechanism that implements a given allocation a*, pro-
vided, of course, that a* satisfies the (SS) conditions. Moreover, one
can search for an optimal mechanism by searching for an optimal allocation
in the space of allocations that satisfy the (SS) conditions using standard
mathematical programming techniques.
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AN EXAMPLE

In the remainder of the chapter we focus on a simple, pure risk-sharing
example consisting of two agents, one consumption good and two states
of nature.!® Agent 1, the informed agent, is presumed to know the true
probability that each state will occur, and this is known by the unin-
formed agent. Agent 2, the uninformed agent, has a prior distribution over
these probabilities, and this prior is known by the informed agent. Both
agents are assumed to know all other aspects of the environment,

Endowments of the good for each agent for each state are exogenously
fixed. Let x; denote the total endowment of the good in each state s,
s=1,2withx =(x,,x;) > 0. These define the Edgeworth box B = [0, x,]
x {0, x5], (see Figure 11.1). The endowment of agent 2 is represented
by e =(ey, e;), a point in the interior of the Edgeworth box. The endow-
ment of agent 1 is x—e. Similarly, given a point ¢ = (¢4, ¢,) in the Edge-
worth box, the consumption bundle of agent 2 is ¢ and that of agent 1
isx—c.

Each agent i, i =1, 2, has a von Neumann—Morgenstern utility func-
tion u; defined for all non-negative consumption w where u; is twice
continuously differentiable, u;(w) >0, u;'(w) <0 for all w >0 and u}(0)
= oo, Bach agent has as objective the maximization of his expected utility.

Thus if agent i knew the probability of state 1 to be 8, he would
evaluate the bundle (w,, w,) consisting of w; units of the good if state
joceurs {j =1, 2) by taking the expectation:

Oui(wy) + (1 — Oug(w,)

Any point ¢ in the Edgworth box, B, can be evaluated by each agent i
in this way given the probability of state 1, 6. Thus, for any point ¢ in B,
and any 0<< 6 < 1, let:

Uy(e, 0)=0uy(xy —cy) + (1 — 0y (e —cy)

Us(e, 0) = 0uy(cy) + (1 — Ouy(cy)

The functions Uy, U, then define the preferences of the two agents over
points in the Edgeworth box, B, given some common value 0 for the
probability of state 1.

The curve labelled C in Figure 11.1 is the set of allocations that would
be optimal if both agents were informed as to the true value of the para-
meter 6. Under our assumptions, this curve is independent of the actusl
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value of § so long as both agents agree on its value. Thus C is called the
consensus contract curve. Formally:

.= 063114"2(01)/11'2(02)=u'1(x1 —cy)fuy (x, — )

It should be emphasized however that preferences do depend on the
parameter §. Geometrically, for each value of @ there corresponds a
family of indifference curves for each agent. We assume that both agents
believe correctly that this parameter can have only one of two values,
6y or 0;, with 0<8; <@, <1. There are then two possible families of
indifference curves for each agent, with the ‘steeper’ curves being associated
with 6 = 6, (see Figure 11.2). Thus for agent 1, for example, the con-
sumption bundle ¢ in Figure 11.2 is preferred to ¢’ if § = 8, and conversely
ifigt=0 '

We assume now that the actual probability of state one, 6, is drawn
from a known distribution defined on { 6, 8,}. We denote the probability
that 0 =60, by p and the probability that 6 =60, by 1—p. Agent 2, the
uninformed agent, is assumed not to know § initially but to have the prior
distribution given by p. Agent 1, the informed agent, observes the actual
realization of 6. Again, both agents are assumed to know all other aspects
of the environment.
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FIGURE 11.2  Self-selection

In order to motivate the self-selection result, that certain allocations
are not achievable in this environment because of the informational
asymmetry, consider the following mechanism. Agent 1 (the informed
agent) is asked to name a value of 8, either 8, or 0, . If he names 8, then
some allocation ¢’ on the contract curve Cis effected, and if henames, , then
some allocation ¢’ also on C is effected. This mechanism has some a priori
appeal since both ¢’ and ¢” are full-information Pareto optimal, that is,
both are on C. But suppose that ¢’ #¢"’, for example as shown in Figure
11.1 In this case, since it is impossible for agent 2 to require agent 1 to
name the true value of 0, agent 1 will always claim 8 = 6,, even if § =8,
(since x —c¢"" >x —c). Thus the allocation ¢=¢’ if =6, and c=c"
if # = 8, is not achievable by this mechanism. (The equilibrium allocation
is ¢ = ¢’ for either value of 8.) As shown in the previous section, no matter
how complicated we make the mechanism, allocations like:

clifg=6,

Czif6=62
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are not achievable in this environment unless agent 1 prefers ¢! to ¢2
if =6, and vice versa if § =6,. This condition, which is illustrated in
Figure 11.2, is the self-selection condition for this example. Clearly, the
allocation ¢ =c¢' if 6 =0, and c=c" if § =0, does not satisfy the self-
selection condition and is therefore not achievable.

The remainder of this section is devoted to characterizing an optimal
allocation mechanism and its equilibrium allocation for the example.

In searching for an optimal mechanism, we will use the Revelation
Principle and consider only direct mechanisms. Thus we will simply
search over allocation rules G(#). Moreover, we will consider only such
rules that result in truth-telling behaviour by agent 1, namely those that
satisfy the (SS) constraints of the second section. This procedure will,
of course, not result in ignoring mechanisms that perform better than
the ones in the class we consider. Finally, for purposes of exposition,
we will concentrate on finding a mechanism that maximizes the utility
of the uninformed agent, agent 2, subject to the constraint that the
informed agent, agent 1, be willing to participate (i.e. be no worse off
than in aytarky).!?

These considerations lead us to characterize an optimal mechanism
as an allocation rule F(6) = [c1(f), ¢,(f)] which solves the following
maximization problem:

max pU, [F(8,), 6;] + (1 —p)U, [F(8,), 0, ] (11.2)
subject to:

F(9;)in B =152 (11.3)

U, [F6)), 6,1 > Uy (e, 0)) AL (11.4)

Uy [F(81), 0,] = U, [F(9,), 6,] (11.5)

Uy [F(8,), 851 > U, [F(6,), 6,] (11.6)

The objective function of this problem is simply the expected utility
of the uninformed agent for the allocation F, assuming that the informed
agent reveals 6 truthfully (i.e. reveals 6, with probability p). This assump-
tion is justified by imposing the self-selection constraints, (11.5) and
(11.6). Constraint (11.5) guarantees that agent 1 prefers to report 6 =8,
when in fact § is 6, . Similarly, (11.6) guarantees that agent 1 prefers to
report 6 = 6, when in fact @ is 6. Constraint (11.3) simply imposes techno-
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logical feasibility, and constraints (11.4) guarantee that agent 1 is no worse
off than in autarky for either value of # (we are assuming that agent 1 can
choose whether or not to play after having observed 6). Constraints
(11.4) are often called ‘individual rationality’ constraints.

A solution of the problem (11.2)—(11.6) for a particular value of the
endowment e is shown in Figure 11.3 (the proof may be found in Harris
and Townsend, 1978). The exact location of F*(8,) along the consensus
contract curve C depends on agent 2’s prior beliefs about the probability
that @ =6,, namely p. As agent 2 becomes more certain that §=6,,
F*(8,) moves along C towards point 4, in Figure 11.3. Point 4; i,
of course, the allocation that gives agent 2 the most utility when 8 =6,
subject to the individual rationality constraint (11.4) for j=1. When
p=1, F¥(6;)=A,. Note that F*(f,) is at the intersection of the f;—
indifference of curve of agent 1 through F*(0,) (dashed line in Figure
11.3) and the 6, —indifference curve of agent 1 through the endowment,
e. Thus as p approaches 1 (agent 2 is certain that 6 =6,), F*(8,) ap-
proaches e (no trade if 8 actually turns out to be 6,). As p approaches0
(agent 2 is certain that 6 =6,), F*(8;) both converge to point 4, in
Figure 11.3. Point 4, is the bundle that maximizes agent 2’s utility if he

2

)
X2 %

c
Uy =UqiF%(eq), 01]
NFHOq)
\
N
Uy =Unle, 92)/ Uy =Uqle, 84)

(o)) i

FIGURE 11.3  Optimal allocation
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knew that § = 6,, subject to individual rationality for agent 1. Thus we
see that optimal allocations when information is asymmetric depend on
agents’ prior beliefs about the vlaues of parameters they cannot observe.
Finally note that the optimal direct mechanism involves agent 1 de-
claring a value for @, either 6, or 6,. The allocation is then F*(9;), as in
Figure 11.3, if he declares 6 =0;, for j = 1, 2. Other mechanisms could,
however, also be used to accomplish the same allocation, One such scheme
is for agent 2 to start by offering agent 1 any menu of bundles ¢! and ¢2,
then letting agent 1 choose which one is to be imposed. Obviously, agent

2 would offer ¢/ = F*(0;) forj = 1,2, s0 that this is just the direct mechanism
in a thin disguise. One advantage of this version, however, is that the form

of the optimal mechanism (signal sets and allocation rule) does not depend
on the prior beliefs of agent 2. This is not the case for the optimal direct
mechanism whose allocation rule £#, depends on p. Perhaps this is why the
alternative scheme has some intuitive appeal.}3

CONCLUSIONS

In this chapter, we have argued that, to analyse the allocation of resources
in certain types of environments with asymmetric information, one must
first consider the process by which allocations are achieved. We have
presented a methodology for such analyses, and applied this approach
to a specifie, abstract environment characterized by asymmetry of in-
formation between two agents.

In the remainder of these conclusions, we take up several issues not
considered previously. In the process, we suggest some directions for
further work. First, in our approach, as well as in the signalling literature
(see, for example, Spence, 1974; Riley, 1979; Rothschild and Stiglitz,
1976; Wilson, 1977) the prior of the uninformed agent plays a key role
in determining the allocation of resources. This is not the case, however,
in some other attempts at devising mechanisms to allocate resources under
asymmetric information, most notably in the public goods literature (see,
for example, Groves and Ledyard, 1977). We explore thls difference further
in Harris and Townsend (1981).

Second, note that in the example of the previous section, at the end of
the optimal direct mechanism, the actual allocation will not be full-
information optimal (i.e. on C) if in fact § = §,. At the time at which this
allocation is effected, however, both agents are fully informed that § = 4,.
Thus, at that time there will be gains to further trade (i.e. given ex post
information). Certainly it is optimal to agree ex ante that such ex post
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gains to trade will not be exploited, but in some circumstances such an
agreement will be impossible to enforce (since both agents would like to
violate it ex post). When modelling environments without suitable en-
forcement possibilities, it may be necessary to impose a constraint that the
final allocation be Pareto optimal with respect to the final information
structure.

Third, we have not considered the question of from where does an
optimal mechanism come; how is it that agents adopt a particular allocation
process. In some situations, it may be appropriate to assume that one of
the agents has enough ‘bargaining power’ to impose the mechanism of his
choice. If this agent has no private information, one can simply proceed
as in the example of the previous section (see also Harris and Raviv, 1981a
and 1981b). If the mechanism choice is made by an agent with private
information, the choice itself may reveal some of this information. This is
a much more difficult problem which has been taken up by Myerson
(1982) and Holmstrom and Myerson (1981).

Finally, the approach outlined in this chapter is applicabie only when
all private information is known at the outset. One would conjecture that
some form of the Revelation Principle will apply generally to situations in
which private information is revealed over time.!*

NOTES

1. By asymmetric information, we mean that some agents are better
informed about some aspects of the environment and this fact is
known to other agents.

2. See Harris and Raviv, 1981a, 1981b, and Myerson, 1981, for a start
in this direction.

3. This assertion is motivated in the second section; see also Harris and
Townsend, 1978, 1981, and Myerson, 1979,

4. The class is broad enough to include most imaginable mechanisms.
One of course could restrict attention to a few obvious mechanisms,
but that restriction would be counter to the spirit of our chapter -
to make as few exogemous restrictions as possible. Our results are
‘strong’ to the extent that the class we consider is ‘large’.

5. We believe the name ‘Revelation Principle’ was coined by Roger
Myerson.

6. See also Harris and Townsend, 1981, and Harris and Raviv, 1981a,
19810, for additional examples. The literature on contracts, informa-
tion and incentives is, by now, replete with both implicit and explicit
applications of the Revelation Principle. As this is not intended to be
a survey chapter, we have made no attempt to provide references to
this literature.

Milton Harris and Robert M. Townsend 393

7. It is possible to allow one individual to observe several parameters
and/or several individuals to observe the same parameter without
affecting the results. See Harris and Townsend, 1981,

8. A ‘signal’ could actually be a whole sequence of functions specifying
at each stage what message to send as a function of the history of the
game to that stage. In this way sequential games can be modelled as
normal-form games. Generally, in using the normal form, one does
not spell out the sequential aspeets explicitly. This is done in the
‘extensive form’ version of the game. See Friedman, 1977, for further
discussion of normal and exstensive form games. The results presented
below can be proved also for extensive-form mechanisms; see Harris
and Townsend, 1981.

9. Strictly speaking, we should allow for random allocation rules. For
expository purposes, we shall ignore both random strategies and random
allocation rules. The results of this section have been proved in this
case by Myerson, 1979. In general, optimality may require random
allocation rules (but not random strategies), as is argued in Prescott
and Townsend, 1982, for example. Random allocation rules are not
needed, however, for the example of the the third section, as shown
in Harris and Townsend, 1978.

10. This example has been taken from Harris and Townsend, 1978. Several
interesting mechanisms for this example are also discussed there.

11. Notice that we are changing slightly our notation here relative to the
previous section. Since there is only one parameter in this example,
we simply call it 6. Instead of using the subscript to refer to the agent
whose type is given by the parameter, agent 1 in this case, we use the
subscript to denote a particular value of the parameter §. We hope
that no confusion results.

12. The arguments in Harris and Townsend, 1978, establish that one can
generate the entire class of optimal allocations in this way, if one
varies the endowment parametrically. Also the particular optimality
conceépt ¢mployed here is not critical to the argument. The Revelation
Principle can be applied to environments with diverse optimality
criteria.

13. The alternative mechanism is sequential, however, thereby falling out-
side the class of mechanisms considered here. Again, the reader is
referred to Harris and Townsend, 1978, for a more general treatment.

14. See Townsend, 1982, for a proof of this conjecture in a particular
model.
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12 Production Functions,
Transactions Costs and the
New Institutionalism

VICTOR P. GOLDBERG*

INTRODUCTION

For most of the postwar period, economic theory has focused on the
analysis of impersonal markets. In the past few years, however, there has
been a resurgence of interest in the role of institutions in the allocation
process: why does some behaviour take place within firms and not within
markets? Why are long-term contracts used instead of spot markets? What
What determines the structure of long-term contracts? How does the inter-
nal organization of a firm affect its performance? Why are some workers
compensated by piece-rates, others by hourly wages, and still others by
annual salary? What are the effects of seniority provisions or of a legal
prohibition of termination of employment contracts at will? Does the
structure of employment contracts have an influence on macroeconomic
variables? What are the effects of alternative tort liability systems on
accident rates? And so forth.

In this chapter [ want to consider two concepts — production functions
and transactions costs — that have been used and abused in developing
the New Institutionalism. If we are to rely on them at all in our explora-
tion of the causes and effects of economic institutions, it will be necessary
to subject them to careful scrutiny. My reading is that the transactions
cost concept in particular has proved to be misleading and unhelpful
and that it would be best if we simply abandoned it. However, the ter-
minology is probably too deeply entrenched for this cold turkey approach

* This author would like to thank the following for comments on an earlier
draft: Moshe Adler, Avner Ben-Ner, Ronald Coase, Douglass North,
Joseph Ostroy, David Teece, and Oliver Williamson.
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