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1 Introduction

We are concerned with estimation of the dynamic panel model with fixed effects. Under large n, fixed
T asymptotics it is well known from Nickell (1981) that the standard maximum likelihood estimator
suffers from an incidental parameter problem leading to inconsistency. In order to avoid this problem the
literature has focused on instrumental variables estimation (GMM) applied to first differences. Examples
include Anderson and Hsiao (1982), Holtz-Eakin, Newey, and Rosen (1988), and Arellano and Bond
(1991). Ahn and Schmidt (1995), Hahn (1997), and Blundell and Bond (1998) considered further moment
restrictions. Comparisons of information contents of varieties of moment restrictions made by Ahn and
Schmidt (1995) and Hahn (1999) suggest that, unless stationarity of the initial level y;q is somehow
exploited as in Blundell and Bond (1998), the orthogonality of lagged levels with first differences provide
the biggest source of information.

Unfortunately, the standard GMM estimator obtained after first differencing has been found to suffer
from substantial finite sample biases. See Alonso-Borrego and Arellano (1996). Motivated by this prob-
lem, modifications of likelihood based estimators emerged in the literature. See Kiviet (1995), Lancaster
(1997), Hahn and Kuersteiner (2000). The likelihood based estimators do reduce finite sample bias com-
pared to the standard maximum likelihood estimator, but the remaining bias is still substantial for T'
relatively small.

In this paper, we attempt to eliminate the finite sample bias of the standard GMM estimator obtained
after first differencing. We view the standard GMM estimator as a minimum distance estimator that
combines T' — 1 instrumental variable estimators (2SLS) applied to first differences. This view has been
implicitly or explicitly adopted by Chamberlain (1984) and Griliches and Hausman (1986). It has been
noted for quite a while that 2SLS estimators can be quite biased in finite sample. See Nagar (1959),
Mariano and Sawa (1972), Rothenberg (1983), Bekker (1994), Donald and Newey (1998) and Kuersteiner
(2000). If the ingredients of the minimum distance estimator are all biased, it is natural to expect such
bias in the resultant minimum distance estimator, or equivalently, GMM. We propose to eliminate the
bias of the GMM estimator by replacing all the ingredients with Nagar type bias corrected instrumental
variable estimators. To our knowledge, the idea of applying a minimum distance estimator to bias
corrected instrumental variables estimators is new in the literature.

We consider a second order approach to the bias of the GMM estimator using the formula contained in
Hahn and Hausman (2000). We find that the standard GMM estimator suffers from significant bias. The
bias arises from two primary sources: the correlation of the structural equation error with the reduced
form error and the low explanatory power of the instruments. We attempt to solve these problems by
using the “long difference technique” of Griliches and Hausman (1986). Griliches and Hausman noted that
bias is reduced when long differences are used in the errors in variable problem, and a similar result works
here with the second order bias. Long differences also increases the explanatory power of the instruments
which further reduces the finite sample bias and also decreases the MSE of the estimator. To increase
further the explanatory power of the instruments, we use the technique of using estimated residuals as
additional instruments a technique introduced in the simultaneous equations model by Hausman, Newey,
and Taylor (1987) and used in the dynamic panel data context by Ahn and Schmidt (1995). Monte Carlo
results demonstrate that the long difference estimator performs quite well, even for high positive values
of the lagged variable coefficient where previous estimators are badly biased.

However, the second order bias calculations do not predict well the performance of the estimator for

these high values of the coefficient. Simulation evidence shows that our approximations do not work well



near the unit circle where the model suffers from a near non-identification problem. In order to analyze
bias and mean squared error of standard GMM procedures under these circumstances we consider a local
to non-identification asymptotic approximation.

The alternative asymptotic approximation of Staiger and Stock (1997) and Stock and Wright (2000)
is based on letting the correlation between instruments and regressors decrease at a prescribed rate of the
sample size. In their work and contrary to Bekker (1994) it is assumed that the number of instruments
is held fixed as the sample size increases. Their limit distribution is nonstandard and in special cases
corresponds to exact small sample distributions such as the one obtained by Richardson (1968) for the
bivariate simultaneous equations model. This approach is related to the work by Phillips (1989) and Choi
and Phillips (1992) on the asymptotics of 2SLS in the partially identified case. Dufour (1997), Wang and
Zivot (1998) and Nelson, Startz and Zivot (1998) analyze valid inference and tests in the presence of weak
instruments. The associated bias and mean squared error of 2SLS under weak instrument assumptions
was obtained by Chao and Swanson (2000).

In this paper we use the weak instrument asymptotic approximations to analyze 2SLS and continuous
updating GMM estimators in situations that are particularly relevant for the dynamic panel model. We
show that standard 2SLS estimators which are asymptotically efficient under first order or standard as-
ymptotic approximations are inadmissible under the alternative asymptotic approximations. We identify
a complete class within the class of GMM estimators based on a finite set of instruments or moment
conditions.

We analyze the impact of stationarity assumptions on the nonstandard limit distribution. Here we let
the autoregressive parameter tend to unity in a similar way as in the near unit root literature. Nevertheless
we are not considering time series cases since in our approximation the number of time periods T is held
constant while the number of cross-sectional observations n tends to infinity. We identify a complete
class of GMM estimators and show that a bias minimal estimator within this class can approximately
be based on taking long differences of the dynamic panel model. Long differences were introduced by
Griliches and Hausman (1986) . Similar problems have been studied by Blundell and Bond (1998) and
Moon and Phillips (2000). In general it turns out that under near non-identification asymptotics the
optimal procedures of Alvarez and Arellano (1998), Arellano and Bond (1991) , Ahn and Schmidt (1995,
1997) are inadmissible and inference optimally should be based on a smaller than the full set of moment
conditions. We also show that it is usually not efficient to focus on original moment conditions. Rather
one should consider optimal linear combinations of the moment conditions. Due to the special structure

of the panel model the optimal linear combinations are known a priori.

2 Review of the Bias of GMM Estimator

Consider the usual dynamic panel model with fixed effects:
Yit = a; + BYi—1 + Eit, i=1,...,mt=1,...,T (1)

It has been common in the literature to consider the case where n is large and T is small. The usual
GMM estimator are based on the first difference form of the model

Yit — Yit—1 = B (Yit—1 — Yit—2) + (€it — €ip—1)
where the instruments are based on the orthogonality

E[Z/i,s (Eit—&‘i,t,ﬂ]:o s=0,...,t—2.



Instead, we consider a version of the GMM estimator developed by Arellano and Bover (1995), which
dramatically simplifies characterization of the “weight matrix” in GMM estimation. We define the inno-
vation w;; = a; +¢€4. Arellano and Bover (1995) eliminate the fixed effect a; in (1) by applying Helmert’s

transformation

gy (i1 + - +wr) |, t=1,...,T—1

I e 2 P
T—t+1 "% Tt

instead of first differencing.! The transformation produces
v = Bay + €5y, t=1,...,T—-1
where z} = y;t_l. Let zi¢ = (vio, - - - ,yit,l)/. Our moment restriction is summarized by
Elzipes] =0 t=1,....,T -1

It can be shown that, with the homoscedasticity assumption on e;;, the optimal “weight matrix” is
proportional to a block-diagonal matrix, with typical diagonal block equal to E'[z;2};]. Therefore, the
optimal GMM estimator is equal to

t 1 ft/P an

bomm = S
=1 T Py

(2)
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where 27 = (v%,,-+ 2%, yi = Wi v5) s Ze = (214, 2ne)’ s and Py, = Z, (21 2,) ™ Z,. Now, let
basrs,+ denote the 2SLS of y; on x}:
2 _ ' Py;
2SLS,t = xf’Ptx;"
If ¢;; are i.i.d. across ¢, then under the standard (first order) asymptotics where T is fixed and n grows

to infinity, it can be shown that

o~ —~ /
Vn <b2SLS,1 —B,...,basrs -1 — 5) — N (0,7),

where W is a diagonal matrix with the t-th diagonal elements equal to Var (e;;)/ plimn =1z}’ P;x}. There-
fore, we may consider a minimum distance estimator, which solves

-1

o~ / o~
, —1
baspsi—0b (i Piz7) 0 basrs1 — b
min
b ~ -1 o
basrs,r—1 — b 0 (x5 Pr_aaf_)) bosrs,m—1 — b

The resultant minimum distance estimator is numerically identical to the GMM estimator in (2):

Zf I Pt:rtt b2SLSt
*/
Zt 1 vy Pt

Therefore, the GMM estimator bG My may be understood as a linear combination of the 2SLS estimators

by =

b2 SLS1,-- bgs 1S, 7—1- 1t has long been known that the 2SLS may be subject to substantial finite sample
bias. See Nagar (1959), Rothenberg (1983), Bekker (1994), and Donald and Newey (1998) for related
discussion. It is therefore natural to conjecture that a linear combination of the 2SLS may be subject to

quite substantial finite sample bias.

I Arellano and Bover (1995) notes that the efficiency of the resultant GMM estimator is not affected whether or not

Helmert’s transformation is used instead of first differencing.



3 Bias Corrected GMM Estimators

In the previous section, we explained the bias of GMM estimator as a result of the biases of the 2SLS
estimators. With such understanding, it should be straightforward to apply the standard methods of
correcting for biases of 2SLS and eliminate the bias of the GMM estimator itself. Depending on the nature
of the higher order asymptotic approximation, we may come up with several strategies of correcting for
biases. Below, we discuss two different higher order asymptotic approximations and related methods of
bias correction. The first one is the second order Taylor type approximation. Such perspective has been
adopted by Nagar (1959), and Rothenberg (1983). The second approximation pretends that the number
of parameters increases to infinity as a function of the sample size. Such approximation was originally
developed by Bekker (1994), and was adopted by Alvarez and Arellano (1998) and Hahn and Kuersteiner
(2000) in dynamic panel context.

3.1 Second Order Biases of GMM Type Estimators

We first present a theory that justifies our second order bias calculation later in this section. Consider a

class of estimators solving the minimization problem

ming (c) G(¢) " g(c), (3)

c

where

1 1 ¢ /
9@ =23 6(0), Cl0)==3 (%)
; i=1
Let b denote the minimizer. First order condition for (3) is given by
0=2¢1(b) G(b) " g(b) —g(B) G(b) " GL(H)G () g(b), (4)

where g1 (b) = 9g (b)/ 0b, and G; = 0G (b)/ Jb. By expanding the first order condition, we can obtain
the following result:

Theorem 1 Second order bias of b is equal to

~y trace (A71E 5.3 ) L INATE [piA 18] | 1 trace (A A0ATE [81))

n )\11\_1/\1 n )\11\_1)\1 2n /\1A_1/\1
_ o6, _
Lyl NATLE [&:a—g} ATA g NATTE [BMA T ] A
n (MA—1A;)? n (AMA—1A)?
QL NMATT SO ATTAA TN L NATE [0i8] A
n ()\1/\71)\1)2 n <>\1A71)\1)2
I A—1 IA—1 -1
S 3 M g s Aty o MR ATy s s A (5)

2n (MA~) 2 (ALY
where G = G(ﬁ), G1 = Gl (ﬂ), G2 = 8G1 (ﬂ)/@b, Gg = 8G2 (ﬁ)/ab, /\j = E[gj], and A]' = E[G]]
Proof. See Appendix A. =

Remark 1 For the particular case where ; = é;, i.e. when b is a CUE, the bias formula (5) exactly
coincides with Newey and Smith’s (2000).



3.2 DMotivation 1: Higher Order Expansion

There are T' — 1 ingredients of the minimum distance estimator /b\QSLS’l, . ,BQSLS’T,L Because all of
them are 2SLS, and because 2SLS is known to be biased, it would not be surprising if the resultant

minimum distance estimator, i.e., the GMM estimator, is biased. Using Theorem 1, it can be shown that:

Theorem 2 If the conditional distribution of €}, given z;; is symmetric, the second order bias ofBGMM

18 equal to
B +By+ B 1
oLt ot O 3+0(—>, (6)

n n
where
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2= — S
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t=1 s=1
2
(S0 Blenay) Blazh] ™ Blzaay)

3

Proof. See Appendix B. =

In Table 1, we compare the actual performance of EG wmy and the prediction of its bias based on
Theorem 2. Table 1 tabulates the actual bias of the estimator approximated by 10000 Monte Carlo runs,
and compares it with the second order bias based on the formula (6).2 It is clear that the second order
theory does a reasonably good job except when 3 is close to the unit circle and n is small.

Theorem 2 suggests a natural way of eliminating the bias. Suppose that El, Eg, By are \/n-consistent

estimators of By, Bo, B3. Then it is easy to see that
ZBC’I E/I;GMJ\/[ - % <§1 + By + §3> (7)
is first order equivalent to /b\G MM, and has second order bias equal to zero. Let
ZtT:_ll trace ((Z?:l Zitzz{t)_l it e:tx:tzitzz{t))
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2In our Monte Carlo experiment, we let g;4 ~ N (0,1), a; ~ N (0,1), and y;o ~ N (1&75’ 1—15'2)'




and
* ok * 7T
e =Y — Tibaym-

Then the Bs will satisfy the y/n-consistency requirement, and hence, the estimator (7) will be first order
equivalent to bgpras and will have zero second order bias. Because the summand

-1 _ -1
B |Blzuah] Blews) ' ehmudT sty B lzisth) " Blzisai)|

in the numerator of B3 is equal to zero for s < ¢, we may instead consider

~ ~ 1/~ ~ =

bpo2 = bemm — -~ By + By + B3 (8)
where 1 e~
ES Dot D=1 B3 (L)

2
T—1 w1\ —1 *
(SI (i ) (0 zest) ™ (S zah))

Second order asymptotic theory roughly predicts that EBCQ would be relatively free of bias. We

Sk

examined whether such prediction is reasonably accurate in finite sample by 5000° Monte Carlo runs.
Table 2 summarizes the properties of /I;BCQ. We have seen in Table 1 that the second order theory is
reasonably accurate unless (3 is close to one. It is therefore sensible to conjecture that 3302 would have
a reasonable finite sample bias property as long as [ is not too close to one. Such conjecture is verified
in Table 2.

3.3 Motivation 2: Alternative Asymptotics

In this section, we consider the usual dynamic panel model with fixed effects (1) using the alternative
asymptotics where n and T grow to infinity at the same rate. Such alternative asymptotics have been
adopted by Alvarez and Arellano (1998) and Hahn and Kuersteiner (2000) in analyzing biases of GMM
estimators and maximum likelihood estimator for the model (1). We assume

Condition 1 ¢ i ./\/'(0,02) over i and t.

We also assume stationarity on y; o and normality on a;*:

Condition 2 y;o|a; ~ N <1Ci—ﬁ, %) and a; ~ N (0,03),

In order to guarantee that Z,Z; is nonsingular, we will assume that

Condition 3 L — p, where 0 < p < 1.5

Alvarez and Arellano (1998) show that, under this alternative asymptotic approximation where n and

T grow to infinity at the same rate,

W(EGMM—(ﬂ—%(lJrﬁ)))—>/\/(0,1—62). )

3The difference of Monte Carlo runs here induced some minor numerical difference (in properties of bgarn) across Tables
1-3.
4This condition allows us to use lots of intermediate results in Alvarez and Arellano (1998). Our results are expected to

be robust to violation of this condition.
5 Alvarez and Arellano (1998) only require 0 < p < co. We require p < 1 to guarantee that Z}Zy is singular for every t.



By examining the asymptotic distribution (9) under the alternative asymptotics derived by Alvarez and

Arellano (1998), we can develop a bias-corrected estimator. This bias-corrected estimator is given by

~ n ~
bevm = — leMM to—7 (10)

Combining (9) and (10), we can easily obtain:

Theorem 3 Suppose that Conditions 1-8 are satisfied. Also suppose that n and T grow to infinity at the
same rate. Then, v/'nT <bGMM - ﬁ) — N (0,1— 62) )

Hahn and Kuersteiner (2000) establish by a Hajék-type convolution theorem that A (O, 1-— ﬂ2) is the
minimal asymptotic distribution. As such, the bias corrected GMM is efficient. Although the bias cor-
rected GMM estimator ZG m M does have a desirable property under the alternative asymptotics, it would
not be easy to generalize the development leading to (10) to the model involving other strictly exogenous
variables. Such a generalization would require the characterization of the asymptotic distribution of the
standard GMM estimator under the alternative asymptotics, which may not be trivial. We therefore
consider eliminating biases in /I;QS s, instead. An obvious estimator that gets rid of the higher order bias

of 325 s, is the Nagar type estimator. Let

*/ * * *
Dnanans = ;' Pryy — M, My
agar. - * *
9anE T py! Py — Ny My

where M; =1 — P, \y = n—f}(—t, and K; denotes the number of instruments for the ¢-th equation. For

example, we may use A\; = n—f}g—b as in Donald and Newey (1998). We may also use LIML for the ¢-th
equation, in which case \; would be estimated by the usual minimum eigenvalue search.

We now examine properties of the corresponding minimum distance estimator. One possible weight
matrix for this problem is given by

* -1 -1
(z} Pra} — My Myxy) 0

. -1
0 (x7 1 Proizt_y — Arizg_ Mroazi_y)
With this weight matrix, it can be shown that the minimum distance estimator is given by

= 3 (& Py — My Myyy)

7 > (@] Peey = Mo, Miey)
Nagar = Yo (@) Py — Ny Myacy)

= - . 11
o (@) Py — Ny Myacy) (11)

=B+

One possible way to examine the finite sample property of the new estimator is to use the alternative

asymptotics:

Theorem 4 Suppose that Conditions 1-3 are satisfied. Also suppose that n and T grow to infinity at the
same rate. Then, VnT (byagar — 8) = N (0, 1— ﬁZ),

Proof. Lemmas 12, and 13 in Appendix C along with Lemma 2 of Alvarez and Arellano (1998)

establish that . % .
— Pt — — 2t 2 Mer ) — N (0, —2—
Wzt:(t oK ”) < 1= 5

1 *y Kt *y O'2
— Py — Mz}
T 2 <xt tLy n—K, Ly My | — 1- 3

and




from which the conclusion follows. m
In Table 3, we summarized finite sample properties of byager and bryarr, approximated by 10000
Monte Carlo runs. Here, byrysr is the estimator where As in (11) are replaced by the corresponding

“eigenvalues”.

4 Long Difference Specification: Finite Iteration

In previous sections, we noted that even the second order asymptotics “fails” to be a good approximation
around 8 ~ 1. This phenoemenon can be explained by the “weak instrument” problem. See Staiger
and Stock (1997). Blundell and Bond (1998) argued that the weak instrument problem can be alleviated
by assuming stationarity on the initial observation y;0. Such stationarity condition may or may not be
appropriate for particular applications. Further, stationarity assumption turns out to be a predominant
source of information around 3 & 1 as noted by Hahn (1999). We therefore turn to some other method
to overcome the weak instrument problem around the unit circle avoiding the stationarity assumption.
We argue that some of the difficulties of inference around the unit circle would be alleviated by taking a

long difference. To be specific, we focus on a single equation based on the long difference

it — Yi1 = B (Yir—1 — Yio) + (gir — €i1) (12)

It is easy to see that the initial observation y;o would serve as a valid instrument. Using intuition as in
Hausman and Taylor (1983) or Ahn and Schmidt (1995), we can see that y;7—1 — Byir—2, - - -, Yiz — By

would be valid instruments as well.

4.1 Intuition

In Hahn-Hausman (HH) (1999) we found that the bias of 2SLS (GMM) depends on 4 factors: “Explained”
variance of the first stage reduced form equation, covariance between the stochastic disturbance of the

structural equation and the reduced form equation, the number of instruments, and sample size:

1 (number of instruments) X (covariance)

n “Explained” variance of the first stage reduced form equation
Similarly, the Donald-Newey (DN) (1999) MSE formula depends on the same 4 factors. I now consider
first differences (FD) and long differences (LD) to see why LD does so much better in our Monte-Carlo
experiments.
Assume that T = 4. The first difference set up is:

Ya—ys =P (ys —y2) +e1—¢e3 (13)

For the RHS variables it uses the instrument equation:

ys—y2 = (B—1)y2 +a+e3

Now calculate the R2 for equation (13) using Ahn-Schmidt (AS) moments under “ideal conditions”
where you know ( in the sense that the nonlinear restrictions become linear restrictions: We would then
use (Ya2,Y1, Yo, + €1, + €3) as instruments. Assuming stationarity for symbols, but not using it as
additional moment information, we can write

@

Z/ozm‘Ffo?
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2
where £, ~ (0, I—U’b—z) It can be shown that the covariance between the structure error and the first

2 —f+1
ECEST

stage error is —o2, and the “explained variance” in the first stage is equal to o . Therefore,the ratio

that determines the bias of 2SLS is equal to

—0? _71—1-5
i 178

which is equal to —19 for § = .9. For n = 100, this implies the percentage bias of

Number of Instruments —19 5 —19
100 = — —— x 100 = —105. 56
Sample Size 3~ 100 0.9

We now turn to the LD setup:

ys—y1=0(ys —yo) +e1 — €1

It can be shown that the covariance between the first stage and second stage errors is —3%02, and the

€3

“explained variance” in the first stage is given by

5 (28° = 48" —28° +45° + 48 - 28° +6) 0% + 3° — p* + 2 — 25°
c (-28-3+p8%)02—1+p

—0

)

M)

where 02 = Z¢. Therefore, the ratio that determines the bias is equal to

(-28-3+8%) 02 -1+
(28° —4p* —268° + 48° + 48— 28° + 6) 0 + 3° — B* + 2 — 28°

62

which is equal to
2.5703 x 1074

02 +4.8306 x 102

for 8 =.9. Note that the maximum value that this ratio can take in absolute terms is

—.37408 +

—.37408

which is much smaller than —19. We therefore conclude that the long difference increases R? but decreases
the covariance. Further, number of instruments is smaller in the long difference specification so we should

expect even smaller bias.

4.2 Monte Carlo

For the long difference specification, we can use y;9 as well as the “residuals” y;7_1— Byir—2, - - -, Yi2 — BYi1
as valid instruments.® We may estimate 3 by applying 2SLS to the long difference equation (12) using
y;0 as instrument. We may then use (y;o, ¥ir—1 — b2sLSYiT—2, - - - > Yiz — basrsy;1 )as instrument to the

long difference equatlon (12) to estimate (3. Call the estimator bQSLS 1. By iterating this procedure,
we can define bgs LS,25 bgs LS,3, --. Similarly, we may first estimate § by Arellano and Bover, and use
(Z/z'o, YiT—1 — bGMMyZ-T_Q, .y ¥i2 — bammyil ) as instrument to the long difference equation (12) to es-

timate (3. Call the estimator /EQSLS 1. By iterating this procedure, we can define bGM M2;. b(;M M3, -
Likewise, we may first estimate 3 by bLIMLa and use (yl07le 1— bLIMLyLT 2,5 Yi2 — bLJMLyu

6We acknowledge that the residual instruments are irrelevant under the near unity asymptotics.



instrument to the long difference equation (12) to estimate 3. Call the estimator EL 1mL1. By iterating
this procedure, we can define ELIML,z, BLIML,;;, ... We found that such iteration of the long difference es-
timator works quite well. We implemented these procedures for T =5, n = 100, 3 = 0.9 and 02 = 02 = 1.
Our finding with 5000 monte carlo runs is summarized in Table 4. In general, we found that the iteration
of the long difference estimator works quite well.

We compared performances of our estimator with Blundell and Bond’s (1998) estimator, which uses
additional information, i.e. statlonarlty We compared four versions of their estimators b BB1, - - b BB4
with the long difference estimators bLIML 1,bL1ML 2, bLIML 3. For exact definition of bBBl, .. bBB4,
see Appendix E. Of the four versions, b BRB3 and b BB4 are the ones reported in their Monte Carlo section.
In our Monte Carlo exercise, we set 3 = 0.9, 02 = 1, a; ~ N (0,1). Our finding based on 5000 Monte
Carlo runs is contained in Table 5. In terms of bias, we find that Blundell and Bond’s estimators ?)\B B3
and 5334 have similar properties as the long difference estimator(s), although the former dominates
the latter in terms of variability. (We note, however, that ?)\B B1 and ?)\B B2 are seriously biased. This
indicates that the choice of weight matrix matters in implementing Blundell and Bond’s procedure.)
This is not surprising because the long difference estimator does not use the information contained in
the initial condition. See Hahn (1999) for related discussion. We also wanted to examine sensitivity of
Blundell and Bond’s estimator to misspecification, i.e., nonstationary distribution of g;9. Obviously the
estimator will be inconsistent. In order to assess the finite sample sensitivity, we considered the cases
where y;0 ~ <17aé?, 1—:’%) Our Monte Carlo results based on 5000 runs are contained in Table 6, which
contains results for B = .5 and By = 0. We find that the long difference estimator is quite robust,
whereas /I;B B3 and ?)\B B4 become quite biased as predicted by the first order theory. (We note that ?)\B Bl
and /Z;B po are less sensitive to misspecification. Such robustness consideration suggests that choice of
weight matrix is not straightforward in implementing Blundell and Bond’s procedure.) We conclude that

the long difference estimator works quite well even compared to Blundell and Bond’s (1998) estimator.

4.3 Second Order Theory

We now move on to examine second order bias of finitely iterated 2SLS. For this purpose, we consider

25LS -

applied to the single equation
yi = PBxi + &

using instrument z; = z; — ﬁb\wi, where 0 = N (B — ﬁ). Here, z; is the “proper” instrument. We
assume that

S5 o (d)

where f; is 1.i.d. and has mean zero, and @, = Op (1). It can be seen that E%l is equal to the second
order bias of # under our assumption (15).

Theorem 5 Let b denote the 25LS in (14). Under conditional symmetry of €; given z;, the second order

10



bias of b is equal to % times
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_ >\A E[flzégl]A/AflAAflA_’_E[f?] )‘A SDQAIAflAAfl)\
(VA—1)) (VA1)

where A = E [z;z;], A = E[2,7]], ¢ = Ewiz;], A = E w2, + zw}], and ¢ = E[w;&;].

Proof. See Appendix F. m

Using Theorem 5, we can characterize the second order bias of iterated 2SLS applied to the long
difference equation using LIML like estimator as the initial estimator. For this purpose, we need to have
a second order bias of LIML like estimator. In Appendix G, we present a second order bias of the LIML
like estimator. In fact, based on 5000 runs, we found in our Monte Carlo experiments that the biases of
BL v, and BL 1mL,2 are smaller than predicted by the second order theory. In Table 7, we compare the
actual performance of the long difference based estimators with the second order theory.

It is sometimes of interest to construct a consistent estimator for the asymptotic variance. Although
such exercise may appear to be related only to first order asymptotics, a consistent estimator of the
asymptotic variance could be useful in practice for refinement of confidence interval as well: Pivoted
bootstrap as considered by Hall and Horowitz (1996) require such consistent estimator for second order
refinement. In Appendix H, we present a first order asymptotic result as well as a consistent estimator

for the asymptotic variance.

5 Near Unit Root Approximation

Our Monte Carlo simulation results summarized in Tables 1, 2, and 3 indicate that the previously dis-
cussed approximations and the bias corrections that are based on them do not work well near the unit
circle. This is because the identification of the model becomes “weak” near the unit circle. See Blundell
and Bond (1998), who related such problem to the analysis by Staiger and Stock (1997). In this Section,
we formally adopt approximations local to the points in the parameter space that are not identified. To
be specific, we consider model (1) for T fixed and n — oo when also ,, tends to unity. We analyze bias
and mean squared error of the associated weak instrument limit distribution. We analyze the class of
GMM estimators that exploit Ahn and Schmidt’s (1997) moment conditions and show that a strict subset
of the full set of moment restrictions should be used in estimation in order to minimize bias. We argue

that such subset of moment restrictions lead to the inference based on “long difference” specification.
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Following Ahn and Schmidt we exploit the moment conditions

Eluw) = (o2+02)1+0211

2

Eluiyio] = 0ayl

with 1 = [1,...,1]" a vector of dimension T and w; = [u;1, ..., usr] . The moment conditions can be written
more compactly as

! /
b vech E [u;uf] o2 vech T +o? vech(I 4+ 11") + Gayy 0 (16)
E [’U,LyLo] 0 0 1

where the redundant moment conditions have been eliminated by the use of the vech operator which
extracts the upper diagonal elements from a symmetric matrix. Representation (16) makes it clear that
the vector b € RT(T+1)/2+T i contained in a 3 dimensional subspace which is another way of stating that
there are G = T(T + 1)/2 + T — 3 restrictions imposed on b. This statement is equivalent to Ahn and
Schmidt’s (1997) analysis of the number of moment conditions.

GMM estimators are obtained from the moment conditions by eliminating the unknown parameters
02,02 and 04y,. The set of all GMM estimators leading to consistent estimates of 3 can therefore be
described by a (T(T +1)/2+ T) x G matrix A which contains all the vectors spanning the orthogonal
complement of b. This matrix A satisfies

VA=0.

For our purposes it will be convenient to choose A such that

b/A = [EuitAuiS, E (UZTAUZJ) ,EﬂiAuik, EA’U,;yZ(]] s
s=2,.,.Tst=1,.s—2;j=2,..T—-1L;k=2,..,T

where Au; = [uig — Wity ooy WiT — uiT,l]/. It becomes transparent that any other representation of the
moment conditions can be obtained by applying a corresponding nonsingular linear operator C' to the
matrix A. It can be checked that there exists a nonsingular matrix C such that & AC = 0 is identical to
the moment conditions (4a)-(4c) in Ahn and Schmidt (1997).

We investigate the properties of (infeasible) GMM estimators based on

E [uitAuis (ﬂ)] = 0, E [uiTAuij (ﬁ)] = 0, E [ﬂiAuik (ﬁ)] = 0, E [yioAuit (ﬂ)] = O

obtained by setting Au; () = Ay — BAy;—1. Here, we assume that the instruments w;; are ob-
servable. Let g;1 () denote a column vector consisting of w; Au;s (8) , wirAugj (8), W Auik (8). Also let
9i2 (8) = [yioAu; (8)]. Finally, let g, (8) =n =323 | [9a (B), gio (ﬁ)/]/ with the optimal weight matrix
Q =lim, E [9, (8,,) gn (ﬁn)/]. The infeasible GMM of a possibly transformed set of moment conditions
C’ gy, (B) then solves

PasLs = arggningn(ﬁ)'C (O/QC)+ C'gn (B)

where C is rank () x r matrix for 1 < r < rank (2) such that C'C' = I and rank (C’ (cro)*t C") > 1.

We use (C'QC)" to denote the Moore-Penrose inverse. We thus allow the use of a singular weight
matrix. Choosing r less than G allows to exclude certain moment conditions. Let f; 1 = — 0gi1 (8)/ 98,
fiz=—09i2(8)/ 0B, and f, =n=3/23"" | [fh, {’2]/. The infeasible 2SLS estimator can be written as

’ ’ + v -t ’ + v
Basrs = Buo = (£1C(C'Q0) " C'f)  £1C(C'QC)" C'ga (Br)- an)
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We are now analyzing the behavior of (5979 — 3,0 under local to unity asymptotics. We make the
following additional assumptions.

Condition 4 Let yi = o + B, yu—1 + €t with i ~ N(0,02), oy ~ N(0,02) and yio ~ N(124-, ﬁ)
where (3, = exp(—c/n).

Also note that Ay;; = ﬂ;ﬁlnio—i—git—i—\/#ﬁ 22;11 ﬂffleit,s—i—op(n_l) where 1,0 ~ N(0, (8,, — 1)2 / (1 — ﬁi))
We now establish the following Lemma.

Lemma 1 Assume (3,, = exp(—c/n) for some ¢ > 0. For T fired and as n — co
n=?/? Zfi,l L0,n73/2 Zgi,l(ﬁo) -0
i=1 i=1

and

n=3/2 Z [fi/a,g;,z(ﬁo)]l 4 [5;,52]1
i=1

S, ¥
where[¢,, €] ~ N(0,%) with S = 2; EZ ] with Y1y = 61, Sy = 6My Yy = My, where § = ZaZz,
11 0 2 -1 0
B
M, = y Msy =
0o 1 -1
1 12

and 212 = 2/21

Proof. See Appendix 5. m
Using Lemma (1) the limiting distribution of 85455 — ,, can now be obtained in the next corollary.
We define the augmented vectors 57# = [0, . 0,5;]/ and 5# = [0, . 0,{;]/.

Corollary 1 Let 85455 — 3, be given by (17). If Condition (4) is satisfied then

a ECCaotoe;
greeracyrerel

Basrs - (18)
Unlike the limiting distribution for the standard weak instrument problem, X, as defined in 18, is
based on normal vectors that have zero mean. This degeneracy is generated by the presence of the
fixed effect in the initial condition, scaled up appropriately to satisfy the stationarity requirement for the
process y;;. Inspection of the proof shows that the usual concentration parameter appearing in the limit
distribution is dominated by a stochastic component related to the fixed effect. This situation seems to
be similar to time series models where deterministic trends can dominate the asymptotic distribution.

A problem with analyzing the class of estimators having a limiting distribution X is the fact that
o éf has a potentially degenerate distribution. In order to proceed we therefore have to show first that
it is never optimal to choose C such that C”ff is degenerate.

In particular, in the proof of the next theorem we show that it is never optimal to choose W singular
where W = L'C(C'QC)*TC'L with LL' = ¥17. It then follows by Lemma (14) in the Appendix that
Q = ¥1; and C = (. The latter implies that only moment conditions involving the initial conditions
should optimally be picked.

13



Theorem 6 Assume Condition 4 holds and By — B, is as defined in (17). Then E [(X*)Q} <

E [(X)ﬂ where X is defined in (18) and X* is obtained by setting W* = L'C1(C13X11C1)TC1L = 1.

Theorem (6) shows that standard efficient GMM estimators for the dynamic panel model based on
exploiting all the available moment conditions are inadmissible under the weak instrument asymptotic
approximation. There are two elements that lead to inadmissibility. First, according to Theorem (14) the
first order optimal weight matrix Yoo produces an estimator that is dominated in terms of L? risk by an
estimator based on X11. Second, as shown above most of the moment conditions become irrelevant under
these asymptotics, the only exception being moment conditions involving initial conditions. This result
has been discussed elsewhere by Bond and Blundell (1988) and Hahn (1999). One important consequence
of Theorem (6) is that optimal inference for the Panel model is feasible since the matrix 17 is known up
to a scalar which is irrelevant for estimation purposes.

Next we turn to the analysis of bias and mean squared error for the dynamic panel model. We now
restrict C; to be a (T' — 1) x r matrix of full column rank r» < T — 1 such that C;Cy = I. Restricting
r < T —1 means that moment restrictions can not be used twice which can not be ruled out from Theorem
(6). From a practical point of view imposing this restriction is very natural. Since the limit only depends

on zero mean normal random vectors we can directly apply the results of Smith (1993).

Theorem 7 Let X* be as defined in Theorem (6). Let D = (D + D') /2 where D = C}¥12C;. Then
E[X*] = trace (D/r)

where r = rank (C) and

—(%) () trace (DGD")

E [(X*)ﬂ = (2 trace(D?) + (trD)z) Jr(r+2)+2 o

where E [X*] exists forr > 1 and E [(X*)z] exists for r > 3.

An immediate consequence of Theorem 7 is that both bias and mean squared error are monotonically
decreasing in the parameter c¢. The further § is away from the unit circle the lower both bias and mean
squared error are.

We can now consider the problem of choosing an optimal matrix C; to minimize bias and L? risk. It
turns out that an analytical solution for the bias minimal estimator can be found. For the bias term we
can write trace D/r = £ trace [C’{ (M7 + M{)C’l] which shows that the bias minimal estimator does not

depend on the unknown parameter 6. For the case of L? risk the situation is more complicated. Note
_ , 2 _
however that trace(D?) = & trace {(%C{(Ml + Ml)01> } (trace D)2 = 6% (trace [C} (M 4+ M;)C4))?

and
trace (DGD') = &° trace (C} My C1C, MyCyCl M, Cy) — 6* trace [(C{MlCl)Z (CI M Cy)

which shows that the optimum only depends in a relatively simple way on the unknown parameter §. We
could in principle use a prior distribution for this parameter to obtain a tractable risk function. Since
this will only change the relative weights on the different components we will not explicitly analyze it
here. Once the weights are known or assumed to be known the optimal matrix C' can in principle be
found numerically.

The following theorem describes the bias optimal 2SLS estimator for the dynamic panel model

14



Theorem 8 Let X* be as defined in Theorem (6). Let D = (D + D') /2 where D = C}%15C,. Let

C* = argmin trD/n. Then C* = r; where r; is the eigenvector corresponding to the smallest eigenvalue
C s.t. C'C=I

li of D. As T — oo the smallest eigenvalue of D, l; — 0. Let 1 =][1,..., 1]/ be a T — 1 vector. Then for
C= 1/(1/1)1/2 it follows that trace D — 0 as T — oc.

Theorem 8 shows that the estimator that minimizes the bias is based only on a single moment condition
which is a linear combination of the moment conditions involving ;o as instrument where the weights
are the elements of the eigenvector r; corresponding to the smallest eigenvalue of (M7 + M7) /2. This
eigenvalue can be easily computed for any given 7. The Theorem also shows that at least for large T
the optimal procedure can be approximated by heuristic method which puts equal weight on all moment
conditions. The heuristic procedure turns out be equal to the moment condition E (u;r — u;1) y;0 which
can be motivated by taking ”long differences” of the model equation y;; = o; + 8,,yit—1 + €ir i.e. by
considering

Yir — yin = @i + B, (yir—1 — Yio) + & — €1
It can also be shown that a 2SLS estimator that uses all moment conditions involving y;o remains biased

even as 1" — oo.

6 Long Difference Specification: Infinite Iteration

We found that the iteration of the long difference estimator works quite well. In the (¢ + 1)-th iteration,

our iterated estimator estimates the model
yir — Yi1 = B(Yir—1 — Yio) + & — €

based on 2SLS using instruments z; <ﬁ(f)> = (yio, Yio — ﬂ(é)yﬂ, ce YT — ﬁ(g)yiT_2>, where ﬁ(z) is the
estimator obtained in the previous iteration. We might want to examine properties of an estimator based
on an infinite iteration, and see if it improves bias property. If we continue the iteration and it converges’,

the estimator is a fixed point to the minimization problem

mbin (7_21 &, (b)) (z_zl zi (b) z; (b)/> (Z_Zl &i (b)>

where &; (b) = 2 (b) ((yir — yi1) — b (Yir—1 — yio)). Call the minimizer the infinitely iterated 2SLS and
denote it B 1251s- Another estimator which resembles 3 12s1s is CUE, which solves

—1

R N "/ N N
Beve = arg mbinL (b) = arg mbin (Z & (b)> (Z & ()& (b)/> (Z §; (b)> .
i=1 i=1 i=1

Their actual performance approximated by 5000 Monte Carlo runs along with the biases predicted by
second order theory in Theorem 1 are summarized in Tables 8 and 9. We find that the long difference
based estimators have quite reasonable finite sample properties even when 3 is close to 1. Similar to the
finite iteration in the previous section, the second order theory seem to be next to irrelevant for 3 close
to 1.

"There is no a priori reason to believe that the iterations converge to the fixed point. To show that, one would have to

prove that the iterations are a contraction mapping.
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Remark 2 We compared performances of our estimators with Ahn and Schmidt’s (1995) estimator as
well as Blundell and Bond’s (1998) estimator. Both estimators are defined in two-step methods. In
order to make a accurate comparison with our long difference strategy, for which there is no ambiguity of
weight matriz, we decided to apply the continuous updating estimator to their moment restrictions. We
had difficulty of finding global minimum for Ahn and Schmidt’s (1995) moment restrictions. We therefore
used Rothenberg type two step iteration, which would have the same second order property as the CUE
itself. (See Appendix 1.) Again, in order to make a accurate comparison, we applied the two step iteration
idea to our long difference and Blundell and Bond (1998) as well. We call these estimators 5CUE2,AS,
BCUEZLD, and BCUEZBB. We set n = 100 and T = 5. Again the number of monte carlo runs was
set equal to 5000. Our results are reported in Table 7. For comparison purpose, we reported properties
of Arellano and Bover’s estimator (1995) as well. We can see that the long difference estimator has a
comparable property to Ahn and Schmidt’s estimator. We do not know why the version of long difference

CUE has such a large median bias at § = .95 whereas the CUE itself does not have such problem.

7 Conclusion

We have investigated the bias of the dynamic panel effects estimators using second order approximations
and Monte Carlo simulations. The second order approximations confirm the presence of significant bias
as the parameter becomes large, as has previously been found in Monte Carlo investigations. Use of
the second order asymptotics to define a second order unbiased estimator using the Nagar approach
improve matters, but unfortunately does not solved the problem. Thus, we propose and investigate a
new estimator, the long difference estimator of Griliches and Hausman (1986). We find that in Monte
Carlo experiments that this estimator works quite well, removing most of the bias even for quite high
values of the parameter. Indeed, the long differences estimator does considerably better than “standard”
second order asymptotics would predict. Thus, we consider alternative asymptotics with a near unit circle
approximation. These asymptotics indicate that the previously proposed estimators for the dynamic fixed
effects problem are inadmissable. The calculations also demonstrate that the long difference estimator
should work in eliminating the finite sample bias previously found. Thus, the alternative asymptotics

explain our Monte Carlo finding of the excellent performance of the long differences estimator.
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Technical Appendix

A Proof of Theorem 1

Note that we have

90 = g1+ =2 VO =)+ oon - (V0= B) 4o, (%)
1 1 2 1
90) =g+ Zza V(= 8+ g (V- 9) +0, (7).

2n92 :

and

G '=G"— %G‘lGlG—1 Vnb—B)
11

5 (GGG GG -GGG (VA - 9) +o, <%) ,
G (b) :Gl—I—%Gz-\/ﬁ(b—ﬂ)ﬁ—%%Gy (Vi b= 8)+0, (%) .

Therefore, we have

\/_
and
_ _ 1
g GO GOCH) 90 =gGTI GG g+ —=hy V(b= )
1
+ Eh4 . (\/ﬁ(b—ﬁ))2 +0p <—> ,
where
h =ghG g — giG'G1G g+ g1 G g,
1 1 1
hy = 5ggG—lg + 59’1 (2G7'GiG7IGIGT -GGG ) g+ 5ggG—lg2
— GGG g — g1GT GG g1 + 95G T g
1 1
= §géG_1g + giG_lGlG_lGlG_lg — §giG_lG2G_1g =+ ;giG_ng
— GGG g — g1 G GG gy,
and

hy =giG 'G1G g — ¢GTIGIGTIGIG T g+ GGGy
— g/G_lGlG_lGlG_lg + glG_lGlG_lgl
=2¢\G1'G1G g —2¢/GTIG1GTIGL\G T g + ¢/ GGG g,
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hy = %ggG*GIG—lg + %g’ (2G7IGIGTIGIGT = GGG ) GiG g

+ %g'G_ngG_lg + %g/G_lGl (2G_1G1G_1G1G_1 — G_lGQG_l) g
1
+ EQIG_lGlG_lgz
—g1GTIGIGTIGIG T g+ gi GGG g — gIGTIGLGTIGLG T g
+ giG_lGlG_lgl — g/G_lGlG_lGQG_lg
+ g/GilGlGilGlGilGlGilg - g/GilGlGilGlGilgl — g/GingGilGlGilg
+¢ GGG g - ¢ GGG G gy

We may therefore rewrite the first order condition (4) as

1
0=(20/G7'g—g'G7'G1G'g) + 7n (2h1 — ha) v/n (b — B)

#3@h— h) (V0= 9) 40, ().

Let
U= 3N AN — 3N ATIA AT
T =20A 1, %cp =2\ A1y,
ina =4(g1 — M) AN =20V ATH (G = A AT — AN ATIA AT g+ 200A g,
%F =2(g1— M) A lg—2M AN (G- AN A g — g AT AT g,
Lemma 2

he = g/\/lA_lx\g — MNATIA AT+ op (1),
by = XA A AN + 0, (1),

Proof. Follows from plimg=0. m

1

Lemma 3 )
2h1 —hs3 =Y+ —=E —
Y <¢ﬁ)

Proof. Because

_ _ 1
G g =XA"1g+ o, <%> :
g’lG*IGlelg = )\llAilAlAilg + 0p <%) ,
and
1
G701 = O+ (o =AY (A7 = A (G = M)A 0, (=) ) O+ (a1 = )

1
=MATIN 2001 — M) AT = MATH(G = A AT 4o, <%> ,
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we obtain
hi = MA"tg — N ATIA AT g
FMATIN 2090 — M) AT - MATH(G - A AT + o, (%) :
Similarly, we obtain

_ _ 1
h3 = 2)\I1A lAlA 1g —+ Op <%) .
The conclusion follows. m

Lemma 4 ) ) )
201G lg— GGG g=—=® + T +o, <—> )
n n n

NG
Proof. We have
1
91G g =1+ (g1 — \)) (A_l —ANG-MNAT o, <ﬁ)> g
1
= XA g+ (g1 = M) ATy = XNATH (G - M)A g+ o, <E>

and .
g/GflGlelg = g’AflAlAflg +op <E) .

from which the conclusion follows. m

Using Lemmas 2, 3, and 4, we may rewrite the first order condition (19) as

1 1
0=—=®+ T+
n

7 Y+ L) V94 2 (- 9) o (1)

7l

0=¢>+%F+(T+%E>\/ﬁ(b—ﬁ)Jr%‘I’(\/ﬁ(b—ﬂ))erop (%)

based on which we can conclude that

1 1 1 1 v 1
—B)=—®4 —= | =+ 5 PE — - D? — .
Vn(b—03) T +\/ﬁ(,r + 72 T3 )+op(\/ﬁ)
It therefore follows that the approximate mean of y/n (b — 3) is equal to

1 11
~y P18l - =]

1

1 = 2
-l-%ﬁE[fb:] [<I) ] )

7
——F
VY3

Noting that
E[®] =2\ AT E[g] =0,

E[I]=2nE [(g1 — /\1)11\719] — 2N AT E [(G—A) Aflg] —nE [g/AflAlAflg}
/
= 2trace (A—lE {@g—%D — 2N AT E [ i A1) — trace (AT AATTE [6:67])
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E[®Z] =8nN AT E [g (g1 — M) | A7 A —4nE [NATTgM AT (G — A) A7) ]
—8nAN AT E [gg | AT AL AT + AnN AT E [gg | A A

05;}

=8N AT'E {&La— AN = ANATTE [SM AT i AT

— 8MAT'E [6;8;] AT AV AT A + AN ATIE [5;67] Ao,
and
E (@] = 4N AT E 66 A Ay,

we obtain the desired conclusion.

B Proof of Theorem 2

The second order bias is computed using Theorem 1. Because the “weight matrix” here does not involve
the parameter of interest, we have A; = 0, which renders the third, sixth, and last terms in Theorem
1 equal to zero. Also, because the moment restriction is linear in the parameter of interest, we have
A2 = 0, which renders the seventh and eight terms in Theorem 1 equal to zero. Furthermore, because

E {zz—tzz’-tE A zitsz‘t} = 0 under conditional symmetry of ¢, the numerator in the second term
MATLE [ A1) = — Zf? Elzual) Elzuzl) ' E [zitzz’-tE A Zz’tf‘?;}] should be equal to zero,

and therefore, the second term should be equal to zero. We obtain the desired conclusion by noting that

T-1
MATIN = Z E[znal] E [zunzl]) " Ezaxl)]
t=1

/ T—1
trace (A‘lE [5- 361}> =- Z trace (E [Zitzz/’t]_l E [ﬁtﬁtzit%{t]) )

8ﬁ t=1
7 A—1 86; —1 —— * 1/ r1—1 * % / 7 1—1 *
MATE |6 98 AN =— Z Z Elzpay] Elznzy]  Elenaiszns] Elziszis] — Elzisa],
t=1 s=1
and
MATTE [5; M A 0] A7
T-1T-1
==Y Blauai) Elaush] ™ B |chauB lristl) Blaiwst] ™ ziothy| Blaisth) " Blzisaly).
t=1 s=1

C Technical Lemmas for Section 3.3

Lemma 5

E

K .
> (st = et | o

t
Proof. We have

K

K; -
E |z Pt — —txt’Mtsf] = E [trace (P,E, [ef2])] — E [trace (M, Ey [ef2)]
n

n — Ky
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where E; [-] denotes the conditional expectation given Z;. Because E; [¢;] = 0, E} [e;x}’] is the conditional

covariance between €5 and y;” ;, which does not depend on Z; due to joint normality. Moreover, by cross-
sectional independence, we have
* kI kK
Et [8t Ty ] = Et [&‘i,txi,t:l In

Hence, using the fact that trace (P;) = K; and trace (M;) = n — Ky, we have

K; - K
E|a?Per — ﬁazt’Mﬁf =E; [5;t$;t] ) (Kt B T - Kt)) =0

n— Ry
from which the conclusion follows. =
Lemma 6
Var (z}' Mie;) = (n — 1) 0 E [vi7] + (n — ) (E [v}e}))?,
Cov (z)' My, 2t Me¥) = (n — s) E [vjel,] E [vfel], s<t
where v}, = xf, — E |25 zit).

Proof. Follows by modifying the developments from (A23) to (A30) and from (A31) to A(34) in
Alvarez and Arellano (1998). =

Lemma 7 Suppose that s <t. We have

B[] = T—t 1 gttt o?
CUT-tHI\1=8 T-0(1-8)°) 1+ D+ B (-2
Tt 1
T—t+1(T -1’ (1- )’
2 opT—t+2 2(T—t)+2 _ oqT—t+1
X<(T_t)+ﬁ 26T—t+2 | g 23 +2/B>’

3% -1

* ok T_t (l_ﬁTit)
B [vief] = —o° T—t+1(T—t)(1-0)

2 [Tt L B8
o T—t+1(T—t)2(1—ﬁ)<(T L )

2 T—s (1_ﬁT_t>

T s11(T (-7

o, [ T—5s 1 1—p7t
TONT Sl T (T -1 -5) <(T_t)_ 1-3 )

—— Tt 1 B—p
Blviel] = o’ T—t+1(T—s)(T—t)(1—ﬁ)(T_t_ -3 )

Proof. We first characterize vj,. We have

Tit = Yit—1

Tiggl = Yit = O + BYit—1 +Eig

1_5T7t
1-p

T—t—1_

TiT = Yi,T—1 = i+ 0"y + <5i,T—1 +Beir—2+--+ 0 5z,t)
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and hence

T—t+1, 1
—p g Tt =it — gy (@ite1 o+ i)

1
= Yit—1 — T_¢ (Tige1 + - -+ + @i7)

t

{4 g — gr-t+ | 1 g gr-tt |
BANCEDITED) A e AN Yoy b

1-Beira+1-8)eiro+ -+ (1 - ﬁTﬁt) Eit
(T—t)(1-p) '

It follows that

T—t+1, o o, B=p""" N\ (1 pg-p* n
T_1¢ E[$it|zzt]<1 (T_t)(l_ﬁ)>yz,t1 (1_5 (Tt)(lﬂ)2>E[al|th]’

from which we obtain

. T—t 1 g —pr—t+
it T TV T i (1—5_ (T—t)(l—ﬁ)2>(ai_E[ai|Z“])

T—t (1-=p)eir—1+ (1 - /32) €ir—2+t -+ <1 - ﬁT_t> it
T—t+1 T—0(1-7) : (21)

We now compute F [(ai — Byl zit})ﬂ = Var [a;] zi¢]. It can be shown that

2

2
o o
Cov (ai7<yi0a"'7yit—l)/) = 1 _aﬁga and Var ((yi())"',yit—l)l) = (1 _aﬁ)2€€l+Q
where / is a t-dimensioanl column vector of ones, and
L g
S R
1 _ /82 .
6t—1 1

Therefore, the conditional variance is given by

2 2 g
on, —o b

(1 p)> ]
o+ Q| ¢
g

Because

et ()

2
oa -1 1 oa ~1pp )—1
= - 5 wo,
(1—6)2Q 1+ 25 0'Q ((1—5)2> Qe
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we obtain

2 -1 (j_g/@—lg)z 02; £’Q71€
Zl Zfl‘i‘ (l_ﬂ) Q _ EIQ 1 (1 6)2 _ (1— ﬁ
T3 S —ﬂ) L4 g2 Q1 1+ 7255 0Q 1
and hence,
a-p]" o2
o2 — a0 | Q| (= =
Oa 1+ i BQK/Q*W

Now, it can be shown that®

rQ == (20 -9 + (-2 -p))

from which we obtain

0.2

P — aizit2 = “ .
B [(ai = Blailz)] = — Yy (22)

We now characterize F [ ] Using (21), and the independence of the first and second term there,

we can see that

T—t+1
B[] = e ( Lo

T—t+1\1-38 (T—t)(l—ﬂ)2> E|:(ai_E[Oéi|Zit])

_ o2 r—t 1 B B2 —opT—t+2 4 52(T—t)+2 _9gT—t+l 4 93
T—t+1(T—-1t)*(1-73)> <(T B+ g -1 '

With (22), we obtain the first conclusion.
As for E [v},e},], we note that

€1y = Eit — (ir 4+ + €ity1) -

T-—t
Combining with (21), we obtain
T (l_ﬁT—t) , T (1_ﬂ)+...+<1_ﬂT—t—1>

Bl =—\\r v am—na=p° "VT=i+1 (T —1)*(1- 1) 7

from which follows the second conclusion.
As for E [vfe},] and E [v}el,] s < t, we note that

Evier] = — T_S+1(T—s)(l—ﬁ)a2

T—s (1—ﬁ)+(1—ﬂ2)+...+(1_5T—t—1>

T—s+1 (T—3)(T—1t)(1-p) o2

and
» Tt (l_ﬁ)+(1—ﬁ2)+...+(1_5T7t> 2
Evier] = T—t+1 (T—3s)(T—1t)(1-P) o-.

]

8See Amemiya (1985, p. 164), for example.
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Lemma 8

Proof. Write

2
_ 1 _ pT—t+1 2
E[U;kf = it ( - ﬂ ﬂ ) 2 Za
1

]_Tft+1

L=6 (T-)(1-5)") 1+ %725+ Z(t—2)
Tt 1 > +2
. L (a2
T—t+1(T=t)"(1-8) g -1
e Tt 1 _ogT—t42 | gAT-0)42 _ ggT—t+1
_ 2 2 2
T3 1T 0P (1-5) 71
Sum of the first two terms on the right can be bounded above by
c %

0.2 0.2 )
1+ 28725+ 35 (t—2)

and the third term can be bounded above in absolute value by

1
(T 1)
where C'is a generic constant. Therefore, we have
1 t2 C t2 2 C t2 1
Ly« S R P
n n—t n n—t1_|_;%?+?%(t_2) n n—t(T—t)
C T? o2 C T? 1

It can be shown that

Ta = _
Zt: ) P =0 (logT), Z T =0(1)

L+32s + a8 (t-2) ‘

Using the assumption that T'/n = O (1), we obtain the desired conclusion. m

Lemma 9

Proof. We can bound (E [v},¢3,])° by ﬁ,
by adopting the same proof as in Lemma 8. =

where C' is a generic constant. Conclusion easily follows

Lemma 10

t
E [’U;(sg:t] E [v;‘tg;f‘s] =0 (1)

nT n—t
s<t
Proof. We can bound |E [v,e},| E [v},e5]]| by ) Therefore, we have
T-1t-1 - t—1
1 st c C s
— Elv* = =
nT n—t Elviei] Blviei] nT Z n— t nT Z (Z (T - s)2>
s<t t=1 s=1 t=1 s=1
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But because

s T 1 T
2 = 2 < 2
(T —s) (T —s) T'—s™ (T-s)

we can bound |== >, SLE [vier] E [vjel,]| further by

o=l il 1

- 2

nign—t (T-s)
Because

we have

Proof. Note that

1 t . 1 t o\’ .
Var | — Z —xt'Mﬁ:) = — (—) Var (xt/Mtsf)
(\/nT —~n—t nl' = \n—t

1 t2 * ok 2 2 St * sk * ok
+ = > —— (Bliei)’ + = > —— E[vlei] E [vhet]
t s<t

Here, the second equality is based on Lemma 6. Lemmas 8, 9, and 10 establish that variances of the

three terms on the far right are all of order 0(1). m
Lemma 12 % .
1 ’ t *y g
— V' Pey — ——x, Mgy N[0, ——
\/ﬁ;@ TR t5t>ﬁ <0’1—52)

Proof. Follows easily by combining Lemma 11 and the proof of Theorem 2 in Alvarez and Arellano
(1998). m

Lemma 13

1 K. o«
T 2 M = on (1)
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Proof. First, note that x,’ Mz} = v,’ M;v; by normality. We therefore have

1 Koo -\ 1 t N
b (s 3 et ) = o 3 ]

By conditioning, it can be shown that

E {vZ’Mtvﬂ =n-t)F [v;?]

Therefore,

1 Kt *y * _ 1 *2
E (n_T;n—Ktzt M”t) = o7 21 [0
Modifying the proof of Lemma 8, we can establish that the right is o (1).
We now show that

We have

1 K, o 1 t\? G
Var n_T t e Kt Ty Mtﬂjt = W Zt: m Var (Ut Mtvt>
2 t S * * * *
73 Z — Cov (USIMSUS,UtIMtUt)
s<t

Modifying the development from (A53) to (A58) in Alvarez and Arellano (1998) and using normality, we

+

can show that
Var (v:'Mtvf) =2(n—-t)FE [v;‘f] =6(n—t) (E [vz}?])Q ,
Cov (v;/Msv:, vZ’MwZ‘) =2(n—1t)(Evjvl])?.

Using (21), we can show that
PN e e (U
VT -t 41V T —s+1\1-8 (T—t)(1-pB)?

T—s+1
» 1 B8 _ i o? i
1=0 (T-50-0")1+%325+Z (-2

o

9 Tt T—s 1
e \/T—t—I—l\/T—s—l—l(T_t)(T_s)(l_/g)2

y ((T 9+ 52 _ 2BT—t+2 + 52(T—t)+2 _ QﬁT—tH + 2ﬁ> |

5 -1
Adopting the same argument as in the proofs for Lemmas 8 - 10, we can show that the variance is o (1).
]

D Proofs for Section 5

We need the following auxiliary result to prove admissibility of our bias minimal procedures under as-
ymptotic L? risk. Define the random variable Y by
_ §;C’(C’QC’)+C’£y
E0(00)FC,

(23)
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where [€,,&,] ~ N(0,%) and C(C'QC)*C is full rank.

Lemma 14 Let Y* be defined in (23) such that Q = Xq11. Then E [(Y*)2] <FE [(Y)z} where Y is as
defined in (23) with any positive definite weight matriz €.

Proof. Choose L such that LL' = X1, = 1. Define W = L'C (C’QC)Y ¢’Land D = L'C (C'QC) " €', 57 L.
Let T'; be an orthogonal matrix of eigenvectors of W such that 1T} = T'\I'; = I and A; a diagonal
matrix with eigenvalues of W. Define z = L™, and z; = I'12. Define G = gy — 22121_11212 such that

EY?|=E

(ziFlDF’lzl)2] Elz’lleGDT’lzl

(#M121)? (#M121)?

where (2, Dz)? > 0 and 2/ DGD’z > 0 since G is positive definite. We define 2z, = vs'/2 with s = 2|2
and v = 21/ (z’lzl)l/ %, Without loss of generality, we can assume that the largest eigenvalue of in Aj is 1.
Because v'v = 1, we have (v/A1v)? < 1. Tt therefore follows that (leDI"lv)z/ (v'Av)? > (0'T1 DY),

from which we obtain
(2,11 DI 2,)?

(2T, DT, )*
(2] A1 21)° .

(z)21)”

>
The same arguments show that

lz{FlDGDT’lzl] . lzileGDT’lzl]

(2 Ar21)” (2)21)?

Proof of Lemma 1. Note that

Bllusdyssaal] < B3N B |(Byiemr)?]

r=1

s—2 2
= V O—g + 03 E (ﬁZ_Q (ﬁn - 1)£zO + Eis—1 + (ﬁn - 1) Zﬁ;—lgislr>

2

2
2(s—2)0¢ (ﬁn_l)
- VT sl

s—2
o oz (8, - 1702 Y B = 0)
~ Mn r=1

n

By independence of u;Ay,;s_1 across i, it therefore follows that n—3/2 Yoiq Uit Ayis—1 = op(1). By
the same reasoning, we obtain n—3/2 Z?:l wirAy;j—1 = op (1), and n=3/2 Z?Zl U Ayip—1 = 0p (1). We
therefore obtain n=3/23"" | f;1 = 0, (1). We can similarly obtain n=3/23"" | g;1 = o, (1).

Next we consider n=3/2 3" | f; 5 andn™3/23""" | g; ». Note that

E[Ayiyio] = FE {yio (ﬁZQ (Bp—1)&0 +eis—1+ (8, — 1) Z:: ﬁ;lgislr)]

o ta— = o).
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and

B 2
E [(Ayz‘tyioﬂ = FE|yh <5Z_2 (B = 1) & +eis—1+ (8, — 1) Z,,:j ﬁ:fl&'slr) ]
_ 2(t—2) (B — 1)2 Ug ai 2(t—2) Ug(ﬁn - 1)2
bn 1-82 (1-8,)° 30 (1-82)°
+ (02 + (8, - 1)2 o2 23_2 52(7»—1)> 03 + Ug
€ n € =1 (1 *ﬁn)2 (1 _ ﬁi)
0'20'2
= %nz + O(n).

such that Var (n*3/2 > Ayayio) = O(1). For n=3/23"" | gi2 (By) we have from the moment conditions
that E [g; 2 (8y)] = 0 and

20202

Var (8ui(B)yio) = 20207, (1= 3,) 7 +0(n) = =52n® + O(n).

The joint limiting distribution of n=3/23"" | [f/, — Efzf’Q,gi’g(ﬁO)’]/ can now be obtained from a trian-

gular array CLT. By previous arguments

E[fi/,Q,giQ(ﬁo)/] = [ W 0o - 0 }

with p = 02/20+ O(n~"') where ¢ is the T' — 1 dimensional vector with elements 1. Then

E|(fl2 = E[fl2] 902080)) (Fia = E[fl2) gi2(80)) | = =

where

En _ le,n Z12,n
Yo1n Xo2n

2 2
By previous calculations we have found the diagonal elements of 311, and g, to be Z=32n? and
2_2
20%‘112. The off-diagonal elements of 311 ,, are found to be

s—2
E [Ayudyiyhy) = B [yfo (ﬂi2 (B =D&+t + By =D O cisrs

< (87260~ e+ unr+ Bu = DT B )|

o t—2 ns—2 (5n—1)2 Ui Ug _ U_i
= B, B 1-5) ((1—ﬂn)2+3(1—53))+0(1)_ 2cn+0(1)

which is of lower order of magnitude while n=! (E [Ayiyi0])® = O(1). Thus n= 1%y, — diag(gg%i, . oloh),

The off-diagonal elements of 333, are obtained from

—0202 (1 - n_2—|—0n t=s+lort=s—1
E[AuitAuiSyiQO]:{ ( Bn) ()

0 otherwise
For ¥13 ,,, we consider
2 2
Z=22n? + O(n) ift=s
E [AyiAuisyiy) = —%z‘nQ +0(n) ift=s-1
0 otherwise
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It then follows that for £ € RT(T+1)/+2T=6 guch that £/¢ = 1n=3/2 3" | ¢/ 212 [fl2—Efiz2 gi2 (ﬁo)’}/ 4,
N (0,1) by the Lindeberg-Feller CLT for triangular arrays. It then follows from a straightforward applica-

tion of the Cramer-Wold theorem and the continuous mapping theorem that n=3/2 > [f'l,za 9i,2 (ﬁo)'} ' 4,

[5;,{;]/ where [5;,5;]/ ~ N (0,%). Note that n=3/2 3" | ¢/E[fi 2] = O(n~'/2) and thus does not affect
the limit distribution. m

Proof of Theorem 6. Define W = L'Cy (C'QC)" O L where L satisfies 11 = LL'. We first
show that it is never optimal to choose W singular. For this purpose partition C' = [C}, O]’ such that

o ff = (C1¢,. The limiting random variable X can therefore be represented as

5 _ SO (C0)T Cig,
.01 (C'0) T Cle,

We observe that fy\fm ~ N(F¢,,G) where F = EglEil and G = Y9y — EngﬁlEu and define D =
WL FL and z = L7¢,, such that z ~ N (0, I).

We now consider the case where W is singular. Let I" be an orthogonal matrix of eigenvectors of
W such that TT' = T'T' = I and A a diagonal matrix with eigenvalues of W such that A; contains all
nonzero eigenvalues and A contains the zero eigenvalues. Partition T' = [T'y, T's] conformably such that
[Ty =0and ['1T) +ToT% = I. Then W = TATY = '1 AT} and D = I’y AT, L= FL such that T, D = 0.
Define z; = I}z and 2, = T'hz. Then, using the fact that E [¢,&,[¢,] = F&,&F' + G leads to

2 DGD'z

E[X?|=E [l
[ ] (Z’Wz)2

(2 Dz)?
(z’Wz)Q] tF

where 2’W2z = 21A121 and 2’ DGD'z = 2i Ty DGD'T'1 z;. We therefore only need to consider the first term
where (2/Dz)? = (2,1, D (I1 + o) 2)%. Since z; and 2, are independent we can use a conditioning
argument to evaluate the first term

(2T, DT 2;)? zgrgprlzlzgrgprlz1]

(2/Wz)? (2} A121) (2} A121)
B AT DUz T DTy 21 (2, Dlyz5)?
(z4A121)° (z1A121)°
where F {ZEFQD{ %Zzzllr),lgDFlzl |21} = 0 because Ezy = 0 such that the cross terms vanish. It follows that
z{ A1 21
. (#D2)* | _ 5 (AT, DT121)* + (2,1 Dyz5)
(z’Wz)2 (ziAlzl)Q
(2T DT'121)*
B (2{A121)°

We can therefore assume that W is nonsingular. Then by Lemma 14 it follows that the optimal W = T
which can only occur if C =Cj and Q =Xq;. =

Proof of Theorem (8). First note that trace (D) = 3 trace (L7'C] (124 B21) C1L'7Y) =
trace (C112C1) with 31 = (12 + Ea1) /2. It can be checked easily that 3,5 is negative definite sym-
metric. We can therefore minimize — trace (C112C1) . It is now useful to chose an orthogonal matrix
R such that R'R = RR' = I and —X13 = RLR’ where L is the diagonal matrix of eigenvalues of
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—$is = Dy lirir;. Then it follows that —trC]%5,C) = ZiT;ll 1;r,C1Cyr;. Next note that all the eigen-
values of C1CY are either zero or one such that 0 < r/C;C{r; < 1. The minimum of — trace (C{ilgCl) is
then found by choosing C; such that C1r; = 0 except for the eigenvector r; corresponding to the smallest [;.
It now follows that E [X*] = trace (D/n) is minimized for C' = r; where r; is the eigenvector corresponding
to the smallest eigenvalue. To show this note that if C = r; then trace (D / n) = trace (D) l;. Now sup-
pose a vector x such that 2’z = 1 and rx = 0 is added to C;. Then trace 6’121201 =1 —I—ZJ# (7« x)z .

By Parseval’s equality Zj# (rja:) = 1. Since l; > I; we can bound trace (0121201) > (T —1)1; but
then trace (D / n) > [;. This argument can be repeated to more than one orthogonal additions x. Next note
that from 2’z = 1 such that minl; < —2'% 2 < max; it follows that minl; < 1'3151/(1'1) = (T — 1)_1
for1=[1,..., 1}/ which shows that the smallest eigenvalue is bounded by a monotonically decreasing func-

1/2

tion of the number of moment conditions. Also note that $151/(1'1)"/* — 0 in I? norm where 0 is an

element of the infinite sequence space (2. m

E Blundell and Bond’s (1998) Estimator and Weight Matrix

Bludell and Bond (1998) suggest a new set of moment restrictions. If T = 5, they can be written as

Elg: (B) =0
where
[ yio - (yi2 — yir) — 0 (yir — Yio)) |
Yio - ((Yi3 — Yiz) — b (yi2 — yi1))
yi1 - ((yiz — yiz) — b (yiz — ¥i1))
Yio * ((%4 - %3) b (%3 - %2))
Yi1 - ((Yia — vis) — b (i3 — Yi2))
iz - ((Yia — yi3) — b (Yiz — vi2))
g (b) = Yio - ((Yis — Yia) — b (yia — ¥i3))
i1 - ((yis — yia) — b (Yia — yi3))
Yiz - ((Yis — Yia) — b (Yia — ¥i3))
iz - ((Yis — Yia) — b (Yia — vi3))
(yzl - yzO) (,%2 - byzl)
(Yiz — yi) - (Yis — byi2)
(Yiz — yi2) - (Yia — byiz)
L (Yia — viz) - (Yis — byia)

They suggest a GMM estimation:

mbiﬂ (; i (b)> A (; Qi (b)>

We examine properties of Blundell and Bond’s moment restriction for § near unity. We consider four

methods of computing A, which in principle is a consistent estimator of F [g; (8) ¢; (8)]:

1. We can use EL IML as our consistent estimator and use
1 — ~ ~ /
Ay =~ Z%’ <bLIML> qi <bLIML>
ni=a
This gives us a GMM estimator that minimizes (327, g; (0)) A7 (327, ¢: (b)). We call it bpp:.
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2. We can compute
1 n " = ,
b= ) )
2= ;q BB1 ) ¢i \ VUBB1
and obtain a GMM estimator that minimizes (3", ¢; (b)) A7 (>or, i (b)). We call it bppo.

3. We can compute

1 n
A =— > 77,
=1

where
[0 0 0 0
0 %o Wi
Yi,o Yix1 o o Yi, T2
Z; =
Ay
Ayi,z
i 0 0 Ayi,T—l i

and obtain a GMM estimator that minimizes (Y7, i (b)) A3 (320, q; (b)). We call it bpps. This
is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

4. We can compute
1 n = = ,
Ay = - Z%‘ (bBB3> i <bBB3>
i=1

and obtain a GMM estimator that minimizes (31, ¢; (b)) Az (X7 ¢i (b)). We call it bppa.
Again, this is one of the estimators considered by Blundell and Bond (1998) in thier Monte Carlo.

F Proof of Theorems 5

We first present an expansion for 2SLS using instrument z; = z; — \/Lr—ﬁwl We have

n ~ / n ~ 1 n R
Ji(b—B) = (230 Zimy) (2300, 22) (ﬁ S Zi5i> o
(B ze) (B2, 52) 7 (X ae)

Write
n 1 1 n
_Zzzxz_)\—i—— —Z(szz—A)>,
ni3 e ( et
1~ |, 1 1 <&
- =A+—= | —= T—A
- ;zlzl + NG ( ~ ; (zi7, ))

Recalling that



we can derive that

and

Here, ¢ and A are defined in Theorem 5. Using arguments similar to the derivation of (20), we obtain

/ —1
1 - I, J RN
= iTi = i% —= ) %€
= )\/A/\i1 L i: Zi€i | — L i: fl )\IAilgD
\/Eizl \/Eizl

N
1 1 — l—1 1 ¢
+ % (% ; (zix; — A)) A (% ;m&)
1 1 & 1 — ',1
() (T ) 4
1 (1 YRR S -
- ﬁ;fz)qﬁl\ (\/ﬁ;”)Jr\/_(\/_;ﬂ)qﬁA @
1 1 " FA—1 L . Z‘Z/- —1
*%(ﬁﬁ")“ (ﬁl_l(” “)A ’
+ % (%if) NATIAAT <7izzez> - in (in if> NATIAN Ty

+
)ﬁO

7N

Elly

N———
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and

i=1

/
2 1 n 2 1 n
=NA I+ —=|—= i =N | AN —= | —= i oA
+ n( n 4 (zi )> n(ﬁzf>¢ A
1 _ 1 1 < e 1
(ziz;A)>A 1>\+—n (— fi> NATTAAIN 40, (%)

Therefore, we may conclude that

IA—1[_1 ™\ o _ n
\/ﬁ(b—ﬂ):)‘A 2 XEED) _NATle L3
NA—IX NA—IA \ V&=
1

+ %Bl + %BQ +0, <%> , (25)

where

(%ﬁ Z?:l (zix; — /\))’ AL (% Z?:l zi6i>

Bl = )\/Afl)\
WA (Sl et~ ) A (B )
- NATA

2)\/[\*1 (ﬁ Z?:l Zi5i> 1 i( )\) /Ail)\
= Zi&i —
(VA-1))? Vin =

NA~T <L S ze-) n
Nt AT . / ~1
NAT (5= 3 (22— A) ) A,
(VA1) (ﬁ = e )>
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and

)\/A7190 n MA-L (ﬁ Z?:l (wi&?i - 50))
By =— 7 Qn_ = fz MA-1)
1

(= S (i = ) At

=1
Ly VO (D) (g Y ea
ne VA I ) NATIA
/

NATIAA (= 500, e

2
1 « 1 « NATTAA Ty
_n.zf’ NA-IX - (%;0 VA1)

-~ NA~lo o, 1 & , _
- <_anz> (/\/Ai_lj\pf/\A 1<—nZ(zzz —A))A I\

=1 i=1
no\ NAT e
_<szz> (fz“ )/\AlAA A
n (NA-1N)?

2

NA~ 1y

Z fi| ——ISNATTAATIA
=1 )\ A- 1)\)

The first two terms on the right side of (25) capture the standard first order asymptotics of the plug

in estimator, which establishes Lemma 15. Obviously, they have mean equal to zero. The third term

ﬁBl is the standard second order expansion term when 0= 0, i.e., when the proper instrument is known

exactly. Therefore, under conditional symmetry of ¢;, it can be shown that

(K —2)0ue

BB ===y

(26)

The third term \/%—LBQ is the correction to the second order expansion to accommodate the plug-in nature
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of the estimation. It is not difficult to see that

)\/A_lgﬁ NALE [fZU)ZSZ]
E[By)] = -5~ 2 Fp[Q,] - S~ —i%ici
[ 2] )\/Ail)\ [Q } )\/Ail)\
_E [fiziwi] At _ IATE[fizei]
NA-1) NA-1)
NATLE [fizi2]) AL n NATTAALE [fi2i84] B [fQ] NATTAA
NA-IA NA—IA ‘ NA—IA
/A_l
)\—%E [fizizi] A7'A
(NA-1X)
IA—1 P IA—1
2)\[\ E[flzégz](ﬁ/A_lA—QE [fZQ:I )\A @2¢/A—1)\
(NA-1N) (NA-1N)
/A_l
- A—ﬂA’A—lE[fizizg} AN
(NA-1N)
IA—1 P A1
_AA Blfiziei] [f’zfl} NATAA A4 B[f2] 222 ya-tanta, (27)
(NA-1X) (NA-1X)

Using (25), (26), and (27), we can obtain the desired conclusion.

G Second Order Bias of /b\L]ML

Our /I;L 1z modifies Arellano and Bover’s estimator. It is given by

= Y0 (@ Py — mia'e))

Lyt @ Pt — weay'af) |

Vn(b—p) =

where . )
n n - n
(% D i Zit (Y — x;‘tc)) (% D i1 Zitzgt) (% > i it (Ui — x;‘ktc))
1 n ( * ok 0)2
n 2ui=1 \Yst it

We make the second order expansion of /n(b— ). We make a digression to the discussion of single

K¢ = min
(&

equation model.’

G.1 Characterization of Second Order Bias of LIML
Consider a simple simultaneous equations model

yi = Bri+ei, T, =zim+
and examine LIML b that solves

e(c) Pe(c) . (A7 2 (i —20) (230, z2) T (220, 2 (yi — wic)

min min

< ele)e(e) e =i (Wi — wic)?

where

e(c)=y—xc

9The digression mostly confirms the usual higher order analysis of LIML readily available in the literature. The only
reason we consider such analysis is because all the analysis we found in the literature are conditional analysis given instru-
ments: They all assume that the instruments are nonstochastic. Our purpose is to make a marginal second order analysis,

which is more natural in the dynamic panel model context.
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Here, the first order condition is given by

o7 (ee(ga))/’i;)b)) e
G, (b) =0,
where o < L (b)) ( 1 e(b)/e@) . <%az/e(b)> <%e<b> Pe <b)) |
Note that
o) o) m) )
B (_%x,l) (%e(b)’pe (b)) _ <%x/e (b)) (—2%1: P (b))
and
823‘;2@) _ <—%x/Px> <_2%x’e(b)) + <_%x’Px> (—Q%x’e(b)> +{-

- (—%xw) (—2%1/136 (b)) - (-%@) (—Q%x’Pe (b)) - (%x’e

We now expand G, (8), 8ng(5 ), and a2gg,2(5 ) using +/n-consistency of b:

B 1 9G, (B)
0=aG, (ﬂ) + % %

First, note that

)
3
=

7 N\

~/
I »

3|+~ I— 3=

H'M:
A

|
Y

(Vn(b—5)) +—

182G, ()
n  ob2




where XA = E [z;z;], and A = E [z;2]]. Therefore, we have

1 1 1
Gn(ﬁ)_ﬁ¢+ F+Op( )
where
1 n
D=0’ NA—=) zg
and

Now, note that

9G, (B)
ab

3

lgc’Px) <ls’s) + <lx’x) <15’P5>
n n n
—1

where

and

Finally, note that

where
U=, NATIN
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Combining (29), (30), (31), and (32), we obtain

0—%@+%F+%<T+%E)\/ﬁ(bﬁ)+%‘1’(\/ﬁ(bﬁ))2+% <%)

from which we obtain
1 1 1 1 v 1
—B)=—®4 —= | =+ - PE — - B? — .
Vi) =g (pl e gpes - 150t +o ()

Note that ® has a mean equal to zero. Therefore, under symmetry, the second order bias of b is given by

e )2
n

T T2 T3 NA-LN

which is qualitatively of the same form as Rothenberg’s mean.

G.2 Higher Order Analysis of the “Eigenvalue”

Let

e (b) Pe (b)

R =

e(b)e(b)

Getting back to the first order condition
!
P
0 =2'Pe(b) — Mw'e (b) = ' Py — ka'y — (o' Px — k2'z) b,
e(b) e(d)

we can write
/ /
' Py — k2'y
z'Pr — kx'z’
the usual expression.

Note that
lepe 2l (b —p)e'Pr+L(b—p) ' Pa

leoe 2l (b-B)ela+L(b—-pB) oz

The numerator and the denominator may be rewritten as

%(%i%&) - ( ZZﬁ,) — 2 \/_(b ﬁ ( ZZﬂZ)
(Va(b—8)*NA A +0, <%>

11 & / (A (R Z‘L'E"’))Q 1
T (% ZZ"52> ( Zzﬁl) " NA-TA o (ﬁ) ’

1 ’ 1 ! 1 2 2
- _2_ - - - = 1 .
nee n(b ﬂ)sx—l—n(b B 2'r=0Z40,(1)

R =

3I>—‘

and

2
’ A —1 1 n
1 (1 (1 & 1 (VAT (75 i zEi 1
HZW(%Z%&> A 1<_nzzzg7,> _W< <)\'A1)\ )> + o0p (E)
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G.3 Application to Dynamic Panel Model

We now adopt obvious notations, and make a second order analysis of the right side of (28). First, note
that

*/ _*

1 *
% (x' Prei — ryy'ey)

1
1 n . 1 n 1 n . .
(18 () () ()
/
n B 1 n .
= MA ( Zzlt61t> ( NG Z Zit Ty — At > A? <% Zzﬁﬁit)
=1 =1
S (S G- a0 ) A (e
\/’E \/ﬁ i=1 \/ﬁ i=1
-V

1 1 n / 1 n
S R [ Vel (i i iy
no?, (ﬁ;zltsLt> t (ﬁ;ZLtht> Ouet

2
- \/ﬁlaz,t i <§A%A3 ) Tuet T % <%>

and

x/ * x/ *
" (z Py — kpwy'wy)

n ! n - . Y
= (% ; zitxft> (% ; Zitzz/’t> (% ; Zitx:t> - (% ; it )

/
1 « _
_)\A 1)\,4——( nz ZitThy — ) A, I

1 ,...(1 1
_%/\tAt (ﬁz thzzt )A )\t“‘op (%)
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It therefore follows that
SONAT (0 zach)
ENATIN,
1 Zzﬂ:_f (\/— Zz 1 (zitay — /\t)) t (\/ﬁ ZZ lthgzt)

Vn(b—p) =

Vn TINA N
_ L ZT ' )\ A (\/_ Ez 1 (Z’LtZLt At)) t (\/_ ZZ 1 Zztgzt)
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Therefore, under symmetry, the second order bias of the LIML like estimator is given by

—

Ju

1 n
/\QA;I ( nz zltzlt )A )\t>

t=1 =1

1 Zt 1 Tuet

nS T NATN,

2 S NATE [(zie) (it — AT AT A
' (S A’
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1
o)
H First Order Asymptotic Theory for Finitely Iterated Long

Difference Estimator

Lemma 15 Let b denote the 25LS in (14). We have

NA NA-1op NA-IZA-1)
- i€ — i 1 N0, —————= )
V(b fz </\A )i /\’A—l/\f) Fop(1) = ( (NA-12)? )

where
Y = E [(zig; — fi) (ziei — fiv)'] -
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Proof. See Appendix F. m
Lemma 15 can be used to establish the influence function of iterated 2SLS estimators brrasr 15 -, bnrmr,a

applied to the long difference. We first note that the influence function of ?)\L ML 1S given by

T—1/rA—1_ _%
roq ANy zied

T—1 /51
o1 MM

frivr,: =

where A\, = E [zp2}], and Ay = E[z;.2},]. We also note that y; = yir — vi1, i = Yir—1 — Yio, and w; =
(0, yiT—2,- - ,yil)/. This is because we use the instrument of the form ( y;0, vi7—1 — BYiT—2, - - -, Yiz — BYi1
at each iteration, where B is some preliminary estimator of 5. By Lemma 15, the influence function of

brrmr,1 is equal to

VAL /\IA71(10
VAT 4 T meIML,i (33)
Using Lemma 15 again, we can see that the influence function of b, is equal to
NA—E NA=tp [ NATL NA—tp
/\/A—l/\ziai T VA-I </\/A_1)\Zi5i - meIML,i) . (34)

Likewise, we can see that the influence functions of b3 and b, are equal to

NA-1 NA—1p [ VAT NA—1p [ VA~ NA—1p
NA—IN 5T ATy L\’AU\Z@ T VAN ()\’Al)\zm et “M“ﬂ (35)
and
NATL  NATIp [ NATD  NATI [NATD WATlp (NAT )\’A—1<pf 4
NA=IXN T NA=IN L NA=I T VA= [ VA=A WA= \ AN WpA—1 ) ML
(36)

Using (33) - (36), we can easily construct consistent estimators of asymptotic variances of /n @L IML1 — 6) ,

o~ o~

NG (bLIML’Q - ﬂ), NG (bL]ML’g, - ﬂ), and v/n (3L1ML,4 - 6) Suppose that K, X, and @ are consistent
estimators of A, A\, and ¢. Likewise, let Kt, and Xt denote some consistent estimators of A, and A\;. For
example,
K:ligg X:l - s @:liw'(y'—bx')
1499 (Aak 3} n K3 K3 K3

n
i=1 i=1 =1

~

Zi = (?Jio,yz’T—l — BYir—2,. .- Yi2 — 5%’1) ,

N 1 - ’ N 1 *

At = E z;zitzit, )\t = E Zzitxit.
i=

where B is any +/n-consistent estimator of 3. Also, let

T_1~_1 . .
=1 Mzt (yit — P},

T-13/v-1%
N W W ¥

€ =y — By, frimr, =
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From (33) - (36), it then follows that

n i=1 AATIN AA-
e N U N 2
1S NA . YA (VA NA1G -
- T <R T =< T~ <%i€i — < <JLIML, s
AT ANATIN AATIN \ANA-T) AA-I)
e e N e P N 2
1S (VAT VA [ VA o NAw (VA . VA g
- PPN —ZiEi PPN —~ | =< —Zi€; — PPN —~ PPN —Zi€; — PPN ~JLIML,i )
AT \ANATIN AA"IN | AAIN AA"IN \ANA-T) AA-I)
L (XE L NAp (XA YA [XA0 . YA (XA Xitp-
— SR — = i€ — o—— | o——=%¢i — —0—— | ==——=%¢ — —D0——=frIimL;
N \NATIN AAIN L AVAIN AA"IN | AAIN AA"IN\ANAT —1)

o~

and \/n (BLIMLA — ﬂ>~

I Approximation of CUE

We examine an easier method of calculating an estimator that is equivalent to CUE up to the second
order adapting Rothenberg’s (1984) argument, who was concerned about properties of linearized version
of MLE. We basically argue that two Newton iterations suffice for second order bias removal. The CUE
bou g solves

min L (¢) = mcing () G(e) " g(e),

c

where

9O=13 0, GE=3Y 500

Let b denote the minimizer, and let L, (¢) = %9. We consider an iterated version of CUE. Suppose that
we have a y/n-consistent estimator by. Such estimator can be easily found by the usual GMM estimation
method. Note that we would have by — bcve = O, (ﬁ) Assume that

Ly (Z) =0,(1), Ls (5) =0, (1)

for any \/n—consistent, estimator b. (This condition is expected to be satisfied for most estimators.) Let

Ly (b))
L2 (br) '

br—i—l = br -
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Expanding around boy g, and noting that Ly (beyg) = 0, we can obtain

Ly (bo)
Lo (bo)

b1 —bcue = by — bcuE —

=bo — bcuk

Ls (boug) - (bo — beue) + 5 Ls (beuk) - (bo — beur)’ + op ((bo - bC’UE)2>
B Ly (bcve) + L3 (bevk) - (bo — beur) + 0p (bo — bove)
=bo —bcur

- (Lz (bcug) - (bo — bour) + %L3 (bevr) - (bo — bC’UE)Q)

" ( 1 L3 (bcuk) - (bo — bCUE)>

Ly (bevE) L (bovs)’
+ 0p ((bo - bC’UE)Q)
L3 (bcuk) 2 2
— i’TCZZJEE) (b —bcur)” + op ((bo —bcur) )
L3 (bcur)

(b — bour)® + op <l> .

n

1
by — bove = O, (E) .

2Ly (beur)

It follows that

We can similarly show that

L3 (bcuk)

by —bcvg = s (bovn)

n2

(b — bevg)’ + op ((b1 _ bCUE)2) 0, <_> .

or
\/ﬁ(bg - bCUE) = Op (ﬂ_3/2> .

This implies that bo has very similar properties as boyg: Its (approximate) mean and variance up to
O (nfl) coincide with those of boy k.
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Table 1: Performance of Second Order Theory in Predicting Properties of EG MM

T n I} ‘ Actual Bias  Actual %Bias ‘ Second Order Bias Second Order %Bias
5 100 0.1 -0.016 -16.00 -0.018 -17.71
10 100 0.1 -0.014 -14.26 -0.016 -15.78
5 500 0.1 -0.004 -3.72 -0.004 -3.54
10 500 0.1 -0.003 -3.20 -0.003 -3.16
5 100 0.3 -0.028 -9.23 -0.032 -10.60
10 100 0.3 -0.021 -7.11 -0.024 -8.13
5 500 0.3 -0.006 -2.08 -0.006 -2.12
10 500 0.3 -0.005 -1.58 -0.005 -1.63
5 100 0.5 -0.052 -10.32 -0.060 -12.09
10 100 0.5 -0.034 -6.78 -0.040 -8.00
5 500 0.5 -0.011 -2.29 -0.012 -2.42
10 500 0.5 -0.008 -1.51 -0.008 -1.60
5 100 0.8 -0.224 -28.06 -0.302 -37.81
10 100 0.8 -0.108 -13.53 -0.152 -18.98
5 500 0.8 -0.056 -7.02 -0.060 -7.56
10 500 0.8 -0.027 -3.44 -0.030 -3.80
5 100 0.9 -0.455 -50.56 -1.068 -118.64
10 100 0.9 -0.220 -24.47 -0.474 -52.66
5 500 0.9 -0.184 -20.48 -0.214 -23.73
10 500 0.9 -0.078 -8.64 -0.095 -10.53
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Table 2: Performance of /I;BC’Q

T n 8 %bias(BGMM) %bias(BBcg) RMSE(ZGMM) RMSE(EB@)
5 100 0.1 “14.96 0.25 0.08 0.08
10 100 0.1 -14.06 0.77 0.05 0.05
5 500 0.1 -3.68 -0.38 0.04 0.04
10 500 0.1 -3.15 -0.16 0.02 0.02
5 100 0.3 -8.86 20.47 0.10 0.10
10 100 0.3 -7.06 -0.66 0.05 0.05
5 500 0.3 -2.03 -0.16 0.04 0.04
10 500 0.3 -1.58 -0.10 0.02 0.02
5 100 05 210.05 114 0.13 0.13
10 100 0.5 -6.76 -0.93 0.06 0.06
5 500 0.5 -2.25 -0.15 0.06 0.06
10 500 0.5 153 0.1 0.03 0.03
5 100 08 227.65 11.33 0.32 0.34
10 100 0.8 -13.45 -4.55 0.14 0.11
5 500 0.8 -6.98 -0.72 0.13 0.13
10 500 0.8 -3.48 -0.37 0.05 0.04
5 100 0.9 750.22 42.10 0.55 0.78
10 100 0.9 -24.27 -15.82 0.25 0.23
5 500 0.9 220,50 -6.23 0.28 0.30
10 500 0.9 -8.74 -2.02 0.10 0.08
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Table 3: Performance of BNaga,. and BL IML

%bias RMSE
T n B | beau /I;Nagar briarr | banar gNagar briar
5 100 0.1 -16 3 -3 0.081 0.084 0.082
10 100 0.1 -14 1 -1 0.046 0.046 0.045
5 500 0.1 -4 0 -1 0.036 0.036 0.036
10 500 0.1 -3 0 -1 0.020 0.020 0.020
5 100 0.3 -9 1 -3 0.099 0.103 0.099
10 100 0.3 -7 0 -1 0.053 0.051 0.050
5 500 0.3 -2 0 -1 0.044 0.044 0.044
10 500 0.3 -2 0 0 0.023 0.023 0.023
5 100 0.5 -10 1 -3 0.132 0.140 0.130
10 100 0.5 -7 0 -1 0.064 0.059 0.058
5 500 0.5 -2 0 -1 0.057 0.057 0.057
10 500 0.5 -2 0 0 0.027 0.026 0.026
5 100 0.8 -28 -129 -15 0.321 102.156 0.327
10 100 0.8 -14 0 -5 0.136 0.128 0.109
5 500 0.8 -7 1 -3 0.130 0.141 0.127
10 500 0.8 -3 0 -1 0.050 0.044 0.044
5 100 0.9 -51 -70 -41 0.555 26.984 0.604
10 100 0.9 -24 -4 -15 0.250 4.712 0.229
5 500 0.9 -20 -41 -10 0.278 46.933 0.277
10 500 0.9 -9 0 -2 0.102 0.087 0.080

Table 4: Performance of Iterated Long Difference Estimator

basrs1  basps2  baspsz  basrsa

Bias -0.0813  -0.0471  -0.0235 -0.0033
%Bias -9.0316  -5.2316  -2.6072  -0.3644
RMSE 0.3802 0.2863 0.2479 0.2536
bevm,  bommz  bamams  bamara

Bias -0.0770  -0.0374 0.0006 0.0104
%Bias -8.5505  -4.1599 0.0622 1.1570
RMSE 0.1699 0.1954 0.2545 0.2851
brivra  brrmre brimrs brivia

Bias -0.0878  -0.0475 -0.0186 0.0074
%Bias -9.7571  -5.2756  -2.0698 0.8251
RMSE 0.2458 0.2391 0.2292 0.2638
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Table 5: Comparison with Blundell and Bond’s (1998) Estimator

brB1 brB2 bz  bppa | brrmry  brrmre brimris
Mean % Bias -33.8148  -29.4131 | 4.7432 4.2551 -9.7571  -5.2755  -2.0697
Median % Bias | -31.1881 -25.9085 | 5.9111 5.6280 | -15.3878  -9.0639  -6.9573
RMSE 0.4796 0.4257 0.0823 0.0882 0.2458 0.2391 0.2292

Table 6: Sensitivity of Blundell and Bond’s (1998) Estimator

Brp=.5 bpp1 bpp2 bpps bppa | brrmr, brrimr2 brrmrs
Mean % Bias 8.9525 14.4790 | 20.9971 21.5154 0.0252 0.1691 0.2334
Median % Bias 9.5207 15.4609 | 21.1202 21.6144 | -0.2163 -0.2214  -0.2469
RMSE 0.0994 0.1400 0.1899 0.1944 0.0570 0.0611 0.0630
Br=0 bpBI bpB2 bpBs bBBa /b\LIML,l /b\LIMLA,Q /b\LIML,3
Mean % Bias 10.8819 17.3840 | 24.8534 25.4517 0.0429 0.1455 0.1860
Median % Bias | 11.4178 18.2542 | 24.9990 25.5079 | -0.1621 -0.1890 -0.2168
RMSE 0.1156 0.1654 0.2246 0.2299 0.0521 0.0543 0.0555
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Table 7: Performance of Iterated Long Difference Estimator for T'=15

N =100 ‘ brimr,y  brimr2  brorvmrs  brimroa
.75  Actual Mean % bias 1.2977 4.6584 5.3703 7.6702
Actual Median % bias -3.0867 -0.4467 -0.0800 -0.4800
2nd order Mean % bias -.1358 2.8043 4.6720 6.5872
RMSE 0.1806 0.2278 0.2465 0.2857
.80 Actual Mean %bias -0.1119 2.5878 4.2732 6.3443
Actual Median % bias -5.7250 -2.3438 -1.4188 -1.4000
2nd order Mean % bias -.4020 4.6019 7.3205 9.8596
RMSE 0.2128 0.2452 0.2523 0.3032
.85  Actual Mean %bias -3.8994 -0.5921 1.6201 3.6981
Actual Median % bias | -10.1176 -5.4235 -4.0059 -3.5471
2nd order Mean % bias -.8477 9.2416  14.3129  18.0912
RMSE 0.2333 0.2494 0.2532 0.2848
.90  Actual Mean %bias -9.7571 -5.2756 -2.0698 0.8251
Actual Median % bias | -15.3889 -9.0667 -6.9556 -5.6444
2nd order Mean % bias | -1.7413  25.3502  40.2274  49.3254
RMSE 0.2458 0.2391 0.2292 0.2638
.95  Actual Mean %bias -15.2028 -9.5738 -6.0855 -2.8321
Actual Median % bias | -19.6368 -12.4895 -9.6105 -8.0684
2nd order Mean % bias | -4.4189 132.5028 229.9208 298.9023
RMSE 0.2518 0.2191 0.2124 0.2397
N =200 ‘ 3LIML,1 3LIML,2 6LIML,3 /b\LIMLA
.75 Actual Mean %bias 1.2054 3.0110 3.8420 5.1421
Actual Median % bias -1.6533 -0.2333 -0.1000 -0.4733
2nd order Mean % bias -.0679 1.4022 2.3360 3.2936
RMSE 0.1336 0.1630 0.1906 0.2189
.80 Actual Mean %bias 1.4085 3.7041 4.3488 4.8453
Actual Median % bias -3.3125 -1.1813 -0.5938 -1.1500
2nd order Mean % bias -.2010 2.3010 3.6602 4.9210
RMSE 0.1740 0.2071 0.2245 0.2435
.85 Actual Mean %bias 0.0299 1.7783 1.7835 3.6882
Actual Median % bias -6.8412 -3.7059 -2.8588 -2.6000
2nd order Mean % bias -.4238 4.6208 7.1565 9.0456
RMSE 0.2239 0.2363 0.2288 0.2513
.90  Actual Mean %bias -5.8274 -2.7803 -1.3073 0.1639
Actual Median % bias | -13.1000 -7.9111 -5.9278 -5.2333
2nd order Mean % bias -8706  12.6751  20.1137  24.6627
RMSE 0.2406 0.2257 0.2252 0.2396
.95  Actual Mean %bias -13.3638 -8.7034 -6.2646 -4.1416
Actual Median % bias | -19.3737 -12.3211 -9.5579 -8.0526
2nd order Mean % bias | -2.2094 66.2514 114.9604 149.4511
RMSE 0.2515 0.2156 0.1991 0.2020
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Table 8: Performance of 3 12ss and ﬁCU gpforT'=5

N =100 ‘ Brasts.p Bour,Lp
B8 =0.75 Actual Mean % Bias 5.5331 11.5527
Second Order Mean % Bias 5.4224 7.6105
Actual Median %Bias 1.3811 7.4700
RMSE 0.1761 0.2132
InterQuartile Range 0.2434 0.3067
B8=0.8 Actual Mean % Bias 4.3037 10.4126
Second Order Mean % Bias 9.6240 13.0702
Actual Median % Bias 1.4569 8.6510
RMSE 0.1727 0.2048
InterQuartile Range 0.2422 0.3031
B =0.85 Actual Mean % Bias 1.9659 7.9833
Second Order Mean % Bias 20.9080 27.0025
Actual Median % Bias 0.0656 7.5588
RMSE 0.1604 0.1947
InterQuartile Range 0.2270 0.2900
6=0.9 Actual Mean % Bias -0.7710 6.1387
Second Order Mean % Bias 65.0609 78.5269
Actual Median % Bias -2.3467 6.1147
RMSE 0.1534 0.1803
InterQuartile Range 0.2115 0.2668
6 =095 Actual Mean % Bias -3.3676 3.1244
Second Order Mean % Bias 481.1993  533.4268
Actual Median % Bias -4.7764 3.1365
RMSE 0.1494 0.1655
InterQuartile Range 0.2002 0.2512
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Table 9: Performance of 3 12ss and ﬁCU gpforT'=5

N =200 ‘ Brasts.p Bour,Lp
B8 =0.75 Actual Mean % Bias 5.9078 8.8638
Second Order Mean % Bias 2.7112 3.8052
Actual Median %Bias 1.5982 4.2172
RMSE 0.1519 0.1704
InterQuartile Range 0.1896 0.2297
B8 =0.8 Actual Mean % Bias 4.9410 8.3701
Second Order Mean % Bias 4.8120 6.5351
Actual Median % Bias 1.8273 5.4765
RMSE 0.1447 0.1674
InterQuartile Range 0.1997 0.2468
B =0.85 Actual Mean % Bias 2.7966 7.3021
Second Order Mean % Bias 10.4540 13.5012
Actual Median % Bias 1.0718 5.8672
RMSE 0.1373 0.1585
InterQuartile Range 0.1909 0.2341
68=0.9 Actual Mean % Bias 0.8948 5.4221
Second Order Mean % Bias 32.5304 39.2635
Actual Median % Bias -0.0204 5.3657
RMSE 0.1271 0.1448
InterQuartile Range 0.1750 0.2101
B8=0.95 Actual Mean % Bias -2.0943 2.8482
Second Order Mean % Bias 240.5997  266.7134
Actual Median % Bias -2.5881 2.8984
RMSE 0.1216 0.1331
InterQuartile Range 0.1594 0.1915
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Table 10: Performance of B¢y g, 1p, Bovpe,as: Bevgs,nps and Beyps, pp for T'=15

N =100 | Beue,Lp ‘ Bevrz,as  Bourz,Lp ‘ Beur2,ee  Bcue.BB
B =.75 Median % Bias 7.4700 6.6814 4.2643 2.0471 1.2705
Interquartile Range 0.3067 0.2864 0.2911 0.2456 0.1480

Mean % Bias 11.5527 | -296.6631 1250.1149 | -136.4730 0.4852

RMSE 0.2132 | 152.2249  676.8912 117.9397 0.1050

B=.8 Median % Bias 8.6510 4.7391 1.6364 0.6595 1.2629

Interquartile Range 0.3031 0.3206 0.3410 0.3676 0.1540

Mean % Bias 10.4126 33.6498 -15.0393 | -125.6554 -0.0913

RMSE 0.2048 29.2436 12.6828 74.6934 0.1092

B =.85 Median % Bias 7.5588 0.9468 -2.2980 -1.0482 1.9808
Interquartile Range 0.2900 0.4253 1.2817 0.4902 0.1645

Mean % Bias 7.9833 | -100.7981 -161.9267 6.4686 0.3824

RMSE 0.1947 28.4546 25.6932 23.8489 0.1225

8=.9 Median % Bias 6.1147 -4.2248 -16.4693 -6.9530 3.0423

Interquartile Range 0.2668 2.3282 1.5503 2.3169 0.1637

Mean % Bias 6.1387 | -30.2898  -177.0842 495.0171 1.2087

RMSE 0.1803 24.6733 131.8341 193.9465 0.1344

B=.95 Median % Bias 3.1365 -17.7102  -129.4765 -21.5058 3.4897
Interquartile Range 0.2512 2.5936 1.6277 2.5714 0.1452

Mean % Bias 3.1244 | -290.6542 -42.6293 -32.0973 1.0877

RMSE 0.1655 | 166.1415 67.0635 98.0361 0.1347
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Table 11: Performance of B¢y g, 1p, Bovps,as: Bovgs,nps and Beyps, pp for T =15

N =200 ‘ BeouE,Lp | Bevur2,as  Beur,p | Bovurs,BB  Bcuk,BB
6 =.7 Median % Bias 4.2172 3.4952 4.0943 1.2644 0.4242
Interquartile Range 0.2297 0.1855 0.2034 0.1195 0.1032

Mean % Bias 8.8638 | 116.0861 29.5421 4.4327 0.1604

RMSE 0.1704 85.9117 10.6641 4.5595 0.0719

B =.8 Median % Bias 5.4765 5.8182 5.3421 0.8893 0.5388

Interquartile Range 0.2468 0.2105 0.2132 0.1472 0.1063

Mean % Bias 8.3701 16.9181  -233.6177 -21.1440 -0.1898

RMSE 0.1674 13.7393 127.6513 9.5825 0.0736

B =.85 Median % Bias 5.8672 5.1660 3.7226 1.0708 0.6441
Interquartile Range 0.2341 0.2295 0.2347 0.2619 0.1143

Mean % Bias 7.3021 | 688.7913 -50.0828 59.6610 -0.7076

RMSE 0.1585 | 455.6137 19.8972 66.8390 0.0779

6=.9  Median % Bias 5.3657 0.9958 -2.8551 -1.0774 0.9204

Interquartile Range 0.2101 0.3766 1.3425 0.5870 0.1152

Mean % Bias 5.4221 | 479.7193 31.6093 -29.9555 -0.3893

RMSE 0.1448 | 381.8271 23.2206 42.2422 0.0913

06=.95 Median % Bias 2.8984 -11.2026  -125.6884 -12.6677 2.5208
Interquartile Range 0.1915 2.5978 1.5877 2.6203 0.1099

Mean % Bias 2.8482 -82.2370  -6464.7709 | -177.6883 0.9733

RMSE 0.1331 39.5396  4315.6181 116.8096 0.1044
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