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1 Introduction

We are concerned with estimation of the dynamic panel model with Þxed effects. Under large n, Þxed
T asymptotics it is well known from Nickell (1981) that the standard maximum likelihood estimator
suffers from an incidental parameter problem leading to inconsistency. In order to avoid this problem the
literature has focused on instrumental variables estimation (GMM) applied to Þrst differences. Examples
include Anderson and Hsiao (1982), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond
(1991). Ahn and Schmidt (1995), Hahn (1997), and Blundell and Bond (1998) considered further moment
restrictions. Comparisons of information contents of varieties of moment restrictions made by Ahn and
Schmidt (1995) and Hahn (1999) suggest that, unless stationarity of the initial level yi0 is somehow
exploited as in Blundell and Bond (1998), the orthogonality of lagged levels with Þrst differences provide
the biggest source of information.
Unfortunately, the standard GMM estimator obtained after Þrst differencing has been found to suffer

from substantial Þnite sample biases. See Alonso-Borrego and Arellano (1996). Motivated by this prob-
lem, modiÞcations of likelihood based estimators emerged in the literature. See Kiviet (1995), Lancaster
(1997), Hahn and Kuersteiner (2000). The likelihood based estimators do reduce Þnite sample bias com-
pared to the standard maximum likelihood estimator, but the remaining bias is still substantial for T
relatively small.
In this paper, we attempt to eliminate the Þnite sample bias of the standard GMM estimator obtained

after Þrst differencing. We view the standard GMM estimator as a minimum distance estimator that
combines T − 1 instrumental variable estimators (2SLS) applied to Þrst differences. This view has been
implicitly or explicitly adopted by Chamberlain (1984) and Griliches and Hausman (1986). It has been
noted for quite a while that 2SLS estimators can be quite biased in Þnite sample. See Nagar (1959),
Mariano and Sawa (1972), Rothenberg (1983), Bekker (1994), Donald and Newey (1998) and Kuersteiner
(2000). If the ingredients of the minimum distance estimator are all biased, it is natural to expect such
bias in the resultant minimum distance estimator, or equivalently, GMM. We propose to eliminate the
bias of the GMM estimator by replacing all the ingredients with Nagar type bias corrected instrumental
variable estimators. To our knowledge, the idea of applying a minimum distance estimator to bias
corrected instrumental variables estimators is new in the literature.
We consider a second order approach to the bias of the GMM estimator using the formula contained in

Hahn and Hausman (2000). We Þnd that the standard GMM estimator suffers from signiÞcant bias. The
bias arises from two primary sources: the correlation of the structural equation error with the reduced
form error and the low explanatory power of the instruments. We attempt to solve these problems by
using the �long difference technique� of Griliches and Hausman (1986). Griliches and Hausman noted that
bias is reduced when long differences are used in the errors in variable problem, and a similar result works
here with the second order bias. Long differences also increases the explanatory power of the instruments
which further reduces the Þnite sample bias and also decreases the MSE of the estimator. To increase
further the explanatory power of the instruments, we use the technique of using estimated residuals as
additional instruments a technique introduced in the simultaneous equations model by Hausman, Newey,
and Taylor (1987) and used in the dynamic panel data context by Ahn and Schmidt (1995). Monte Carlo
results demonstrate that the long difference estimator performs quite well, even for high positive values
of the lagged variable coefficient where previous estimators are badly biased.
However, the second order bias calculations do not predict well the performance of the estimator for

these high values of the coefficient. Simulation evidence shows that our approximations do not work well
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near the unit circle where the model suffers from a near non-identiÞcation problem. In order to analyze
bias and mean squared error of standard GMM procedures under these circumstances we consider a local
to non-identiÞcation asymptotic approximation.
The alternative asymptotic approximation of Staiger and Stock (1997) and Stock and Wright (2000)

is based on letting the correlation between instruments and regressors decrease at a prescribed rate of the
sample size. In their work and contrary to Bekker (1994) it is assumed that the number of instruments
is held Þxed as the sample size increases. Their limit distribution is nonstandard and in special cases
corresponds to exact small sample distributions such as the one obtained by Richardson (1968) for the
bivariate simultaneous equations model. This approach is related to the work by Phillips (1989) and Choi
and Phillips (1992) on the asymptotics of 2SLS in the partially identiÞed case. Dufour (1997), Wang and
Zivot (1998) and Nelson, Startz and Zivot (1998) analyze valid inference and tests in the presence of weak
instruments. The associated bias and mean squared error of 2SLS under weak instrument assumptions
was obtained by Chao and Swanson (2000).
In this paper we use the weak instrument asymptotic approximations to analyze 2SLS and continuous

updating GMM estimators in situations that are particularly relevant for the dynamic panel model. We
show that standard 2SLS estimators which are asymptotically efficient under Þrst order or standard as-
ymptotic approximations are inadmissible under the alternative asymptotic approximations. We identify
a complete class within the class of GMM estimators based on a Þnite set of instruments or moment
conditions.
We analyze the impact of stationarity assumptions on the nonstandard limit distribution. Here we let

the autoregressive parameter tend to unity in a similar way as in the near unit root literature. Nevertheless
we are not considering time series cases since in our approximation the number of time periods T is held
constant while the number of cross-sectional observations n tends to inÞnity. We identify a complete
class of GMM estimators and show that a bias minimal estimator within this class can approximately
be based on taking long differences of the dynamic panel model. Long differences were introduced by
Griliches and Hausman (1986) . Similar problems have been studied by Blundell and Bond (1998) and
Moon and Phillips (2000). In general it turns out that under near non-identiÞcation asymptotics the
optimal procedures of Alvarez and Arellano (1998), Arellano and Bond (1991) , Ahn and Schmidt (1995,
1997) are inadmissible and inference optimally should be based on a smaller than the full set of moment
conditions. We also show that it is usually not efficient to focus on original moment conditions. Rather
one should consider optimal linear combinations of the moment conditions. Due to the special structure
of the panel model the optimal linear combinations are known a priori.

2 Review of the Bias of GMM Estimator

Consider the usual dynamic panel model with Þxed effects:

yit = αi + βyi,t−1 + εit, i = 1, . . . , n; t = 1, . . . , T (1)

It has been common in the literature to consider the case where n is large and T is small. The usual
GMM estimator are based on the Þrst difference form of the model

yit − yi,t−1 = β (yi,t−1 − yi,t−2) + (εit − εi,t−1)
where the instruments are based on the orthogonality

E [yi,s (εit − εi,t−1)] = 0 s = 0, . . . , t− 2.
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Instead, we consider a version of the GMM estimator developed by Arellano and Bover (1995), which
dramatically simpliÞes characterization of the �weight matrix� in GMM estimation. We deÞne the inno-
vation uit ≡ αi+εit. Arellano and Bover (1995) eliminate the Þxed effect αi in (1) by applying Helmert�s
transformation

u∗it ≡
r

T − t
T − t+ 1

·
uit − 1

T − t (ui,t+1 + · · ·+ uiT )
¸
, t = 1, . . . , T − 1

instead of Þrst differencing.1 The transformation produces

y∗it = βx
∗
it + ε

∗
it, t = 1, . . . , T − 1

where x∗t ≡ y∗i,t−1. Let zit ≡ (yi0, . . . , yit−1)0. Our moment restriction is summarized by
E [zitε

∗
it] = 0 t = 1, . . . , T − 1

It can be shown that, with the homoscedasticity assumption on εit, the optimal �weight matrix� is
proportional to a block-diagonal matrix, with typical diagonal block equal to E [zitz0it]. Therefore, the
optimal GMM estimator is equal to

bbGMM ≡
PT−1
t=1 x

∗0
t Pty

∗
tPT−1

t=1 x
∗0
t Ptx

∗
t

(2)

where x∗t ≡ (x∗1t, · · · , x∗nt)0, y∗t ≡ (y∗1t, · · · , y∗nt)0, Zt ≡ (z1t, · · · , znt)0, and Pt ≡ Zt (Z0tZt)−1 Z0t. Now, letbb2SLS,t denote the 2SLS of y∗t on x∗t :
bb2SLS,t ≡ x∗0t Pty∗t

x∗0t Ptx∗t
, t = 1, . . . , T − 1

If εit are i.i.d. across t, then under the standard (Þrst order) asymptotics where T is Þxed and n grows
to inÞnity, it can be shown that

√
n
³bb2SLS,1 − β, . . . ,bb2SLS,T−1 − β´0 → N (0,Ψ) ,

where Ψ is a diagonal matrix with the t-th diagonal elements equal to Var (εit)/ plimn−1x∗0t Ptx∗t . There-
fore, we may consider a minimum distance estimator, which solves

min
b


bb2SLS,1 − b

...bb2SLS,T−1 − b

0 

(x∗01 P1x∗1)
−1 0

. . .

0
¡
x∗0T−1PT−1x

∗
T−1

¢−1

−1

bb2SLS,1 − b
...bb2SLS,T−1 − b


The resultant minimum distance estimator is numerically identical to the GMM estimator in (2):

bbGMM =

PT−1
t=1 x

∗0
t Ptx

∗
tt ·bb2SLS,tPT−1

t=1 x
∗0
t Ptx

∗
t

Therefore, the GMM estimator bbGMM may be understood as a linear combination of the 2SLS estimatorsbb2SLS,1, . . . ,bb2SLS,T−1. It has long been known that the 2SLS may be subject to substantial Þnite sample
bias. See Nagar (1959), Rothenberg (1983), Bekker (1994), and Donald and Newey (1998) for related
discussion. It is therefore natural to conjecture that a linear combination of the 2SLS may be subject to
quite substantial Þnite sample bias.

1Arellano and Bover (1995) notes that the efficiency of the resultant GMM estimator is not affected whether or not
Helmert�s transformation is used instead of Þrst differencing.
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3 Bias Corrected GMM Estimators

In the previous section, we explained the bias of GMM estimator as a result of the biases of the 2SLS
estimators. With such understanding, it should be straightforward to apply the standard methods of
correcting for biases of 2SLS and eliminate the bias of the GMM estimator itself. Depending on the nature
of the higher order asymptotic approximation, we may come up with several strategies of correcting for
biases. Below, we discuss two different higher order asymptotic approximations and related methods of
bias correction. The Þrst one is the second order Taylor type approximation. Such perspective has been
adopted by Nagar (1959), and Rothenberg (1983). The second approximation pretends that the number
of parameters increases to inÞnity as a function of the sample size. Such approximation was originally
developed by Bekker (1994), and was adopted by Alvarez and Arellano (1998) and Hahn and Kuersteiner
(2000) in dynamic panel context.

3.1 Second Order Biases of GMM Type Estimators

We Þrst present a theory that justiÞes our second order bias calculation later in this section. Consider a
class of estimators solving the minimization problem

min
c
g (c)0G (c)−1 g (c) , (3)

where

g (c) ≡ 1

n

nX
i=1

δi (c) , G (c) ≡ 1

n

nX
i=1

ψi (c)ψi (c)
0

Let b denote the minimizer. First order condition for (3) is given by

0 = 2g1 (b)
0
G (b)−1 g (b)− g (b)0G (b)−1G1 (b)G (b)−1 g (b) , (4)

where g1 (b) ≡ ∂g (b)/∂b, and G1 ≡ ∂G (b)/∂b. By expanding the Þrst order condition, we can obtain
the following result:

Theorem 1 Second order bias of b is equal to

− 1

n

trace
³
Λ−1E

h
δi
∂δ0i
∂β

i´
λ1Λ−1λ1

+
1

n

λ01Λ−1E
£
ψiψ

0
iΛ
−1δi

¤
λ1Λ−1λ1

+
1

2n

trace
¡
Λ−1Λ1Λ−1E

£
δiδ

0
i

¤¢
λ1Λ−1λ1

+ 2
1

n

λ01Λ−1E
h
δi
∂δ0i
∂β

i
Λ−1λ1

(λ1Λ−1λ1)
2 − 1

n

λ01Λ−1E
£
δiλ

0
1Λ

−1ψiψ
0
i

¤
Λ−1λ1

(λ1Λ−1λ1)
2

− 2 1
n

λ01Λ−1E
£
δiδ

0
i

¤
Λ−1Λ1Λ−1λ1

(λ1Λ−1λ1)
2 +

1

n

λ01Λ−1E
£
δiδ

0
i

¤
Λ−1λ2

(λ1Λ−1λ1)
2

− 3

2n

λ01Λ−1λ2
(λ1Λ−1λ1)

3λ
0
1Λ

−1E
£
δiδ

0
i

¤
Λ−1λ1 +

3

2n

λ01Λ−1Λ1Λ−1λ1
(λ1Λ−1λ1)

3 λ01Λ
−1E

£
δiδ

0
i

¤
Λ−1λ1, (5)

where G = G (β), G1 = G1 (β), G2 = ∂G1 (β)/ ∂b, G3 = ∂G2 (β)/ ∂b, λj = E [gj ], and Λj = E [Gj ].

Proof. See Appendix A.

Remark 1 For the particular case where ψi = δi, i.e. when b is a CUE, the bias formula (5) exactly
coincides with Newey and Smith�s (2000).
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3.2 Motivation 1: Higher Order Expansion

There are T − 1 ingredients of the minimum distance estimator bb2SLS,1, . . . ,bb2SLS,T−1. Because all of
them are 2SLS, and because 2SLS is known to be biased, it would not be surprising if the resultant
minimum distance estimator, i.e., the GMM estimator, is biased. Using Theorem 1, it can be shown that:

Theorem 2 If the conditional distribution of ε∗it given zit is symmetric, the second order bias of bbGMM

is equal to
B1 +B2 +B3

n
+ o

µ
1

n

¶
, (6)

where

B1 ≡
PT−1
t=1 trace

¡
Λ−1t E [ε∗itx

∗
itzitz

0
it]
¢PT−1

t=1 E [zitx
∗
it]
0E [zitz0it]

−1E [zitx∗it]

B2 ≡ −2
PT−1
t=1

PT−1
s=1 E [zitx

∗
it]
0
E [zitz

0
it]
−1
E [ε∗itx

∗
iszitz

0
is]E [zisz

0
is]
−1
E [zisx

∗
is]³PT−1

t=1 E [zitx
∗
it]
0E [zitz0it]

−1E [zitx∗it]
´2

B3 ≡
PT−1
t=1

PT−1
s=1 E

h
E [zitx

∗
it]
0
E [zitz

0
it]
−1
ε∗itzitλ

0
sΛ

−1
s zisz

0
isE [zisz

0
is]
−1
E [zisx

∗
is]
i

³PT−1
t=1 E [zitx

∗
it]
0
E [zitz0it]

−1
E [zitx∗it]

´2 .

Proof. See Appendix B.
In Table 1, we compare the actual performance of bbGMM and the prediction of its bias based on

Theorem 2. Table 1 tabulates the actual bias of the estimator approximated by 10000 Monte Carlo runs,
and compares it with the second order bias based on the formula (6).2 It is clear that the second order
theory does a reasonably good job except when β is close to the unit circle and n is small.
Theorem 2 suggests a natural way of eliminating the bias. Suppose that bB1, bB2, bB3 are √n-consistent

estimators of B1, B2, B3. Then it is easy to see thatbbBC1 ≡ bbGMM − 1

n

³ bB1 + bB2 + bB3´ (7)

is Þrst order equivalent to bbGMM , and has second order bias equal to zero. Let

1

n
bB1 ≡

PT−1
t=1 trace

³
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 e

∗
itx

∗
itzitz

0
it)
´

PT−1
t=1 (

Pn
i=1 zitx

∗
it)
0
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 zitx

∗
it)
,

1

n
bB2 ≡ −2PT−1

t=1

PT−1
s=1 (

Pn
i=1 zitx

∗
it)
0
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 e

∗
itx

∗
iszitz

0
is) (

Pn
i=1 zisz

0
is)

−1
(
Pn
i=1 zisx

∗
is)³PT−1

t=1 (
Pn
i=1 zitx

∗
it)
0
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 zitx

∗
it)
´2 ,

1

n
bB3 ≡ PT−1

t=1

PT−1
s=1

bB3 (t, s)³PT−1
t=1 (

Pn
i=1 zitx

∗
it)
0
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 zitx

∗
it)
´2 ,

where

bB3 (t, s) ≡ Ã nX
i=1

zitx
∗
it

!0Ã nX
i=1

zitz
0
it

!−1
 nX
i=1

e∗itzit

Ã
nX
i=1

zisx
∗
is

!0Ã nX
i=1

zisz
0
is

!−1
zisz

0
is

Ã nX
i=1

zisz
0
is

!−1Ã nX
i=1

zisx
∗
is

!
2 In our Monte Carlo experiment, we let εit ∼ N (0, 1), αi ∼ N (0, 1), and yi0 ∼ N

³
αi
1−β ,

1
1−β2

´
.
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and
e∗it ≡ y∗it − x∗itbbGMM .

Then the bBs will satisfy the √n-consistency requirement, and hence, the estimator (7) will be Þrst order
equivalent to bbGMM and will have zero second order bias. Because the summand

E
h
E [zitx

∗
it]
0
E [zitz

0
it]
−1
ε∗itzitλ

0
sΛ

−1
s zisz

0
isE [zisz

0
is]
−1
E [zisx

∗
is]
i

in the numerator of B3 is equal to zero for s < t, we may instead consider

bbBC2 ≡ bbGMM − 1

n

µ bB1 + bB2 + bbB3¶ (8)

where
1

n
bbB3 ≡ PT−1

s=t

PT−1
t=1

bB3 (t, s)³PT−1
t=1 (

Pn
i=1 zitx

∗
it)
0
(
Pn
i=1 zitz

0
it)
−1
(
Pn
i=1 zitx

∗
it)
´2 .

Second order asymptotic theory roughly predicts that bbBC2 would be relatively free of bias. We
examined whether such prediction is reasonably accurate in Þnite sample by 50003 Monte Carlo runs.
Table 2 summarizes the properties of bbBC2. We have seen in Table 1 that the second order theory is
reasonably accurate unless β is close to one. It is therefore sensible to conjecture that bbBC2 would have
a reasonable Þnite sample bias property as long as β is not too close to one. Such conjecture is veriÞed
in Table 2.

3.3 Motivation 2: Alternative Asymptotics

In this section, we consider the usual dynamic panel model with Þxed effects (1) using the alternative
asymptotics where n and T grow to inÞnity at the same rate. Such alternative asymptotics have been
adopted by Alvarez and Arellano (1998) and Hahn and Kuersteiner (2000) in analyzing biases of GMM
estimators and maximum likelihood estimator for the model (1). We assume

Condition 1 εit
i.i.d.∼ N ¡0,σ2¢ over i and t.

We also assume stationarity on yi,0 and normality on αi4 :

Condition 2 yi0|αi ∼ N
³
αi
1−β ,

σ2

1−β2
´
and αi ∼ N

¡
0,σ2α

¢
.

In order to guarantee that Z0tZt is nonsingular, we will assume that

Condition 3 T
n → ρ, where 0 < ρ < 1.5

Alvarez and Arellano (1998) show that, under this alternative asymptotic approximation where n and
T grow to inÞnity at the same rate,

√
nT

µbbGMM −
µ
β − 1

n
(1 + β)

¶¶
→ N ¡

0, 1− β2¢ . (9)

3The difference of Monte Carlo runs here induced some minor numerical difference (in properties of bGMM ) across Tables
1 - 3.

4This condition allows us to use lots of intermediate results in Alvarez and Arellano (1998). Our results are expected to
be robust to violation of this condition.

5Alvarez and Arellano (1998) only require 0 ≤ ρ <∞. We require ρ < 1 to guarantee that Z0tZt is singular for every t.
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By examining the asymptotic distribution (9) under the alternative asymptotics derived by Alvarez and
Arellano (1998), we can develop a bias-corrected estimator. This bias-corrected estimator is given by

ebGMM ≡ n

n− 1
bbGMM +

1

n− 1 . (10)

Combining (9) and (10), we can easily obtain:

Theorem 3 Suppose that Conditions 1-3 are satisÞed. Also suppose that n and T grow to inÞnity at the
same rate. Then,

√
nT
³ebGMM − β

´
→ N ¡0, 1− β2¢ .

Hahn and Kuersteiner (2000) establish by a Hajék-type convolution theorem that N ¡
0, 1− β2¢ is the

minimal asymptotic distribution. As such, the bias corrected GMM is efficient. Although the bias cor-
rected GMM estimator ebGMM does have a desirable property under the alternative asymptotics, it would
not be easy to generalize the development leading to (10) to the model involving other strictly exogenous
variables. Such a generalization would require the characterization of the asymptotic distribution of the
standard GMM estimator under the alternative asymptotics, which may not be trivial. We therefore
consider eliminating biases in bb2SLS,t instead. An obvious estimator that gets rid of the higher order bias
of bb2SLS,t is the Nagar type estimator. Let

bbNagar,t = x∗0t Pty∗t − λtx
∗0
t Mty

∗
t

x
∗0
t Ptx

∗
t − λtx∗0t Mtx∗t

,

where Mt ≡ I − Pt, λt ≈ Kt

n−Kt
, and Kt denotes the number of instruments for the t-th equation. For

example, we may use λt = Kt−2
n−Kt+2

as in Donald and Newey (1998). We may also use LIML for the t-th
equation, in which case λt would be estimated by the usual minimum eigenvalue search.
We now examine properties of the corresponding minimum distance estimator. One possible weight

matrix for this problem is given by
¡
x∗01 P1x∗1 − λ1x

∗0
1 M1x

∗
1

¢−1
0

. . .

0
¡
x∗0T−1PT−1x

∗
T−1 − λT−1x

∗0
T−1MT−1x∗T−1

¢−1

−1

With this weight matrix, it can be shown that the minimum distance estimator is given by

ebNagar ≡ P
t

¡
x∗0t Pty∗t − λtx

∗0
t Mty

∗
t

¢P
t (x

∗0
t Ptx

∗
t − λtx∗0t Mtx∗t )

= β +

P
t

¡
x∗0t Ptε∗t − λtx

∗0
t Mtε

∗
t

¢P
t (x

∗0
t Ptx

∗
t − λtx∗0t Mtx∗t )

. (11)

One possible way to examine the Þnite sample property of the new estimator is to use the alternative
asymptotics:

Theorem 4 Suppose that Conditions 1-3 are satisÞed. Also suppose that n and T grow to inÞnity at the
same rate. Then,

√
nT (bNagar − β)→ N

¡
0, 1− β2¢.

Proof. Lemmas 12, and 13 in Appendix C along with Lemma 2 of Alvarez and Arellano (1998)
establish that

1√
nT

X
t

µ
x∗0t Ptε

∗
t −

Kt
n−Kt

x
∗0
t Mtε

∗
t

¶
→ N

µ
0,

σ4

1− β2
¶

and
1

nT

X
t

µ
x
∗0
t Ptx

∗
t −

Kt

n−Ktx
∗0
t Mtx

∗
t

¶
→ σ2

1− β2 ,
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from which the conclusion follows.
In Table 3, we summarized Þnite sample properties of ebNagar and bbLIML approximated by 10000

Monte Carlo runs. Here, bbLIML is the estimator where λs in (11) are replaced by the corresponding
�eigenvalues�.

4 Long Difference SpeciÞcation: Finite Iteration

In previous sections, we noted that even the second order asymptotics �fails� to be a good approximation
around β ≈ 1. This phenoemenon can be explained by the �weak instrument� problem. See Staiger
and Stock (1997). Blundell and Bond (1998) argued that the weak instrument problem can be alleviated
by assuming stationarity on the initial observation yi0. Such stationarity condition may or may not be
appropriate for particular applications. Further, stationarity assumption turns out to be a predominant
source of information around β ≈ 1 as noted by Hahn (1999). We therefore turn to some other method
to overcome the weak instrument problem around the unit circle avoiding the stationarity assumption.
We argue that some of the difficulties of inference around the unit circle would be alleviated by taking a
long difference. To be speciÞc, we focus on a single equation based on the long difference

yiT − yi1 = β (yiT−1 − yi0) + (εiT − εi1) (12)

It is easy to see that the initial observation yi0 would serve as a valid instrument. Using intuition as in
Hausman and Taylor (1983) or Ahn and Schmidt (1995), we can see that yiT−1 − βyiT−2, . . ., yi2 − βyi1
would be valid instruments as well.

4.1 Intuition

In Hahn-Hausman (HH) (1999) we found that the bias of 2SLS (GMM) depends on 4 factors: �Explained�
variance of the Þrst stage reduced form equation, covariance between the stochastic disturbance of the
structural equation and the reduced form equation, the number of instruments, and sample size:

1

n

(number of instruments)× (covariance)
�Explained� variance of the Þrst stage reduced form equation

Similarly, the Donald-Newey (DN) (1999) MSE formula depends on the same 4 factors. I now consider
Þrst differences (FD) and long differences (LD) to see why LD does so much better in our Monte-Carlo
experiments.
Assume that T = 4. The Þrst difference set up is:

y4 − y3 = β (y3 − y2) + ε4 − ε3 (13)

For the RHS variables it uses the instrument equation:

y3 − y2 = (β − 1) y2 + α+ ε3
Now calculate the R2 for equation (13) using Ahn-Schmidt (AS) moments under �ideal conditions�
where you know β in the sense that the nonlinear restrictions become linear restrictions: We would then
use (y2, y1, y0,α+ ε1,α+ ε2) as instruments. Assuming stationarity for symbols, but not using it as
additional moment information, we can write

y0 =
α

1− β + ξ0,
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where ξ0 ∼
³
0,

σ2ε
1−β2

´
. It can be shown that the covariance between the structure error and the Þrst

stage error is −σ2ε, and the �explained variance� in the Þrst stage is equal to σ2ε−β+1β+1 . Therefore,the ratio
that determines the bias of 2SLS is equal to

−σ2ε
σ2ε

−β+1
β+1

= −1 + β
1− β ,

which is equal to −19 for β = .9. For n = 100, this implies the percentage bias of
Number of Instruments

Sample Size
−19
β

× 100 = 5

100

−19
0.9

× 100 = −105. 56

We now turn to the LD setup:

y4 − y1 = β (y3 − y0) + ε4 − ε1

It can be shown that the covariance between the Þrst stage and second stage errors is −β2σ2ε, and the
�explained variance� in the Þrst stage is given by

−σ2ε
¡
2β6 − 4β4 − 2β5 + 4β2 + 4β − 2β3 + 6¢σ2 + β6 − β4 + 2− 2β3¡−2β − 3 + β2¢σ2 − 1 + β2 ,

where σ2 = σ2α
σ2ε
. Therefore, the ratio that determines the bias is equal to

β2
¡−2β − 3 + β2¢σ2 − 1 + β2¡

2β6 − 4β4 − 2β5 + 4β2 + 4β − 2β3 + 6¢σ2 + β6 − β4 + 2− 2β3
which is equal to

−. 374 08 + 2. 570 3× 10−4
σ2 + 4. 830 6× 10−2

for β = .9. Note that the maximum value that this ratio can take in absolute terms is

−. 374 08

which is much smaller than−19. We therefore conclude that the long difference increasesR2 but decreases
the covariance. Further, number of instruments is smaller in the long difference speciÞcation so we should
expect even smaller bias.

4.2 Monte Carlo

For the long difference speciÞcation, we can use yi0 as well as the �residuals� yiT−1−βyiT−2, . . ., yi2−βyi1
as valid instruments.6 We may estimate β by applying 2SLS to the long difference equation (12) using
yi0 as instrument. We may then use

³
yi0, yiT−1 −bb2SLSyiT−2, . . . , yi2 −bb2SLSyi1´as instrument to the

long difference equation (12) to estimate β. Call the estimator bb2SLS,1. By iterating this procedure,
we can deÞne bb2SLS,2, bb2SLS,3, . . . Similarly, we may Þrst estimate β by Arellano and Bover, and use³
yi0, yiT−1 −bbGMMyiT−2, . . . , yi2 −bbGMMyi1

´
as instrument to the long difference equation (12) to es-

timate β. Call the estimator bb2SLS,1. By iterating this procedure, we can deÞne bbGMM,2, bbGMM,3, . . .
Likewise, we may Þrst estimate β by bbLIML, and use

³
yi0, yiT−1 −bbLIMLyiT−2, . . . , yi2 −bbLIMLyi1

´
as

6We acknowledge that the residual instruments are irrelevant under the near unity asymptotics.
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instrument to the long difference equation (12) to estimate β. Call the estimator bbLIML,1. By iterating
this procedure, we can deÞne bbLIML,2, bbLIML,3, . . .We found that such iteration of the long difference es-
timator works quite well. We implemented these procedures for T = 5, n = 100, β = 0.9 and σ2α = σ

2
ε = 1.

Our Þnding with 5000 monte carlo runs is summarized in Table 4. In general, we found that the iteration
of the long difference estimator works quite well.
We compared performances of our estimator with Blundell and Bond�s (1998) estimator, which uses

additional information, i.e., stationarity. We compared four versions of their estimators bbBB1, . . . , bbBB4
with the long difference estimators bbLIML,1,bbLIML,2,bbLIML,3. For exact deÞnition of bbBB1, . . . , bbBB4,
see Appendix E. Of the four versions, bbBB3 and bbBB4 are the ones reported in their Monte Carlo section.
In our Monte Carlo exercise, we set β = 0.9, σ2ε = 1, αi ∼ N (0, 1). Our Þnding based on 5000 Monte
Carlo runs is contained in Table 5. In terms of bias, we Þnd that Blundell and Bond�s estimators bbBB3
and bbBB4 have similar properties as the long difference estimator(s), although the former dominates
the latter in terms of variability. (We note, however, that bbBB1 and bbBB2 are seriously biased. This
indicates that the choice of weight matrix matters in implementing Blundell and Bond�s procedure.)
This is not surprising because the long difference estimator does not use the information contained in
the initial condition. See Hahn (1999) for related discussion. We also wanted to examine sensitivity of
Blundell and Bond�s estimator to misspeciÞcation, i.e., nonstationary distribution of yi0. Obviously the
estimator will be inconsistent. In order to assess the Þnite sample sensitivity, we considered the cases
where yi0 ∼

³
αi

1−βF ,
σ2ε

1−β2F

´
. Our Monte Carlo results based on 5000 runs are contained in Table 6, which

contains results for βF = .5 and βF = 0. We Þnd that the long difference estimator is quite robust,
whereas bbBB3 and bbBB4 become quite biased as predicted by the Þrst order theory. (We note that bbBB1
and bbBB2 are less sensitive to misspeciÞcation. Such robustness consideration suggests that choice of
weight matrix is not straightforward in implementing Blundell and Bond�s procedure.) We conclude that
the long difference estimator works quite well even compared to Blundell and Bond�s (1998) estimator.

4.3 Second Order Theory

We now move on to examine second order bias of Þnitely iterated 2SLS. For this purpose, we consider
2SLS

b =

Ã nX
i=1

xibz0i
!Ã

nX
i=1

bzibz0i
!−1Ã nX

i=1

bzixi!
−1Ã nX

i=1

xibz0i
!Ã

nX
i=1

bzibz0i
!−1Ã nX

i=1

bziyi! (14)

applied to the single equation
yi = βxi + εi

using instrument bzi = zi − 1√
n
bθwi, where bθ = √

n
³bβ − β´. Here, zi is the �proper� instrument. We

assume that bθ = 1√
n

nX
i=1

fi +
1√
n
Qn + op

µ
1√
n

¶
(15)

where fi is i.i.d. and has mean zero, and Qn = Op (1). It can be seen that
E[Qn]
n is equal to the second

order bias of bβ under our assumption (15).
Theorem 5 Let b denote the 2SLS in (14). Under conditional symmetry of εi given zi, the second order
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bias of b is equal to 1
n times

(K − 2) σuε
λ0Λ−1λ

− λ
0Λ−1ϕ
λ0Λ−1λ

E [Qn]− λ
0Λ−1E [fiwiεi]
λ0Λ−1λ

− E [fizixi]
0
Λ−1ϕ

λ0Λ−1λ
− φ

0Λ−1E [fiziεi]
λ0Λ−1λ

+
λ0Λ−1E [fiziz0i]Λ

−1ϕ
λ0Λ−1λ

+
λ0Λ−1∆Λ−1E [fiziεi]

λ0Λ−1λ
−E £f2i ¤ λ0Λ−1∆Λ−1ϕλ0Λ−1λ

+ 2
λ0Λ−1ϕ¡
λ0Λ−1λ

¢2E [fizixi]0 Λ−1λ
+ 2

λ0Λ−1E [fiziεi]¡
λ0Λ−1λ

¢2 φ0Λ−1λ− 2E £f2i ¤ λ0Λ−1ϕ¡
λ0Λ−1λ

¢2φ0Λ−1λ
− λ0Λ−1ϕ¡

λ0Λ−1λ
¢2λ0Λ−1E [fiziz0i]Λ−1λ

− λ
0Λ−1E [fiziεi]¡
λ0Λ−1λ

¢2 λ0Λ−1∆Λ−1λ+E
£
f2i
¤ λ0Λ−1ϕ¡
λ0Λ−1λ

¢2λ0Λ−1∆Λ−1λ.
where λ = E [zixi], Λ = E [ziz0i], φ = E [wixi], ∆ = E [wiz

0
i + ziw

0
i], and ϕ = E [wiεi].

Proof. See Appendix F.
Using Theorem 5, we can characterize the second order bias of iterated 2SLS applied to the long

difference equation using LIML like estimator as the initial estimator. For this purpose, we need to have
a second order bias of LIML like estimator. In Appendix G, we present a second order bias of the LIML
like estimator. In fact, based on 5000 runs, we found in our Monte Carlo experiments that the biases ofbbLIML,1 and bbLIML,2 are smaller than predicted by the second order theory. In Table 7, we compare the
actual performance of the long difference based estimators with the second order theory.
It is sometimes of interest to construct a consistent estimator for the asymptotic variance. Although

such exercise may appear to be related only to Þrst order asymptotics, a consistent estimator of the
asymptotic variance could be useful in practice for reÞnement of conÞdence interval as well: Pivoted
bootstrap as considered by Hall and Horowitz (1996) require such consistent estimator for second order
reÞnement. In Appendix H, we present a Þrst order asymptotic result as well as a consistent estimator
for the asymptotic variance.

5 Near Unit Root Approximation

Our Monte Carlo simulation results summarized in Tables 1, 2, and 3 indicate that the previously dis-
cussed approximations and the bias corrections that are based on them do not work well near the unit
circle. This is because the identiÞcation of the model becomes �weak� near the unit circle. See Blundell
and Bond (1998), who related such problem to the analysis by Staiger and Stock (1997). In this Section,
we formally adopt approximations local to the points in the parameter space that are not identiÞed. To
be speciÞc, we consider model (1) for T Þxed and n→∞ when also βn tends to unity. We analyze bias
and mean squared error of the associated weak instrument limit distribution. We analyze the class of
GMM estimators that exploit Ahn and Schmidt�s (1997) moment conditions and show that a strict subset
of the full set of moment restrictions should be used in estimation in order to minimize bias. We argue
that such subset of moment restrictions lead to the inference based on �long difference� speciÞcation.
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Following Ahn and Schmidt we exploit the moment conditions

E [uiu
0
i] =

¡
σ2ε + σ

2
α

¢
I + σ2α11

0

E [uiyi0] = σαy01

with 1 = [1, ..., 1]0 a vector of dimension T and ui = [ui1, ..., uiT ]
0
. The moment conditions can be written

more compactly as

b =

"
vechE [uiu

0
i]

E [uiyi0]

#
= σ2ε

"
vech I

0

#
+ σ2α

"
vech(I + 110)

0

#
+ σαy0

"
0

1

#
(16)

where the redundant moment conditions have been eliminated by the use of the vech operator which
extracts the upper diagonal elements from a symmetric matrix. Representation (16) makes it clear that
the vector b ∈ RT (T+1)/2+T is contained in a 3 dimensional subspace which is another way of stating that
there are G = T (T + 1)/2 + T − 3 restrictions imposed on b. This statement is equivalent to Ahn and
Schmidt�s (1997) analysis of the number of moment conditions.
GMM estimators are obtained from the moment conditions by eliminating the unknown parameters

σ2ε,σ
2
α and σαy0 . The set of all GMM estimators leading to consistent estimates of β can therefore be

described by a (T (T + 1)/2 + T ) × G matrix A which contains all the vectors spanning the orthogonal
complement of b. This matrix A satisÞes

b0A = 0.

For our purposes it will be convenient to choose A such that

b0A = [Euit∆uis, E (uiT∆uij) , Eui∆uik, E∆u0iyi0] ,

s = 2, ..., T ; t = 1, ...s− 2; j = 2, ..., T − 1; k = 2, ..., T

where ∆ui = [ui2 − ui1, ..., uiT − uiT−1]0 . It becomes transparent that any other representation of the
moment conditions can be obtained by applying a corresponding nonsingular linear operator C to the
matrix A. It can be checked that there exists a nonsingular matrix C such that b0AC = 0 is identical to
the moment conditions (4a)-(4c) in Ahn and Schmidt (1997).
We investigate the properties of (infeasible) GMM estimators based on

E [uit∆uis (β)] = 0, E [uiT∆uij (β)] = 0, E [ui∆uik (β)] = 0, E [yi0∆uit (β)] = 0

obtained by setting ∆uit (β) ≡ ∆yit − β∆yit−1. Here, we assume that the instruments uit are ob-
servable. Let gi1 (β) denote a column vector consisting of uit∆uis (β) , uiT∆uij (β) , ui∆uik (β). Also let
gi2 (β) ≡ [yi0∆ui (β)]. Finally, let gn (β) ≡ n−3/2

Pn
i=1

£
gi1 (β)

0
, gi2 (β)

0¤0 with the optimal weight matrix
Ω ≡ limnE

£
gn (βn) gn (βn)

0¤. The infeasible GMM of a possibly transformed set of moment conditions
C0gn (β) then solves

β2SLS = argmin
β

gn(β)
0C (C 0ΩC)+C 0gn (β)

where C is rank (Ω)× r matrix for 1 ≤ r ≤ rank (Ω) such that C 0C = I and rank
³
C (C 0ΩC)+C 0

´
≥ 1.

We use (C0ΩC)+ to denote the Moore-Penrose inverse. We thus allow the use of a singular weight
matrix. Choosing r less than G allows to exclude certain moment conditions. Let fi,1 ≡ − ∂gi1 (β)/∂β,
fi,2 ≡ − ∂gi2 (β)/∂β, and fn ≡ n−3/2

Pn
i=1

£
f 0i1, f

0
i,2

¤0
. The infeasible 2SLS estimator can be written as

β2SLS − βn0 =
³
f 0nC (C

0ΩC)+C0fn
´−1

f 0nC (C
0ΩC)+C 0gn (βn0) . (17)
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We are now analyzing the behavior of β2SLS − βn0 under local to unity asymptotics. We make the
following additional assumptions.

Condition 4 Let yit = αi + βnyit−1 + εit with εit ∼ N(0,σ2ε), αi ∼ N(0,σ2α) and yi0 ∼ N( αi
1−βn ,

1
1−β2n )

where βn = exp(−c/n).

Also note that∆yit = β
t−1
n ηi0+εit+

c√
n

Pt−1
s=1 β

s−1
n εit−s+op(n−1) where ηi0 ∼ N(0, (βn − 1)2 /

¡
1− β2n

¢
).

We now establish the following Lemma.

Lemma 1 Assume βn = exp(−c/n) for some c > 0. For T Þxed and as n→∞

n−3/2
nX
i=1

fi,1
p→ 0, n−3/2

nX
i=1

gi,1(β0)
p→ 0

and

n−3/2
nX
i=1

£
f 0i,2, g

0
i,2(β0)

¤0 d→ £
ξ0x, ξ

0
y

¤0
where

£
ξ0x, ξ

0
y

¤ ∼ N(0,Σ) with Σ = " Σ11 Σ12

Σ21 Σ22

#
.with Σ11 = δI, Σ12 = δM1 Σ22 = δM2, where δ =

σ2ασ
2
ε

c2 ,

M1 =


−1 1 0

. . .
. . .

0
. . . 1

−1

 , M2 =


2 −1 0

−1 . . .
. . .

. . .
. . . −1
−1 2


and Σ12 = Σ021.

Proof. See Appendix 5.
Using Lemma (1) the limiting distribution of β2SLS − βn can now be obtained in the next corollary.

We deÞne the augmented vectors ξ#x =
£
0, ..., 0, ξ0x

¤0
and ξ#y =

£
0, ..., 0, ξ0y

¤0
.

Corollary 1 Let β2SLS − βn be given by (17). If Condition (4) is satisÞed then

β2SLS − 1 d→ ξ#0x C(C0ΩC)+C0ξ
#
y

ξ#0x C(C0ΩC)+C0ξ
#
x

= X (18)

Unlike the limiting distribution for the standard weak instrument problem, X, as deÞned in 18, is
based on normal vectors that have zero mean. This degeneracy is generated by the presence of the
Þxed effect in the initial condition, scaled up appropriately to satisfy the stationarity requirement for the
process yit. Inspection of the proof shows that the usual concentration parameter appearing in the limit
distribution is dominated by a stochastic component related to the Þxed effect. This situation seems to
be similar to time series models where deterministic trends can dominate the asymptotic distribution.
A problem with analyzing the class of estimators having a limiting distribution X is the fact that

C0ξ#x has a potentially degenerate distribution. In order to proceed we therefore have to show Þrst that
it is never optimal to choose C such that C0ξ#x is degenerate.
In particular, in the proof of the next theorem we show that it is never optimal to choose W singular

where W = L0C(C 0ΩC)+C 0L with LL0 = Σ11. It then follows by Lemma (14) in the Appendix that
Ω = Σ11 and C = C1. The latter implies that only moment conditions involving the initial conditions
should optimally be picked.
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Theorem 6 Assume Condition 4 holds and β2SLS − βn is as deÞned in (17). Then E
h
(X∗)2

i
<

E
h
(X)

2
i
where X is deÞned in (18) and X∗ is obtained by setting W∗ = L0C1(C01Σ11C1)+C1L = I.

Theorem (6) shows that standard efficient GMM estimators for the dynamic panel model based on
exploiting all the available moment conditions are inadmissible under the weak instrument asymptotic
approximation. There are two elements that lead to inadmissibility. First, according to Theorem (14) the
Þrst order optimal weight matrix Σ22 produces an estimator that is dominated in terms of L2 risk by an
estimator based on Σ11. Second, as shown above most of the moment conditions become irrelevant under
these asymptotics, the only exception being moment conditions involving initial conditions. This result
has been discussed elsewhere by Bond and Blundell (1988) and Hahn (1999). One important consequence
of Theorem (6) is that optimal inference for the Panel model is feasible since the matrix Σ11 is known up
to a scalar which is irrelevant for estimation purposes.
Next we turn to the analysis of bias and mean squared error for the dynamic panel model. We now

restrict C1 to be a (T − 1) × r matrix of full column rank r ≤ T − 1 such that C01C1 = I. Restricting
r ≤ T−1 means that moment restrictions can not be used twice which can not be ruled out from Theorem
(6). From a practical point of view imposing this restriction is very natural. Since the limit only depends
on zero mean normal random vectors we can directly apply the results of Smith (1993).

Theorem 7 Let X∗ be as deÞned in Theorem (6). Let D̄ = (D +D0) /2 where D = C 01Σ12C1. Then

E [X∗] = trace
¡
D̄/r

¢
where r = rank (C) and

E
h
(X∗)2

i
=
³
2 trace(D̄2) +

¡
trD̄

¢2´
/r(r + 2) + 2

¡
r
2

¢
−1 (

1
2)1

( r2)1
trace (DGD0)

where E [X∗] exists for r ≥ 1 and E
h
(X∗)2

i
exists for r ≥ 3.

An immediate consequence of Theorem 7 is that both bias and mean squared error are monotonically
decreasing in the parameter c. The further β is away from the unit circle the lower both bias and mean
squared error are.
We can now consider the problem of choosing an optimal matrix C1 to minimize bias and L2 risk. It

turns out that an analytical solution for the bias minimal estimator can be found. For the bias term we
can write trace D̄/r = δ

2r trace
h
C01(M1 +M

0
1)C1

i
which shows that the bias minimal estimator does not

depend on the unknown parameter δ. For the case of L2 risk the situation is more complicated. Note

however that trace(D̄2) = δ2 trace

·³
1
2C

0
1(M1 +M

0
1)C1

´2¸
,
¡
trace D̄

¢2
= δ2 (trace [C01(M1 +M1)C1])

2

and

trace (DGD0) = δ3 trace (C01M1C1C
0
1M2C1C

0
1M

0
1C1)− δ4 trace

h
(C01M1C1)

2
(C01M

0
1C1)

2
i

which shows that the optimum only depends in a relatively simple way on the unknown parameter δ.We
could in principle use a prior distribution for this parameter to obtain a tractable risk function. Since
this will only change the relative weights on the different components we will not explicitly analyze it
here. Once the weights are known or assumed to be known the optimal matrix C can in principle be
found numerically.
The following theorem describes the bias optimal 2SLS estimator for the dynamic panel model
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Theorem 8 Let X∗ be as deÞned in Theorem (6). Let D̄ = (D +D0) /2 where D = C01Σ12C1. Let
C∗ = argmin

C s.t. C0C=I
trD̄/n. Then C∗ = ri where ri is the eigenvector corresponding to the smallest eigenvalue

li of D̄. As T → ∞ the smallest eigenvalue of D̄, li → 0. Let 1 = [1, ..., 1]0 be a T − 1 vector. Then for
C = 1/(1

0
1)
1/2 it follows that trace D̄→ 0 as T →∞.

Theorem 8 shows that the estimator that minimizes the bias is based only on a single moment condition
which is a linear combination of the moment conditions involving yi0 as instrument where the weights
are the elements of the eigenvector ri corresponding to the smallest eigenvalue of (M1 +M

0
1) /2. This

eigenvalue can be easily computed for any given T. The Theorem also shows that at least for large T
the optimal procedure can be approximated by heuristic method which puts equal weight on all moment
conditions. The heuristic procedure turns out be equal to the moment condition E (uiT − ui1) yi0 which
can be motivated by taking �long differences� of the model equation yit = αi + βnyit−1 + εit i.e. by
considering

yiT − yi1 = αi + βn(yiT−1 − yi0) + εiT − εi1.
It can also be shown that a 2SLS estimator that uses all moment conditions involving yi0 remains biased
even as T →∞.

6 Long Difference SpeciÞcation: InÞnite Iteration

We found that the iteration of the long difference estimator works quite well. In the (`+ 1)-th iteration,
our iterated estimator estimates the model

yiT − yi1 = β(yiT−1 − yi0) + εiT − εi1

based on 2SLS using instruments zi
³bβ(`)´ ≡ ³yi0, yi2 − bβ(`)yi1, . . . , yiT−1 − bβ(`)yiT−2´, where bβ(`) is the

estimator obtained in the previous iteration. We might want to examine properties of an estimator based
on an inÞnite iteration, and see if it improves bias property. If we continue the iteration and it converges7,
the estimator is a Þxed point to the minimization problem

min
b

Ã
NX
i=1

ξi (b)

!0Ã NX
i=1

zi (b) zi (b)
0
!−1Ã NX

i=1

ξi (b)

!
where ξi (b) ≡ zi (b) ((yiT − yi1)− b (yiT−1 − yi0)). Call the minimizer the inÞnitely iterated 2SLS and
denote it bβI2SLS. Another estimator which resembles bβI2SLS is CUE, which solves

bβCUE ≡ argmin
b
L (b) = argmin

b

Ã
NX
i=1

ξi (b)

!0Ã NX
i=1

ξi (b) ξi (b)
0
!−1Ã NX

i=1

ξi (b)

!
.

Their actual performance approximated by 5000 Monte Carlo runs along with the biases predicted by
second order theory in Theorem 1 are summarized in Tables 8 and 9. We Þnd that the long difference
based estimators have quite reasonable Þnite sample properties even when β is close to 1. Similar to the
Þnite iteration in the previous section, the second order theory seem to be next to irrelevant for β close
to 1.

7There is no a priori reason to believe that the iterations converge to the Þxed point. To show that, one would have to
prove that the iterations are a contraction mapping.
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Remark 2 We compared performances of our estimators with Ahn and Schmidt�s (1995) estimator as
well as Blundell and Bond�s (1998) estimator. Both estimators are deÞned in two-step methods. In
order to make a accurate comparison with our long difference strategy, for which there is no ambiguity of
weight matrix, we decided to apply the continuous updating estimator to their moment restrictions. We
had difficulty of Þnding global minimum for Ahn and Schmidt�s (1995) moment restrictions. We therefore
used Rothenberg type two step iteration, which would have the same second order property as the CUE
itself. (See Appendix I.) Again, in order to make a accurate comparison, we applied the two step iteration
idea to our long difference and Blundell and Bond (1998) as well. We call these estimators bβCUE2,AS ,bβCUE2,LD, and bβCUE2,BB. We set n = 100 and T = 5. Again the number of monte carlo runs was
set equal to 5000. Our results are reported in Table ??. For comparison purpose, we reported properties
of Arellano and Bover�s estimator (1995) as well. We can see that the long difference estimator has a
comparable property to Ahn and Schmidt�s estimator. We do not know why the version of long difference
CUE has such a large median bias at β = .95 whereas the CUE itself does not have such problem.

7 Conclusion

We have investigated the bias of the dynamic panel effects estimators using second order approximations
and Monte Carlo simulations. The second order approximations conÞrm the presence of signiÞcant bias
as the parameter becomes large, as has previously been found in Monte Carlo investigations. Use of
the second order asymptotics to deÞne a second order unbiased estimator using the Nagar approach
improve matters, but unfortunately does not solved the problem. Thus, we propose and investigate a
new estimator, the long difference estimator of Griliches and Hausman (1986). We Þnd that in Monte
Carlo experiments that this estimator works quite well, removing most of the bias even for quite high
values of the parameter. Indeed, the long differences estimator does considerably better than �standard�
second order asymptotics would predict. Thus, we consider alternative asymptotics with a near unit circle
approximation. These asymptotics indicate that the previously proposed estimators for the dynamic Þxed
effects problem are inadmissable. The calculations also demonstrate that the long difference estimator
should work in eliminating the Þnite sample bias previously found. Thus, the alternative asymptotics
explain our Monte Carlo Þnding of the excellent performance of the long differences estimator.
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Technical Appendix

A Proof of Theorem 1

Note that we have

g1 (b) = g1 +
1√
n
g2 ·

√
n (b− β) + 1

2n
g3 ·

¡√
n (b− β)¢2 + opµ 1

n

¶
,

g (b) = g +
1√
n
g1 ·

√
n (b− β) + 1

2n
g2 ·

¡√
n (b− β)¢2 + opµ 1

n

¶
,

and

G (b)
−1
= G−1 − 1√

n
G−1G1G−1 ·

√
n (b− β)

+
1

2

1

n

¡
2G−1G1G−1G1G−1 −G−1G2G−1

¢ ¡√
n (b− β)¢2 + opµ 1

n

¶
,

G1 (b) = G1 +
1√
n
G2 ·

√
n (b− β) + 1

2

1

n
G3 ·

¡√
n (b− β)¢2 + opµ 1

n

¶
.

Therefore, we have

g1 (b)
0G (b)−1 g (b) = g01G

−1g +
1√
n
h1 ·

√
n (b− β) + 1

n
h2 ·

¡√
n (b− β)¢2 + opµ 1

n

¶
,

and

g (b)
0
G (b)−1G1 (b)G (b)

−1
g (b) = g0G−1G1G−1g +

1√
n
h3 ·

√
n (b− β)

+
1

n
h4 ·

¡√
n (b− β)¢2 + opµ 1

n

¶
,

where

h1 = g
0
2G

−1g − g01G−1G1G−1g + g01G−1g1,
h2 =

1

2
g03G

−1g +
1

2
g01
¡
2G−1G1G−1G1G−1 −G−1G2G−1

¢
g +

1

2
g01G

−1g2

− g02G−1G1G−1g − g01G−1G1G−1g1 + g02G−1g1
=
1

2
g03G

−1g + g01G
−1G1G−1G1G−1g − 1

2
g01G

−1G2G−1g +
3

2
g01G

−1g2

− g02G−1G1G−1g − g01G−1G1G−1g1,

and

h3 = g
0
1G

−1G1G−1g − g0G−1G1G−1G1G−1g + g0G−1G2G−1g
− g0G−1G1G−1G1G−1g + g0G−1G1G−1g1
= 2g01G

−1G1G−1g − 2g0G−1G1G−1G1G−1g + g0G−1G2G−1g,
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h4 =
1

2
g02G

−1G1G−1g +
1

2
g0
¡
2G−1G1G−1G1G−1 −G−1G2G−1

¢
G1G

−1g

+
1

2
g0G−1G3G−1g +

1

2
g0G−1G1

¡
2G−1G1G−1G1G−1 −G−1G2G−1

¢
g

+
1

2
g0G−1G1G−1g2

− g01G−1G1G−1G1G−1g + g01G−1G2G−1g − g01G−1G1G−1G1G−1g
+ g01G

−1G1G−1g1 − g0G−1G1G−1G2G−1g
+ g0G−1G1G−1G1G−1G1G−1g − g0G−1G1G−1G1G−1g1 − g0G−1G2G−1G1G−1g
+ g0G−1G2G−1g1 − g0G−1G1G−1G1G−1g1

We may therefore rewrite the Þrst order condition (4) as

0 =
¡
2g01G

−1g − g0G−1G1G−1g
¢
+

1√
n
(2h1 − h3)

√
n (b− β)

+
1

n
(2h2 − h4)

¡√
n (b− β)¢2 + opµ 1

n

¶
. (19)

Let

Ψ = 3λ01Λ
−1λ2 − 3λ01Λ−1Λ1Λ−1λ1,

Υ = 2λ1Λ
−1λ1,

1√
n
Φ = 2λ01Λ

−1g,

1√
n
Ξ = 4 (g1 − λ1)0 Λ−1λ1 − 2λ01Λ−1 (G− Λ)Λ−1λ1 − 4λ01Λ−1Λ1Λ−1g + 2λ02Λ−1g,

1

n
Γ = 2 (g1 − λ1)0 Λ−1g − 2λ01Λ−1 (G− Λ)Λ−1g − g0Λ−1Λ1Λ−1g.

Lemma 2

h2 =
3

2
λ01Λ

−1λ2 − λ01Λ−1Λ1Λ−1λ1 + op (1) ,
h4 = λ

0
1Λ

−1Λ1Λ−1λ1 + op (1) .

Proof. Follows from plim g = 0.

Lemma 3

2h1 − h3 = Υ+ 1√
n
Ξ+ op

µ
1√
n

¶
.

Proof. Because

g02G
−1g = λ02Λ

−1g + op

µ
1√
n

¶
,

g01G
−1G1G−1g = λ01Λ

−1Λ1Λ−1g + op

µ
1√
n

¶
,

and

g01G
−1g1 = (λ1 + (g1 − λ1))0

µ
Λ−1 − Λ−1 (G− Λ)Λ−1 + op

µ
1√
n

¶¶
(λ1 + (g1 − λ1))

= λ1Λ
−1λ1 + 2 (g1 − λ1)0 Λ−1λ1 − λ1Λ−1 (G− Λ)Λ−1λ1 + op

µ
1√
n

¶
, (20)
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we obtain

h1 = λ
0
2Λ

−1g − λ01Λ−1Λ1Λ−1g

+ λ1Λ
−1λ1 + 2 (g1 − λ1)0 Λ−1λ1 − λ1Λ−1 (G− Λ)Λ−1λ1 + op

µ
1√
n

¶
.

Similarly, we obtain

h3 = 2λ
0
1Λ

−1Λ1Λ−1g + op

µ
1√
n

¶
.

The conclusion follows.

Lemma 4

2g01G
−1g − g0G−1G1G−1g = 1√

n
Φ+

1

n
Γ+ op

µ
1

n

¶
.

Proof. We have

g01G
−1g = (λ1 + (g1 − λ1))0

µ
Λ−1 − Λ−1 (G− Λ)Λ−1 + op

µ
1√
n

¶¶
g

= λ01Λ
−1g + (g1 − λ1)0 Λ−1g − λ01Λ−1 (G− Λ)Λ−1g + op

µ
1

n

¶
and

g0G−1G1G−1g = g0Λ−1Λ1Λ−1g + op

µ
1

n

¶
.

from which the conclusion follows.
Using Lemmas 2, 3, and 4, we may rewrite the Þrst order condition (19) as

0 =
1√
n
Φ+

1

n
Γ+

1√
n

µ
Υ+

1√
n
Ξ

¶√
n (b− β) + 1

n
Ψ
¡√
n (b− β)¢2 + opµ 1

n

¶
or

0 = Φ+
1√
n
Γ+

µ
Υ+

1√
n
Ξ

¶√
n (b− β) + 1√

n
Ψ
¡√
n (b− β)¢2 + opµ 1√

n

¶
,

based on which we can conclude that

√
n (b− β) = − 1

Υ
Φ+

1√
n

µ
− 1
Υ
Γ+

1

Υ2
ΦΞ− Ψ

Υ3
Φ2
¶
+ op

µ
1√
n

¶
.

It therefore follows that the approximate mean of
√
n (b− β) is equal to

− 1
Υ
E [Φ]− 1√

n

1

Υ
E [Γ] +

1√
n

1

Υ2
E [ΦΞ]− Ψ√

nΥ3
E
£
Φ2
¤
.

Noting that
E [Φ] = 2

√
nλ01Λ

−1E [g] = 0,

E [Γ] = 2nE
£
(g1 − λ1)0 Λ−1g

¤− 2nλ01Λ−1E £(G− Λ)Λ−1g¤− nE £g0Λ−1Λ1Λ−1g¤
= 2 trace

µ
Λ−1E

·
δi
∂δ0i
∂β

¸¶
− 2λ01Λ−1E

£
ψiψ

0
iΛ
−1δi

¤− trace ¡Λ−1Λ1Λ−1E £δiδ0i¤¢ ,
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E [ΦΞ] = 8nλ01Λ
−1E

£
g (g1 − λ1)0

¤
Λ−1λ1 − 4nE

£
λ01Λ

−1gλ01Λ
−1 (G− Λ)Λ−1λ1

¤
− 8nλ01Λ−1E [gg0]Λ−1Λ1Λ−1λ1 + 4nλ01Λ−1E [gg0]Λ−1λ2
= 8λ01Λ

−1E
·
δi
∂δ0i
∂β

¸
Λ−1λ1 − 4λ01Λ−1E

£
δiλ

0
1Λ

−1ψiψ
0
i

¤
Λ−1λ1

− 8λ01Λ−1E
£
δiδ

0
i

¤
Λ−1Λ1Λ−1λ1 + 4λ01Λ

−1E
£
δiδ

0
i

¤
Λ−1λ2,

and
E
£
Φ2
¤
= 4λ01Λ

−1E
£
δiδ

0
i

¤
Λ−1λ1,

we obtain the desired conclusion.

B Proof of Theorem 2

The second order bias is computed using Theorem 1. Because the �weight matrix� here does not involve
the parameter of interest, we have Λ1 = 0, which renders the third, sixth, and last terms in Theorem
1 equal to zero. Also, because the moment restriction is linear in the parameter of interest, we have
λ2 = 0, which renders the seventh and eight terms in Theorem 1 equal to zero. Furthermore, because
E
h
zitz

0
itE [zitz

0
it]
−1 zitε∗it

i
= 0 under conditional symmetry of ε∗it, the numerator in the second term

λ01Λ−1E
£
ψiψ

0
iΛ
−1δi

¤
= −PT−1

t=1 E [zitx
∗
it]
0
E [zitz

0
it]
−1
E
h
zitz

0
itE [zitz

0
it]
−1
zitε

∗
it

i
should be equal to zero,

and therefore, the second term should be equal to zero. We obtain the desired conclusion by noting that

λ1Λ
−1λ1 =

T−1X
t=1

E [zitx
∗
it]
0
E [zitz

0
it]
−1
E [zitx

∗
it] ,

trace

µ
Λ−1E

·
δi
∂δ0i
∂β

¸¶
= −

T−1X
t=1

trace
³
E [zitz

0
it]
−1
E [ε∗itx

∗
itzitz

0
it]
´
,

λ01Λ
−1E

·
δi
∂δ0i
∂β

¸
Λ−1λ1 = −

T−1X
t=1

T−1X
s=1

E [zitx
∗
it]
0E [zitz0it]

−1
E [ε∗itx

∗
iszitz

0
is]E [zisz

0
is]
−1
E [zisx

∗
is] ,

and

λ01Λ
−1E

£
δiλ

0
1Λ

−1ψiψ
0
i

¤
Λ−1λ1

= −
T−1X
t=1

T−1X
s=1

E [zitx
∗
it]
0
E [zitz

0
it]
−1
E
h
ε∗itzitE [zisx

∗
is]
0
E [zisz

0
is]
−1
zisz

0
is

i
E [zisz

0
is]
−1
E [zisx

∗
is] .

C Technical Lemmas for Section 3.3

Lemma 5

E

"X
t

µ
x∗0t Ptε

∗
t −

Kt

n−Ktx
∗0
t Mtε

∗
t

¶#
= 0.

Proof. We have

E

·
x∗0t Ptε

∗
t −

Kt

n
x
∗0
t Mtε

∗
t

¸
= E [trace (PtEt [ε

∗
tx
∗0
t ])]−

Kt
n−Kt

E [trace (MtEt [ε
∗
tx
∗0
t ])] ,
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where Et [·] denotes the conditional expectation given Zt. Because Et [ε∗t ] = 0, Et [ε∗tx∗0t ] is the conditional
covariance between ε∗t and y∗0t−1, which does not depend on Zt due to joint normality. Moreover, by cross-
sectional independence, we have

Et [ε
∗
tx
∗0
t ] = Et

£
ε∗i,tx

∗
i,t

¤
In.

Hence, using the fact that trace (Pt) = Kt and trace (Mt) = n−Kt, we have

E

·
x∗0t Ptε

∗
t −

Kt
n
x
∗0
t Mtε

∗
t

¸
= Et

£
ε∗i,tx

∗
i,t

¤ · µKt − Kt

n−Kt
(n−Kt)

¶
= 0,

from which the conclusion follows.

Lemma 6

Var (x∗0t Mtε
∗
t ) = (n− t)σ2E

£
v∗2it
¤
+ (n− t) (E [v∗itε∗it])2 ,

Cov (x∗0t Mtε
∗
t , x

∗0
s Msε

∗
s) = (n− s)E [v∗isε∗it]E [v∗itε∗is] , s < t

where v∗it ≡ x∗it −E [x∗it| zit].
Proof. Follows by modifying the developments from (A23) to (A30) and from (A31) to A(34) in

Alvarez and Arellano (1998).

Lemma 7 Suppose that s < t. We have

E
£
v∗2it
¤
=

T − t
T − t+ 1

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!2

σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

− σ2 T − t
T − t+ 1

1

(T − t)2 (1− β)2

×
Ã
(T − t) + β

2 − 2βT−t+2 + β2(T−t)+2 − 2βT−t+1 + 2β
β2 − 1

!
,

E [v∗itε
∗
it] = −σ2

r
T − t

T − t+ 1

³
1− βT−t

´
(T − t) (1− β)

+ σ2
r

T − t
T − t+ 1

1

(T − t)2 (1− β)

Ã
(T − t)− β − β

T−t

1− β

!
,

E [v∗isε
∗
it] = −σ2

r
T − s

T − s+ 1

³
1− βT−t

´
(T − s) (1− β)

+ σ2
r

T − s
T − s+ 1

1

(T − s) (T − t) (1− β)

Ã
(T − t)− 1− β

T−t

1− β

!
,

E [v∗itε
∗
is] = σ

2

r
T − t

T − t+ 1
1

(T − s) (T − t) (1− β)

Ã
T − t− β − β

T−t+1

1− β

!
.

Proof. We Þrst characterize v∗it. We have

xi,t = yi,t−1

xi,t+1 = yi,t = αi + βyi,t−1 + εi,t
...

xi,T = yi,T−1 =
1− βT−t
1− β αi + β

T−tyi,t−1 +
³
εi,T−1 + βεi,T−2 + · · ·+ βT−t−1εi,t

´
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and hence r
T − t+ 1
T − t x∗it = xit −

1

T − t (xit+1 + · · ·+ xiT )

= yi,t−1 − 1

T − t (xit+1 + · · ·+ xiT )

=

Ã
1− β − βT−t+1

(T − t) (1− β)

!
yi,t−1 −

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!
αi

−
(1− β) εi,T−1 +

¡
1− β2¢ εi,T−2 + · · ·+ ³1− βT−t´ εi,t
(T − t) (1− β) .

It follows thatr
T − t+ 1
T − t E [x∗it| zit] =

Ã
1− β − βT−t+1

(T − t) (1− β)

!
yi,t−1 −

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!
E [αi| zit] ,

from which we obtain

v∗it = −
r

T − t
T − t+ 1

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!
(αi −E [αi| zit])

−
r

T − t
T − t+ 1

(1− β) εi,T−1 +
¡
1− β2¢ εi,T−2 + · · ·+ ³1− βT−t´ εi,t
(T − t) (1− β) . (21)

We now compute E
h
(αi −E [αi| zit])2

i
= Var [αi| zit]. It can be shown that

Cov
¡
αi, (yi0, . . . , yit−1)

0¢ = σ2α
1− β `, and Var

¡
(yi0, . . . , yit−1)

0¢ = σ2α

(1− β)2 ``
0 +Q

where ` is a t-dimensioanl column vector of ones, and

Q =
σ2

1− β2


1 β βt−1

β 1 βt−2

. . .

βt−1 1


Therefore, the conditional variance is given by

σ2α − σ2α`0
"
``0 +

(1− β)2
σ2α

Q

#−1
`

Because "
``0 +

(1− β)2
σ2α

Q

#−1
=

Ã
(1− β)2
σ2α

Q

!−1

− 1

1 + `0
³
(1−β)2
σ2α

Q
´−1

`

Ã
(1− β)2
σ2α

Q

!−1
``0
Ã
(1− β)2
σ2α

Q

!−1

=
σ2α

(1− β)2Q
−1 − 1

1 + σ2α
(1−β)2 `

0Q−1`

Ã
σ2α

(1− β)2
!2
Q−1``0Q−1,
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we obtain

`0
"
``0 +

(1− β)2
σ2α

Q

#−1
` =

σ2α

(1− β)2 `
0Q−1`−

³
σ2α

(1−β)2 `
0Q−1`

´2
1 +

σ2α
(1−β)2 `

0Q−1`
=

σ2α
(1−β)2 `

0Q−1`

1 +
σ2α

(1−β)2 `
0Q−1`

and hence,

σ2α − σ2α`0
"
``0 +

(1− β)2
σ2α

Q

#−1
` =

σ2α

1 +
σ2α

(1−β)2 `
0Q−1`

Now, it can be shown that8

`0Q−1` =
1

σ2

³
2 (1− β) + (t− 2) (1− β)2

´
from which we obtain

E
h
(αi −E [αi| zit])2

i
=

σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

. (22)

We now characterize E
£
v∗2it
¤
. Using (21), and the independence of the Þrst and second term there,

we can see that

E
£
v∗2it
¤
=

T − t
T − t+ 1

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!2
E
h
(αi −E [αi| zit])2

i
− σ2 T − t

T − t+ 1
1

(T − t)2 (1− β)2
Ã
(T − t) + β

2 − 2βT−t+2 + β2(T−t)+2 − 2βT−t+1 + 2β
β2 − 1

!
.

With (22), we obtain the Þrst conclusion.
As for E [v∗itε

∗
it], we note that

ε∗it = εit −
1

T − t (εiT + · · ·+ εit+1) .

Combining with (21), we obtain

E [v∗itε
∗
it] = −

r
T − t

T − t+ 1

³
1− βT−t

´
(T − t) (1− β)σ

2 +

r
T − t

T − t+ 1
(1− β) + · · ·+

³
1− βT−t−1

´
(T − t)2 (1− β) σ2,

from which follows the second conclusion.
As for E [v∗isε∗it] and E [v∗itε∗is] s < t, we note that

E [v∗isε
∗
it] = −

r
T − s

T − s+ 1

³
1− βT−t

´
(T − s) (1− β)σ

2

+

r
T − s

T − s+ 1
(1− β) + ¡1− β2¢+ · · ·+ ³1− βT−t−1´

(T − s) (T − t) (1− β) σ2

and

E [v∗itε
∗
is] =

r
T − t

T − t+ 1
(1− β) + ¡1− β2¢+ · · ·+ ³1− βT−t´

(T − s) (T − t) (1− β) σ2.

8 See Amemiya (1985, p. 164), for example.
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Lemma 8
1

nT

X
t

t2

n− tE
£
v∗2it
¤
= o (1)

Proof. Write

E
£
v∗2it
¤
=

T − t
T − t+ 1

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!2

σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

− σ2 T − t
T − t+ 1

1

(T − t)2 (1− β)2
µ
(T − t) + β

2 + 2β

β2 − 1
¶

− σ2 T − t
T − t+ 1

1

(T − t)2 (1− β)2
Ã
−2βT−t+2 + β2(T−t)+2 − 2βT−t+1

β2 − 1

!
Sum of the Þrst two terms on the right can be bounded above by

C
σ2α

1 +
σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

,

and the third term can be bounded above in absolute value by

C
1

(T − t)2

where C is a generic constant. Therefore, we have¯̄̄̄
¯ 1nT X

t

t2

n− tE
£
v∗2it
¤¯̄̄̄¯ ≤ C

nT

X
t

t2

n− t
σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

+
C

nT

X
t

t2

n− t
1

(T − t)2

≤ C

nT

X
t

T 2

n− T
σ2α

1 +
σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

+
C

nT

X
t

T 2

n− T
1

(T − t)2

It can be shown thatX
t

σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

= O (logT ) ,
X
t

1

(T − t)2 = O (1)

Using the assumption that T/n = O (1), we obtain the desired conclusion.

Lemma 9
1

nT

X
t

t2

n− t (E [v
∗
itε

∗
it])

2 = o (1)

Proof. We can bound (E [v∗itε∗it])
2 by C

(T−t)2 , where C is a generic constant. Conclusion easily follows
by adopting the same proof as in Lemma 8.

Lemma 10
1

nT

X
s<t

st

n− tE [v
∗
isε

∗
it]E [v

∗
itε

∗
is] = o (1)

Proof. We can bound |E [v∗isε∗it]E [v∗itε∗is]| by C
(T−s)2 . Therefore, we have¯̄̄̄

¯ 1nT X
s<t

st

n− tE [v
∗
isε

∗
it]E [v

∗
itε

∗
is]

¯̄̄̄
¯ ≤ C

nT

T−1X
t=1

t−1X
s=1

st

n− t
1

(T − s)2 ≤
C

nT

T−1X
t=1

t

n− t

Ã
t−1X
s=1

s

(T − s)2
!
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But because
s

(T − s)2 =
T

(T − s)2 −
1

T − s ≤
T

(T − s)2

we can bound
¯̄̄
1
nT

P
s<t

st
n−tE [v

∗
isε

∗
it]E [v

∗
itε

∗
is]
¯̄̄
further by

C

n

T−1X
t=1

t

n− t
t−1X
s=1

1

(T − s)2

Because
t−1X
s=1

1

(T − s)2 = O
ÃZ T

t

1

s2
ds

!
= O

µ
T − t
T t

¶
= O

µ
1

t

¶
we have

C

n

T−1X
t=1

t

n− t
µ
1

t
− 1

T

¶
=
C

n

T−1X
t=1

1

n− t −
C

nT

T−1X
t=1

t

n− t .

Conclusion follows from¯̄̄̄
¯ 1nT X

s<t

st

n− tE [v
∗
isε

∗
it]E [v

∗
itε

∗
is]

¯̄̄̄
¯ = O

Ã
C

n

T−1X
t=1

1

n− t

!
= O

µ
logn− log T

n

¶
= o (1) .

Lemma 11

Var

Ã
1√
nT

X
t

t

n− tx
∗0
t Mtε

∗
t

!
= o (1)

Proof. Note that

Var

Ã
1√
nT

X
t

t

n− tx
∗0
t Mtε

∗
t

!
=

1

nT

X
t

µ
t

n− t
¶2
Var

³
x
∗0
t Mtε

∗
t

´
+

2

nT

X
s<t

µ
t

n− t
¶µ

s

n− s
¶
Cov (x∗0t Mtε

∗
t , x

∗0
s Msε

∗
s)

=
σ2

nT

X
t

t2

n− tE
£
v∗2it
¤

+
1

nT

X
t

t2

n− t (E [v
∗
itε

∗
it])

2 +
2

nT

X
s<t

st

n− tE [v
∗
isε

∗
it]E [v

∗
itε

∗
is]

Here, the second equality is based on Lemma 6. Lemmas 8, 9, and 10 establish that variances of the
three terms on the far right are all of order o (1).

Lemma 12
1√
nT

X
t

µ
x∗0t Ptε

∗
t −

Kt
n−Kt

x
∗0
t Mtε

∗
t

¶
→ N

µ
0,

σ4

1− β2
¶

Proof. Follows easily by combining Lemma 11 and the proof of Theorem 2 in Alvarez and Arellano
(1998).

Lemma 13
1

nT

X
t

Kt
n−Kt

x
∗0
t Mtx

∗
t = op (1)
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Proof. First, note that x
∗0
t Mtx

∗
t = v

∗0
t Mtv

∗
t by normality. We therefore have

E

Ã
1

nT

X
t

Kt

n−Kt
x
∗0
t Mtx

∗
t

!
=

1

nT

X
t

t

n− tE
h
v
∗0
t Mtv

∗
t

i
By conditioning, it can be shown that

E
h
v
∗0
t Mtv

∗
t

i
= (n− t)E £v∗2it ¤

Therefore,

E

Ã
1

nT

X
t

Kt
n−Kt

x
∗0
t Mtx

∗
t

!
=

1

nT

X
t

tE
£
v∗2it
¤

Modifying the proof of Lemma 8, we can establish that the right is o (1).
We now show that

Var

Ã
1

nT

X
t

Kt

n−Ktx
∗0
t Mtx

∗
t

!
= o (1) .

We have

Var

Ã
1

nT

X
t

Kt

n−Kt x
∗0
t Mtx

∗
t

!
=

1

n2T 2

X
t

µ
t

n− t
¶2
Var

³
v
∗0
t Mtv

∗
t

´
+

2

n2T 2

X
s<t

t

n− t
s

n− s Cov
³
v
∗0
s Msv

∗
s , v

∗0
t Mtv

∗
t

´
Modifying the development from (A53) to (A58) in Alvarez and Arellano (1998) and using normality, we
can show that

Var
³
v
∗0
t Mtv

∗
t

´
= 2 (n− t)E £v∗4it ¤ = 6 (n− t) ¡E £v∗2it ¤¢2 ,

Cov
³
v
∗0
s Msv

∗
s , v

∗0
t Mtv

∗
t

´
= 2 (n− t) (E [v∗itv∗is])2 .

Using (21), we can show that

E [v∗itv
∗
is] =

r
T − t

T − t+ 1

r
T − s

T − s+ 1

Ã
1

1− β −
β − βT−t+1

(T − t) (1− β)2
!

×
Ã

1

1− β −
β − βT−s+1

(T − s) (1− β)2
!

σ2α

1 + σ2α
σ2

2
1−β +

σ2α
σ2 (t− 2)

+ σ2
r

T − t
T − t+ 1

r
T − s

T − s+ 1
1

(T − t) (T − s) (1− β)2

×
Ã
(T − t) + β

2 − 2βT−t+2 + β2(T−t)+2 − 2βT−t+1 + 2β
β2 − 1

!
.

Adopting the same argument as in the proofs for Lemmas 8 - 10, we can show that the variance is o (1).

D Proofs for Section 5

We need the following auxiliary result to prove admissibility of our bias minimal procedures under as-
ymptotic L2 risk. DeÞne the random variable Y by

Y ≡ ξ0xC(C0ΩC)+C0ξy
ξ0xC(C0ΩC)+C0ξx

(23)
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where
£
ξx, ξy

¤ ∼ N(0,Σ) and C(C0ΩC)+C is full rank.
Lemma 14 Let Y ∗ be deÞned in (23) such that Ω = Σ11. Then E

h
(Y ∗)2

i
≤ E

h
(Y )2

i
where Y is as

deÞned in (23) with any positive deÞnite weight matrix Ω.

Proof. Choose L such that LL0 = Σ11 = δI. DeÞneW ≡ L0C (C 0ΩC)+C 0L andD ≡ L0C (C0ΩC)+C0Σ021Σ−111 L.
Let Γ1 be an orthogonal matrix of eigenvectors of W such that Γ1Γ01 = Γ01Γ1 = I and Λ1 a diagonal
matrix with eigenvalues of W . DeÞne z ≡ L−1ξx and z1 ≡ Γ1z. DeÞne G ≡ Σ22 −Σ21Σ−111 Σ12 such that

E
£
Y 2
¤
= E

"
(z01Γ1DΓ01z1)

2

(z01Λ1z1)
2

#
+E

"
z01Γ1DGD0Γ01z1
(z01Λ1z1)

2

#

where (z01Dz1)
2 ≥ 0 and z0DGD0z ≥ 0 since G is positive deÞnite. We deÞne z1 ≡ vs1/2 with s ≡ z01z1

and v ≡ z1/ (z01z1)1/2. Without loss of generality, we can assume that the largest eigenvalue of in Λ1 is 1.
Because v0v = 1, we have (v0Λ1v)

2 ≤ 1. It therefore follows that (v0Γ1DΓ01v)2
.
(v0Λ1v)

2 ≥ (v0Γ1DΓ01v)2,
from which we obtain

(z01Γ1DΓ01z1)
2

(z01Λ1z1)
2 ≥ (z01Γ1DΓ01z1)

2

(z01z1)
2 .

The same arguments show that

E

"
z01Γ1DGD0Γ01z1
(z01Λ1z1)

2

#
≥ E

"
z01Γ1DGD0Γ01z1

(z01z1)
2

#

Proof of Lemma 1. Note that

E [|uit∆yis−1|] ≤
q
E [u2it]

r
E
h
(∆yis−1)

2
i

=
p
σ2ε + σ

2
α

vuuutE
Ãβs−2n (βn − 1) ξi0 + εis−1 + (βn − 1)

s−2X
r=1

βr−1n εis−1−r

!2
=

p
σ2ε + σ

2
α

vuutβ2(s−2)n

σ2ε (βn − 1)2
1− β2n

+ σ2ε + (βn − 1)2 σ2ε
s−2X
r=1

β2(r−1)n = O (1)

By independence of uit∆yis−1 across i, it therefore follows that n−3/2
Pn
i=1 uit∆yis−1 = op (1). By

the same reasoning, we obtain n−3/2
Pn
i=1 uiT∆yij−1 = op (1), and n−3/2

Pn
i=1 ui∆yik−1 = op (1). We

therefore obtain n−3/2
Pn
i=1 fi,1 = op (1). We can similarly obtain n

−3/2Pn
i=1 gi,1 = op (1).

Next we consider n−3/2
Pn
i=1 fi,2 andn

−3/2Pn
i=1 gi,2. Note that

E [∆yityi0] = E

·
yi0

µ
βt−2n (βn − 1) ξi0 + εis−1 + (βn − 1)

Xs−2
r=1

βr−1n εis−1−r

¶¸
= βt−2n σ2ε

βn − 1
1− β2n

= O (1) ,
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and

E
h
(∆yityi0)

2
i
= E

"
y2i0

µ
βt−2n (βn − 1) ξi0 + εis−1 + (βn − 1)

Xs−2
r=1

βr−1n εis−1−r

¶2#

= β2(t−2)n

(βn − 1)2 σ2ε
1− β2n

σ2α

(1− βn)2
+ 3β2(t−2)n

σ4ε(βn − 1)2¡
1− β2n

¢2
+

µ
σ2ε + (βn − 1)2 σ2ε

Xs−2
r=1

β2(r−1)n

¶Ã
σ2α

(1− βn)2
+

σ2ε¡
1− β2n

¢!

=
σ2εσ

2
α

c2
n2 +O(n).

such thatVar
¡
n−3/2

Pn
i=1∆yityi0

¢
= O(1). For n−3/2

Pn
i=1 gi,2 (β0) we have from the moment conditions

that E [gi,2 (β0)] = 0 and

Var (∆ui(β0)yi0) = 2σ
2
εσ
2
α (1− βn)−2 +O(n) =

2σ2εσ
2
α

c2
n2 +O(n).

The joint limiting distribution of n−3/2
Pn
i=1

£
f 0i,2 −Ef 0i,2, gi,2(β0)0

¤0
can now be obtained from a trian-

gular array CLT. By previous arguments

E
£
f 0i,2, gi,2(β0)

0¤ = h µ0 0 · · · 0
i

with µ = σ2y/2ι+O(n
−1) where ι is the T − 1 dimensional vector with elements 1. Then

E
h¡
f 0i,2 −E

£
f 0i,2
¤
, gi,2(β0)

0¢0 ¡f 0i,2 −E £f 0i,2¤ , gi,2(β0)0¢i = Σn
where

Σn =

"
Σ11,n Σ12,n

Σ21,n Σ22,n

#
By previous calculations we have found the diagonal elements of Σ11,n and Σ22,n to be

σ2εσ
2
α

c2 n2 and
2σ2εσ

2
α

c2 n2. The off-diagonal elements of Σ11,n are found to be

E
£
∆yit∆yisy

2
i0

¤
= E

·
y2i0

µ
βs−2n (βn − 1) ξi0 + εis−1 + (βn − 1)

Xs−2
r=1

βr−1n εis−1−r

¶
×
µ
βt−2n (βn − 1) ξi0 + εit−1 + (βn − 1)

Xt−2
r=1

βr−1n εit−1−r

¶¸
= βt−2n βs−2n

(βn − 1)2¡
1− β2n

¢ Ã σ2α

(1− βn)2
+ 3

σ4ε¡
1− β2n

¢!+O(1) = σ2α
2c
n+O(1)

which is of lower order of magnitude while n−1 (E [∆yityi0])
2 = O(1). Thus n−1Σ11,n → diag(σ

2
εσ

2
α

c , ...,
σ2εσ

2
α

c ).

The off-diagonal elements of Σ22,n are obtained from

E
£
∆uit∆uisy

2
i0

¤
=

(
−σ2εσ2α (1− βn)−2 +O(n) t = s+ 1 or t = s− 1

0 otherwise

For Σ12,n, we consider

E
£
∆yit∆uisy

2
i0

¤
=


σ2εσ

2
α

c2 n2 +O(n) if t = s

−σ2εσ
2
α

c2 n2 +O(n) if t = s− 1
0 otherwise
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It then follows that for ` ∈ RT (T+1)/+2T−6 such that `0` = 1 n−3/2Pn
i=1 `

0Σ−1/2n

£
f 0i,2 −Efi,2, gi,2(β0)0

¤0 d→
N (0, 1) by the Lindeberg-Feller CLT for triangular arrays. It then follows from a straightforward applica-
tion of the Cramer-Wold theorem and the continuous mapping theorem that n−3/2

Pn
i=1

£
f 0i,2, gi,2(β0)0

¤0 d→£
ξ0x, ξ

0
y

¤0
where

£
ξ0x, ξ

0
y

¤0 ∼ N (0,Σ) . Note that n−3/2Pn
i=1 `

0E [fi,2] = O(n−1/2) and thus does not affect
the limit distribution.
Proof of Theorem 6. DeÞne W ≡ L0C1 (C0ΩC)

+C 01L where L satisÞes Σ11 = LL0. We Þrst
show that it is never optimal to choose W singular. For this purpose partition C = [C00, C01]

0 such that
C0ξ#x = C01ξx. The limiting random variable X can therefore be represented as

X =
ξ0xC1 (C0ΩC)

+
C01ξy

ξ0xC1 (C0ΩC)
+
C01ξx

.

We observe that ξy|ξx ∼ N(F ξx, G) where F = Σ21Σ
−1
11 and G = Σ22 − Σ21Σ−111 Σ12 and deÞne D =

WL−1FL and z = L−1ξx such that z ∼ N(0, I).
We now consider the case where W is singular. Let Γ be an orthogonal matrix of eigenvectors of

W such that ΓΓ0 = Γ0Γ = I and Λ a diagonal matrix with eigenvalues of W such that Λ1 contains all
nonzero eigenvalues and Λ2 contains the zero eigenvalues. Partition Γ = [Γ1,Γ2] conformably such that
Γ01Γ2 = 0 and Γ1Γ01+Γ2Γ02 = I. Then W = ΓΛΓ0 = Γ1Λ1Γ01 and D = Γ1Λ1Γ01L−1FL such that Γ02D = 0.
DeÞne z1 = Γ01z and z2 = Γ02z. Then, using the fact that E

£
ξyξ

0
y|ξx

¤
= F ξxξ

0
xF

0 +G leads to

E
£
X2
¤
= E

"
(z0Dz)2

(z0Wz)2

#
+E

"
z0DGD0z
(z0Wz)2

#

where z0Wz = z01Λ1z1 and z0DGD0z = z01Γ01DGD0Γ1z1. We therefore only need to consider the Þrst term
where (z0Dz)2 = (z01Γ01D (Γ1Γ01 + Γ2Γ02) z)

2. Since z1 and z2 are independent we can use a conditioning
argument to evaluate the Þrst term

E

"
(z0Dz)2

(z0Wz)2

#
= E

"
(z01Γ01DΓ1z1)

2

(z01Λ1z1)
2 +

z01Γ01DΓ1z1z02Γ02DΓ1z1
(z01Λ1z1)

2

#

+E

"
z01Γ01DΓ2z2z01Γ01DΓ1z1

(z01Λ1z1)
2 +

(z01Γ01DΓ2z2)
2

(z01Λ1z1)
2

#

where E
·
z01Γ

0
1DΓ2z2z

0
1Γ

0
1DΓ1z1

(z01Λ1z1)
2 |z1

¸
= 0 because Ez2 = 0 such that the cross terms vanish. It follows that

E

"
(z0Dz)2

(z0Wz)2

#
= E

"
(z01Γ01DΓ1z1)

2 + (z01Γ01DΓ2z2)
2

(z01Λ1z1)
2

#

≥ E

"
(z01Γ01DΓ1z1)

2

(z01Λ1z1)
2

#

We can therefore assume that W is nonsingular. Then by Lemma 14 it follows that the optimal W = I

which can only occur if C = C1 and Ω = Σ11.
Proof of Theorem (8). First note that trace

¡
D̄
¢
= 1

2 trace
¡
L−1C01 (Σ12 +Σ21)C1L0−1

¢
=

trace
¡
C01Σ̄12C1

¢
with Σ̄12 = (Σ12 +Σ21) /2. It can be checked easily that Σ̄12 is negative deÞnite sym-

metric. We can therefore minimize − trace ¡C01Σ̄12C1¢ . It is now useful to chose an orthogonal matrix
R such that R0R = RR0 = I and −Σ̄12 = RLR0 where L is the diagonal matrix of eigenvalues of
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−Σ̄12 =
Pn
i=1 lirir

0
i. Then it follows that −trC 01Σ̄12C1 =

PT−1
i=1 lir

0
iC1C

0
1ri. Next note that all the eigen-

values of C1C01 are either zero or one such that 0 ≤ r0iC1C 01ri ≤ 1. The minimum of − trace ¡C01Σ̄12C1¢ is
then found by choosing C1 such that C01ri = 0 except for the eigenvector ri corresponding to the smallest li.
It now follows thatE [X∗] = trace

¡
D̄/n

¢
is minimized for C = ri where ri is the eigenvector corresponding

to the smallest eigenvalue. To show this note that if C = ri then trace
¡
D̄/n

¢
= trace

¡
D̄
¢
= li. Now sup-

pose a vector x such that x0x = 1 and r0ix = 0 is added to C1. Then traceC
0
1Σ̄12C1 = li+

PT−1
j 6=i lj

¡
r0jx
¢2
.

By Parseval�s equality
PT−1
j 6=i

¡
r0jx
¢2
= 1. Since lj ≥ li we can bound trace

¡
C01Σ̄12C1

¢ ≥ (T − 1) li but
then trace

¡
D̄/n

¢ ≥ li. This argument can be repeated to more than one orthogonal additions x. Next note
that from x0x = 1 such that min li ≤ −x0Σ̄12x ≤ max li it follows that min li ≤ 10Σ̄121/(101) = (T − 1)−1
for 1 = [1, ..., 1]0 which shows that the smallest eigenvalue is bounded by a monotonically decreasing func-
tion of the number of moment conditions. Also note that Σ̄121/(1

01)1/2 → 0 in l2 norm where 0 is an
element of the inÞnite sequence space l2.

E Blundell and Bond�s (1998) Estimator and Weight Matrix

Bludell and Bond (1998) suggest a new set of moment restrictions. If T = 5, they can be written as

E [qi (β)] = 0

where

qi (b) ≡



yi0 · ((yi2 − yi1)− b (yi1 − yi0))
yi0 · ((yi3 − yi2)− b (yi2 − yi1))
yi1 · ((yi3 − yi2)− b (yi2 − yi1))
yi0 · ((yi4 − yi3)− b (yi3 − yi2))
yi1 · ((yi4 − yi3)− b (yi3 − yi2))
yi2 · ((yi4 − yi3)− b (yi3 − yi2))
yi0 · ((yi5 − yi4)− b (yi4 − yi3))
yi1 · ((yi5 − yi4)− b (yi4 − yi3))
yi2 · ((yi5 − yi4)− b (yi4 − yi3))
yi3 · ((yi5 − yi4)− b (yi4 − yi3))

(yi1 − yi0) · (yi2 − byi1)
(yi2 − yi1) · (yi3 − byi2)
(yi3 − yi2) · (yi4 − byi3)
(yi4 − yi3) · (yi5 − byi4)


They suggest a GMM estimation:

min
b

Ã
nX
i=1

qi (b)

!0
A−1

Ã
nX
i=1

qi (b)

!
We examine properties of Blundell and Bond�s moment restriction for β near unity. We consider four
methods of computing A, which in principle is a consistent estimator of E [qi (β) qi (β)]:

1. We can use bbLIML as our consistent estimator and use

A1 =
1

n

nX
i=1

qi

³bbLIML

´
qi

³bbLIML

´0
This gives us a GMM estimator that minimizes (

Pn
i=1 qi (b))

0
A−11 (

Pn
i=1 qi (b)). We call it bbBB1.
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2. We can compute

A2 =
1

n

nX
i=1

qi

³bbBB1´ qi ³bbBB1´0
and obtain a GMM estimator that minimizes (

Pn
i=1 qi (b))

0
A−12 (

Pn
i=1 qi (b)). We call it bbBB2.

3. We can compute

A1 =
1

n

nX
i=1

Z0iZi

where

Zi =



yi,0 0 0 · · · 0

0 yi,0 yi,1
. . .

yi,0 yi,1 · · · yi,T−2
... ∆yi1

∆yi,2
. . .

0 · · · 0 ∆yi,T−1


and obtain a GMM estimator that minimizes (

Pn
i=1 qi (b))

0
A−13 (

Pn
i=1 qi (b)). We call it bbBB3. This

is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

4. We can compute

A4 =
1

n

nX
i=1

qi

³bbBB3´ qi ³bbBB3´0
and obtain a GMM estimator that minimizes (

Pn
i=1 qi (b))

0
A−14 (

Pn
i=1 qi (b)). We call it bbBB4.

Again, this is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

F Proof of Theorems 5

We Þrst present an expansion for 2SLS using instrument bzi = zi − 1√
n
bθwi. We have

√
n (b− β) =

¡
1
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Ã
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1√
n

nX
i=1

(ziz
0
i − Λ)

!
.

Recalling that bθ = 1√
n

nX
i=1

fi +
1√
n
Qn + op

µ
1√
n

¶
,
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we can derive that
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and

1√
n

nX
i=1

µ
zi − 1√

n
bθwi¶ εi = 1√

n

nX
i=1

ziεi −
Ã
1√
n

nX
i=1

fi

!
ϕ− 1√

n
Qnϕ

− 1√
n

Ã
1√
n

nX
i=1

fi

!Ã
1√
n

nX
i=1

(wiεi − ϕ)
!
+ op

µ
1√
n

¶
.

Here, φ and ∆ are deÞned in Theorem 5. Using arguments similar to the derivation of (20), we obtainÃ
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n
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and Ã
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Therefore, we may conclude that
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where
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and
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The Þrst two terms on the right side of (25) capture the standard Þrst order asymptotics of the plug

in estimator, which establishes Lemma 15. Obviously, they have mean equal to zero. The third term
1√
n
B1 is the standard second order expansion term when bθ = 0, i.e., when the proper instrument is known

exactly. Therefore, under conditional symmetry of εi, it can be shown that

E [B1] =
(K − 2)σuε
λ0Λ−1λ

. (26)

The third term 1√
n
B2 is the correction to the second order expansion to accommodate the plug-in nature
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of the estimation. It is not difficult to see that

E [B2] = −λ
0Λ−1ϕ
λ0Λ−1λ

E [Qn]− λ
0Λ−1E [fiwiεi]
λ0Λ−1λ

− E [fizixi]
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¢2λ0Λ−1∆Λ−1λ. (27)

Using (25), (26), and (27), we can obtain the desired conclusion.

G Second Order Bias of bbLIML
Our bbLIML modiÞes Arellano and Bover�s estimator. It is given by

√
n (b− β) =

1√
n
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∗0
t Ptε

∗
t − κtx∗0t ε∗t )

1
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where
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∗
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∗
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We make the second order expansion of
√
n (b− β). We make a digression to the discussion of single

equation model.9

G.1 Characterization of Second Order Bias of LIML

Consider a simple simultaneous equations model

yi = βxi + εi, xi = z
0
iπ + ui

and examine LIML b that solves

min
c

e (c)0 Pe (c)
e (c)0 e (c)

= min
c

¡
1
n

Pn
i=1 zi (yi − xic)
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i=1 ziz

0
i
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i=1 zi (yi − xic)

¢
1
n
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i=1 (yi − xic)2

where
e (c) = y − xc

9The digression mostly conÞrms the usual higher order analysis of LIML readily available in the literature. The only
reason we consider such analysis is because all the analysis we found in the literature are conditional analysis given instru-
ments: They all assume that the instruments are nonstochastic. Our purpose is to make a marginal second order analysis,
which is more natural in the dynamic panel model context.
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Here, the Þrst order condition is given by
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We now expand Gn (β),
∂Gn(β)
∂b , and ∂2Gn(β)

∂b2 using
√
n-consistency of b:
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where λ = E [zixi], and Λ = E [ziz0i]. Therefore, we have
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Now, note that
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Combining (29), (30), (31), and (32), we obtain
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Note that Φ has a mean equal to zero. Therefore, under symmetry, the second order bias of b is given by
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which is qualitatively of the same form as Rothenberg�s mean.

G.2 Higher Order Analysis of the �Eigenvalue�

Let

κ =
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e (b)0 e (b)

Getting back to the Þrst order condition
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G.3 Application to Dynamic Panel Model

We now adopt obvious notations, and make a second order analysis of the right side of (28). First, note
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It therefore follows that
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Therefore, under symmetry, the second order bias of the LIML like estimator is given by
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H First Order Asymptotic Theory for Finitely Iterated Long
Difference Estimator

Lemma 15 Let b denote the 2SLS in (14). We have
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where
Σ ≡ E £(ziεi − fiϕ) (ziεi − fiϕ)0¤ .
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Proof. See Appendix F.
Lemma 15 can be used to establish the inßuence function of iterated 2SLS estimatorsbbLIML,1, . . . ,bbLIML,4

applied to the long difference. We Þrst note that the inßuence function of bbLIML is given by
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it]. We also note that yi = yiT − yi1, xi = yiT−1 − yi0, and wi =

(0, yiT−2, . . . , yi1)
0. This is because we use the instrument of the form

³
yi0, yiT−1 − bβyiT−2, . . . , yi2 − bβyi1´

at each iteration, where bβ is some preliminary estimator of β. By Lemma 15, the inßuence function ofbbLIML,1 is equal to
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Likewise, we can see that the inßuence functions of b3 and b4 are equal to
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Using (33) - (36), we can easily construct consistent estimators of asymptotic variances of
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example,
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where bβ is any √n-consistent estimator of β. Also, let
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From (33) - (36), it then follows that
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are consistent estimators of asymptotic variances of
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I Approximation of CUE

We examine an easier method of calculating an estimator that is equivalent to CUE up to the second
order adapting Rothenberg�s (1984) argument, who was concerned about properties of linearized version
of MLE. We basically argue that two Newton iterations suffice for second order bias removal. The CUE
bCUE solves
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c
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Let b denote the minimizer, and let Lj (c) ≡ ∂jL(c)
∂cj . We consider an iterated version of CUE. Suppose that

we have a
√
n-consistent estimator b0. Such estimator can be easily found by the usual GMM estimation

method. Note that we would have b0 − bCUE = Op
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. Assume that
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n−consistent estimator bb. (This condition is expected to be satisÞed for most estimators.) Let
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Expanding around bCUE, and noting that L1 (bCUE) = 0, we can obtain
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It follows that
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We can similarly show that
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This implies that b2 has very similar properties as bCUE: Its (approximate) mean and variance up to
O
¡
n−1

¢
coincide with those of bCUE.
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Table 1: Performance of Second Order Theory in Predicting Properties of bβGMM

T n β Actual Bias Actual %Bias Second Order Bias Second Order %Bias

5 100 0.1 -0.016 -16.00 -0.018 -17.71
10 100 0.1 -0.014 -14.26 -0.016 -15.78
5 500 0.1 -0.004 -3.72 -0.004 -3.54
10 500 0.1 -0.003 -3.20 -0.003 -3.16

5 100 0.3 -0.028 -9.23 -0.032 -10.60
10 100 0.3 -0.021 -7.11 -0.024 -8.13
5 500 0.3 -0.006 -2.08 -0.006 -2.12
10 500 0.3 -0.005 -1.58 -0.005 -1.63

5 100 0.5 -0.052 -10.32 -0.060 -12.09
10 100 0.5 -0.034 -6.78 -0.040 -8.00
5 500 0.5 -0.011 -2.29 -0.012 -2.42
10 500 0.5 -0.008 -1.51 -0.008 -1.60

5 100 0.8 -0.224 -28.06 -0.302 -37.81
10 100 0.8 -0.108 -13.53 -0.152 -18.98
5 500 0.8 -0.056 -7.02 -0.060 -7.56
10 500 0.8 -0.027 -3.44 -0.030 -3.80

5 100 0.9 -0.455 -50.56 -1.068 -118.64
10 100 0.9 -0.220 -24.47 -0.474 -52.66
5 500 0.9 -0.184 -20.48 -0.214 -23.73
10 500 0.9 -0.078 -8.64 -0.095 -10.53
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Table 2: Performance of bbBC2
T n β %bias

³bbGMM

´
%bias

³bbBC2´ RMSE
³bbGMM

´
RMSE

³bbBC2´
5 100 0.1 -14.96 0.25 0.08 0.08
10 100 0.1 -14.06 -0.77 0.05 0.05
5 500 0.1 -3.68 -0.38 0.04 0.04
10 500 0.1 -3.15 -0.16 0.02 0.02

5 100 0.3 -8.86 -0.47 0.10 0.10
10 100 0.3 -7.06 -0.66 0.05 0.05
5 500 0.3 -2.03 -0.16 0.04 0.04
10 500 0.3 -1.58 -0.10 0.02 0.02

5 100 0.5 -10.05 -1.14 0.13 0.13
10 100 0.5 -6.76 -0.93 0.06 0.06
5 500 0.5 -2.25 -0.15 0.06 0.06
10 500 0.5 -1.53 -0.11 0.03 0.03

5 100 0.8 -27.65 -11.33 0.32 0.34
10 100 0.8 -13.45 -4.55 0.14 0.11
5 500 0.8 -6.98 -0.72 0.13 0.13
10 500 0.8 -3.48 -0.37 0.05 0.04

5 100 0.9 -50.22 -42.10 0.55 0.78
10 100 0.9 -24.27 -15.82 0.25 0.23
5 500 0.9 -20.50 -6.23 0.28 0.30
10 500 0.9 -8.74 -2.02 0.10 0.08
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Table 3: Performance of bbNagar and bbLIML

%bias RMSE
T n β bbGMM

bbNagar bbLIML
bbGMM

bbNagar bbLIML

5 100 0.1 -16 3 -3 0.081 0.084 0.082
10 100 0.1 -14 1 -1 0.046 0.046 0.045
5 500 0.1 -4 0 -1 0.036 0.036 0.036
10 500 0.1 -3 0 -1 0.020 0.020 0.020

5 100 0.3 -9 1 -3 0.099 0.103 0.099
10 100 0.3 -7 0 -1 0.053 0.051 0.050
5 500 0.3 -2 0 -1 0.044 0.044 0.044
10 500 0.3 -2 0 0 0.023 0.023 0.023

5 100 0.5 -10 1 -3 0.132 0.140 0.130
10 100 0.5 -7 0 -1 0.064 0.059 0.058
5 500 0.5 -2 0 -1 0.057 0.057 0.057
10 500 0.5 -2 0 0 0.027 0.026 0.026

5 100 0.8 -28 -129 -15 0.321 102.156 0.327
10 100 0.8 -14 0 -5 0.136 0.128 0.109
5 500 0.8 -7 1 -3 0.130 0.141 0.127
10 500 0.8 -3 0 -1 0.050 0.044 0.044

5 100 0.9 -51 -70 -41 0.555 26.984 0.604
10 100 0.9 -24 -4 -15 0.250 4.712 0.229
5 500 0.9 -20 -41 -10 0.278 46.933 0.277
10 500 0.9 -9 0 -2 0.102 0.087 0.080

Table 4: Performance of Iterated Long Difference Estimator

bb2SLS,1 bb2SLS,2 bb2SLS,3 bb2SLS,4
Bias -0.0813 -0.0471 -0.0235 -0.0033
%Bias -9.0316 -5.2316 -2.6072 -0.3644
RMSE 0.3802 0.2863 0.2479 0.2536bbGMM,1

bbGMM,2
bbGMM,3

bbGMM,4

Bias -0.0770 -0.0374 0.0006 0.0104
%Bias -8.5505 -4.1599 0.0622 1.1570
RMSE 0.1699 0.1954 0.2545 0.2851bbLIML,1

bbLIML,2
bbLIML,3

bbLIML,4

Bias -0.0878 -0.0475 -0.0186 0.0074
%Bias -9.7571 -5.2756 -2.0698 0.8251
RMSE 0.2458 0.2391 0.2292 0.2638
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Table 5: Comparison with Blundell and Bond�s (1998) Estimator

bbBB1 bbBB2 bbBB3 bbBB4 bbLIML,1
bbLIML,2

bbLIML,3

Mean % Bias -33.8148 -29.4131 4.7432 4.2551 -9.7571 -5.2755 -2.0697
Median % Bias -31.1881 -25.9085 5.9111 5.6280 -15.3878 -9.0639 -6.9573
RMSE 0.4796 0.4257 0.0823 0.0882 0.2458 0.2391 0.2292

Table 6: Sensitivity of Blundell and Bond�s (1998) Estimator

βF = .5 bbBB1 bbBB2 bbBB3 bbBB4 bbLIML,1
bbLIML,2

bbLIML,3

Mean % Bias 8.9525 14.4790 20.9971 21.5154 0.0252 0.1691 0.2334
Median % Bias 9.5207 15.4609 21.1202 21.6144 -0.2163 -0.2214 -0.2469
RMSE 0.0994 0.1400 0.1899 0.1944 0.0570 0.0611 0.0630

βF = 0 bbBB1 bbBB2 bbBB3 bbBB4 bbLIML,1
bbLIML,2

bbLIML,3

Mean % Bias 10.8819 17.3840 24.8534 25.4517 0.0429 0.1455 0.1860
Median % Bias 11.4178 18.2542 24.9990 25.5079 -0.1621 -0.1890 -0.2168
RMSE 0.1156 0.1654 0.2246 0.2299 0.0521 0.0543 0.0555
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Table 7: Performance of Iterated Long Difference Estimator for T = 5

N = 100 bbLIML,1
bbLIML,2

bbLIML,3
bbLIML,4

β = .75 Actual Mean % bias 1.2977 4.6584 5.3703 7.6702
Actual Median % bias -3.0867 -0.4467 -0.0800 -0.4800
2nd order Mean % bias -.1358 2.8043 4.6720 6.5872
RMSE 0.1806 0.2278 0.2465 0.2857

β = .80 Actual Mean %bias -0.1119 2.5878 4.2732 6.3443
Actual Median % bias -5.7250 -2.3438 -1.4188 -1.4000
2nd order Mean % bias -.4020 4.6019 7.3205 9.8596
RMSE 0.2128 0.2452 0.2523 0.3032

β = .85 Actual Mean %bias -3.8994 -0.5921 1.6201 3.6981
Actual Median % bias -10.1176 -5.4235 -4.0059 -3.5471
2nd order Mean % bias -.8477 9.2416 14.3129 18.0912
RMSE 0.2333 0.2494 0.2532 0.2848

β = .90 Actual Mean %bias -9.7571 -5.2756 -2.0698 0.8251
Actual Median % bias -15.3889 -9.0667 -6.9556 -5.6444
2nd order Mean % bias -1.7413 25.3502 40.2274 49.3254
RMSE 0.2458 0.2391 0.2292 0.2638

β = .95 Actual Mean %bias -15.2028 -9.5738 -6.0855 -2.8321
Actual Median % bias -19.6368 -12.4895 -9.6105 -8.0684
2nd order Mean % bias -4.4189 132.5028 229.9208 298.9023
RMSE 0.2518 0.2191 0.2124 0.2397

N = 200 bbLIML,1
bbLIML,2

bbLIML,3
bbLIML,4

β = .75 Actual Mean %bias 1.2054 3.0110 3.8420 5.1421
Actual Median % bias -1.6533 -0.2333 -0.1000 -0.4733
2nd order Mean % bias -.0679 1.4022 2.3360 3.2936
RMSE 0.1336 0.1630 0.1906 0.2189

β = .80 Actual Mean %bias 1.4085 3.7041 4.3488 4.8453
Actual Median % bias -3.3125 -1.1813 -0.5938 -1.1500
2nd order Mean % bias -.2010 2.3010 3.6602 4.9210
RMSE 0.1740 0.2071 0.2245 0.2435

β = .85 Actual Mean %bias 0.0299 1.7783 1.7835 3.6882
Actual Median % bias -6.8412 -3.7059 -2.8588 -2.6000
2nd order Mean % bias -.4238 4.6208 7.1565 9.0456
RMSE 0.2239 0.2363 0.2288 0.2513

β = .90 Actual Mean %bias -5.8274 -2.7803 -1.3073 0.1639
Actual Median % bias -13.1000 -7.9111 -5.9278 -5.2333
2nd order Mean % bias -.8706 12.6751 20.1137 24.6627
RMSE 0.2406 0.2257 0.2252 0.2396

β = .95 Actual Mean %bias -13.3638 -8.7034 -6.2646 -4.1416
Actual Median % bias -19.3737 -12.3211 -9.5579 -8.0526
2nd order Mean % bias -2.2094 66.2514 114.9604 149.4511
RMSE 0.2515 0.2156 0.1991 0.2020
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Table 8: Performance of bβI2SLS and bβCUE for T = 5
N = 100 bβI2SLS,LD bβCUE,LD
β = 0.75 Actual Mean % Bias 5.5331 11.5527

Second Order Mean % Bias 5.4224 7.6105
Actual Median %Bias 1.3811 7.4700
RMSE 0.1761 0.2132
InterQuartile Range 0.2434 0.3067

β = 0.8 Actual Mean % Bias 4.3037 10.4126
Second Order Mean % Bias 9.6240 13.0702
Actual Median % Bias 1.4569 8.6510
RMSE 0.1727 0.2048
InterQuartile Range 0.2422 0.3031

β = 0.85 Actual Mean % Bias 1.9659 7.9833
Second Order Mean % Bias 20.9080 27.0025
Actual Median % Bias 0.0656 7.5588
RMSE 0.1604 0.1947
InterQuartile Range 0.2270 0.2900

β = 0.9 Actual Mean % Bias -0.7710 6.1387
Second Order Mean % Bias 65.0609 78.5269
Actual Median % Bias -2.3467 6.1147
RMSE 0.1534 0.1803
InterQuartile Range 0.2115 0.2668

β = 0.95 Actual Mean % Bias -3.3676 3.1244
Second Order Mean % Bias 481.1993 533.4268
Actual Median % Bias -4.7764 3.1365
RMSE 0.1494 0.1655
InterQuartile Range 0.2002 0.2512
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Table 9: Performance of bβI2SLS and bβCUE for T = 5
N = 200 bβI2SLS,LD bβCUE,LD
β = 0.75 Actual Mean % Bias 5.9078 8.8638

Second Order Mean % Bias 2.7112 3.8052
Actual Median %Bias 1.5982 4.2172
RMSE 0.1519 0.1704
InterQuartile Range 0.1896 0.2297

β = 0.8 Actual Mean % Bias 4.9410 8.3701
Second Order Mean % Bias 4.8120 6.5351
Actual Median % Bias 1.8273 5.4765
RMSE 0.1447 0.1674
InterQuartile Range 0.1997 0.2468

β = 0.85 Actual Mean % Bias 2.7966 7.3021
Second Order Mean % Bias 10.4540 13.5012
Actual Median % Bias 1.0718 5.8672
RMSE 0.1373 0.1585
InterQuartile Range 0.1909 0.2341

β = 0.9 Actual Mean % Bias 0.8948 5.4221
Second Order Mean % Bias 32.5304 39.2635
Actual Median % Bias -0.0204 5.3657
RMSE 0.1271 0.1448
InterQuartile Range 0.1750 0.2101

β = 0.95 Actual Mean % Bias -2.0943 2.8482
Second Order Mean % Bias 240.5997 266.7134
Actual Median % Bias -2.5881 2.8984
RMSE 0.1216 0.1331
InterQuartile Range 0.1594 0.1915
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Table 10: Performance of bβCUE,LD, bβCUE2,AS, bβCUE2,LD, and bβCUE2,BB for T = 5
N = 100 bβCUE,LD bβCUE2,AS bβCUE2,LD bβCUE2,BB bβCUE,BB
β = .75 Median % Bias 7.4700 6.6814 4.2643 2.0471 1.2705

Interquartile Range 0.3067 0.2864 0.2911 0.2456 0.1480
Mean % Bias 11.5527 -296.6631 1250.1149 -136.4730 0.4852
RMSE 0.2132 152.2249 676.8912 117.9397 0.1050

β = .8 Median % Bias 8.6510 4.7391 1.6364 0.6595 1.2629
Interquartile Range 0.3031 0.3206 0.3410 0.3676 0.1540
Mean % Bias 10.4126 33.6498 -15.0393 -125.6554 -0.0913
RMSE 0.2048 29.2436 12.6828 74.6934 0.1092

β = .85 Median % Bias 7.5588 0.9468 -2.2980 -1.0482 1.9808
Interquartile Range 0.2900 0.4253 1.2817 0.4902 0.1645
Mean % Bias 7.9833 -100.7981 -161.9267 6.4686 0.3824
RMSE 0.1947 28.4546 25.6932 23.8489 0.1225

β = .9 Median % Bias 6.1147 -4.2248 -16.4693 -6.9530 3.0423
Interquartile Range 0.2668 2.3282 1.5503 2.3169 0.1637
Mean % Bias 6.1387 -30.2898 -177.0842 495.0171 1.2087
RMSE 0.1803 24.6733 131.8341 193.9465 0.1344

β = .95 Median % Bias 3.1365 -17.7102 -129.4765 -21.5058 3.4897
Interquartile Range 0.2512 2.5936 1.6277 2.5714 0.1452
Mean % Bias 3.1244 -290.6542 -42.6293 -32.0973 1.0877
RMSE 0.1655 166.1415 67.0635 98.0361 0.1347
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Table 11: Performance of bβCUE,LD, bβCUE2,AS, bβCUE2,LD, and bβCUE2,BB for T = 5
N = 200 bβCUE,LD bβCUE2,AS bβCUE2,LD bβCUE2,BB bβCUE,BB
β = .75 Median % Bias 4.2172 3.4952 4.0943 1.2644 0.4242

Interquartile Range 0.2297 0.1855 0.2034 0.1195 0.1032
Mean % Bias 8.8638 116.0861 29.5421 4.4327 0.1604
RMSE 0.1704 85.9117 10.6641 4.5595 0.0719

β = .8 Median % Bias 5.4765 5.8182 5.3421 0.8893 0.5388
Interquartile Range 0.2468 0.2105 0.2132 0.1472 0.1063
Mean % Bias 8.3701 16.9181 -233.6177 -21.1440 -0.1898
RMSE 0.1674 13.7393 127.6513 9.5825 0.0736

β = .85 Median % Bias 5.8672 5.1660 3.7226 1.0708 0.6441
Interquartile Range 0.2341 0.2295 0.2347 0.2619 0.1143
Mean % Bias 7.3021 688.7913 -50.0828 59.6610 -0.7076
RMSE 0.1585 455.6137 19.8972 66.8390 0.0779

β = .9 Median % Bias 5.3657 0.9958 -2.8551 -1.0774 0.9204
Interquartile Range 0.2101 0.3766 1.3425 0.5870 0.1152
Mean % Bias 5.4221 479.7193 31.6093 -29.9555 -0.3893
RMSE 0.1448 381.8271 23.2206 42.2422 0.0913

β = .95 Median % Bias 2.8984 -11.2026 -125.6884 -12.6677 2.5208
Interquartile Range 0.1915 2.5978 1.5877 2.6203 0.1099
Mean % Bias 2.8482 -82.2370 -6464.7709 -177.6883 0.9733
RMSE 0.1331 39.5396 4315.6181 116.8096 0.1044
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