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Abstract

We provide a simple suffi cient condition for the existence of a recursive upper bound
on (the Pareto frontier of) the sequential equilibrium payoff set at a fixed discount
factor in two-player repeated games with imperfect private monitoring. The bounding
set is the sequential equilibrium payoff set with perfect monitoring and a mediator.
We show that this bounding set admits a simple recursive characterization, which
nonetheless necessarily involves the use of private strategies. Under our condition, this
set describes precisely those payoff vectors that arise in equilibrium for some private
monitoring structure, if either non-stationary monitoring or communication is allowed.
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1 Introduction

Like many dynamic economic models, repeated games are typically studied using recursive

methods. In an incisive paper, Abreu, Pearce, and Stacchetti (1990; henceforth APS) re-

cursively characterized the perfect public equilibrium payoff set at a fixed discount factor

in repeated games with imperfect public monitoring. Their results (along with related con-

tributions by Fudenberg, Levine, and Maskin (1994) and others) led to fresh perspectives

on problems like collusion (Green and Porter, 1984; Athey and Bagwell, 2001), relational

contracting (Levin, 2003), and government credibility (Phelan and Stacchetti, 2001). How-

ever, other important environments– like collusion with secret price cuts (Stigler, 1964) or

relational contracting with subjective performance evaluations (Levin, 2003; MacLeod, 2003;

Fuchs, 2007)– involve imperfect private monitoring, and it is well-known that the methods

of APS do not easily extend to such settings (Kandori, 2002). Whether the equilibrium pay-

off set in repeated games with private monitoring exhibits any tractable recursive structure

at all is thus a major question.

In this paper, we do not make any progress toward giving a recursive characterization

of the sequential equilibrium payoff set in a repeated game with a given private monitoring

structure. Instead, working in the context of two-player games, we provide a simple condition

for the existence of a recursive upper bound on the Pareto frontier of this set.1 The key

feature of our bound is that it is tight from the perspective of an observer who does not

know the monitoring structure under which the game is being played: that is, our bound

characterizes the set of payoffs that can arise in equilibrium for some monitoring structure.

In other words, from the perspective of an observer who knows the monitoring structure,

our results give an upper bound on how well the players can do; while from the perspective

of an observer who does not know the monitoring structure, our results exactly characterize

how well they can do. Which of these two perspectives on our results is more relevant for

a particular application thus depends on the observability of the monitoring structure to an

outsider, which can be expected to vary from application to application.

The set we use to upper-bound the equilibrium payoff set with private monitoring is the

1For conciseness, henceforth we will say that a set of payoff vectors X upper-bounds set Y if every payoff
vector y ∈ Y is Pareto dominated by some payoff vector x ∈ X. This is obviously not the same as X ⊇ Y .
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equilibrium payoffset with perfect monitoring and a mediator (mediated perfect monitoring).

We do not take a position on the realism of allowing a mediator, and instead view the

model with a mediator as a purely technical device that is useful for bounding equilibrium

payoffs with private monitoring. We thus show that the equilibrium payoff set with private

monitoring admits a recursive upper bound by establishing two main results:

1. Under a simple condition, the equilibrium payoff set with mediated perfect monitoring

is an upper bound on the equilibrium payoff set with any private monitoring structure.

2. The equilibrium payoff set with mediated perfect monitoring has a recursive structure.

It might seem surprising that any conditions at all are needed for the first of these results,

as one might think that improving the precision of the monitoring structure and adding a

mediator can only expand the equilibrium set. But this is not the case: giving a player more

information about her opponents’past actions splits her information sets and thus gives

her new ways to cheat, and indeed we show by example that (unmediated) imperfect private

monitoring can sometimes outperform (mediated) perfect monitoring. In other words, perfect

monitoring is not necessarily the optimal monitoring structure in a repeated game, even if

it is advantaged by giving the players access to a mediator.

Our suffi cient condition for mediated perfect monitoring to outperform any private mon-

itoring structure is that there is a feasible payoff vector v such that no player i is tempted

to deviate if she gets continuation payoff vi when she conforms and is minmaxed when she

deviates. This is a joint restriction on the stage game and the discount factor, and it is

essentially always satisfied when players are at least moderately patient. (However, they

need not be patient enough for the folk theorem to apply.) Under this condition, we show

that the Pareto frontier of the equilibrium payoff set under mediated perfect monitoring

coincides with that under the universal monitoring structure that arises when the mediator

perfectly observes all actions but each player observes only her own actions. Our first main

result follows because, as its name suggests, the universal monitoring structure embeds any

private monitoring structure.

To understand our second main result, recall that, in repeated games with perfect moni-

toring without a mediator, all strategies are public, so the sequential (equivalently, subgame
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perfect) equilibrium set coincides with the perfect public equilibrium set, which was recur-

sively characterized by APS. On the other hand, with a mediator– who makes private action

recommendations to the players– private strategies play a crucial role, and APS’s charac-

terization does not apply. Nonetheless, under the suffi cient condition for our first result, a

recursive characterization is obtained by replacing APS’s generating operator B with what

we call the minmax-threat generating operator B̃: for any set of continuation payoffs W , the

set B̃ (W ) is the set of payoffs that can be attained when on-path continuation payoffs are

drawn from W and deviators are minmaxed. To see why deviators can always be minmaxed

in the presence of a mediator– and also why private strategies cannot be ignored– suppose

that the mediator recommends a target action profile a ∈ A with probability 1 − ε, while

recommending every other action profile with probability ε/ (|A| − 1); and suppose further

that if some player i deviates from her recommendation, the mediator then recommends

that her opponents minmax her in every future period. In such a construction, player i’s

opponents never learn that a deviation has occurred, and they are therefore always willing

to follow the recommendation of minmaxing player i.2 (This construction clearly relies on

private strategies: if the mediator’s recommendations were public, players would always see

when a deviation occurs, and they then might not be willing to minmax the deviator.)

We consider several extensions of our results. Perhaps most importantly, we establish two

senses in which the equilibrium payoff set with mediated perfect monitoring is a tight upper

bound on the equilibrium payoff set, from the perspective of an observer who does not know

the monitoring structure. First, mediated perfect monitoring with a given strategy of the

mediator’s itself induces a nonstationary monitoring structure, meaning that the distribution

of signals can depend on everything that has happened in the past, rather than only on

current actions. Thus, our upper bound is trivially tight from the perspective of an observer

who finds nonstationary monitoring structures possible. Second, restricting attention to

standard, stationary monitoring structures– where the signal distribution depends only on

the current actions– we show that the mediator can be dispensed with if the players have

access to an ex ante correlating device and cheap talk communication. Hence, our upper

2In this construction, the mediator virtually implements the target action profile. For other applications
of virtual implementation in games with a mediator, see Lehrer (1992), Mertens, Sorin, and Zamir (2015,
IV.4.b), Renault and Tomala (2004), Rahman and Obara (2010), and Rahman (2012).
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bound is also tight from the perspective of an observer who finds only stationary monitoring

structures possible, if she also accepts the possibility of ex ante correlation and cheap talk.

This paper is not the first to develop recursive methods for repeated games with imperfect

private monitoring. Kandori and Matsushima (1998) augment private monitoring repeated

games with opportunities for public communication among the players and provide a recur-

sive characterization of a subset of equilibrium payoffs that is large enough to yield a folk

theorem. Tomala (2009) gives related results when the repeated game is augmented with a

mediator rather than only public communication. Neither paper provides a recursive upper

bound on the entire sequential equilibrium payoff set for a fixed discount factor.3 Amarante

(2003) does give a recursive characterization of the equilibrium payoff set in private monitor-

ing repeated games, but the state space in his characterization is the set of repeated game

histories, which grows over time. Phelan and Skrzypacz (2012) and Kandori and Obara

(2010) develop recursive methods for checking whether a given finite-state strategy profile is

an equilibrium in a private monitoring repeated game.

Awaya and Krishna (2015) and Pai, Roth, and Ullman (2014) derive bounds on payoffs in

private monitoring repeated games as a function of the monitoring structure. The bounds in

these papers come from the observation that, if an individual’s actions can have only a small

impact on the distribution of signals, then the shadow of the future can have only a small

effect on her incentives. In contrast, our payoff bounds apply for all monitoring structures,

including those in which individual actions have a large impact on the signal distribution.

Finally, we have emphasized that our results can be interpreted either as giving an upper

bound on the equilibrium payoff set in a repeated game for a particular private monitor-

ing structure or as characterizing the set of payoffs that can arise in equilibrium for some

private monitoring structure. With the latter interpretation, our paper shares a motivation

with Bergemann and Morris (2013), who characterize the set of payoffs that can arise in

equilibrium in a static incomplete information game for some information structure. Yet

another interpretation of our results is that they establish that information is valuable in

3Ben-Porath and Kahneman (1996) and Compte (1998) also prove folk theorems for private monitoring
repeated games with communication, but they do not emphasize recursive methods away from the δ → 1
limit. Lehrer (1992), Mertens, Sorin, and Zamir (2015, IV.4.b), and Renault and Tomala (2004) characterize
the communication equilibrium payoffset in undiscounted repeated games. These papers study how imperfect
monitoring can limit the equilibrium payoff set without discounting, while our focus is on how discounting
can limit the equilibrium payoff set independently of the monitoring structure.
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mediated repeated games, in that– under our suffi cient condition– players cannot benefit

from imperfections in the monitoring technology. This interpretation connects our paper

to the literature on the value of information in static incomplete information games (e.g.,

Gossner, 2000; Lehrer, Rosenberg, and Shmaya, 2010; Bergemann and Morris, 2013).

The rest of the paper is organized as follows. Section 2 describes our models of repeated

games with private and mediated perfect monitoring, which are standard. Section 3 gives an

example showing that private monitoring can sometimes outperform mediated perfect mon-

itoring. Section 4 develops preliminary results about repeated games with mediated perfect

monitoring. Section 5 presents our first main result: a suffi cient condition for mediated

perfect monitoring to outperform private monitoring. The proof of this result is deferred

to Section 8. Section 6 presents our second main result: a recursive characterization of the

equilibrium payoff set with mediated perfect monitoring. Section 7 illustrates the calculation

of the upper bound with an example. Section 9 discusses the tightness of our upper bound,

as well as partial versions of our results that apply when our suffi cient conditions do not

hold, as in the case of more than two players. Section 10 concludes.

2 Repeated Games with Private and Mediated Perfect

Monitoring

A finite stage game G =
(
I, (Ai, ui)i∈I

)
is repeated in periods t = 1, 2, . . ., where I =

{1, . . . , |I|} is the set of players, Ai is the finite set of player i’s actions, and ui : A → R

is player i’s payoff function. Players maximize expected discounted payoffs with common

discount factor δ.

2.1 Private Monitoring

In each period t, the game proceeds as follows: Each player i takes an action ai,t ∈ Ai. A

signal zt = (zi,t)i∈I ∈
∏

i∈I Zi = Z is drawn from distribution p (zt|at), where Zi is the finite

set of player i’s signals and p (·|a) is the monitoring structure. Player i observes zi,t.

A period t history of player i’s is an element of H t
i = (Ai × Zi)t−1, with typical element

hti = (ai,τ , zi,τ )
t−1
τ=1, where H

1
i consists of the null history ∅. A (behavior) strategy of player
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i’s is a map σi :
⋃∞
t=1H

t
i → ∆ (Ai). A belief system of player i’s is a map βi :

⋃∞
t=1H

t
i →⋃∞

t=1 ∆ (H t) satisfying supp βi (h
t
i) ⊆ {hti} × H t

−i for all t; we also write βi (h
t|hti) for the

probability of ht under βi (h
t
i). Let H

t =
∏

i∈I H
t
i .

The solution concept is sequential equilibrium.

Definition 1 An assessment (σ, β) constitutes a sequential equilibrium if the following two

conditions are satisfied:

1. [Sequential rationality] For each player i and history hti, σi maximizes player i’s ex-

pected continuation payoff at history hti under belief βi (h
t
i).

2. [Consistency] There exists a sequence of completely mixed strategy profiles (σn) such

that the following two conditions hold:

(a) σn converges to σ (pointwise in t): For all ε > 0 and t, there exists N such that,

for all n > N , |σni (hti)− σi(hti)| < ε for all i ∈ I, hti ∈ H t
i .

(b) Conditional probabilities converge to β (pointwise in t): For all ε > 0 and t, there

exists N such that, for all n > N ,∣∣∣∣∣ Prσ
n

(hti, h
t
−i)∑

h̃t−i
Prσ

n
(hti, h̃

t
−i)
− βi(hti, ht−i | hti)

∣∣∣∣∣ < ε for all i ∈ I, hti ∈ H t
i , h

t
−i ∈ H t

−i.

This relatively permissive definition of consistency (requiring that strategies and beliefs

converge only pointwise in t) gives a weakly larger set of equilibrium payoffs to be bounded

but also allows more freedom in constructing the bounding equilibria. However, by replacing

infinite punishments with long finite punishments, our equilibrium constructions can be

modified to satisfy consistency under uniform convergence.

2.2 Mediated Perfect Monitoring

In each period t, the game proceeds as follows: A mediator sends a private messagemi,t ∈Mi

to each player i, where Mi is a finite message set for player i. Each player i takes an action

ai,t ∈ Ai. All players and the mediator observe the action profile at ∈ A.
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A period t history for the mediator is an element of H t
m = (M × A)t−1, with typical

element htm = (mτ , aτ )
t−1
τ=1, where H

1
m consists of the null history. A strategy for the mediator

is a map µ :
⋃∞
t=1H

t
m → ∆ (M). A period t history of player i’s is an element of H t

i =

(Mi × A)t−1 × Mi, with typical element hti =
(
(mi,τ , aτ )

t−1
τ=1 ,mi,t

)
, where H1

i = Mi.4 A

strategy of player i’s is a map σi :
⋃∞
t=1 H

t
i → ∆ (Ai).

The definition of sequential equilibrium is the same as with private monitoring, except

that sequential rationality is imposed (and beliefs are defined) only at histories consistent

with the mediator’s strategy. The interpretation is that the mediator is not a player in the

game but rather a “machine”that cannot tremble.5 Note that with this definition an assess-

ment (including the mediator’s strategy) (µ, σ, β) is a sequential equilibrium with mediated

perfect monitoring if and only if (σ, β) is a sequential equilibrium with the “nonstation-

ary”private monitoring structure where Zi = Mi × A and pt (·|ht+1
m ) coincides with perfect

monitoring of actions with messages given by µ (ht+1
m ) (see Section 9.1).

As in Forges (1986) and Myerson (1986), any equilibrium distribution over action paths

arises in an equilibrium of the following form:

1. [Messages are action recommendations] M = A.

2. [Obedience/incentive compatibility] At history hti = ((mi,τ , aτ )
t−1
τ=1,mi,t), player i plays

ai,t = mi,t.

Without loss of generality, we restrict attention to such obedient equilibria throughout.6

We denote the mediator’s action recommendation by r ∈ A.

Finally, we say that a sequential equilibrium with mediated perfect monitoring is on-path

strict if following the mediator’s recommendation is strictly optimal for each player i at

every on-path history hti. Let Emed(δ) denote the set of on-path strict sequential equilibrium

payoffs. For the rest of the paper, we slightly abuse terminology by omitting the qualifier

“on-path”when discussing such equilibria.

4We also occasionally write hti for (mi,τ , aτ )
t−1
τ=1, omitting the period t message mi,t.

5The assumption that the mediator cannot tremble does not matter for our results.
6Dhillon and Mertens (1996) show that the revelation principle fails for trembling-hand perfect equilibria.

Nonetheless, with our “machine”interpretation of the mediator, the revelation principle applies for sequential
equilibrium by precisely the argument of Forges (1986).
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3 An Illustrative (Counter)Example

The goal of this paper is to provide suffi cient conditions for the equilibrium payoff set with

mediated perfect monitoring to upper-bound the equilibrium payoff set with private moni-

toring. We first provide an illustrative example showing why, in the absence of our suffi cient

conditions, private monitoring (without a mediator) can outperform mediated perfect mon-

itoring. Readers eager to get to the results can skip this section without loss of continuity.

Consider the repetition of the following stage game, with δ = 1
6
:

L M R

U 2, 2 −1, 0 −1, 0

D 3, 0 0, 0 0, 0

T 0, 3 6,−3 −6,−3

B 0,−3 0, 3 0, 3

Example 1

Proposition 1 In Example 1, there is no sequential equilibrium where the players’ per-

period payoffs sum to more than 3 with mediated perfect monitoring, while there is such a

sequential equilibrium with some private monitoring structure.

Proof. See Appendix 10.

Let us sketch the proof of Proposition 1. Note that (U,L) is the only action profile where

payoffs sum to more than 3. Because δ is low, player 1 (row player, “she”) can be induced

to play U in response to L only if action profile (U,L) is immediately followed by (T,M)

with high enough probability: specifically, this probability must exceed 3
5
. With perfect

monitoring, player 2 (column player, “he”) must then “see (T,M) coming”with probability

at least 3
5
following (U,L), and this probability is so high that player 2 will deviate from M

to L (regardless of the specification of continuation play). This shows that payoffs cannot

sum to more than 3 with perfect monitoring.

On the other hand, with private monitoring, player 2 may not know whether (U,L) has

just occurred, and therefore may be unsure of whether the next action profile will be (T,M)

or (B,M), which can give him the necessary incentive to playM rather than L. In particular,
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suppose that player 1 mixes 1
3
U + 2

3
D in period 1, and the monitoring structure is such that

player 2 gets signal m (“play M”) with probability 1 following (U,L), and gets signals m

and r (“play R”) with probability 1
2
each following (D,L). Suppose further that player 1

plays T in period 2 if she played U in period 1, and plays B in period 2 if she played D in

period 1. Then, when player 2 sees signal m in period 1, his posterior belief that player 1

played U in period 1 is
1
3

(1)
1
3

(1) + 2
3

(
1
2

) =
1

2
.

Player 2 therefore expects to face T and B in period 2 with probability 1
2
each, so he is

willing to play M rather than L. Meanwhile, player 1 is always rewarded with (T,M) in

period 2 when she plays U in period 1, so she is willing to play U (as well as D) in period 1.

To summarize, the advantage of private monitoring is that pooling players’information

sets (in this case, player 2’s information sets after (U,L) and (D,L)) can make providing

incentives easier.7 A companion paper (Sugaya and Wolitzky, 2016) develops this point in

the context of some canonical models in industrial organization.

Below, we show that private monitoring cannot outperform mediated perfect monitoring

when there exists a feasible payoff vector v such that no player i is tempted to deviate if she

gets continuation payoff vi when she conforms and is minmaxed when she deviates. This

condition is violated in the current example because, when δ = 1
6
, no feasible continuation

payoff for player 2 is high enough to induce him to respond to T with M rather than L.

Specifically, in the example the condition holds if and only if δ ≥ 19
25
.

4 Preliminary Results about Emed (δ)

We begin with two preliminary results about the equilibrium payoffset with mediated perfect

monitoring. These results are important for both our result on when private monitoring

cannot outperform mediated perfect monitoring (Theorem 1) and our characterization of

7As far as we know, the observation that players in a repeated game can benefit from imperfections in
monitoring even in the presence of a mediator is original. Examples by Kandori (1991), Sekiguchi (2002),
Mailath, Matthews, and Sekiguchi (2002), and Miyahara and Sekiguchi (2013) show that players can benefit
from imperfect monitoring in finitely repeated games. However, in their examples this conclusion relies on
the absence of a mediator, and is thus due to the possibilities for correlation opened up by private monitoring.
The broader point that giving players more information can be bad for incentives is of course familiar.
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the equilibrium payoff set with mediated perfect monitoring (Theorem 2).

Let ui be player i’s correlated minmax payoff, given by

ui = min
α−i∈∆(A−i)

max
ai∈Ai

ui(ai, α−i).

Let α∗−i ∈ ∆(A−i) be a solution to this minmax problem. Let di be player i’s greatest possible

gain from a deviation at any recommendation profile, given by

di = max
r∈A,ai∈Ai

ui(ai, r−i)− ui(r).

Let wi be the lowest continuation payoff such that player i does not want to deviate at any

recommendation profile when she is minmaxed forever if she deviates, given by

wi = ui +
1− δ
δ

di.

Let

Wi =
{
w ∈ R|I| : wi ≥ wi

}
.

Finally, let F be the convex hull of the set of feasible payoffs, let

W ∗ =
⋂
i∈I
Wi ∩ F ,

and denote the interior of W ∗ as a subspace of F by W̊ ∗.

Our first preliminary result is that all payoffs in W̊ ∗ are attainable in equilibrium with

mediated perfect monitoring. See Figure 1. The intuition is that the mediator can virtually

implement any payoff vector in W ∗ by minmaxing deviators.

We will actually prove the slightly stronger result that all payoffs in W̊ ∗ are attainable in

a strict “full-support”equilibrium with mediated perfect monitoring. Formally, we say that

an equilibrium has full support if for each player i and history hti = (ri,τ , aτ )
t−1
τ=1 such that

there exist recommendations (r−i,τ )
t−1
τ=1 with Prµ(rτ |(rτ ′ , aτ ′)τ−1

τ ′=1) > 0 for each τ = 1, ..., t−1,
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Figure 1: The intersection of F , W1, and W2, denoted by W ∗, satisfies W̊ ∗ ⊆ Emed (δ).

there exist alternative recommendations (r̄−i,τ )
t−1
τ=1 such that for each τ = 1, ..., t− 1 we have

Prµ(ri,τ , r̄−i,τ |(ri,τ ′ , r̄−i,τ ′ , aτ ′)τ−1
τ ′=1) > 0 and r̄−i,τ = a−i,τ .

That is, any history hti consistent with the mediator’s strategy is also consistent with i’s

opponents’equilibrium strategies (even if player i herself has deviated, noting that we allow

ri,τ 6= ai,τ in hti). This is weaker than requiring that the mediator’s recommendation has full

support at all histories (on- and off-path), but stronger than requiring that the recommen-

dation has full support at all on-path histories only. Note that, if the equilibrium has full

support, player i never believes that any of the other players has deviated.

Lemma 1 For all v ∈ W̊ ∗, there exists a strict full-support equilibrium with mediated perfect

monitoring with payoff v. In particular, W̊ ∗ ⊆ Emed(δ).

Proof. For each v ∈ W̊ ∗, there exists µ ∈ ∆(A) such that u(µ) = v and µ(r) > 0 for all

r ∈ A. On the other hand, for each i ∈ I and ε ∈ (0, 1), approximate the minmax strategy

α∗−i by the full-support strategy α
ε
−i ≡ (1− ε)α∗−i+ε

∑
a−i∈A−i

a−i
|A−i| . Since v ∈ int

(⋂
i∈IWi

)
,

there exists ε ∈ (0, 1) such that, for each i ∈ I, we have

vi > max
ai∈Ai

ui(ai, α
ε
−i) +

1− δ
δ

di. (1)

Consider the following recommendation schedule: The mediator follows an automaton

strategy whose state is identical to a subset of players J ⊆ I. Hence, the mediator has 2|I|
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states. In the following construction of the mediator’s strategy, J will represent the set of

players who have ever deviated from the mediator’s recommendation.

If the state J is equal to ∅ (no player has deviated), then the mediator recommends µ.

If there exists i with J = {i} (only player i has deviated), then the mediator recommends

r−i to players −i according to αε−i, and recommends some best response to αε−i to player

i. Finally, if |J | ≥ 2 (several players have deviated), then for each i ∈ J , the mediator

recommends the best response to αε−i, while she recommends each profile a−J ∈ A−J to the

other players −J with probability 1
|A−J | . The state transitions as follows: if the current state

is J and players J ′ deviate, then the state transitions to J ∪ J ′.

Player i’s strategy is to follow her recommendation ri,t in period t. She believes that the

mediator’s state is ∅ if she herself has never deviated, and believes that the state is {i} if

she has deviated.

Since the mediator’s recommendation has full support, player i’s belief is consistent. (In

particular, no matter how many times player i has been instructed to minmax some player j,

it is always infinitely more likely that these instructions resulted from randomization by the

mediator rather than a deviation by player j.) If player i has deviated, then (given her belief)

it is optimal for her to always play a static best response to αε−i, since the mediator always

recommends αε−i in state {i}. Given that a unilateral deviation by player i is punished in this

way, (1) implies that on path player i has a strict incentive to follow her recommendation

ri,t at any recommendation profile rt ∈ A. Hence, she has a strict incentive to follow her

recommendation when she believes that r−i,t is distributed according to Prµ(r−i,t|hti).

The condition that W̊ ∗ 6= ∅ can be more transparently stated as a lower bound on the

discount factor. In particular, W̊ ∗ 6= ∅ if and only if there exists v ∈ F such that

vi > ui +
1− δ
δ

di for all i ∈ I,

or equivalently

δ > δ∗ ≡ min
v∈F

max
i∈I

di
di + vi − ui

. (2)

For instance, it can be checked that δ∗ = 19
25
in Example 1 of Section 3. Note that δ∗ is

strictly less than 1 if and only if the stage game admits a feasible and strictly individually
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rational payoff vector (relative to correlated minmax payoffs).8 For most games of interest,

δ∗ will be some “intermediate”discount factor that is not especially close to either 0 or 1.

Our second preliminary result is that, if a strict full-support equilibrium exists, then any

payoff vector that can be attained by a mediator’s strategy that is incentive compatible on

path is (virtually) attainable in strict equilibrium.

Lemma 2 With mediated perfect monitoring, fix a payoff vector v, and suppose there exists

a mediator’s strategy µ that (1) attains v when players obey the mediator, and (2) has the

property that obeying the mediator is optimal for each player at each on-path history, when

she is minmaxed forever if she deviates: that is, for each player i and on-path history ht+1
m ,

(1− δ)E
[
ui(rt) | htm, ri,t

]
+ δE

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(µ(hτm)) | htm, ri,t

]
≥ max

ai∈Ai
(1− δ)E

[
ui(ai, r−i,t) | htm, ri,t

]
+ δui. (3)

Suppose also that there exists a strict full-support equilibrium. (For example, such an equi-

librium exists if W̊ ∗ 6= ∅, by Lemma 1.) Then v ∈ Emed(δ).9

Proof. Fix such a strategy µ and any strict full-support equilibrium µstrict. We construct a

strict equilibrium that attains a payoff close to v.

In period 1, the mediator draws one of two states, Rv and Rperturb, with probabilities 1−ε

and ε, respectively. In state Rv, the mediator’s recommendation is determined as follows: If

no player has deviated up to period t, the mediator recommends rt according to µ(htm). If

only player i has deviated, the mediator recommends r−i,t to players −i according to α∗−i,

and recommends some best response to α∗−i to player i. Multiple deviations are treated

as in the proof of Lemma 1. On the other hand, in state Rperturb, the mediator follows the

equilibrium µstrict. Player i follows the recommendation ri,t in period t. Since the constructed

recommendation schedule has full support, player i never believes that another player has

deviated. Moreover, since µstrict has full support, player i believes that the mediator’s state

is Rperturb with positive probability after any history. Therefore, by (3) and the fact that

µstrict is a strict equilibrium, it is always strictly optimal for each player i to follow her

8Recall that a payoff vector v is strictly individually rational if vi > ui for all i ∈ I.
9Throughout, X̄ denotes the closure of X.
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recommendation on path. Taking ε → 0 yields a sequence of strict equilibria with payoffs

converging to v.

5 A Suffi cient Condition for Emed (δ) to Give an Upper

Bound

Our suffi cient condition for mediated perfect monitoring to outperform private monitoring

in two-player games is that δ > δ∗. In Section 9, we discuss what happens when there are

more than two players or the condition that δ > δ∗ is relaxed.

Let E(δ, p) be the set of (possibly weak) sequential equilibrium payoffs with private

monitoring structure p. Note that E(δ, p) is closed, as we use the product topology on

assessments (Fudenberg and Levine, 1983).

Theorem 1 If |I| = 2 and δ > δ∗, then for every private monitoring structure p and every

non-negative Pareto weight λ ∈ Λ+ ≡ {λ ∈ R2
+ : ‖λ‖ = 1}, we have

max
v∈E(δ,p)

λ · v ≤ max
v∈Emed(δ)

λ · v.

Theorem 1 says that, in games involving two players of at least moderate patience, the

Pareto frontier of the (closure of the strict) equilibrium payoff set with mediated perfect

monitoring extends farther in any non-negative direction than does the Pareto frontier of

the equilibrium payoff set with any private monitoring structure.10 We emphasize that

Theorem 1 does not require that players are patient enough for the folk theorem to apply.

We describe the idea of the proof of Theorem 1, deferring the proof itself to Section 8.

Let E(δ) be the equilibrium payoff set in the mediated repeated game with the following

universal monitoring structure : the mediator directly observes the recommendation profile

rt and the action profile at in each period t, while each player i observes nothing beyond her

own recommendation ri,t and her own action ai,t.11 This monitoring structure is so called

because it embeds any private monitoring structure p by setting µ (htm) equal to p (·|at−1)

10We do not know if the same result holds for negative Pareto weights.
11This information structure may not result from mediated communication among the players, as actions

are not publicly observed. Again, we simply view E (δ) as a technical device for bounding E(δ, p).
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for every history htm = (rτ , aτ )
t−1
τ=1.

12 It particular, we have E(δ, p) ⊆ E(δ) for every p, so to

prove Theorem 1 it suffi ces to show that

sup
v∈E(δ)

λ · v ≤ max
v∈Emed(δ)

λ · v. (4)

To show this, the idea is to start with an equilibrium in E(δ)– where players only ob-

serve their own recommendations– and then show that the players’recommendations can

be “publicized”without violating anyone’s obedience constraints.13 To see why this is pos-

sible (when |I| = 2 and δ > δ∗, or equivalently W̊ ∗ 6= ∅), first note that we can restrict

attention to equilibria with Pareto-effi cient on-path continuation payoffs, as improving both

players’on-path continuation payoffs improves their incentives (assuming that deviators are

minmaxed, which is possible when W̊ ∗ 6= ∅, by Lemma 2). Next, if |I| = 2 and W̊ ∗ 6= ∅, then

if a Pareto-effi cient payoff vector v lies outside Wi for one player (say player 2), it must then

lie inside Wj for the other player (player 1). Hence, at each history ht, there can be only one

player– here player 2– whose obedience constraint could be violated if we publicized both

players’past recommendations.

Now, suppose that at history ht we do publicize the entire vector of players’past recom-

mendations rt = (rτ )
t−1
τ=1, but the mediator then issues period t recommendations according

to the original equilibrium distribution of recommendations conditional on player 2’s past

recommendations rt2 = (r2,τ )
t−1
τ=1 only. We claim that doing this violates neither player’s obe-

dience constraint: Player 1’s obedience constraint is easy to satisfy, as we can always ensure

that continuation payoffs lie in W1. And, since player 2 already knew rt2 in the original

equilibrium, publicizing ht while issuing recommendations based only on rt2 does not affect

his incentives.

An important missing step in this proof sketch is that, in the original equilibrium in

E(δ), at some histories it may be player 1 who is tempted to deviate when we publicize

past recommendations, while it is player 2 who is tempted at other histories. For instance,

it is not obvious how to publicize past recommendations when ex ante equilibrium payoffs

are very good for player 1 (so player 2 is tempted to deviate in period 1), but continuation

12Incidentally, this embedding does not yield an obedient equilibrium.
13More precisely, the construction in the proof both publicizes the players’recommendations and modifies

the equilibrium in ways that only improve the players’λ-weighted payoffs.
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payoffs at some later history are very good for player 2 (so then player 1 is tempted to

deviate). The proof of Theorem 1 shows that we can ignore this possibility, because–

somewhat unexpectedly– equilibrium paths like this one are never needed to sustain Pareto-

effi cient payoffs. In particular, to sustain an ex ante payoff that is very good for player

1 (i.e., outside W2), we never need to promise continuation payoffs that are very good for

player 2 (i.e., outside W1). The intuition is that, rather than promising player 2 a very good

continuation payoffoutsideW1, we can instead promise him a fairly good continuation inside

W1, while compensating him for this change by also occasionally transitioning to this fairly

good continuation payoff at histories where the original promised continuation payoff is less

good for him. Finally, since the feasible payoff set is convex, the resulting “compromise”

continuation payoff vector is also acceptable to player 1.

A remark: The reader may wonder why we are not satisfied with simply bounding E(δ, p)

by E (δ). The answer is that the only way we know of recursively characterizing the Pareto

frontier of E (δ) is by first establishing (4) and then characterizing the Pareto frontier of

Emed(δ). So this approach would not avoid the need to establish (4).

6 Recursively Characterizing Emed(δ)

We have seen that Emed(δ) is an upper bound on E (δ, p) for two-player games satisfying

δ > δ∗. As our goal is to give a recursive upper bound on E (δ, p), it remains to recursively

characterize Emed(δ). Our characterization assumes that δ > δ∗, but it applies for any

number of players.14

Recall that APS characterize the perfect public equilibrium set with imperfect public

monitoring as the iterative limit of a generating operator B, where B (W ) is defined as

the set of payoffs that can be sustained when on- and off-path continuation payoffs are

drawn from W . We show that the sequential equilibrium payoff set with mediated perfect

monitoring is the iterative limit of a generating operator B̃, where B̃ (W ) is the set of payoffs

that can be sustained when on-path continuation payoffs are drawn from W and deviators

are minmaxed off path. There are two things to prove: (1) we can indeed minmax deviators

14The set Emed(δ) admits a recursive characterization even if δ < δ∗, but in this case the characterization
is somewhat more complicated. The details are available from the authors.
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off path, and (2) on-path continuation payoffs must themselves be sequential equilibrium

payoffs. The first of these facts is Lemma 2. For the second, note that, in an obedient

equilibrium with perfect monitoring, players can perfectly infer each other’s private history

on path. Continuation play at on-path histories (but not off-path histories) is therefore

“common knowledge,”which gives the desired recursive structure.

In what follows, we assume familiarity with APS and focus on the new features that

emerge when mediation is available. Our terminology parallels that in Section 7.3 of Mailath

and Samuelson (2006).

Definition 2 For any set V ⊆ R|I|, a correlated action profile α ∈ ∆ (A) is minmax-threat

enforceable on V by a mapping γ : A→ V if, for each player i and action ai ∈ suppαi,

Eα [(1− δ)ui (ai, a−i) + δγ (ai, a−i) | ai] ≥ max
a′i∈Ai

Eα [(1− δ)ui (a′i, a−i) | ai] + δui.

Definition 3 A payoff vector v ∈ R|I| is minmax-threat decomposable on V if there exists

a correlated action profile α ∈ ∆ (A) which is minmax-threat enforced on V by a mapping γ

such that

v = Eα [(1− δ)u (a) + δγ (a)] .

Let B̃ (V ) =
{
v ∈ R|I| : v is minmax-threat decomposable on V

}
.

We show that the following algorithm recursively computes Emed(δ): let W 1 = F , W n =

B̃ (W n−1) for n > 1, and W∞ = limn→∞W
n.

Theorem 2 If δ > δ∗, then Emed(δ) = W∞.

With the exception of the following two lemmas, the proof of Theorem 2 is entirely

standard, and omitted. The lemmas correspond to facts (1) and (2) above. In particular,

Lemma 3 follows directly from APS and Lemma 2, while Lemma 4 establishes on-path

recursivity. For both lemmas, assume δ > δ∗.

Lemma 3 If a set V ⊆ R|I| is bounded and satisfies V ⊆ B̃ (V ), then B̃ (V ) ⊆ Emed (δ).

Lemma 4 Emed (δ) = B̃
(
Emed (δ)

)
.
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Proof. By Lemma 3 and boundedness, we need only show that Emed (δ) ⊆ B̃
(
Emed (δ)

)
.

Let Eweak
med (δ) be the set of (possibly weak) sequential equilibrium payoffs with mediated

perfect monitoring. Note that, in any sequential equilibrium, player i’s continuation payoff

at any history hti must be at least ui. Therefore, if µ is an on-path recommendation strategy

in a (possibly weak) sequential equilibrium, then it must satisfy (3). Hence, under the

assumption that W̊ ∗ 6= ∅, we have Eweak
med (δ) ⊆ Emed (δ).

Now, for any v ∈ Emed (δ), let µ be a corresponding equilibrium mediator’s strategy. In

the corresponding equilibrium, if some player i deviates in period 1 while her opponents are

obedient, player i’s continuation payoff must be at least ui. Hence, we have

Eµ [(1− δ)ui (ai, a−i) + δwi (ai, a−i) | ai] ≥ max
a′i∈Ai

Eµ [(1− δ)ui (a′i, a−i) | ai] + δui,

where wi (ai, a−i) is player i’s equilibrium continuation payoff when action profile (ai, a−i)

is recommended and obeyed in period 1. Finally, since action profile (ai, a−i) is in the sup-

port of the mediator’s recommendation in period 1, each player assigns probability 1 to the

true mediator’s history when (ai, a−i) is recommended and played in period 1. Therefore,

continuation play from this history is itself at least a weak sequential equilibrium. In par-

ticular, we have wi (ai, a−i) ∈ Eweak
med (δ) ⊆ Emed (δ) for all (ai, a−i) ∈ suppµ (ht). Hence, v

is minmax-threat decomposable on Emed (δ) by action profile µ (∅) and continuation payoff

function w, so in particular v ∈ B̃
(
Emed (δ)

)
.

We have shown that Emed (δ) ⊆ B̃
(
Emed (δ)

)
. As Emed (δ) is compact and B̃ preserves

compactness, taking closures yields Emed (δ) ⊆ B̃
(
Emed (δ)

)
= B̃

(
Emed (δ)

)
.

Combining Theorems 1 and 2 yields our main conclusion: in two-player games with

δ > δ∗, the equilibrium payoff set with mediated perfect monitoring is a recursive upper

bound on the equilibrium payoff set with any imperfect private monitoring structure.

7 The Upper Bound in an Example

We illustrate our results with an application to a repeated Bertrand game. We compute the

greatest equilibrium payoff that each firm can attain for any private monitoring structure.

Consider the following Bertrand game: There are two firms i ∈ {1, 2}, and each firm i’s
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possible price level is pi ∈ {W,L,M,H} (price war, low price, medium price, high price).

Given p1 and p2, firm i’s profit is determined by the following payoff matrix:

W L M H

W 15, 15 30, 25 50, 15 80, 0

L 25, 30 40, 40 60, 35 90, 15

M 15, 50 35, 60 55, 55 85, 35

H 0, 80 15, 90 35, 85 65, 65

Example 2

Note that L (low price) is a dominant strategy in the stage game, W (price war) is a costly

action that hurts the other firm, and (H,H) maximizes the sum of the firms’profits. The

feasible payoff set is given by

F = co {(0, 80), (15, 15), (15, 90), (35, 85), (65, 65), (80, 0), (85, 35), (90, 15)} ,

where we include only the extreme points in specifying the convex hull. In addition, each

firm’s minmax payoff ui is 25, so the feasible and individually rational payoff set is given by

co {(25, 25) , (25, 87.5) , (35, 85) , (65, 65) , (85, 35) , (87.5, 25)} .

In particular, the greatest feasible and individually rational payoff for each firm is 87.5. See

Figure 2 for an illustration.

In this game, each firm’s maximum deviation gain di is 25. Since the game is symmetric,

the critical discount factor δ∗ above which we can apply Theorems 1 and 2 is given by

plugging the best symmetric payoff of 65 into (2), which gives

δ∗ =
25

25 + 65− 25
=

5

13
.

To illustrate our results, we find the greatest equilibrium payoff that each firm can attain

for any private monitoring structure when δ = 1
2
> 5

13
.
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When δ = 1
2
, we have

wi = 25 +
1− δ
δ

25 = 50.

Hence, Lemma 1 implies that

{
v ∈ F̊ : vi > 50 for each i

}
= int co {(50, 50) , (75, 50) , (50, 75) , (65, 65)} ⊆ Emed (δ) .

We now compute the best payoff vector for firm 1 in B̃(F). By Theorems 1 and 2, any

Pareto-effi cient payoff profile not included B̃(F) is not included in E(δ, p) for any p.

In computing the best payoff vector for firm 1, it is natural to conjecture that firm 1’s

incentive compatibility constraint is not binding. We thus consider a relaxed problem with

only firm 2’s incentive constraint, and then verify that firm 1’s incentive constraint is satisfied.

Note that playing L is always the best deviation for firm 2. Furthermore, the corresponding

deviation gain decreases as firm 1 increases its price from W to L, and (weakly) increases as

it increases its price from L to M or H. On the other hand, firm 1’s payoff increases as firm

1 increases its price from W to L and decreases as it increases its price from L to M or H.

Hence, in order to maximize firm 1’s payoff, firm 1 should play L.

Suppose that firm 2 plays H. Then, firm 2’s incentive compatibility constraint is

(1− δ) 25︸︷︷︸
maximum deviation gain

≤ δ(w2 − 25︸︷︷︸)
minmax payoff

,

where w2 is firm 2’s continuation payoff. That is, w2 ≥ 50.

By feasibility, w2 ≥ 50 implies that w1 ≤ 75. Hence, if r2 = H, the best minmax-threat

decomposable payoff for firm 1 is

(1− δ)

 90

15

+ δ

 75

50

 =

 82.5

32.5

 .

Since 82.5 is larger than any payoff that firm 1 can get when firm 2 plays W , M , or L,

firm 2 should indeed play H to maximize firm 1’s payoff. Moreover, since 75 ≥ w1, firm 1’s

incentive constraint is not binding. Thus, we have shown that 82.5 is the best payoff for firm

1 in B̃ (F).
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Figure 2: Region A is included in Emed (δ) by Lemma 1. Region B is not included in Emed (δ).
Note that Region B includes payoffs which are feasible and individually rational.

On the other hand, with mediated perfect monitoring it is in fact possible to (virtually)

implement an action path in which firm 1’s payoffis 82.5: play (L,H) in period 1 (with payoffs

(90, 15)), and then play 1
2

(M,H) + 1
2

(H,H) forever (with payoffs 1
2

(85, 35) + 1
2

(65, 65) =

(75, 50)), while minmaxing deviators.

Thus, when δ = 1
2
, each firm’s greatest feasible and individually rational payoff is 87.5,

but the greatest payoff it can attain with any imperfect private monitoring structure is only

82.5. In this simple game, we can therefore say exactly how much of a constraint is imposed

on each firm’s greatest equilibrium payoff by the firms’impatience alone, independently of

the monitoring structure.

8 Proof of Theorem 1

8.1 Preliminaries and Plan of Proof

We wish to establish (4) for every Pareto weight λ ∈ Λ+. As E(δ) is convex, it suffi ces to

establish

max
v∈E0(δ)

λ · v ≤ max
v∈Emed(δ)

λ · v (5)
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for every compact set E0(δ) ⊆ E(δ).

Fix a compact set E0(δ) ⊆ E(δ). Note that Lemma 1 implies that

W ∗ ⊆ Emed(δ).

Therefore, for every Pareto weight λ ∈ Λ+, if there exists v ∈ arg maxv′∈E0(δ) λ · v′ such that

v ∈ W ∗, then there exists v∗ ∈ Emed(δ) such that λ · v ≤ λ · v∗, as desired.

Hence, we are left to consider λ ∈ Λ+ with

arg max
v′∈E0(δ)

λ · v′ ∩W ∗ = ∅. (6)

Since we consider two-player games, we can order λ ∈ Λ+ as follows: λ ≤ λ′ if and only if
λ1

λ2
≤ λ′1

λ′2
, that is, the vector λ is steeper than λ′. For each player i, let w̄i be the Pareto-

effi cient point in Wi satisfying

w̄i ∈ arg max
v∈Wi∩F

v−i.

Note that the assumption that W̊ ∗ 6= ∅ implies that w̄i ∈ W ∗. Let αi ∈ ∆(A) be a

recommendation that attains w̄i: u(αi) = w̄i. Let Λi be the (non-empty) set of Pareto

weight λi such that w̄i ∈ arg maxv∈F λ
i · v:

Λi =

{
λi ∈ R2

+ :
∥∥λi∥∥ = 1, w̄i ∈ arg max

v∈F
λi · v

}
.

As F is convex, if λ satisfies (6) then either λ < λ1 for each λ1 ∈ Λ1 or λ > λ2 for each

λ2 ∈ Λ2. See Figure 3. We focus on the case where λ > λ2. (The proof for the λ < λ1 case

is symmetric and thus omitted.)

Fix v ∈ arg maxv′∈E0(δ) λ · v′. Let (µ, (σi)i∈I) be an equilibrium that attains v with

the universal monitoring structure (where players do not observe each other’s actions). By

Lemma 2, it suffi ces to construct a mediator’s strategy µ∗ yielding payoffs v∗ such that (3)

(“perfect monitoring incentive compatibility”) holds and λ · v ≤ λ · v∗. The rest of the proof

constructs such a strategy.

The plan for constructing the strategy µ∗ is as follows: First, from µ we construct a

mediator’s strategy µ̄ that yields payoffs v and satisfies perfect monitoring incentive com-
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Figure 3: Setup for the construction. The green region (intersection of u (A), W1, and W2)
is included in Emed (δ) and E (δ) by Lemma 1. The red line represents E (δ).

patibility for player 2, but possibly not for player 1. The idea is to set the distribution of

recommendations under µ̄ equal to the distribution of recommendations under µ conditional

on player 2’s information only. Second, from µ̄, we construct a mediator’s strategy µ∗ that

yields payoffs v∗ with λ · v ≤ λ · v∗ and satisfies perfect monitoring incentive compatibility

for both players.

8.2 Construction and Properties of µ̄

For each on-path history of player 2’s recommendations, denoted by rt2 = (r2,τ )
t−1
τ=1 (with

r1
2 = {∅}), let Prµ(·|rt2) be the conditional distribution of recommendations in period t, and

let wµ(rt2) be the continuation payoff vector from period t onward conditional on rt2:

wµ(rt2) = Eµ
[ ∞∑
τ=0

δτu(rt+τ ) | rt2

]
.

Define µ̄ so that, for every on-path history rt = (rτ )
t−1
τ=1 (with r

1 = {∅}), the mediator

draws rt according to Prµ(rt|rt2):

Prµ̄(rt|rt) ≡ Prµ(rt|rt2). (7)
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We claim that µ̄ yields payoffs v and satisfies (3) for player 2. To see this, let wµ̄ (rt) be

the continuation payoffvector from period t onward conditional on rt under µ̄, and note that

wµ̄ (rt) = wµ (rt2). In particular, wµ̄ (r1) = wµ (r1
2) = v since r1 = r1

2 = {∅}. In addition, the

fact that µ is an equilibrium with the universal monitoring structure implies that, for every

on-path history rt+1,

(1− δ)Eµ
[
u2 (rt) |rt+1

2

]
+ δwµ

(
rt+1

2

)
≥ max

a2∈A2

(1− δ)Eµ
[
u2 (r1,t, a2) |rt+1

2

]
+ δu2.

As wµ2
(
rt+1

2

)
= wµ̄2 (rt+1) and Prµ

(
rt|rt+1

2

)
= Prµ̄ (rt|rt, r2,t), this implies that (3) holds for

player 2.

8.3 Construction of µ∗

The mediator’s strategy µ∗ will involve mixing over continuation payoffs at certain histories

rt+1, and we will denote the mixing probability at history rt+1 by ρ (rt+1). Our approach is

to first construct the mediator’s strategy µ∗ for an arbitrary function ρ :
∞⋃
t=1

At−1 → [0, 1]

specifying these mixing probabilities, and to then specify the function ρ.

Given a function ρ :
∞⋃
t=1

At−1 → [0, 1], the mediator’s strategy µ∗ is defined as follows:

In each period t = 0, 1, 2, . . ., the mediator is in one of two states, ωt ∈ {S1, S2} (where

“period 0” is a purely notational, and as usual the game begins in period 1). Given the

state, recommendations in period t ≥ 1 are as follows:

1. In state S1, at history rt = (rτ )
t−1
τ=1, the mediator recommends rt according to Prµ̄(rt|rt).

2. In state S2, the mediator recommends rt according to some α1 ∈ ∆(A) such that

u(α1) = w̄1.

The initial state is ω0 = S1. State S2 is absorbing: if ωt = S2 then ωt+1 = S2. Finally,

the transition rule in state S1 is as follows:

1. If wµ̄(rt+1) 6∈ W1, then ωt+1 = S2 with probability one.

2. If wµ̄(rt+1) ∈ W1, then ωt+1 = S2 with probability 1− ρ(rt+1).
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Thus, strategy µ∗ agrees with µ̄, with the exception that µ∗ occasionally transitions to an

absorbing state where actions yielding payoffs w̄1 are recommended forever. In particular,

such a transition always occurs when continuation payoffs under µ̄ lie outside W1, and

otherwise this transition occurs with probability 1− ρ (rt+1).

To complete the construction of µ∗, it remains only to specify the function ρ. To this end,

it is useful to define an operator F , which maps functions w :
∞⋃
t=1

At−1 → R2 to functions

F (w2) :
∞⋃
t=1

At−1 → R2. The operator F will be defined so that its unique fixed point is

precisely the continuation value function in state S1 under µ∗ for a particular function ρ,

and this function will be the one we use to complete the construction of µ∗.

Given w :
∞⋃
t=1

At−1 → R2, define w∗(w) :
∞⋃
t=1

At−1 → R so that, for every rt ∈ At−1, we

have

w∗(w)(rt) = (1− δ)u
(
µ̄(rt)

)
+ δE

[
w(rt+1)|rt

]
. (8)

On the other hand, given w∗(w) :
∞⋃
t=1

At−1 → R, define F (w) :
∞⋃
t=1

At−1 → R so that, for

every rt ∈ At−1, we have

F (w)
(
rt
)

= 1{wµ̄(rt)∈W1}

 ρ(w)(rt)× w∗(w)(rt)

+ (1− ρ(w)(rt))× w̄1

+ 1{wµ̄(rt)/∈W1}w̄
1, (9)

where, when wµ̄(rt) ∈ W1, ρ(w)(rt) is the largest number in [0, 1] such that

ρ(w)(rt)× w∗2(w)(rt) +
(
1− ρ(w)(rt)

)
× w̄1

2 ≥ wµ̄2 (rt). (10)

That is, if w∗2(w) (rt) ≥ wµ̄2 (rt) then ρ(w)(rt) = 1; and otherwise, since wµ̄(rt) ∈ W1 implies

that wµ̄2 (rt) ≤ w̄1
2, ρ(w)(rt) ∈ [0, 1] solves

ρ(w)(rt)× w∗2(w)(rt) +
(
1− ρ(w)(rt)

)
× w̄1

2 = wµ̄2 (rt).

(Intuitively, the term 1{wµ̄(rt)/∈W1}w̄
1 in (9) reflects the fact that we have replaced contin-

uation payoffs outside of W1 with player 2’s most favorable continuation payoff within W1,

namely w̄1. This replacement may reduce player 2’s value below his original value of wµ̄2 (rt).

However, (10) ensures that, by also replacing continuation payoffs within W1 with w̄1 with
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high enough probability, player 2’s value does not fall below wµ̄2 (rt).)

To show that F has a unique fixed point, it suffi ces to show that F is a contraction.

Lemma 5 For all w and w̃, we have ‖F (w)− F (w̃)‖ ≤ δ ‖w − w̃‖, where ‖w − w̃‖ ≡

suprt ‖w(rt)− w̃(rt)‖.

Proof. By (8), ‖w∗(w)− w∗(w̃)‖ ≤ δ ‖w − w̃‖. By (9),

∣∣F (w)
(
rt
)
− F (w̃)

(
rt
)∣∣ = 1{wµ̄(rt)∈W1}

∣∣∣∣∣∣ {ρ(w)(rt)w∗(w)(rt) + (1− ρ(w)(rt)) w̄1}

−{ρ(w̃)(rt)w∗(w̃)(rt) + (1− ρ(w̃)(rt)) w̄1}

∣∣∣∣∣∣
≤ ‖w∗(w)− w∗(w̃)‖ .

Combining these inequalities yields ‖F (w)− F (w̃)‖ ≤ δ ‖w − w̃‖.

Let w be the unique fixed point of F . Given this function w, let w∗ = w∗ (w) (given by

(8)) and let ρ = ρ (w) (given by (10)). This completes the construction of the mediator’s

strategy µ∗.

8.4 Properties of µ∗

Observe that

w∗(rt) = (1− δ)u
(
µ̄(rt)

)
+ δE

[
w(rt+1)|rt

]
(11)

and

w
(
rt
)

= 1{wµ̄(rt)∈W1}
{
ρ(rt)w∗(rt) +

(
1− ρ(rt)

)
w̄1
}

+ 1{wµ̄(rt)/∈W1}w̄
1. (12)

Thus, for i = 1, 2, w∗i (r
t) is player i’s expected continuation payoff from period t given rt

and ωt = S1 (before she observes ri,t), and wi(rt) is player i’s expected continuation payoff

from period t given rt and ωt−1 = S1 (before she observes ri,t). In particular, recalling that

ω1 = S1 and v = wµ (∅) ∈ W1, (10) implies that the ex ante payoff vector v∗ is given by

v∗ = w (∅) = ρ(∅)w∗(∅) + (1− ρ(∅)) w̄1.

We prove the following key lemma in Appendix 10.
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Figure 4: The vector from wµ̄(rt) to w∗(rt) is parallel to the one from ŵ(rt+1) to w̄1.

Lemma 6 For all t ≥ 1, if wµ̄(rt) ∈ W1, then ρ(rt)w∗(rt)+(1− ρ(rt2)) w̄1 Pareto dominates

wµ̄(rt).

Here is a graphical explanation of Lemma 6: By (11), w∗(rt) − wµ̄(rt) is parallel to

w(rt+1) − wµ̄(rt+1). To evaluate this difference, consider (12) for period t + 1. The term

1{wµ̄(rt+1)/∈W1}w̄
1 indicates that we construct w(rt+1) by replacing some continuation payoff

not included inW1 with w̄1. Hence, w(rt+1)−wµ̄(rt+1) (and thus w∗(rt)−wµ̄(rt)) is parallel

to w̄1 − ŵ(rt+1) for some ŵ(rt+1) ∈ F \W1. See Figure 4 for an illustration.

Recall that ρ(rt) is determined by (10). Since the vector w∗(rt) − wµ̄(rt) is parallel to

w̄1 − ŵ(rt+1) for some ŵ(rt+1) ∈ F \W1 and F is convex, we have w∗1(rt) ≥ wµ̄1 (rt). Hence,

if we take ρ(rt) so that the convex combination of w∗2(rt) and w̄1
2 is equal to w

µ̄
2 (rt), then

player 1 is better off compared to wµ̄1 (rt). See Figure 5.

Given Lemma 6, we show that µ∗ satisfies perfect monitoring incentive compatibility

((3)) for both players, and λ · v ≤ λ · v∗.

1. Incentive compatibility for player 1: It suffi ces to show that, conditional on any on-

path history rt and period t recommendation r1,t, the expected continuation payofffrom

period t + 1 onward lies in W1. If ωt = S2, then this continuation payoff is w̄1 ∈ W1.

If ωt = S1, then it suffi ces to show that w (rt+1) ∈ W1 for all rt+1. If wµ̄(rt+1) ∈ W1,

then, by Lemma 6, w(rt+1) = ρ(rt+1)w∗(rt+1) + (1− ρ(rt+1)) w̄1 Pareto dominates
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Figure 5: ρ(rt)w∗(rt) + (1− ρ(rt)) w̄1 and wµ̄(rt) have the same value for player 2.

wµ̄(rt+1) ∈ W1, so w(rt+1) ∈ W1. If wµ̄(rt+1) /∈ W1, then w(rt+1) = w̄1 ∈ W1. Hence,

w (rt+1) ∈ W1 for all rt+1.

2. Incentive compatibility for player 2: Fix an on-path history rt and a period t rec-

ommendation r2,t. If ωt = S2, or if both ωt = S1 and wµ̄(rt+1) /∈ W1, then the

expected continuation payoff from period t + 1 onward conditional on (rt, r2,t) is

w̄1 ∈ W1, so (3) holds. If instead ωt = S1 and wµ̄(rt+1) ∈ W1, then w(rt+1) =

ρ(rt+1)w∗(rt+1) + (1− ρ(rt+1)) w̄1 = wµ̄ (rt+1) by (10). As µ is an equilibrium with the

universal monitoring structure and Prµ
∗ (
rt|rt+1

2

)
= Prµ̄ (rt|rt, r2,t), this implies that

(3) holds for player 2, by the same argument as in Section 8.2.

3. λ · v ≤ λ · v∗: Immediate from Lemma 6 with t = 1.

9 Extensions

This section discusses the extent to which the payoff bound is tight, as well as what happens

when the conditions for Theorem 1 are violated.
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9.1 Tightness of the Bound

There are at least two senses in which Emed (δ) is a tight bound on the equilibrium payoff

set, from the perspective of an observer who does not know the monitoring structure.

First, thus far our model of repeated games with private monitoring has maintained

the standard assumption that the distribution of period t signals depends only on period t

actions: that is, that this distribution can be written as p (·|at). In many settings, it would

be desirable to relax this assumption and let the distribution of period t signals depend on

the entire history of actions and signals up to period t, leading to a conditional distribution

of the form pt (·|at, zt), as well as letting players receive signals before the first round of

play. (Recall that at = (aτ )
t−1
τ=1 and z

t = (zτ )
t−1
τ=1.) For example, colluding firms do not only

observe their sales in every period, but also occasionally get more information about their

competitors’past behavior from trade associations, auditors, tax data, and the like.15 From

the perspective of an observer who finds such nonstationary private monitoring structures

possible, the bound Emed (δ) is clearly tight: Emed (δ) is an upper bound on E (δ, p) for any

non-stationary private monitoring structure p, because the equilibrium payoff set with the

universal monitoring structure, E (δ), remains an upper bound on E (δ, p); and the bound

is tight because perfect monitoring with a given strategy of the mediator’s itself induces a

particular nonstationary private monitoring structure.

Second, from the perspective of an observer who finds only stationary monitoring struc-

tures possible, the bound Emed (δ) is tight if the players can communicate through cheap talk,

as they can then “replicate”the mediator among themselves. For this result, we also need

to slightly generalize our definition of a private monitoring structure by letting the players

receive signals before the first round of play, so that these signals can be used as a correlating

device. This seems innocuous, especially if we take the perspective of an an outside observer

who does not know the game’s start date. The monitoring structure is required to be sta-

tionary thereafter.16 We call such a monitoring structure a private monitoring structure with

ex ante correlation. Let Etalk (δ, p) be the sequential equilibrium payoff set in the repeated

15Rahman (2014, p. 1) quotes from the European Commission decision on the amino acid cartel: a typical
cartel member “reported its citric acid sales every month to a trade association, and every year, Swiss
accountants audited those figures.”
16In particular, the distribution of signals can be the same every period. All we require is that the first of

these signals arrives before the first round of play.
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game with private monitoring structure with ex ante correlation p and finitely many rounds

of public cheap talk before each round of play.

Proposition 2 If |I| = 2 and δ > δ∗, then there exists a private monitoring structure with

ex ante correlation p such that Etalk (δ, p) = Emed (δ).

The proof is long and is deferred to the online appendix. The main idea is as in the

literature on implementing correlated equilibria without a mediator (see Forges (2009) for

a survey). More specifically, Proposition 2 is similar to Theorem 9 of Heller, Solan, and

Tomala (2012), which shows that communication equilibria in repeated games with perfect

monitoring can always be implemented by ex ante correlation and cheap talk. Since we

also assume players observe actions perfectly, the main difference between the results is

that theirs is for Nash rather than sequential equilibrium, so they are concerned only with

detecting deviations rather than providing incentives to punish deviations once detected. In

our model, when δ > δ∗, incentives to minmax the deviator can be provided (as in Lemma

1) if her opponent does not realize that the punishment phase has begun. The additional

challenge in the proof of Proposition 2 is thus that we sometimes need a player to switch to

the punishment phase for her opponent without realizing that this switch has occurred.

If one insists on stationary monitoring and does not allow communication, we believe that

there are some games in which our bound is not tight, in that there are points in Emed (δ)

which are not attainable in equilibrium for any stationary private monitoring structure. We

leave this as a conjecture.17

9.2 What if W̊ ∗ = ∅?

The assumption that W̊ ∗ 6= ∅ guarantees that all action profiles are supportable in equilib-

rium, which plays a key role in our results. However, this assumption is restrictive, in that it

is violated when players are too impatient. Furthermore, it implies that the Pareto frontier of

Emed(δ) coincides with the Pareto frontier of the feasible payoff set for some Pareto weights

17Strictly speaking, since our maintained definition of a private monitoring structure does not allow ex ante
correlation, if δ = 0 then there are points in Emed (δ) which are not attainable with any private monitoring
structure whenever the stage game’s correlated equilibrium payoff set strictly contains its Nash equilibrium
payoff set. The non-trivial conjecture is that the bound is still not tight when ex ante correlation is allowed,
but communication is not.
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λ (but of course not for others), so this assumption must also be relaxed for our approach

to be able to give non-trivial payoff bounds for all Pareto weights.

To address these concerns, this subsection shows that even if W̊ ∗ = ∅, Emed(δ) may still

be an upper bound on E (δ, p) for any private monitoring structure p, and Emed(δ) can still

be characterized recursively. The idea is that, even if not all action profiles are supportable,

our approach still applies if a condition analogous to W̊ ∗ 6= ∅ holds with respect to the subset

of action profiles that are supportable.

Let supp(δ) be the set of supportable actions with the universal monitoring structure:

supp(δ) =

a ∈ A :

with the universal monitoring structure,

there exist an equilibrium strategy µ

and history htm with a ∈ supp(µ(htm))

 .

Note that in this definition htm can be an off-path history.

On the other hand, given a product set of action profiles Ā =
∏

i∈I Āi ⊆ A, let Si
(
Ā
)
be

the set of actions ai ∈ Āi such that there exists a correlated action α−i ∈ ∆(Ā−i) with

(1− δ)ui(ai, α−i) + δmax
ā∈Ā

ui (ā) ≥ (1− δ) max
âi∈Ai

ui(âi, α−i) + δ min
α̂−i∈∆(Ā−i)

max
ai∈Ai

ui(ai, α̂−i).

(13)

That is, ai ∈ Si
(
Ā
)
if there exists α−i ∈ ∆(Ā−i) such that, if her opponents play α−i, player

i’s reward for playing ai is the best payoff possible among those with support in Ā, and

player i’s punishment for deviating from ai is the worst possible among those with support

in Ā−i, then player i plays ai. Let S
(
Ā
)

=
∏

i∈I Si (Ai) ⊆ Ā. Let A1 = A, let An = S (An−1)

for n > 1, and let A∞ = limn→∞An. Note that the problem of computing A∞ is tractable,

as the set S
(
Ā
)
is defined by a finite number of linear inequalities.

Finally, in analogy with the definition of wi from Section 4, note that

min
α−i∈∆(A∞−i)

max
ai∈Ai

ui(ai, α−i) +
1− δ
δ

max
r∈A∞,ai∈Ai

{ui(ai, r−i)− ui(r)}

is the lowest continuation payoff such that player i does not want to deviate to any ai ∈ Ai at

any recommendation profile r ∈ A∞, when she is minmaxed forever if she deviates, subject
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to the constraint that punishments are drawn from A∞. In analogy with the definition of Wi

from Section 4, let

W̄i =

{
w ∈ R|I| : wi ≥ min

α−i∈∆(A∞−i)
max
ai∈Ai

ui(ai, α−i) +
1− δ
δ

max
r∈A∞,ai∈Ai

{ui(ai, r−i)− ui(r)}
}
.

Proposition 3 Assume that |I| = 2. If

int
(⋂

i∈I
W̄i ∩ cou (A∞)

)
6= ∅ (14)

in the topology induced from cou (A∞), then for every private monitoring structure p and

every non-negative Pareto weight λ ∈ Λ+, we have

max
v∈E(δ,p)

λ · v ≤ max
v∈Emed(δ)

λ · v.

In addition, supp(δ) = A∞.

Proof. We show that supp(δ) = A∞ whenever int
(⋂

i∈I W̄i ∩ cou (A∞)
)
6= ∅. Given this,

the proof is analogous to the proof of Theorem 1, everywhere replacing F =cou (A) with

cou (A∞) and replacing “full support”with “full support within A∞.”

We first show that supp(δ) ⊆ A∞. For each i and n, we show that any action ai /∈ Ani
can never be played on or off the equilibrium path. The proof is by induction on n. The

n = 1 case is trivial. Suppose the result holds for some n. Then at any history player i’s

continuation payoff must lie between minα̂−i∈∆(An−i)
maxai∈Ai ui(ai, α̂−i) and maxa∈An ui (a).

Hence, player i will never play an action ai for which there is no α−i ∈ ∆(An) with

(1− δ)ui(ai, α−i) + δmax
a∈An

ui (a) ≥ (1− δ) max
âi∈Ai

ui(âi, α−i) + δ min
α̂−i∈∆(An−i)

max
ai∈Ai

ui(ai, α̂−i).

This says that player i will never play an action ai /∈ An+1
i .

We now show that if int
(⋂

i∈I W̄i ∩ cou (A∞)
)
6= ∅ then A∞ ⊆ supp(δ). The argument

is similar to the proof of Lemma 1.

Fix v ∈int
(⋂

i∈I W̄i ∩ cou (A∞)
)
6= ∅, and let µ ∈ ∆ (A∞) be such that u (µ) = v and

µ (r) > 0 for all r ∈ A∞. Let α∗−i be a solution to the problemminα̂−i∈∆(A∞) maxai∈Ai ui (âi, α−i).
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Let αε−i be the following full-support (within A∞) approximation of α∗−i: αε−i = (1− ε)α∗−i+

ε
∑

a−i∈A∞−i
a−i

|A∞−i| . Since v ∈int
(⋂

i∈I W̄i

)
, there exists ε > 0 such that, for each i ∈ I, we have

vi > max
ai∈Ai

ui
(
ai, α

ε
−i
)

+
1− δ
δ

max
r∈A∞,ai∈Ai

{ui(ai, r−i)− ui(r)} . (15)

Fix ε > 0 small enough such that, for each player i, some best response to αε−i is included

in A∞i : this is always possible, as every best response to α∗−i is included in A∞i .

We can now construct an equilibrium strategy µ∗ with supp (µ∗ (∅)) = A∞. The con-

struction is similar to that in the proof of Lemma 1, with the following differences. First, µ

is recommended on path, and player i’s deviations are punished by recommending αε−i to her

opponents. Second, if a player deviates to an action outside A∞, play reverts to an arbitrary

static Nash equilibrium αNE forever.

Incentive compatibility with respect to deviations within A∞ follows from (15), just as

it follows from (1) in the proof of Lemma 1. For incentive compatibility with respect to

deviations outside A∞, fix âi /∈ A∞i and α−i ∈ ∆
(
A∞−i

)
. Note that all static Nash equilibria

are contained in ∆ (A∞) and all static best responses to α−i are contained in A∞i . Therefore,

(1− δ)ui(âi, α−i) + δui
(
αNE

)
≤ (1− δ)ui(âi, α−i) + δ max

a∈A∞
ui(a)

< (1− δ) max
ãi∈Ai

ui(ãi, α−i) + δ min
α̂−i∈∆(A∞−i)

max
ai∈Ai

ui(ai, α̂−i)

(since âi /∈ A∞i )

= (1− δ) max
ãi∈A∞i

ui(ãi, α−i) + δ min
α̂−i∈∆(A∞−i)

max
ai∈Ai

ui(ai, α̂−i).

The last line corresponds to the deviation gain to some action ãi ∈ A∞i , which is not

profitable. Hence, deviating to âi 6∈ A∞i is not profitable, either.

Note that Proposition 3 only improves on Theorem 1 at low discount factors: for high

discount factors, A = S (A) = A∞, so (14) reduces to W̊ ∗ 6= ∅. However, as W̊ ∗ can be empty

only for low discount factors, this is precisely the case where an improvement is needed.18

In order to be able to use Proposition 3 to give a recursive upper bound on E (δ, p) when

W̊ ∗ 6= ∅, we must characterize Emed(δ) under (14). Our earlier characterization generalizes

18To be clear, it is possible for W ∗ to be empty while A∞ = A. Theorem 1 and Proposition 3 only give
suffi cient conditions: we are not claiming that they cover every possible case.
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easily. In particular, the following definitions are analogous to Definitions 2 and 3.

Definition 4 For any set V ⊆ R|I|, a correlated action profile α ∈ ∆ (supp(δ)) is supp(δ)

enforceable on V by a mapping γ : supp(δ) → V such that, for each player i, and action

ai ∈ suppαi,

Eα [(1− δ)ui (ai, a−i) + δγ (ai, a−i)] ≥ max
a′i∈Ai

Eα [(1− δ)ui (a′i, a−i)]+δ min
α−i∈∆(supp(δ))

max
âi∈Ai

ui (âi, α−i) .

Definition 5 A payoff vector v ∈ R|I| is supp(δ) decomposable on V if there exists a cor-

related action profile α ∈ ∆ (supp(δ)) which is supp(δ) enforced on V by some mapping γ

such that

v = Eα [(1− δ)u (a) + δγ (a)] .

Let B̃supp(δ) (V ) =
{
v ∈ R|I| : v is supp(δ) decomposable on V

}
.

Let W supp(δ),1 = u (supp(δ)), let W supp(δ),n = B̃supp(δ)
(
W supp(δ),n−1

)
for n > 1, and let

W supp(δ),∞ = limn→∞W
supp(δ),n. We have the following.

Proposition 4 If int
(⋂

i∈I W̄i ∩ u(A∞
)
6= ∅, then Emed(δ) = WA∞,∞.

Proof. Given that supp(δ) = A∞ by Proposition 3, the proof is analogous to the proof of

Theorem 2.

As an example of how Propositions 3 and 4 can be applied, one can check that apply-

ing the operator S in the Bertrand example in Section 7 for any δ ∈
(

1
4
, 5

18

)
yields A∞ =

{W,L,M}×{W,L,M}– ruling out the effi cient action profile (H,H)– and int
(⋂

i∈I W̄i ∩ u(A∞
)
6=

∅. We can then compute Emed(δ) by applying the operator B̃A
∞
.

9.3 What if There are More Than Two Players?

The condition that W̊ ∗ 6= ∅ no longer guarantees that mediated perfect monitoring out-

performs private monitoring when there are more than two players. We record this as a

proposition.

Proposition 5 There are games with |I| > 2 where W̊ ∗ 6= ∅ but supv∈E(δ) λ·v > maxv∈Emed(δ) λ·

v for some non-negative Pareto weight λ ∈ Λ+.
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Proof. Consider the following example. There are five players and Ai = {ai, bi} for i ∈

{1, 2, 3, 4}. Player 5 is a dummy player who takes no action and receives payoff 1 if the

action profile is (a1, b2, a3, a4) or (b1, a2, a3, a4), and receives payoff 0 otherwise. The other

players’payoffs are as follows:

a2 b2

a1 0, 0, 0, 0 0, 1,−1, 1

b1 1, 0, 1,−1 1, 1, 0, 0

a2 b2

a1 0, 0, 0, 0 0, 0, 0,−1

b1 0, 0, 0, 1 0, 0, 0, 0

(a3, a4) (a3, b4)

a2 b2

a1 0, 0, 0, 0 0, 0, 1, 0

b1 0, 0,−1, 0 0, 0, 0, 0

a2 b2

a1 10, 10, 10, 10 10, 10, 10, 10

b1 10, 10, 10, 10 10, 10, 10, 10

(b3, a4) (b3, b4)

Note that players 1 and 3 have an incentive to deviate at profile (a1, b2, a3, a4) and players 2

and 4 have an incentive to deviate at profile (b1, a2, a3, a4).

Let δ =
√

5−1
2
. Note that ui = 0 for all i; d1 = d2 = 1, d3 = d4 = 10, and d5 = 0; and

hence w1 = w2 =
√

5−1
2
, w3 = w4 =

√
5−1
2

(10), and w5 = 0. Therefore, for example, the

feasible payoff vector (9.05, 9.05, 9, 9, 0.1) is an element of W̊ ∗.

Let λ = (0, 0, 0, 0, 1): that is, we maximize player 5’s payoff. We show that player 5

cannot receive payoff 1 in every period in any equilibrium with mediated perfect monitoring,

while this can occur for some private monitoring structure.

We first derive the impossibility result for mediated perfect monitoring.

Claim 1: If player 5 receives payoff 1 in every period, then the on-path continuation payoff

for each player i ∈ {1, 2} starting from any period is at most δ.

Proof: If player 5 receives payoff1 in every period, all on-path actions are either (a1, b2, a3, a4)

or (b1, a2, a3, a4). Omitting player 3 and 4’s actions and payoffs, let (wa1 , w
a
2) denote con-

tinuation payoffs following (a1, b2), and let
(
wb1, w

b
2

)
denote continuation payoffs following

(b1, a2). Then player 1’s incentive compatibility constraint is wa1 ≥ 1−δ
δ
, and player 2’s in-

centive compatibility constraint is wb2 ≥ 1−δ
δ
. Note also that wa1 + wa2 = wb1 + wb2 = 1 and

wa1 , w
a
2 , w

b
1, w

b
2 ≥ 0.
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Letting p denote the probability of (b1, a2, a3, a4), suppose we try to maximize player 1’s

payoff (the argument for player 2 is symmetric):

max
p,wa1 ,w

b
1

(1− δ) p+ δ
(
(1− p)wa1 + pwb1

)
subject to wa1 ≥ 1−δ

δ
and 1 − wb1 ≥ 1−δ

δ
. At a solution, wa1 = 1 and wb1 = 2δ−1

δ
. Hence, the

objective equals

(1− δ) p+ δ (1− p) + δp
2δ − 1

δ
= δ.

Claim 2: If player 5 receives payoff 1 in every period, then after (a1, b2, a3, a4) is played

in period t, (b1, a2, a3, a4) is played with probability greater than 1
2
in period t+ 1; and after

(b1, a2, a3, a4) is played in period t, (a1, b2, a3, a4) is played with probability greater than 1
2
in

period t+ 1.

Proof: By Claim 1, the best continuation payoff for player 1 from period t + 2 is δ.

Hence, for player 1 to play a1 in period t, the probability p of (b1, a2, a3, a4) in period t + 1

(conditional on (a1, b2, a3, a4) in period t), must satisfy

(1− δ) ≤ δ (1− δ) p+ δ2 × δ,

or p ≥ 1−δ−δ3

δ(1−δ) . Noting that δ =
√

5−1
2

satisfies 1− δ = δ2, this is equivalent to p ≥
√

5−1
2
.

Claim 3: If player 5 receives payoff 1 in every period, then the continuation payoff for

each player i ∈ {3, 4} starting from any period equals 0.

Proof: As all on-path actions are either (b1, a2, a3, a4) or (a1, b2, a3, a4), player 3 and 4’s

continuation payoffs from any period sum to 0, and each must weakly exceed the minmax

payoff of 0. Hence, both continuation payoffs must equal 0.

Claim 4: There is no equilibrium in which player 5 receives payoff 1 in every period.

Proof: Suppose such an equilibrium exists. Then all on-path actions are either (a1, b2, a3, a4)

or (b1, a2, a3, a4). Suppose (a1, b2, a3, a4) is played in period 1. Then, by Claim 2, (b1, a2, a3, a4)

is played in period 2 with probability greater than 1
2
. Hence, player 4 receives a negative

instantaneous payoff in period 2, and by Claim 3 her continuation payoff from period 3 is

non-positive, which leaves her with a negative total continuation payoff from period 2, a

contradiction. If instead (a1, b2, a3, a4) is played in period 1, then player 3 is left with a

36



negative continuation payoff from period 2.

Turning to private monitoring, suppose that under the universal monitoring structure

the mediator randomizes with equal probability between the following two sequences:

(a1, b2, a3, a4) → (b1, a2, a3, a4)→ (a1, b2, a3, a4)→ (b1, a2, a3, a4)→ · · ·

(b1, a2, a3, a4) → (a1, b2, a3, a4)→ (b1, a2, a3, a4)→ (a1, b2, a3, a4)→ · · ·

Players 3 and 4 then always believe that players 1 and 2 play (a1, b2) and (b1, a1) with equal

probability, so they are playing static best responses. Finally, with δ =
√

5−1
2
, the deviation

gain of 1 for player i ∈ {1, 2} is equal to the continuation payoff of δ + δ3 + ... = δ
1−δ2 .

We note that, in the proof of Proposition 5, the universal information structure can be

replaced by a stationary private monitoring structure with ex ante correlation as follows: (1)

let each player have an additional action ci, with the property that all players receive payoff

0 if anyone plays ci; (2) specify that all players observe signal z if the action profile equals

(a1, b2, a3, a4) or (b1, a2, a3, a4) and observe signal z′ otherwise; (3) construct a correlated

equilibrium by having only players 1 and 2 observe the outcome of a randomizing device at

the beginning of the game, and having the players play as in the proof of Proposition 5 so

long as signal z realizes, switching to action profile (c1, c2, c3, c4) if signal z′ realizes.

To see where the proof of Theorem 1 breaks down when |I| > 2, recall that the proof is

based on the fact that, for any Pareto-effi cient payoff v, if v /∈ Wi for one player i then it must

be the case that v ∈ Wj for the other player j. This implies that incentive compatibility is

a problem only for one player at a time, which lets us construct an equilibrium with perfect

monitoring by basing continuation play only on that player’s past recommendations (which

she necessarily knows in any private monitoring structure). On the other hand, if there are

more than two players, several players’ incentive compatibility constraints might bind at

once when we publicize past recommendations. The proof of Theorem 1 then cannot get off

the ground.

We can however say some things about what happens with more than two players.

First, the argument in the proof of Proposition 3 that supp(δ) = A∞ whenever int
(⋂

i∈I W̄i ∩ cou(A∞)
)
6=

∅ does not rely on |I| = 2. Thus, when int
(⋂

i∈I W̄i ∩ cou(A∞)
)
6= ∅, we can characterize

the set of supportable actions for any number of players. This is sometimes already enough
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to imply a non-trivial upper bound on payoffs.

Second, Lemma 1 implies that if a payoff vector v ∈ F̊ satisfies vi > ui + 1−δ
δ
di for all

i ∈ I, then v ∈ Emed(δ). This shows that private monitoring cannot do “much”better than

mediated perfect monitoring when the players are at least moderately patient (e.g., it cannot

do more than order 1− δ better). It also shows that the usual full-dimensionality conditions

for the perfect monitoring folk theorem (Fudenberg and Maskin, 1986; Abreu, Dutta, and

Smith, 1994) are not needed under mediated perfect monitoring.

Third, suppose there is a player i whose opponents −i all have identical payoff functions:

∃i : ∀j, j′ ∈ I \ {i}, uj(a) = uj′(a) for all a ∈ A. Then the proof of Theorem 1 can be

adapted to show that private monitoring cannot outperform mediated perfect monitoring

in a direction where the extremal payoff vector v lies in
⋂
j∈−iWj (but not necessarily in

Wi). For example, if the game involves one firm and many identical consumers, then the

consumers’best equilibrium payoff under mediated perfect monitoring is at least as good as

under private monitoring. We can also show that the same result holds if the preferences of

players −i are suffi ciently close to each other.

Finally, in a companion paper (Sugaya and Wolitzky, 2016) we investigate repeated n-

player oligopoly games and show that private monitoring cannot outperformmediated perfect

monitoring for any number of players and any discount factor in a class of “concave”games

which includes linear Cournot and differentiated-product Bertrand competition.

10 Conclusion

This paper gives a simple suffi cient condition (δ > δ∗) under which the equilibrium payoff set

in a two-player repeated game with mediated perfect monitoring is a tight, recursive upper

bound on the equilibrium payoff set in the same game with any imperfect private monitoring

structure. There are at least three perspectives from which this result may be of interest.

First, it shows that simple, recursive methods can be used to upper-bound the equilibrium

payoff set in a repeated game with imperfect private monitoring at a fixed discount factor,

even though the problem of recursively characterizing this set seems intractable. Second,

it characterizes the set of payoffs that can arise in a repeated game for some monitoring

structure. Third, it shows that information is valuable in mediated repeated games, in that
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players cannot benefit from imperfections in the monitoring technology when δ > δ∗.

These different perspectives on our results suggest different questions for future research.

Do moderately patient players always benefit from any improvement in the monitoring tech-

nology, or only from going all the way to perfect monitoring? Is it possible to characterize

the set of payoffs that can arise for some monitoring structure even if δ < δ∗? If we do know

the monitoring structure under which the game is being played, is there a general way of

using this information to tighten our upper bound? Answering these questions may improve

our understanding of repeated games with private monitoring at fixed discount factors, even

if a full characterization of the equilibrium payoff set in such games remains out of reach.

Appendix A: Proof of Proposition 1

Mediated Perfect Monitoring

As the players’ stage game payoffs from any profile other than (U,L) sum to at most 3,

it follows that the players’ per-period payoffs may sum to more than 3 only if (U,L) is

played in some period t with positive probability. For this to occur in equilibrium, player 1’s

expected continuation payoff from playing U must exceed her expected continuation payoff

from playing D by more than (1− δ) 1 = 5
6
, her instantaneous gain from playing D rather

than U . In addition, player 1 can guarantee herself a continuation payoff of 0 by always

playing D, so her expected continuation payoff from playing U must exceed 1
δ

(
5
6

)
= 5. This

is possible only if the probability that (T,M) is played in period t + 1 when U is played in

period t exceeds the number p such that

(
1− 1

6

)
[p (6) + (1− p) (3)] +

1

6
(6) = 5,

or p = 3
5
. In particular, there must exist a period t + 1 history ht+1

2 of player 2’s such that

(T,M) is played with probability at least 3
5
in period t+ 1 conditional on reaching ht+1

2 . At

such a history, player 2’s payoff from playing M is at most

(
1− 1

6

)[
3

5
(−3) +

2

5
(3)

]
+

1

6
(3) = 0.
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On the other hand, noting that player 2 can guarantee himself a continuation payoff of 0 by

playing 1
2
L+ 1

2
M , player 2’s payoff from playing L at this history is at least

(
1− 1

6

)[
3

5
(3) +

2

5
(−3)

]
+

1

6
(0) =

1

2
.

Therefore, player 2 has a profitable deviation, so no such equilibrium can exist.

Private Monitoring

Consider the following imperfect private monitoring structure. Player 2’s action is perfectly

observed. Player 1’s action is perfectly observed when it equals T or B. When player 1 plays

U or D, player 2 observes one of two possible private signals, m and r. Whenever player 1

plays U , player 2 observes signal m with probability 1; whenever player 1 plays D, player 2

observes signals m and r with probability 1
2
each.

We now describe a strategy profile under which the players’payoffs sum to 23
7
≈ 3.29.

Player 1’s strategy: In each odd period t = 2n + 1 with n = 0, 1, ..., player 1 plays
1
3
U + 2

3
D. Let a1(n) denote the realization of this mixture. In the even period t = 2n+ 2, if

the previous action a1(n) equals U , then player 1 plays T ; if the previous action a1(n) equals

D, then player 1 plays B. If in the previous period player 1 deviated to T or B, then player

1 plays D.

Player 2’s strategy: In each odd period t = 2n + 1 with n = 0, 1, ..., player 2 plays L.

Let y2(n) denote the realization of player 2’s private signal. In the even period t = 2n + 2,

if the previous private signal y2(n) equals m, then player 2 plays M ; if the previous signal

y2(n) equals r, then player 2 plays R. If in the previous period player 1 deviated to T or B,

then player 2 plays R.

We check that this strategy profile, together with any consistent belief system, is a

sequential equilibrium.

In an odd period, player 1’s payoff from U is the solution to v = 5
6

(2) + 1
6

5
6

(6) + 1
62v.

On the other hand, her payoff from D is 5
6

(3) + 1
6

5
6

(0) + 1
62v. Hence, player 1 is indifferent

between U and D (and clearly prefers either of these to T or B).

In addition, playing L is a myopic best response for player 2, player 1’s continuation

play is independent of player 2’s action, and the distribution of player 2’s signal is also
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independent of player 2’s action. Hence, playing L is optimal for player 2.

Next, in an even period, it suffi ces to check that both players always play myopic best

responses, as in even periods continuation play is independent of realized actions and signals.

If in the previous period player 1 deviated to T or B, then the players play the static Nash

equilibrium (D,R). If player 1’s last action was a1(n) = U , then she believes that player 2’s

signal is y2(n) = m with probability 1 and thus that he will play M . Hence, playing T is

optimal. If instead player 1’s last action was a1(n) = D, then she believes that player 2’s

signal is equal to m and r with probability 1
2
each, and thus that he will play 1

2
M + 1

2
R.

Hence, both T and B are optimal.

On the other hand, if player 2 observes signal y2(n) = m, then his posterior belief that

player 1’s last action was a1(n) = U is

1
3

(1)
1
3

(1) + 2
3

(
1
2

) =
1

2
.

Hence, player 2 is indifferent among all of his actions. If player 2 observes y2(n) = r, then

his posterior is that a1(n) = D with probability 1, so that M and R are optimal.

Finally, expected payoffs under this strategy profile in odd periods sum to 1
3

(4) + 2
3

(3) =

10
3
, and in even periods sum to 3. Therefore, per-period expected payoffs sum to

(
1− 1

6

)(
10

3
+

1

6
(3)

)(
1 +

1

62
+

1

64
+ . . .

)
=

23

7
.

Three remarks on the proof: First, the various indifferences in the above argument result

only because we have chosen payoffs to make the example as simple as possible. One can

modify the example to make all incentives strict.19 Second, players’payoffs are measurable

with respect to their own actions and signals. In particular, the required realized payoffs for

player 2 are as follows:

(Action,Signal) Pair: (L,m) (L, r) (M,m) (M, r) (R,m) (R, r)

Realized Payoff: 2 −2 0 0 0 0

19The only non-trivial step in doing so is giving player 1 a strict incentive to mix in odd periods. This
can be achieved by introducing correlation between the players’actions in odd periods.
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Third, a similar argument shows that imperfect public monitoring with private strategies

can also outperform mediated perfect monitoring.20

Appendix B: Proof of Lemma 6

It is useful to introduce a family of auxiliary value functions
(
wT
)∞
T=1

and
(
w∗,T

)∞
T=1
, which

will converge to w and w∗ pointwise in rt as T →∞. For periods t ≥ T , define

wT (rt) = wµ̄(rt) and w∗,T (rt−1) = wµ̄(rt−1). (16)

On the other hand, for periods t ≤ T − 1, define w∗,T (rt), ρT (rt), and wT (rt) given wT (rt+1)

recursively, as follows. First, define

w∗,T (rt) = (1− δ)u
(
µ̄(rt)

)
+ δE

[
wT (rt+1)|rt

]
. (17)

Note that, for t = T − 1, this definition is compatible with (16). Second, given w∗,T (rt),

define

wT (rt) = 1{wµ̄(rt)∈W1}
{
ρT (rt)w∗,T (rt) +

(
1− ρT (rt)

)
w̄1
}

+ 1{wµ̄(rt)/∈W1}w̄
1, (18)

where, when wµ̄(rt) ∈ W1, ρT (rt) is the largest number in [0, 1] such that

ρT (rt)w∗,T2 (rt) +
(
1− ρT (rt)

)
w̄1

2 ≥ wµ̄2 (rt). (19)

We show that w∗,T converges to w∗.

Lemma 7 limT→∞w
∗,T (rt) = w∗(rt) for all rt ∈ At.

Proof. By Lemma 5, it suffi ces to show that F (wT ) = wT+1. For t ≥ T + 1, (16) implies

that w∗,T+1(rt−1) = wµ̄(rt−1). On the other hand, given wT , w∗(wT2 ) is the value calculated

20Here is a sketch: Modify the current example by adding a strategy L′ for player 2, which is an exact
duplicate of L as far as payoffs are concerned, but which switches the interpretation of signals m and r.
Assume that player 1 cannot distinguish between L and L′, and modify the equilibrium by having player 2
play 1

2L+ 1
2L
′ in odd periods. Then, even if the signals m and r are publicly observed, their interpretations

will be private to player 2, and essentially the same argument as with private monitoring applies.
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according to (8). Since wT (rt) = wµ̄(rt) by (16), we have w∗(wT2 )(rt−1) = wµ̄(rt−1) by (8).

Hence,

w∗(wT2 )(rt−1) = w∗,T+1(rt−1). (20)

For t ≤ T , by (17), we have

w∗,T+1(rt) = (1− δ)u
(
µ̄(rt)

)
+ δE

[
wT+1(rt+1)|rt

]
.

By (18),

wT+1(rt) = 1{wµ̄(rt)∈W1}
{
ρT+1(rt)w∗,T+1(rt) +

(
1− ρT+1(rt)

)
w̄1
}

+ 1{wµ̄(rt)/∈W1}w̄
1

= 1{wµ̄(rt)∈W1}
{
ρT+1(rt)w∗(wT )(rt) +

(
1− ρT+1(rt)

)
w̄1
}

+ 1{wµ̄(rt)/∈W1}w̄
1,

where the second equality follows from (20) for t = T , and follows by induction for t < T .

Recall that ρT+1 is defined by (19). On the other hand, ρ(wT )(rt) is defined in (10) using

w∗ = w∗(wT ). Since w∗,T+1(rt) = w∗(wT2 )(rt), we have ρT+1(rt) = ρ(wT )(rt). Hence,

wT+1(rt) = 1{wµ̄(rt)∈W1}
{
ρ(wT )(rt)w∗(wT )(rt) +

(
1− ρ(wT )(rt)

)
w̄1
}

+ 1{wµ̄(rt)/∈W1}w̄
1.

= F (wT )(rt),

as desired.

As w∗,T (rt), wT (rt), and ρT (rt) converge to w∗(rt), w(rt), and ρ(rt) by Lemma 7, the

following lemma implies Lemma 6:

Lemma 8 For all t = 1, ..., T − 1, if wµ̄(rt) ∈ W1, then ρT (rt)w∗,T (rt) +
(
1− ρT (rt)

)
w̄1

Pareto dominates wµ̄(rt).

Proof. For t = T − 1, the claim is immediate since w∗,T (rt) = wµ̄(rt) and so ρT (rt) = 1.

Suppose that the claim holds for each period τ ≥ t + 1. We show that it also hold for

period t. By construction, ρT (rt)w∗,T2 (rt) +
(
1− ρT (rt)

)
w̄1

2 ≥ wµ̄2 (rt). Thus, it suffi ces to

show that ρT (rt)w∗,T1 (rt) +
(
1− ρT (rt)

)
w̄1

1 ≥ wµ̄1 (rt).
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Note that

w∗,T (rt)

= (1− δ)u
(
µ̄(rt)

)
+ δE

[
wT (rt+1)|rt

]
= (1− δ)u

(
µ̄(rt)

)
+ δ


∑

rt+1:wµ̄(rt+1)∈W1
Prµ̄ (rt+1|rt)

{
ρT (rt+1)w∗,T (rt+1) +

(
1− ρT (rt+1)

)
w̄1
}

+
∑

rt+1:wµ̄(rt+1)/∈W1
Prµ̄ (rt+1|rt) w̄1

 ,

while

wµ̄(rt) = (1− δ)u
(
µ̄(rt)

)
+ δ

∑
rt+1

Prµ̄
(
rt+1|rt

)
wµ̄(rt).

Hence,

w∗,T (rt)− wµ̄(rt)

= δ


∑

rt+1:wµ̄(rt+1)∈W1
Prµ̄ (rt+1|rt)

{
ρT (rt+1)w∗,T (rt+1) +

(
1− ρT (rt+1)

)
w̄1 − wµ̄(rt+1)

}
+
∑

rt+1:wµ̄(rt+1)/∈W1
Prµ̄ (rt+1|rt) {w̄1 − wµ̄(rt+1)}

 .

When wµ̄(rt+1) ∈ W1, the inductive hypothesis implies that

ρT (rt+1)w∗,T (rt+1) +
(
1− ρT (rt+1)

)
w̄1 − wµ̄(rt+1) ≥ 0.

On the other hand, note that

∑
rt+1:wµ̄(rt+1)/∈W1

Prµ̄
(
rt+1|rt

) {
w̄1 − wµ̄(rt+1)

}
= l(rt)(w̄1 − w̃(rt))

for some number l(rt) ≥ 0 and vector w̃(rt) /∈ W1. In total, we have

w∗,T (rt) = wµ̄(rt) + l(rt)(w̄1 − ŵ(rt)) (21)

for some number l(rt) ≥ 0 and vector ŵ(rt) ≤ w̃(rt) /∈ W1. Since w̄1
1 ≥ ŵ1(rt), if w̄1

1 ≥

wµ̄1 (rt) then (21) implies that min
{
w∗,T1 (rt), w̄1

1

}
≥ wµ̄1 (rt), and therefore ρT (rt)w∗,T1 (rt) +(

1− ρT (rt)
)
w̄1

1 ≥ wµ̄1 (rt). In addition, if wµ̄(rt+1) ∈ W1 with probability one, then the
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inductive hypothesis implies that w∗,T2 (rt) ≥ wµ̄2 (rt), and therefore ρT (rt) = 1 and

ρT (rt)w∗,T1 (rt) +
(
1− ρT (rt)

)
w̄1

1 = w∗,T1 (rt)

= wµ̄1 (rt) + l(rt)(w̄1
1 − ŵ1(rt))

≥ wµ̄1 (rt).

Hence, it remains only to consider the case where w̄1
1 < wµ̄1 (rt) and l(rt) > 0.

In this case, take a normal vector λ1 of the supporting hyperplane of F at w̄1. We have

λ1
1 ≥ 0 and λ1

2 > 0, and in addition (as ŵ (rt) ≤ w̃ (rt) ∈ F and wµ̄ (rt) ∈ F)

λ1 ·
(
w̄1 − ŵ(rt)

)
≥ 0,

λ1 ·
(
w̄1 − wµ̄(rt)

)
≥ 0.

As w̄1
1 − ŵ1(rt) > 0 and w̄1

1 − w
µ̄
1 (rt) < 0, we have

ŵ2(rt)− w̄1
2

w̄1
1 − ŵ1(rt)

≤ λ1
1

λ1
2

≤ w̄1
2 − w

µ̄
2 (rt)

wµ̄1 (rt)− w̄1
1

.

Next, by (21), the slope of the line from wµ̄(rt) to w∗,T (rt) equals the slope of the line

from ŵ(rt) to w̄1. Hence,

wµ̄2 (rt)− w∗,T2 (rt)

w∗,T1 (rt)− wµ̄1 (rt)
≤ w̄1

2 − w
µ̄
2 (rt)

wµ̄1 (rt)− w̄1
1

.

In this inequality, the denominator of the left-hand side and the numerator of the right-hand

side are both positive: w∗,T1 (rt) > wµ̄1 (rt) by (21) and l(rt) > 0, while w̄1
2 > wµ̄2 (rt) because

wµ̄ (rt) ∈ W1 and wµ̄ (rt) 6= w̄1
2. Therefore, the inequality is equivalent to

wµ̄2 (rt)− w∗,T2 (rt)

w̄1
2 − w

µ̄
2 (rt)

≤ w∗,T1 (rt)− wµ̄1 (rt)

wµ̄1 (rt)− w̄1
1

.

Now, let q ∈ [0, 1] be the number such that

qw∗,T1 (rt) + (1− q) w̄1
1 = wµ̄1 (rt).

45



Note that

1− ρT (rt) =
wµ̄2 (rt)− w∗,T2 (rt)

w̄1
2 − w

µ̄
2 (rt)

,

while

1− q =
w∗,T1 (rt)− wµ̄1 (rt)

wµ̄1 (rt)− w̄1
1

.

Hence, ρT (rt) > q. Finally, we have seen that w̄1
1 ≤ wµ̄1 (rt) ≤ w∗,T1 (rt), so we have

ρT (rt)w∗,T1

(
rt
)

+
(
1− ρT (rt)

)
w̄1

1 ≥ qw∗,T1

(
rt
)

+ (1− q) w̄1
1 = wµ̄1 (rt).
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Online Appendix: Proof of Proposition 2

We prove that Etalk (δ, p) = Emed (δ). In our construction, players ignore private signals yi,t
observed in periods t = 1, 2, .... That is, only signal yi,0 observed in period 0 is used. Hence
we can see p as an ex ante correlation device. Since we consider two-player games, whenever
we say players i and j, we assume that they are different players: i 6= j.
The structure of the proof is as follows: take any strategy of the mediator, µ̃, that

satisfies inequality (3) in the text (perfect monitoring incentive compatibility); and let ṽ be
the value when the players follow µ̃. Since each v̂ ∈ Emed (δ) has a corresponding µ̂ that
satisfies perfect monitoring incentive compatibility, it suffi ces to show that, for each ε > 0,
there exists a sequential equilibrium whose equilibrium payoff v satisfies ‖v − ṽ‖ < ε in the
following environment:

1. At the beginning of the game, each player i receives a message mmediator
i from the

mediator.

2. In each period t, the stage game proceeds as follows:

(a) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1), each player i sends the first
message m1st

i,t simultaneously.

(b) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1,m
1st
t ), each player i takes

action ai,t simultaneously.

(c) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1,m
1st
t , at), each player i sends

the second message m2nd
i,t simultaneously.

We call this environment “perfect monitoring with cheap talk.”
To this end, from µ̃, we first create a strict full-support equilibrium µ with mediated per-

fect monitoring that yields payoffs close to ṽ. We then move from µ to a similar equilibrium
µ∗, which will be easier to transform into an equilibrium with perfect monitoring with cheap
talk. Finally, from µ∗, we create an equilibrium with perfect monitoring with cheap talk
with the same on-path action distribution.

Construction and Properties of µ

In this subsection, we consider mediated perfect monitoring throughout. Since W̊ ∗ 6= ∅, by
Lemma 2 in the text, there exists a strict full support equilibrium µstrict with mediated perfect
monitoring. As in the proof of that lemma, consider the following strategy of the mediator:
In period 1, the mediator draws one of two states, Rṽ and Rperturb, with probabilities 1− η
and η, respectively. In state Rṽ, the mediator’s recommendation is determined as follows: If
no player has deviated up to period t, the mediator recommends rt according to µ̃(htm). If
only player i has deviated, the mediator recommends r−i,t to player j according to α∗j , and
recommends some best response to α∗j to player i. Multiple deviations are treated as in the
proof of Lemma 1 in the text. On the other hand, in state Rperturb, the mediator follows the
equilibrium µstrict. Let µ denote this strategy of the mediator. From now on, we fix η > 0
arbitrarily.
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With mediated perfect monitoring, since µstrict has full support, player i believes that the
mediator’s state is Rperturb with positive probability after any history. Therefore, by perfect
monitoring incentive compatibility and the fact that µstrict is a strict equilibrium, it is always
strictly optimal for each player i to follow her recommendation. This means that, for each
period t, there exist εt > 0 and Tt <∞ such that, for each player i and on-path history ht+1

m ,
we have

(1− δ)Eµ
[
ui(rt) | htm, ri,t

]
+ δEµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(µ(hτm)) | htm, ri,t

]
> max

ai∈Ai
(1− δ)E

[
ui(ai, r−i,t) | htm, ri,t

]
+(δ − δTt)

{
(1− εt) max

âi
ui(âi, α

εt
j ) + εt max

a∈A
ui(a)

}
+ δTt max

a∈A
ui(a). (22)

That is, suppose that if player i unilaterally deviates from on-path history, then player j
virtually minmaxes player i for Tt − 1 periods with probability 1 − εt. (Recall that α∗j is
the minmax strategy and αεj is a full support perturbation of α

∗
j .) Then player i has a

strict incentive not to deviate from any recommendation in period t on equilibrium path.
Equivalently, since µ is an full support recommendation, player i has a strict incentive not
to deviate unless she herself has deviated.
Moreover, for suffi ciently small εt > 0, we have

(1− δ)Eµ
[
ui(rt) | htm, ri,t

]
+ δEµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(µ(hτm)) | htm

]

> (1− δTt)
{

(1− εt) max
âi

ui(âi, α
εt
j ) + εt max

a∈A
ui(a)

}
+ δTt max

a∈A
ui(a). (23)

That is, if a deviation is punished with probability 1−εt for Tt periods including the current
period, then player i believes that the deviation is strictly unprofitable.21

For each t, we fix εt > 0 and Tt < ∞ with (22) and (23). Without loss, we can take εt
decreasing: εt ≥ εt+1 for each t.

Construction and Properties of µ∗

In this subsection, we again consider mediated perfect monitoring. We further modify µ and
create the following mediator’s strategy µ∗: At the beginning of the game, for each i, t, and
at, the mediator draws rpunish

i,t (at) according to αεti . In addition, for each i and t, she draws
ωi,t ∈ {R,P} such that ωi,t = R (regular) and P (punish) with probability 1 − pt and pt,
respectively, independently across i and t. We will pin down pt > 0 in Lemma 9. Moreover,
given ωt = (ω1,t, ω2,t), the mediator chooses rt(at) for each at as follows: If ω1,t = ω2,t = R,
then she draws rt(at) according to µ(at) (r). If ωi,t = R and ωj,t = P , then she draws ri,t(at)

21If the current on-path recommendation schedule Prµ(rj,t | htm, ri,t) is very close to α∗j , then (23) may be
more restrictive than (22).

50



from Prµ(ri | rpunish
j,t (at)) while she draws rj,t(at) randomly from

∑
aj∈Aj

aj
|Aj | .

22 Finally, if
ω1,t = ω2,t = P , then she draws ri,t(at) randomly from

∑
ai∈Ai

ai
|Ai| for each i independently.

Since µ has full support, µ∗ is well defined.
As will be seen, we will take pt suffi ciently small. In addition, recall that η > 0 (the

perturbation of µ̃ to µ) is arbitrarily. In the next subsection and onward, we construct an
equilibrium with perfect monitoring with cheap talk that has the same equilibrium action
distribution as µ∗. Since pt is small and η > 0 is arbitrary, constructing such an equilibrium
suffi ces to prove Proposition 2.
At the start of the game, the mediator draws ωt, r

punish
i,t (at), and rt(at) for each i, t, and

at. Given them, the mediator sends messages to the players as follows:

1. At the start of the game, the mediator sends
((
rpunish
i,t (at)

)
at∈At−1

)∞
t=1

to player i.

2. In each period t, the stage game proceeds as follows:

(a) The mediator decides ω̄t(at) ∈ {R,P}2 as follows: if there is no unilateral deviator
(defined below), then the mediator sets ω̄t(at) = ωt. If instead player i is a
unilateral deviator, then the mediator sets ω̄i,t(at) = R and ω̄j,t(at) = P .

(b) Given ω̄i,t(at), the mediator sends ω̄i,t(at) to player i. In addition, if ω̄i,t(at) = R,
then the mediator sends ri,t(at) to player i as well.

(c) Given these messages, player i takes an action. In equilibrium, if player i has not
yet deviated, then player i takes ri,t(at) if ω̄i,t(at) = R and takes rpunish

i,t (at) if
ω̄i,t(a

t) = P . For notational convenience, let

ri,t =

{
ri(a

t) if ω̄i,t(at) = R,

rpunish
i,t (at) if ω̄i,t(at) = P

be the action that player i is supposed to take if she has not yet deviated. Her
strategy after her own deviation is not specified.

We say that player i has unilaterally deviated if there exist τ ≤ t− 1 and a unique i such
that (i) for each τ ′ < τ , we have an,τ ′ = rn,τ ′ for each n ∈ {1, 2} (no deviation happened
until period τ − 1) and (ii) ai,τ 6= ri,τ and aj,τ = rj,τ (player i deviates in period τ and player
j does not deviate).
Note that µ∗ is close to µ on the equilibrium path for suffi ciently small pt. Hence, on-

path strict incentive compatibility for player i follows from (22). Moreover, the incentive
compatibility condition analogous to (23) also holds.

Lemma 9 There exists {pt}∞t=1 with pt > 0 for each t such that it is strictly optimal for each
player i to follow her recommendation: For each player i and history

hti ≡
(((

rpunish
i,t

(
at
))

at∈At−1

)∞
t=1

, at, (ω̄τ (a
τ ))t−1

τ=1 , ω̄i,t(a
t), (ri,τ )

t
τ=1

)
,

22As will be seen below, if ωj,t = P , then player j is supposed to take rpunishj,t (at). Hence, rj,t(at) does
not affect the equilibrium action. We define rj,t (at) so that, when the mediator sends a message only at
the beginning of the game (in the game with perfect monitoring with cheap talk), she sends a “dummy
recommendation”rj,t(at) so that player j does not realize that ωj,t = P until period t.
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if player i herself has not yet deviated, we have the following two inequalities:

1. If a deviation is punished by αεtj for the next period Tt periods with probability 1− εt−∑t+Tt−1
τ=t pτ , then it is strictly unprofitable:

(1− δ)Eµ∗
[
ui(ri,t, aj,t) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]
> max

ai∈Ai
(1− δ)Eµ∗

[
ui(ai, aj,t) | hti

]
+(δ − δTt)

{(
1− εt −

∑t+Tt−1
τ=t pτ

)
max
âi

ui(âi, α
εt
j ) +

(
εt +

∑t+Tt−1
τ=t pτ

)
max
a∈A

ui(a)

}
+δTt max

a∈A
ui(a). (24)

2. If a deviation is punished by αεtj from the current period with probability 1 − εt −∑t+Tb−1
τ=t pt, then it is strictly unprofitable:

(1− δ)Eµ∗
[
ui(ri,t, aj,t) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]

> (1− δTt)
{(

1− εt −
∑t+Tt−1

τ=t pτ

)
max
âi

ui(âi, α
εt
j ) +

(
εt +

∑t+Tt−1
τ=t pτ

)
max
a∈A

ui(a)

}
+δTt max

a∈A
ui(a). (25)

Moreover, Eµ∗ does not depend on the specification of player j’s strategy after player j’s
own deviation, for each history hti such that player i has not deviated.

Proof. Since µ∗ has full support on the equilibrium path, a player i who has not yet deviated
always believes that player j has not deviated. Hence, Eµ∗ is well defined without specifying
player j’s strategy after player j’s own deviation.
Moreover, since pt is small and ωj,t is independent of (ωτ )

t−1
τ=1 and ωi,t, given (ω̄τ (a

τ ))t−1
τ=1

and ω̄i,t(at) (which are equal to (ωτ )
t−1
τ=1 and ωi,t on-path), player i believes that ω̄j,t(a

t) is
equal to ωj,t and ωj,t is equal to R with a high probability, unless player i has deviated. Since

Prµ∗(rj,t | ω̄i,t(at),
{
ω̄j,t(a

t) = R
}
, hti) = Prµ∗(rj,t | at, ri,t),

we have that the difference

Eµ∗
[
ui(ri,t, aj,t) | hti

]
− Eµ

[
ui(ri,t, aj,t) | rti , at, ri,t

]
is small for small pt.
Further, if pτ is small for each τ ≥ t+1, then since ωτ is independent of ωt with t ≤ τ−1,

regardless of (ω̄τ (a
τ ))tτ=1, player i believes that ω̄i,τ (a

τ ) = ω̄j,τ (a
τ ) = R with high probability

for τ ≥ t + 1 on the equilibrium path. Since the distribution of the recommendation given
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µ∗ is the same as that of µ given aτ and ω̄i,τ (aτ ) = ω̄j,τ (a
τ ) = R, we have that

Eµ∗
[

(1− δ)
∞∑

τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | hti, ai,t = ri,t

]
−Eµ

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(ri,τ , aj,τ ) | rti , at, ri,t

]

is small for small pτ with τ ≥ t+ 1.
Hence, (22) and (23) imply that, there exists p̄t > 0 such that, if pτ ≤ p̄t for each τ ≥ t,

then the claims of the lemma hold. Hence, if we take pt ≤ minτ≤t p̄τ , then the claims hold.

We fix {pt}∞t=1 so that Lemma 9 holds. This fully pins down µ
∗ with mediated perfect

monitoring.

Construction with Perfect Monitoring with Cheap Talk

Given µ∗ with mediated perfect monitoring, we define the equilibrium strategy with perfect
monitoring with cheap talk such that the equilibrium action distribution is the same as
µ∗. We must pin down the following four objects: at the beginning of the game, what
message mmediator

i player i receives from the mediator; what message m1st
i,t player i sends at

the beginning of period t; what action ai,t player i takes in period t; and what message m2nd
i,t

player i sends at the end of period t.

Intuitive Argument

As in µ∗, at the beginning of the game, for each i, t, and at, the mediator draws rpunish
i,t (at)

according to αεti . In addition, with pt > 0 pinned down in Lemma 9, she draws ωt ∈ {R,P}2

and rt(at) as in µ∗ for each t and at. She then defines ω̄t(at) from at, rt(at), and ωt as in µ∗.
Intuitively, the mediator sends all the information about((

ω̄t(a
t), rt

(
at
)
, rpunish

1,t

(
at
)
, rpunish

2,t

(
at
))

at∈At−1

)∞
t=1

through the initial messages (mmediator
1 ,mmediator

2 ). In particular, the mediator directly sends(
(rpunish
i,t (at))at∈At−1

)∞
t=1
to player i as a part ofmmediator

i . Hence, we focus on how we replicate

the role of the mediator in µ∗ of sending (ω̄t(a
t), rt (at)) in each period, depending on realized

history at.
The key features to establish are (i) player i does not know the instructions for the other

player, (ii) before player i reaches period t, player i does not know her own recommendations
for periods τ ≥ t (otherwise, player i would obtain more information than the original
equilibrium µ∗ and thus might want to deviate), and (iii) no player wants to deviate (in
particular, if player i deviates in actions or cheap talk, then the strategy of player j is as if
the state were ω̄j,t = P in µ∗, for a suffi ciently long time with a suffi ciently high probability).
The properties (i) and (ii) are achieved by the same mechanism as in Theorem 9 of Heller,

Solan and Tomala (2012, henceforth HST). In particular, without loss, let Ai = {1i, ..., ni}
be player i’s action set. We can view ri,t(a

t) as an element of {1, ..., ni}. The mediator at
the beginning of the game draws rt(at) for each at.
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Instead of sending ri,t(at) directly to player i, the mediator encodes ri,t(at) as follows: For
a suffi ciently large N t ∈ Z to be determined, we define pt = N tninj. This pt corresponds to
ph in HST. Let Zpt ≡ {1, ..., pt}. The mediator draws xji,t(at) uniformly and independently
from Zpt for each i, t, and at. Given them, she defines

yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni). (26)

Intuitively, yii,t(a
t) is the “encoded instruction”of ri,t (at), and to obtain ri,t(at) from yii,t(a

t),
player i needs to know xji,t(a

t). The mediator gives
(
(yii(a

t))at∈At−1

)∞
t=1
to player i as a part of

mmediator
i . At the same time, she gives

((
xji,t(a

t)
)
at∈At−1

)∞
t=1
to player j as a part of mmediator

j .

At the beginning of period t, player j sends xji,t(a
t) by cheap talk as a part of m1st

j,t , based
on the realized action at, so that player i does not know ri,t(a

t) until period t. (Throughout
the proof, the superscript of a variable represents who is informed about the variable, and
the subscript represents whose recommendation the variable is about.)
In order to incentivize player j to tell the truth, the equilibrium should embed a mecha-

nism that punishes player i if she tells a lie. In HST, this is done as follows: The mediator
draws αii,t(a

t) and βii,t(a
t) uniformly and independently from Zpt , and defines

uji,t(a
t) ≡ αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt). (27)

The mediator gives xji,t(a
t) and uji,t(a

t) to player j while she gives αii,t(a
t) and βii,t(a

t) to
player i. In period t, player j is supposed to send xji,t(a

t) and uji,t(a
t) to player i. If player i

receives xji,t(a
t) and uji,t(a

t) with

uji,t(a
t) 6= αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt), (28)

then player i interprets that player j has deviated. For suffi ciently large N t, since player
j does not know αii,t(a

t) and βii,t(a
t), if player j tells a lie about xji,t(a

t), then with a high
probability, player j creates a situation where (28) holds.
Since HST considers Nash equilibrium, they let player i minimax player j forever after

(28) holds. On the other hand, since we consider sequential equilibrium, as in the proof of
Lemma 2 in the text, we will create a coordination mechanism such that, if player j tells
a lie, then with high probability player i minimaxes player j for a long time and player i
assigns probability zero to the event that player i punishes player j.
To this end, we consider the following coordination: First, if and only if ω̄i,t(at) = R, the

mediator defines uji,t(a
t) as (27). Otherwise, uji,t(a

t) is randomly drawn. That is,

uji,t(a
t) ≡

{
αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt) if ω̄i,t(at) = R,

uniformly distributed over Zpt if ω̄i,t(at) = P.
(29)

Since both ω̄i,t(at) = R and ω̄i,t(at) = P happen with a positive probability, player i after
receiving uji,t(a

t) with uji,t(a
t) 6= αii,t(a

t)×xji,t(at) +βii,t(a
t) (mod pt) interprets that ω̄i,t(at) =

P . For notational convenience, let ω̂i,t(at) ∈ {R,P} be player i’s interpretation of ω̄i,t(at).
After ω̂i,t(at) = P , she takes period-t action according to rpunish

i,t (at). Given this inference, if
player j tells a lie about uji,t(a

t) with ω̄i,t(at) = R, then with a high probability, she induces
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a situation with uji,t(a
t) 6= αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt), and player i punishes player

j in period t (without noticing player j’s deviation).
Second, switching to rpunish

i,t (at) for period t only may not suffi ce, if player j believes that
player i’s action distribution given ω̄i,t(at) = R is close to the minimax strategy. Hence, we
ensure that, once player j deviates, player i takes rpunish

i,τ (aτ ) for a suffi ciently long time.
To this end, we change the mechanism so that player j does not always know uji,t(a

t).
Instead, the mediator draws pt independent random variables vji,t(n, a

t) with n = 1, ..., pt

uniformly from Zpt . In addition, she draws nii,t(at) uniformly from Zpt . The mediator defines
uji,t(n, a

t) for each n = 1, ..., pt as follows:

uji,t(n, a
t) =

{
uji,t(a

t) if n = nii,t(a
t),

vji,t(n, a
t) if otherwise,

that is, uji,t(n, a
t) corresponds to uji,t(a

t) with (29) only if n = nii,t(a
t). For other n, uji,t(n, a

t)
is completely random.
The mediator sends nii,t(a

t) to player i, and sends {uji,t(n, at)}n∈Zpt to player j. In addition,
the mediator sends nji,t(a

t) to player j, where

nji,t(a
t) =

{
nii,t(a

t) if ωi,t−1(at−1) = P,
uniformly distributed over Zpt if ωi,t−1(at−1) = R

is equal to nii,t(a
t) if and only if last-period ω̄i,t−1(at−1) is equal to P .

In period t, player j is asked to send xji,t(a
t) and uji,t(n, a

t) with n = nii,t(a
t), that is, send

xji,t(a
t) and uji,t(a

t). If and only if player j’s messages x̂ji,t(a
t) and ûji,t(a

t) satisfy

ûji,t(a
t) = αii,t(a

t)× x̂ji,t(at) + βii,t(a
t) (mod pt),

player i interprets ω̂i,t(at) = R. If player i has ω̂i,t(at) = R, then player i knows that player
j needs to know nii,t+1(at+1) to send the correct uji,t+1(n, at+1) in the next period. Hence, she
sends nii,t+1(at+1) to player j. If player i has ω̂i,t(at) = P , then she believes that player j
knows nii,t+1(at+1) and does not send nii,t+1(at+1).
Given this coordination, once player j creates a situation with ω̄i,t(at) = R but ω̂i,t(at) =

P , then player j cannot receive nii,t+1(at+1). Without knowing nii,t+1(at+1), with a large N t+1,
with a high probability, player j cannot know which uji,t+1(n, at+1) she should send. Then,
again, she will create a situation with

ûji,t+1(at+1) 6= αii,t+1(at+1)× x̂ji,t(at+1) + βii,t(a
t+1) (mod pt+1),

that is, ω̂i,t+1(at+1) = P . Recursively, player i has ω̂i,τ (aτ ) = P for a long time with a high
probability if player j tells a lie.
Finally, if player j takes a deviant action in period t, then the mediator has drawn

ω̄i,τ (a
τ ) = P for each τ ≥ t+1 for aτ corresponding to the realized history. With ω̄i,τ (aτ ) = P ,

in order to avoid ω̂i,τ (aτ ) = P , player j needs to create a situation

ûji,τ (a
τ ) = αii,τ (a

τ )× x̂ji,τ (aτ ) + βii,τ (a
τ ) (mod pτ )
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without knowing αii,τ (a
τ ) and βii,τ (a

τ ) while the mediator’s message does not tell her what is
αii,t(a

t)×xji,t(at) +βii,t(a
t) (mod pτ ) by (29). Hence, for suffi ciently large N τ , player j cannot

avoid ω̂i,τ (aτ ) = P with a nonnegligible probability. Hence, player j will be minmaxed from
the next period with a high probability.
The above argument in total shows that, if player j deviates, whether in communication

or action, then she will be minmaxed for suffi ciently long time. Lemma 9 ensures that player
j does not want to tell a lie or take a deviant action.

Formal Construction

Let us formalize the above construction: As in µ∗, at the beginning of the game, for each i,
t, and at, the mediator draws rpunish

i,t (at) according to αεti ; then she draws ωt ∈ {R,P}2 and
rt(a

t) for each t and at; and then she defines ω̄t(at) from at, rt(at), and ωt as in µ∗. For each
t and at, she draws xji,t(a

t) uniformly and independently from Zpt . Given them, she defines

yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni),

so that (26) holds.
The mediator draws αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) for each n ∈ Zpt , nii,t(at), and

ñji,t(a
t) from the uniform distribution over Zpt independently for each player i, each period

t, and each at.
As in (29), the mediator defines

uji,t(a
t) ≡

{
αii,t(a

t)× xji,t(at) + βii,t(a
t) (mod pt) if ω̄i,t(at) = R,

ũji,t(a
t) if ω̄i,t(at) = P.

In addition, the mediator defines

uji,t(n, a
t) =

{
uji,t(a

t) if n = nii,t(a
t),

vji,t(n, a
t) if otherwise

and

nji,t(a
t) =

{
nii,t(a

t) if t = 1 or ωi,t−1(at−1) = P,

ñji,t(a
t) if t 6= 1 and ωi,t−1(at−1) = R,

as explained above.
Let us now define the equilibrium:

1. At the beginning of the game, the mediator sends

mmediator
i =

((
yii,t(a

t), αii,t(a
t), βii,t(a

t), rpunish
i,t (at) ,

nii,t(a
t), nij,t(a

t),
(
uij,t(n, a

t)
)
n∈Zpt

, xij,t(a
t)

)
at∈At−1

)∞
t=1

to each player i.
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2. In each period t, the stage game proceeds as follows: In equilibrium,

m1st
j,t =

{
uji,t(m

2nd
i,t−1, a

t), xji,t(a
t) if t 6= 1 and m2nd

i,t−1 6= {babble},
uji,t(n

j
i,t(a

t), at), xji,t(a
t) if t = 1 or m2nd

i,t−1 = {babble} (30)

and

m2nd
j,t =

{
njj,t+1(at+1) if ω̂j,t(at) = R,
{babble} if ω̂j,t(at) = P.

Note that, since m2nd
j,t is sent at the end of period t, the players know at+1 = (a1, ..., at).

(a) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1), each player i sends the first
message m1st

i,t simultaneously. If player i herself has not yet deviated, then

m1st
i,t =

{
uij,t(m

2nd
j,t−1, a

t), xij,t(a
t) if t 6= 1 and m2nd

j,t−1 6= {babble},
uij,t(n

i
j,t(a

t), at), xij,t(a
t) if t = 1 or m2nd

j,t−1 = {babble}.

Letm1st
i,t (u) be the first element ofm1st

i,t (that is, either u
i
j,t(m

2nd
j,t−1, a

t) or uij,t(n
i
j,t(a

t), at)
on equilibrium); and let m1st

i,t (x) be the second element (xij,t(a
t) on equilibrium).

As a result, the profile of the messages m1st
t becomes common knowledge.

If
m1st
j,t (u) 6= αii,t(a

t)×m1st
j,t (x) + βii,t(a

t) (mod pt), (31)

then player i interprets ω̂i,t(at) = P . Otherwise, ω̂i,t(at) = R.

(b) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1,m
1st
t ), each player i takes

action ai,t simultaneously. If player i herself has not yet deviated, then player i
takes ai,t = ri,t with

ri,t =

{
yii,t(a

t)−m1st
j,t (x) (modni) if ω̂i,t(at) = R,

rpunish
i,t (at) if ω̂i,t(at) = P.

(32)

Recall that yii,t(a
t) ≡ xji,t(a

t) + ri,t(a
t) (modni) by (26). By (30), therefore, player

i takes rii,t(a
t) if ω̄i,t(at) = R and rpunish

i,t (at) if ω̄i,t(at) = P on the equilibrium
path, as in µ∗.

(c) Given player i’s history (mmediator
i , (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1,m
1st
t , at), each player i sends

the second message m2nd
i,t simultaneously. If player i herself has not yet deviated,

then

m2nd
i,t =

{
nii,t+1(at+1) if ω̂i,t(at) = R,
{babble} if ω̂i,t(at) = P.

As a result, the profile of the messages m2nd
t becomes common knowledge. Note

that ω̄t(at) becomes common knowledge as well on equilibrium path.

Incentive Compatibility

The above equilibrium has full support: Since ω̄t(at), and rt (at) have full support, (mmediator
1 ,mmediator

2 )
have full support as well. Hence, we are left to verify player i’s incentive not to deviate from
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the equilibrium strategy, given that player i believes that player j has not yet deviated after
any history of player i.
Suppose that player i followed the equilibrium strategy until the end of period t − 1.

First, consider player i’s incentive to tell the truth about m1st
i,t . In equilibrium, player i sends

m1st
i,t =

{
uij,t(m

2nd
j,t−1, a

t), xij,t(a
t) if m2nd

j,t−1 6= {babble},
uij,t(n

i
j,t(a

t), at), xij,t(a
t) if m2nd

j,t−1 = {babble}.

The random variables possessed by player i are independent of those possessed by player
j given (m1st

τ , aτ ,m
2nd
τ )t−1

τ=1, except that (i) u
j
i,t(a

t) = αii,t(a
t) × xji,t(a

t) + βii,t(a
t) (mod pt)

if ω̄i,t(at) = R, (ii) uij,t(a
t) = αjj,t(a

t) × xij,t(a
t) + βjj,t(a

t) (mod pt) if ω̄j,t(at) = R, (iii)
nji,τ (a

τ ) = nii,τ (a
τ ) if ωi,τ−1(aτ−1) = P while nji,τ (a

τ ) = ñii,τ (a
τ ) if ωi,τ−1(aτ−1) = R, and (iv)

nij,τ (a
τ ) = njj,τ (a

τ ) if ωj,τ−1(aτ−1) = P while nij,τ (a
τ ) = ñjj,τ (a

τ ) if ωj,τ−1(aτ−1) = R. Since
αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) nii,t(a

t), and ñji,t(a
t) are uniform and independent, player

i cannot learn ω̄i,τ (aτ ), ri,τ (aτ ), or rj,τ (aτ ) with τ ≥ t. Hence, player i believes at the time
when she sends m1st

i,t that her equilibrium value is equal to

(1− δ)Eµ∗
[
ui(at) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(at) | hti

]
,

where hti is as if player i observed
(
rpunish
i,t (at)

)∞
at∈At−1t=1

, at, (ω̄τ (a
τ ))t−1

τ=1, and ri,t(a
t), and

believed that rτ (aτ ) = aτ for each τ = 1, ..., t− 1 with µ∗ with mediated perfect monitoring.
On the other hand, for each e > 0, for a suffi ciently large N t, if player i tells a lie in at

least one element m1st
i,t , then with probability 1− e, player i creates a situation

m1st
i,t (u) 6= αjj,t(a

t)×m1st
i,t (x) + βjj,t(a

t) (mod pt).

Hence, (31) (with indices i and j reversed) implies that ω̂j,t(at) = P .
Moreover, if player i creates a situation with ω̂j,t(at) = P , then player j will send m2nd

j,t =

{babble} instead of njj,t+1(at+1). Unless ω̄j,t(at) = P , since njj,t+1(at+1) is independent of
player i’s variables, player i believes that njj,t+1(at+1) is distributed uniformly over Zpt+1 .
Hence, for each e > 0, for suffi ciently large N t, if ω̂j,t(at) = R, then player i will send m1st

i,t+1

with
m1st
i,t+1(u) 6= αjj,t+1(at+1)×m1st

i,t+1(x) + βjj,t+1(at+1) (mod pt+1)

with probability 1 − e. Then, by (31) (with indices i and j reversed), player j will have
ω̂j,t+1(at+1) = P .
Recursively, if ω̄j,τ (aτ ) = R for each τ = t, .., t + Tt − 1, then player i will induce

ω̂j,τ (a
τ ) = P for each τ = t, .., t + Tt − 1 with a high probability. Hence, for εt > 0 and Tt

fixed in (22) and (23), for suffi ciently large N̄ t, if N τ ≥ N̄ t for each τ ≥ t, then player i will
be punished for the subsequent Tt periods regardless of player i’s continuation strategy with
probability no less than 1−εt−

∑t+Tt−1
τ=t pτ . (

∑t+Tt−1
τ=t pτ represents the maximum probability

of having ω̄i,τ (aτ ) = P for some τ for subsequent Tt periods.) (25) implies that telling a lie
gives strictly lower payoff than the equilibrium payoff. Therefore, it is optimal to tell the
truth about m1st

i,t . (In (25), we have shown interim incentive compatibility after knowing
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ω̄i,t(a
t) and ri,t while here, we consider hti before ω̄i,t(a

t) and ri,t. Taking the expectation
with respect to ω̄i,t(at) and ri,t, (25) ensures incentive compatibility before knowing ω̄i,t(at)
and ri,t.)
Second, consider player i’s incentive to take the action ai,t = ri,t according to (32) if

player i follows the equilibrium strategy until she sends m1st
i,t . If she follows the equilibrium

strategy, then player i believes at the time when she takes an action that her equilibrium
value is equal to

(1− δ)Eµ∗
[
ui(at) | hti

]
+ δEµ∗

[
(1− δ)

∞∑
τ=t+1

δτ−t−1ui(at) | hti

]
,

where hti is as if player i observed
(
rpunish
i,t (at)

)∞
at∈At−1t=1

, at, (ω̄τ (aτ ))
t−1
τ=1, ω̄i,t(a

t), and ri,t, and

believed that rτ (aτ ) = aτ for each τ = 1, ..., t− 1 with µ∗ with mediated perfect monitoring.
(Compared to the time when player i sends m1st

i,t , player i now knows ω̄i,t(a
t) and ri,t on

equilibrium path.)
If player i deviates from ai,t, then ω̄j,τ (aτ ) = P by definition for each τ ≥ t + 1 and

aτ that is compatible with at (that is, aτ = (at, at, ..., aτ−1) for some at, ..., aτ−1). To avoid
being minmaxed in period τ , player i needs to induce ω̂j,τ (aτ ) = R although ω̄j,τ (aτ ) = P .
Given ω̄j,τ (aτ ) = P , since αii,t(a

t), βii,t(a
t), ũji,t(a

t), vji,t(n, a
t) nii,t(a

t), and ñji,t(a
t) are uniform

and independent (conditional on the other variables), regardless of player i’s continuation
strategy, by (31) (with indices i and j reversed), player i will send m1st

i,τ with

m1st
i,τ (u) 6= αjj,τ (a

τ )×m1st
i,τ (x) + βjj,τ (a

τ ) (mod pτ )

with a high probability.
Hence, for suffi ciently large N̄ t, if N τ ≥ N̄ t for each τ ≥ t, then player i will be punished

for the next Tt periods regardless of player i’s continuation strategy with probability no less
than 1 − εt. By (24), deviating from ri,t gives a strictly lower payoff than her equilibrium
payoff. Therefore, it is optimal to take ai,t = ri,t.
Finally, consider player i’s incentive to tell the truth about m2nd

i,t . Regardless of m
2nd
i,t ,

player j’s actions do not change. Hence, we are left to show that telling a lie does not
improve player i’s deviation gain by giving player i more information.
On the equilibrium path, player i knows ω̄i,t(at). If player i tells the truth, then m2nd

i,t =
nii,t+1(at+1) 6= {babble} if and only if ω̄i,t(at) = R. Moreover, player j sends

m1st
j,t+1 =

{
uji,t+1(m2nd

i,t , a
t+1), xji,t+1(at+1) if ω̄i,t(at) = R,

uji,t+1(nji,t+1(at+1), at+1), xji,t+1(at+1) if ω̄i,t(at) = P.

Since nji,t+1(at+1) = nii,t+1(at+1) if ω̄i,t(at) = P , in total, if player i tells the truth, then
player i knows uij,t+1(mi

i,t+1(at+1), at+1) and xij,t+1(at+1). This is suffi cient information to
infer ω̄i,t+1(at+1) and ri,t+1(at+1) correctly.
If she tells a lie, then player j’s messages are changed to

m1st
j,t+1 =

{
uji,t+1(m2nd

i,t , a
t+1), xji,t+1(at+1) if m2nd

i,t 6= {babble},
uji,t+1(nji,t+1(at+1), at+1), xji,t+1(at+1) if m2nd

i,t = {babble}.
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Since αii,t+1(at+1), βii,t+1(at+1), ũji,t+1(at+1), vji,t+1(n, at+1) nii,t+1(at+1), and ñji,t+1(at+1) are
uniform and independent conditional on ω̄i,t+1(at+1) and ri,t+1(at+1), uji,t+1(n, at+1) and
xji,t+1(at+1) are not informative about player j’s recommendation from period t + 1 on or
player i’s recommendation from period t + 2 on, given that player i knows ω̄i,t+1(at+1) and
ri,t+1(at+1). Since telling the truth informs player i of ω̄i,t+1(at+1) and ri,t+1(at+1), there is
no gain from telling a lie.
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