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A B S T R A C T

A large literature in empirical public finance relies on “bunching” to identify a behavioral response to non-
linear incentives and to translate this response into an economic object to be used counterfactually. We
conduct this type of analysis in the context of prescription drug insurance for the elderly in Medicare Part
D, where a kink in the individual’s budget set generates substantial bunching in annual drug expenditure
around the famous “donut hole.” We show that different alternative economic models can match the basic
bunching pattern, but have very different quantitative implications for the counterfactual spending response
to alternative insurance contracts. These findings illustrate the importance of modeling choices in mapping
a compelling reduced form pattern into an economic object of interest.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Over the last decade, there has been an increased reliance in
public economics on evidence that is based on observed “bunch-
ing” around kink points in budget sets; Kleven (2016) provides an
overview of this growing literature. The key underlying idea is sim-
ple and tractable: if rational individuals face a non-linear budget set
with considerable kinks, they should bunch around the kinks, and
the extent of bunching should be informative about relevant elas-
ticities (or lack thereof). The existence of bunching or excess mass
around kink points of a budget set can thus provide compelling,
visual evidence against the null hypothesis of no behavioral response
of individual to the incentives; likewise, the lack of such bunching
suggests the opposite.
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AG032449). We thank John Friedman, Henrik Kleven, Matthew J. Notowidigdo,
Wojciech Kopczuk, Whitney Newey, and an anonymous referee for their helpful
comments.
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Many of the applications of this idea have been in the context of
the behavioral response to non-linear income tax schedules (Chetty
et al., 2011, Saez, 2010; Chetty et al., 2013a; Bastani and Selin, 2014,
Kleven and Waseem, 2013; Kleven et al., 2014). But similar ideas
have been widely applied in other settings that generate non-linear
budget sets, including pensions (Manoli and Weber, forthcoming),
electricity (Ito, 2014), fuel economy policy (Sallee and Slemrod,
2012), mortgages (Best et al., 2015), cell phones (Grubb, 2015; Grubb
and Osborne, 2015), broadband (Nevo et al., 2016), taxes on home
sales (Kopczuk and Munroe, 2015; Best and Kleven, forthcoming),
healthcare procurement (Bajari et al., 2016), and – the subject of
this current paper – health insurance contracts (Abaluck et al., 2015;
Dalton et al., 2015; Einav et al., 2015).

A likely key factor behind this recent popularity of bunching esti-
mates is the seminal contribution of Saez (2010), which illustrates
how one may convert an observed bunching pattern to an economic
object of interest: a “structural” behavioral elasticity parameter.
Using data on individuals’ annual earning, which bunch around con-
vex kinks in the income tax schedule, Saez used a stylized, static,
frictionless model of labor supply to provide a simple, transparent,
and easy-to-implement mapping from the observed bunching to an
estimate of the elasticity of labor supply (or earning) with respect to
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the marginal tax rate. This allows one to take the compelling visual
evidence of bunching and move beyond merely rejecting the null
of non-behavioral response to estimating a quantitative economic
object of interest that can be used to predict behavioral responses
to counterfactual scenarios. Not surprisingly, this compelling and
tractable idea has been quite influential, and has been frequently
used to translate various bunching estimates into “structural” elas-
ticities (Bastani and Selin, 2014; Chetty et al., 2011; Kleven et al.,
2011; Kleven and Waseem, 2013).

The Saez (2010) approach is very appealing. It is transparent and
easy to implement. Of course, the simplicity comes at the cost of
potentially abstracting from a host of real-world features that may
be important in a particular context. An alternative to this approach
would be to develop a more complete model of a given context,
which includes dynamics, uncertainty, and other relevant frictions.
Manoli and Weber (forthcoming) provide such a model in the con-
text of labor supply, and our earlier work (Einav et al., 2015) provides
another example in the context of demand for prescription drugs.
As the Saez approach is so much simpler and easier to implement,
it seems useful to ask how well of an approximation to the main
object of interest, a simpler, Saez-style approach can provide. Nat-
urally, the reasonableness of the approximation will depend on the
specific context.

This is precisely the goal of the current paper, where we explore
this question in the context of demand for prescription drugs under
Medicare Part D, the public prescription drug insurance program for
elderly and disabled individuals in the United States. Our substan-
tive question concerns the spending (or “moral hazard”) effects of
alternative insurance contracts. This is a topic that has attracted con-
siderable attention both for health insurance contracts in general,
and more recently in our specific Part D context.

We begin in Section 2 by describing the setting and the data.
An important feature of Medicare Part D coverage is the donut
hole in the basic benefit design, which generates a large, discon-
tinuous increase in the marginal price. Consequently, individuals’
annual drug expenditures bunch around this kink, making it a
natural context to explore the implication of different bunching
estimates.

In Section 3 we present and estimate two different models of
prescription drug purchasing behavior. The first is our adaptation
of the static, frictionless Saez (2010) model to the Medicare Part D
context; we refer to it hereafter as a Saez-style model and the resul-
tant elasticities as Saez-based elasticities. The second is the dynamic
model we developed in our earlier work (Einav et al., 2015); we
refer to it hereafter as the dynamic model and the resultant elastici-
ties as the dynamics-based elasticities. Both models match the basic
bunching pattern; however, the implied elasticity from the dynamic
model is an order of magnitude greater than the Saez-based elasticity
estimate. This is the key result of the paper.

There are multiple differences between the two, non-nested
settings. The Saez-style framework assumes continuous spending
decisions (i.e. no lumpiness in drug purchases), perfect foresight
of future health shocks (i.e. no uncertainty), and no discounting of
the future. None of these assumptions are made in the dynamic
model. It is interesting to explore which features of the model are
most important for the differences in implied elasticities, which is
the focus of Section 4. There we develop two modifications of the
dynamic model, which bring it closer to the Saez-style framework.
We then re-estimate each of these versions of the model using the
same data. Our main finding is that a static, perfect foresight version
of the full dynamic model – which comes quite close to the Saez-
style model except that it allows for lumpiness in spending decisions
– results in implied elasticities that are about half way between the
Saez-based estimates and the dynamics-based ones. Interestingly,
once we allow for lumpiness, allowing for uncertainty essentially
allows us to recover the magnitude of the elasticity implied by the

full dynamic model; as it turns out, allowing for discounting is not
quantitatively important.

We emphasize that the results we present in this paper should be
viewed as illustrative. They are specific to our particular (Medicare
Part D) context, as well as to the modeling choices we have made.
Nonetheless, they highlight what we believe to be an important and
broader point: in-sample bunching patterns may be rationalized by
a host of modeling assumptions, and these assumptions can, at least
in some contexts, have very different quantitative implications for
the out-of-sample objects of interest.1 This is a general issue that the
“bunching” literature has grappled with: the immense sensitivity of
results to the particular modeling assumptions used to translate the
observed excess mass at a convex kink into an economic object that
can be used in other contexts. Indeed, in an early, working paper
version of his original contribution, Saez (1999) shows that the trans-
lation of the excess mass at kinks in the US income tax schedule to an
underlying labor supply elasticity can be greatly affected by adding
to the baseline model either earnings uncertainty or making labor
supply choices discrete and lumpy rather than continuous.

This is essentially an under-identification problem, which is more
formally characterized by Blomquist et al. (2015), who emphasize
the need for additional moments in the data that would allow us
to select among models. The subsequent bunching literature has
broadly pursued two main strategies for handling this identifica-
tion issue. One is to use the frequency of observations in dominated
regions of the budget set (“notches” ) to identify the extent of fric-
tions; Kleven and Waseem (2013) develop this approach. Another is
to parametrize the frictions – or other relevant features of the set-
ting – and use additional moments in the data to identify them. In
the working paper version of Chetty et al. (2011), the authors explore
such an approach, developing a labor supply model and paramet-
ric search costs that have quantitatively important implications for
translating observed excess mass into an underlying, “structural”
elasticity (Chetty et al., 2009). The exercise in our paper is similar in
spirit; our focus is less on “frictions” but more on the dynamic nature
of our problem, and we therefore use non-bunching moments, asso-
ciated with the way spending patterns vary over the calendar year,
to identify additional parameters of the dynamic model.

More generally, our paper speaks to the growing interest in our
profession in developing approaches to translate compelling, trans-
parent, “reduced form” evidence of a behavioral response into an
economic object of interest. The bunching literature following Saez
(2010) is one specific application of the influential “sufficient statis-
tics” literature popularized by Chetty (2009) – which attempts to
use simple models to directly and transparently map reduced form
parameters into welfare analyses. But the phenomenon is more
general. For example, randomized controlled trials have the abil-
ity to deliver compelling “causal effect” estimates, but translating
the experimental treatment effects into economic objects that can
be applied out-of-sample to make counterfactual predictions or
analyses often requires additional economic modeling assumptions
(Aron-Dine et al., 2013). Our (modest) goal here is to illustrate in
a particular context that these modeling assumptions can be quite
consequential. As we have demonstrated, two “reasonable” (in our
subjective view) alternative models can match the basic reduced
form bunching facts, while giving very different out-of-sample pre-
dictions. Sufficient statistics, in other words, are sufficient conditional
on the model (or a set of models). This is an obvious point, made
clearly by Chetty (2009), but it is sometimes forgotten in applications
and interpretations.

1 Kleven (2016) emphasizes a similar point in his review article. In the labor supply
context, he describes several empirical papers which show that, with potential opti-
mization frictions, a given excess mass in the earnings distribution can be rationalized
with virtually any underlying, “structural” labor supply elasticity.
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2. Setting and data

2.1. Setting

The setting for the exercise in this paper is Medicare Part D, the
prescription drug coverage component of Medicare that was added
in 2006. In 2013, about 37 million people received Part D cover-
age (Kaiser Family Foundation, 2014). Unlike Medicare Parts A and
B for hospital and doctor coverage, which provide a uniform public
insurance package for all enrollees (except those who select into the
managed care option, Medicare Advantage), private insurance com-
panies offer various Medicare Part D contracts, and are reimbursed
by Medicare as a function of their enrollees’ risk scores.

While the exact features of the plans offered vary, they are all
based around a government-defined standard benefit design, shown
in Fig. 1. Our main focus is on the convex kink in the budget set,
arising from the discontinuous increase in the out-of-pocket price
individuals face when they cross into the “donut hole” (or “gap” ;
see Fig. 1). Standard economic theory suggests that, as long as pref-
erences are convex and smoothly distributed in the population, we
should observe individuals bunching at this convex kink point of
their budget set. Saez (2010) provides a recent, formal discussion.
To see the intuition, consider a counterfactual linear budget set,
i.e. the continuation of the co-insurance arm’s cost sharing into the
gap. In this case, individual spending would be distributed smoothly
through the kink. For example, as illustrated in Fig. 2, the solid and
dashed indifference curves represent two individuals with differ-
ent healthcare needs who would have different total drug spending
under this linear contract. With the introduction of the kink, how-
ever, the spending of the sicker (dashed) individual will decrease and
locate at the kink, as would all individuals whose spending under
the linear contract was in between the solid and dashed individuals,
thus generating “bunching.” In a frictionless world, these individuals
would pile up exactly at the kink. In practice, with real-world fric-
tions such as the lumpiness of drug purchases and some uncertainty

about future health shocks, individuals are instead expected to clus-
ter in a narrow area around the kink.

2.2. Data

We use data on a 20% random sample of all Medicare part D ben-
eficiaries over the years 2007–2009. The data include basic demo-
graphic information (such as age and gender), predicted risk score,
and detailed information on the cost-sharing characteristics of each
beneficiary’s prescription drug plan. We also observe detailed, claim-
level information on our beneficiaries’ Medicare part D utilization
during the same years.

We use a sub-sample of the data we used previously in Einav et al.
(2015). That data excluded various groups of beneficiaries for whom
the empirical strategy is not applicable – such as individuals in Medi-
care Advantage and certain low income individuals for whom the
basic benefit design we study does not apply – and individuals under
age 65; see Einav et al. (2015) for a complete discussion and details of
the sample. In the current paper, given the more conceptual empha-
sis and in order to reduce computational burden, we further restrict
the sample to a 10% random sample of enrollees in the five largest
plan-years.

With these restrictions, our final analysis relies on a data set
of 27,237 person-years (14,521 unique individuals), which are dis-
tributed fairly evenly across the five plans. One plan is in 2007, two
in 2008, and two in 2009. One plan is similar to the standard con-
tract described earlier, with approximately 20% cost sharing prior
to the gap. The four other plans have no deductible, but require
enrollees to pay 35–40% (depending on the plan) prior to the gap.
None of the plans provides coverage in the gap, leading to a sharp
kink as described earlier. The average age in our sample is 76, and
about two thirds of the individuals are females. Average annual, per-
beneficiary drug spending is $1853 dollars, out of which $834 are
paid (on average) out of pocket. Spending is very right skewed: 4.5%
of beneficiaries have no annual drug spending, median spending

Fig. 1. Medicare Part D standard benefit design (in 2008). The figure shows the standard benefit design in 2008. “Pre-Kink coverage” refers to coverage prior to the Initial Coverage
Limit (ICL) which is where there is a kink in the budget set and the gap, or donut hole, begins. The level at which catastrophic coverage kicks in is defined in terms of out-of-pocket
spending (of $4050), which we convert to the total expenditure amount provided in the figure. Once catastrophic coverage kicks in, the actual standard coverage specifies a set of
co-pays (dollar amounts) for particular types of drugs; in the figure we use show a 7% co-insurance rate, which is the empirical average of these co-pays in our data.
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Fig. 2. Rationale for bunching. The solid line illustrates the budget set of the same standard benefit design as in Fig. 1. The dashed line considers an alternative budget set with
a linear budget (above the deductible) at the co-insurance arm’s cost sharing rate. By contrast, the standard budget set has a kink (price increase) at $2510 in total spending. The
individual denoted by the solid indifference curve is not affected by the introduction of this kink; his indifference curve remains tangent to the lower part of the budget set. The
individual with the dashed indifference curves consumed above the kink under the linear budget set; with the introduction of the kink her utility is lower, and her indifference
curve is now tangent to the steeper part of the budget set at the kink. With the introduction of the kink, this latter individual would therefore decrease total spending to the level
of the kink location. By extension, any individual whose indifference curve was tangent to the linear budget set at a spending level between that of the two individuals shown
would likewise decrease total spending to the level of the kink location, thereby creating “bunching” at the kink.

is about $1391, and the 90th percentile is about $3689. The exact
location of the kink, as a function of total drug spending, also varies
across observations in our sample depending on the year, but on
average it hits at roughly the 75th percentile of the drug spend-
ing distribution. On average, in our sample, the out of pocket price
increases from 0.35 to 0.99 at the kink.

2.3. Bunching

Bunching at the kink is clearly evident in the raw data. Fig. 3
provides the motivation and starting point for the analysis in the
rest of the paper. Because the kink location has changed from year
to year (from $2400 in 2007, to $2510 in 2008, and $2700 in
2009), in all our analysis we normalize annual spending by the kink
location. We plot the distribution of (normalized) annual spending
(in $40 bins) for individuals whose spending is within $1000 of the
kink (on either side). This constitutes 35% of our sample. The pres-
ence of significant “excess mass,” or “bunching” of annual spending
levels around the convex kink in the budget set is apparent in Fig. 3:
there is a noticeable spike in the distribution of annual spending
around the kink. In Einav et al. (2015) we presented this result in
greater detail, showing how the location of the spike moves as the
kink location changes from year to year and analyzing the types of
drugs that individuals appear to stop purchasing when they slow
down their drug utilization and “bunch” at the kink.

The observed bunching pattern clearly demonstrates that individ-
uals’ drug expenditure responds to the out-of-pocket price. In other
words, this basic descriptive evidence provides a compelling rejec-
tion of the null hypothesis that drug spending behavior does not
respond to the incentives created by the non-linear health insurance
contract.

The remainder of the paper compares two different modeling
approaches to translating the bunching pattern in Fig. 3 into an

economic object of interest that could be used to construct predic-
tions of spending under counterfactual contracts. For concreteness,
we examine the implications of the two different models for the
estimate of an elasticity of spending with respect to a uniform per-
centage change in the out-of-pocket price implied by the budget set
illustrated in Fig. 1.

3. Two economic models

We consider two different economic models for mapping the
bunching estimate into an elasticity. Both are fairly “off the shelf.”
One is an adaptation of Saez’s (2010) model to our context. The other
is the model we developed in our earlier work, which was used
to analyze how drug spending responds to non-linear health insur-
ance contracts (Einav et al., 2015). In this section, we briefly present
each model, show that each matches the basic bunching pattern,
and present the (different) implications regarding the counterfac-
tual spending response to a proportional reduction in consumer
cost sharing. In the next section we discuss – conceptually and
empirically – the reasons for the differences.

3.1. A frictionless static model à-la Saez (2010)

Saez (2010) provides a static, frictionless model of labor supply,
which can be used to convert observed bunching of annual earn-
ings around convex kinks in the income tax schedule to an estimate
of labor supply elasticities. We adapt it to our context, sticking as
closely as possible to Saez’s original model.

We assume that individual i obtains utility

ui(m, y) = gi(m) + y (1)

from (total) drug spending m and residual income y, as in Einav et al.
(2013). As in Einav et al. (2013) and Saez (2010), we assume that



L. Einav et al. / Journal of Public Economics 146 (2017) 27–40 31

Fig. 3. Bunching of annual spending around the kink. Total annual prescription drug spending on the x-axis is reported relative to the (year-specific) location of the kink, which
is normalized to zero. Sample uses beneficiary-years in our baseline sample whose annual spending is within $1000 of the (year-specific) kink location. The points in the figure
display the distribution of annual spending; each point represents the set of people that spent up to $40 above the value that is on the x-axis, so that the first point represents
individuals who spent between -$1000 and -$960 from the kink, the second point represents individuals between -$960 and -$920, and so on. We normalize the frequencies so
that they add up to one for the range of annual spending shown. N = 8, 562

utility is quasi-linear. We make further parametric assumptions, so
that

ui(m, y) =

[
2m − fi

1 + 1
a

(
m
fi

)1+ 1
a

]
︸ ︷︷ ︸

gi(m)

+ [Ii − C(m)]︸ ︷︷ ︸
y

. (2)

That is, residual income y is given by the individual’s income Ii minus
his (annual) out-of-pocket cost C(m), where C( • )defines the func-
tion that depends on the individual’s insurance coverage and maps
total spending m to the fraction of it that is paid out of pocket as
illustrated, for example, in Fig. 1.

The choice of gi(m) in Eq. (2) is less standard, and is motivated
by our attempt to obtain a tractable, constant elasticity form of the
spending function that would be similar to Saez (2010) despite the
different context. As will be clear soon, we specify gi(m) above so
that one can think of f i as representing an individual’s health needs,
which vary across individuals, and a as a parameter, common across
individuals, that affects individuals’ elasticity of drug spending with
respect to the out-of-pocket price.

To see the motivation for this particular parameterization, con-
sider its implication in the context of a linear coverage. Suppose
coverage is linear and is given by C(m) = c • m with c ∈ [0, 1], so that
c = 0 represents full coverage and c = 1 represents no coverage. In
such a case, an individual solves

max
m

[
2m − fi

1 + 1
a

(
m
fi

)1+ 1
a

+ Ii − c • m

]
, (3)

and the optimal choice of drug expenditure is given by

m = fi(2 − c)a. (4)

That is, with no insurance (c = 1) the individual spends m = f i,
while with full insurance he spends m = 2af i. Thus our specification
implies a constant elasticity a of spending with respect to (2 − c).

This constant elasticity form of the spending function is now very
similar to Saez’s choice of labor supply function – although with the
distinction that Saez’s specification implies a constant elasticity with
respect to (1 − t), where t is the marginal tax rate on income. For
the rest of this section we can therefore closely follow his strategy.
Specifically, we assume that f i is distributed in the population with
cdf F(f)and pdf f(f), analogously to individual’s ability (n) in Saez’s
framework. m is analogous to income (z), and (2 − c)a is analogous
to (1 − t)e in Saez’s work. Applying these analogies, we can start with
Eq. (2) in Saez (2010), which is identical (after applying the analogies)
to Eq. (4) above.

3.1.1. Estimation and implied elasticities
Consider now H0(m) to be the cdf of spending when the marginal

price (before the gap) is c0. Denote by h0(m) = H′
0(m) the corre-

sponding pdf. Because m = f i(2 − c0)a we have H0(m) = Pr(f i(2 −
c0)a ≤ m) = F(m/(2 − c0)a) . So h0(m) = f(m/(2 − c0)a)/(2 − c0)a .
Consider now the gap, where there is a kink and the marginal price
c1 > > c0 becomes much higher, so above the kink we have m =
f i(2 − c1)a . H is then the distribution of spending under the kink sce-
nario. If the kink is at m∗, then distribution of spending up to m∗ is
given by H0(m). That is, spending is such that

m(fi) =

⎧⎨
⎩

fi(2 − c0)a if fi < m∗/(2 − c0)a

m∗ if fi ∈ [m∗/(2 − c0)a , m∗/(2 − c1)a]
fi(2 − c1)a if fi > m∗/(2 − c1)a

. (5)

Thus, for spending above the kink (m > m∗) we have H(m) =
F(m/(2 − c1)a).
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Table 1
Elasticity estimates from Saez-style static, frictionless model.

Counterfactual distribution Exclusion windowa Bin sizeb Excess massc Elasticityd

Linear 200 40 0.401 −0.047
Cubic 200 40 0.314 −0.037
Linear 200 60 0.418 −0.049
Linear 100 40 0.586 −0.034

Table reports estimates of the implied elasticities using our adaptation of the model from Saez (2010), under alternative measurement assump-
tions. We limit the analysis to the approximately 80% of our baseline sample who end the year within $2000 of the kink. For each plan we use
Eq. (7) plus the plan’s cost sharing rules to translate it into an estimate of the (plan-specific) parameter a. We then map a to the individual-
specific spending elasticity with respect to the coinsurance rate c, evaluated at the individual-specific end-of-year coinsurance rate c. The
right-most column reports the average estimates across all individuals. The different rows report results from different approaches to calculat-
ing the counterfactual distribution of spending that would exist in the absence of the kink. The first row shows the baseline approach, in which
the counterfactual distribution was calculated by fitting a linear curve to the pdf, using only the points to the left of -$200 and using the “exclu-
sion window” from of $200 around the kink to estimate the response to the kink, and a spending bin size of $40. The other rows present similar
results using different parametric fit, exclusion window, and bin size, as described.

a Exclusion window refers to the distance from the kink location within which we calculate the response to the kink. The counterfactual
density is fit using points only to the left of the exclusion window.

b Bin size refers to the spending size of bins, which is used to fit the pre-kink spending distribution.
c Excess mass is computed as a ratio. The numerator is the difference between the number of people whose spending is within the exclusion

window and our counterfactual estimate of the number of people who would have spent in this window in the absence of the kink; the
denominator is our counterfactual estimate of the number of people who would have spent in this window in the absence of the kink.

d Elasticity of spending is calculated with respect to the end-of-year cost-sharing rate c of each individual and her plan-specific estimate of
a. We then report the average estimated elasticity across individuals.

The rest continues as in Saez, using the analogies described above.
For example, Saez’s Eq. (3) becomes:

Dm∗

m∗ = (2 − c0)a − 1 (6)

and his Eq. (5) becomes

B = m∗
[(

2 − c0

2 − c1

)a

− 1
] h(m∗)− + h(m∗)+/

(
2−c0
2−c1

)a

2
. (7)

Eq. (7) can then be used to express a as a function of estimable
objects, allowing us to convert our bunching estimate of B to an
elasticity estimate a.

Table 1 shows the results of implementing this approach. The
bunching estimate B is calculated as the number of people who are
empirically around the kink (Nactual) over and above the number of
people who we (counterfactually) estimate would be in this area
if the kink did not exist (Ncounter); in other words, B = Nactual −
Ncounter. The different rows of Table 1 report results under differ-
ent approaches to approximating that counterfactual distribution of
spending that would exist in the absence of the kink, and differ-
ent definitions of what it means to be “around” the kink. The first
three columns describe the approach. The fourth column reports the
excess mass, which is the ratio of B to the (counterfactual) number of
individuals that would be near the kink in the absence of a kink; in
other words, the excess mass is defined as (Nactual − Ncounter)/Ncounter.
The final column of Table 1 reports our elasticity estimate. We
compute plan-specific a′s using Eq. (7), our estimate of B for each
plan, and plan-specific values for c0 and c1. As noted, our specifi-
cation implies a constant elasticity a of spending with respect to
(2−c). We therefore map our estimates of a to an individual-specific
spending elasticity with respect to the (ex-post) individual-specific
end-of-year coinsurance rate c; this corresponds to the relevant price
the individual responds to in the Saez-style static model with per-
fect foresight. We report the average elasticity estimate across the
individuals in our sample.

The first row of Table 1 shows our baseline specification. We
approximate the counterfactual distribution of spending that would
exist near the kink if there was no kink by fitting a linear approxi-
mation to the cdf, using only individuals in $40 spending bins whose
spending is below the kink (between $2000 and $200 from the kink),
and subject to an integration constraint, which requires the overall

number of individuals within $2000 of the kink (in both directions)
to remain the same, as in the actual data. We then use a $200 window
around the kink to produce our bunching estimate B. The other rows
of Table 1 show the sensitivity of our elasticity estimate to fitting a
cubic approximation (second row), changing the spending bin size
(third row), or changing the size of the exclusion window around the
kink (bottom row). These exercises produce relatively similar – and
quite small – elasticity estimates, ranging from −0.034 to −0.049.

3.2. The dynamic model from Einav et al. (2015)

An alternative model that one could use to map the bunching
pattern to an underlying elasticity of spending with respect to the
contract is the one we developed and used in our earlier work on
the topic, in Einav et al. (2015). We consider a risk-neutral, for-
ward looking individual who faces stochastic health shocks within
the coverage period; at the beginning of the coverage period (a year),
an individual faces uncertainty regarding the distribution of health
shocks she will face, and makes prescription drug purchase decisions
sequentially as information gradually unfolds.2 These health shocks
can be treated by filling a prescription. The individual is covered by
a non-linear prescription drug insurance contract j over an annual
coverage period of T = 52 weeks. A coverage contract is given by a
function C(h, x), which specifies the out-of-pocket amount c the indi-
vidual would be charged for a prescription drug that costs h dollars,
given total (insurer plus out-of-pocket) spending of x dollars up until
that point in the coverage period.

The individual’s utility is linear and additive in health and residual
income. Health events are given by a pair (h,y), where h> 0 denotes
the dollar cost of the prescription and y> 0 denotes the (mone-
tized) health consequences of not filling the prescription. We assume
that individuals make a binary choice whether to fill the prescrip-
tion, and a prescription that is not filled has a cumulative, additively

2 The assumption of risk neutrality may seem odd in the context of insurance.
Note however that we are focused not on insurance demand but on the demand for
drugs conditional on the insurance contract. Conceptually, risk neutrality may not
be a bad approximation for week-to-week decision making, even when the utility
function over annual quantities (of income and/or health) is concave. Practically, we
showed in Einav et al. (2015) that our quantitative results were robust to an alter-
native model which allowed for risk aversion, at the cost of some expositional and
estimation complexity.
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separable effect on health. Thus, conditional on a health event (h,y),
the individual’s flow utility is given by

u(h,y; x) =

{
−C(h, x) if prescription filled

−y if prescription not filled
. (8)

When health events arrive they are drawn independently from
a distribution G(h,y). It is also convenient to define G(h,y) ≡
G2(y|h)G1(h). Health events arrive with a weekly probability k′,
which is drawn from H(k′|k) where k is the weekly arrival probability
from the previous week. We allow for serial correlation in health
by assuming that k′ follows a Markov process, and that H(k′|k) is
(weakly) monotone in k in a first order stochastic dominance sense.

The only choice individuals make is whether to fill each pre-
scription. Optimal behavior can be characterized by a simple finite
horizon dynamic problem. The three state variables are the number
of weeks left until the end of the coverage period, which we denote
by t, the total amount spent so far, denoted by x, and the health state,
summarized by k, which denotes the event arrival probability in the
previous week.

The value function v(x, t,k) represents the present discounted
value of expected utility along the optimal path and is given by the
solution to the following Bellman equation:

v(x, t,k) =
∫

[(1 − k′)dv(x, t − 1,k′)

+k′
∫

max

{
−C(h, x) + dv(x + h, t − 1,k′),
−y + dv(x, t − 1,k′)

}
dG(h,y)

]
dH(k′|k).

(9)

with terminal conditions v(x, 0,k) = 0 for all x. Optimal behavior is
straightforward to characterize: if a prescription arrives, the individ-
ual fills it if the value from doing so, −C(h, x) + dv(x + h, t − 1,k′),
exceeds the value obtained from not filling the prescription, −y +
dv(x, t − 1,k′).

3.2.1. Estimation and implied elasticities
To estimate the model, we parameterize the key objects. We

assume that G1(h) is lognormal. We assume that G2(y|h) follows a
mixture distribution with y = h with probability 1 − p , and y is
drawn from a uniform distribution over [0, h] with probability p. We
allow heterogeneity across individuals assuming that they are drawn
from five latent types, and almost all parameters (with the main
exception of d) are type-specific.

We then estimate the model using simulated moments, where
the two key moments we use are the bunching pattern presented
in Fig. 3 and the differential pattern of monthly claim propensities
for individuals that are close and far from the kink. Specifically, in
addition to the bunching moments that are the focus of the cur-
rent paper, we construct 12 timing moments: for each month from
July to December, we match the share of individuals with at least
one claim in the month conditional on the individuals total spend-
ing in the year being within $150 of the kink, and an analogous share
conditional on the individuals’ total spending being between $800
and $500 below the kink. As one more way to capture the dynamic
aspect of the problem, we also use as a moment the covariance
between individuals’ spending in the first half and second half of the
year, which is informative about the persistence of spending over
time.

This is all, by design, identical to the model and estimation car-
ried in Einav et al. (2015), which provide much more details about
the parameterization and estimation. The results are also similar, but
not exactly the same because of the additional sample restrictions.
Fig. 4 shows the fit of the model to the bunching patterns; by design,
the fit is quite close. Appendix Table A1presents the parameter
estimates.

Using the model and its estimates, we can now perform coun-
terfactual exercises regarding changes in the budget set. Given our
focus on generating estimates that are comparable to the Saez-based
elasticity estimates obtained in the last section, our main exercise
relies on applying a uniform percentage price reduction to the bud-
get sets (analogous to the one presented in Fig. 1) of the contracts in
our sample. We then simulate spending decisions for each individual

Fig. 4. Observed and fitted bunching using the dynamic model. Figure shows the distribution of observed and predicted total annual drug spending, zooming in on spending
within $1000 of the (year-specific) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins, where each point represents individuals who spend
within $20 above the value on the x-axis. Frequencies in the bottom panel are normalized to sum to 1 across the displayed range.
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under his original coverage plan and under the modified plans, and
use these to compute elasticities.3

The results are summarized in Table 2. The implied elasticities
range from −0.22 to −0.26. These are about five times larger than the
implied elasticities from the static model (see Table 1).

4. Understanding the models’ different implications

The previous section established the central “result” of the paper:
two different, natural (in our view!) models of spending behavior
that are empirically fitted to the bunching or excess mass pattern
in Fig. 3 produce quantitatively very different implications for the
underlying economic object of interest one might want to use out
of sample. The models are not similar, yet they use the same key
source of variation, so one might have expected them to produce
elasticity estimates of similar magnitudes. However, comparing the
results in Tables 1 and 2 suggests that the Saez-based elasticity esti-
mates (Table 1) are about five times lower than the dynamics-based
elasticity estimates (Table 2). This raises a natural question: why?

In this section we briefly explore – conceptually and empirically
– which economic and modeling assumptions seem to be impor-
tant in creating the different quantitative implications. A simple,
clear statement of what is driving the different results will not
be easy; the models are not nested versions of each other. Nor, it
is worth emphasizing, do we consider them vertically rankable in
terms of their appeal. The static, frictionless model à-la Saez (2010)
has the attraction of being a simple and transparent mapping from
a descriptive fact to an economic object of interest; relatedly, it can
be implemented easily and quickly. The dynamic model is more
computationally challenging and time consuming to implement and
– not unrelatedly – a bit more of a “black box” in terms of the
relationship between the underlying data objects and the economic
object of interest. As we now discuss, these disamenities are intro-
duced in order to account for three potentially important economic
forces in our context that our adaptation of Saez’s static, frictionless
model abstracts from: lumpiness in drug purchases, uncertainty, and
discounting. We sometimes refer to the latter two under the gen-
eral rubric of “dynamics,” although they are conceptually somewhat
distinct.

4.1. Conceptual differences

A first distinction between the two approaches regards fric-
tions. The adaptation to the Saez model assumes away any frictions
(including lumpiness). This is arguably a more important restriction
in the context for which it was originally developed – labor sup-
ply decisions. As has been discussed extensively (Bastani and Selin,
2014; Chetty, 2012; Chetty et al., 2011, 2013a,b), labor supply deci-
sions are likely restricted to certain discrete choices (e.g., full time
or part time), which will by necessity limit the amount of bunching
at the kink that a given underlying behavioral response can produce.
Practical implementations of Saez (2010) allow for some frictions –
by measuring bunching in some bandwidth around the kink rather
than simply a spike at the kink which is the literal implication of the
frictionless model – but will still miss any behavioral response to the
kink that does not result in an outcome within that bandwidth. Such
lumpiness is arguably less important in our setting, where a typical
prescription drug costs $20 (for generic drugs) or $130 (for branded
drugs), which is only a small fraction of total annual spending for

3 As emphasized by Aron-Dine et al. (2013) and Aron-Dine et al. (2015), if indi-
viduals face a non-linear budget set and take the dynamic incentives it creates into
account, it is not advisable to characterize the elasticity of spending with respect to
“the price” without specifying the complete price change along the entire non-linear
budget set.

Table 2
Elasticity estimates from the dynamic model.

(Uniform) price reductiona Average annual spending Implied “elasticity”b

0 % (Baseline) 1838
1 .0% 1842 −0.22
5 .0% 1860 −0.24
10 .0% 1883 −0.24
15 .0% 1906 −0.25
25 .0% 1958 −0.26

Table reports estimates of the implied elasticities using the dynamic model of Einav
et al. (2015). The first row shows predicted average annual spending under the exist-
ing budget set in the five plans that constitute the baseline sample. Other rows show
predicted average annual spending (and the implied elasticities) of various uniform
price reductions to these budget sets.

a “Uniform price reduction” is achieved by reducing the price (i.e. consumer coin-
surance) in every arm of each plan by the percent shown in the table.

b The implied “elasticity” is calculated by computing the ratio of the percent change
in spending (relative to the baseline) to the percent change in price (relative to the
baseline).

those individuals whose spending is around the kink. Yet, this is still
potentially a force that would reduce the implied behavioral elastic-
ity estimated in the Saez-style approach, since any lumpiness will
work to push spending outside of the bandwidth used to measure
excess mass. The dynamic model, by contrast, accounts for lumpiness
by modeling a discrete series of (weekly) health shocks and purchase
decisions, explicitly estimating the distribution of the cost of each
drug (h), whose right tail is not trivial.

Second, the Saez model is a static model. This seems a reason-
able approximation to many annual labor supply decisions, which
was the context for which it was developed.4 However, a static
model seems poorly suited to our context. Annual spending in our
setting is the result of individuals making many sequential prescrip-
tion drug purchase decisions throughout the year as health shocks
arrive (and information is revealed), and the price of treating each
shock changes as individuals move along their non-linear budget
set. This is in sharp contrast to the assumption of the static frame-
work in which all the uncertainty is realized prior to any spending
decision.

Relatedly, if individuals respond to the dynamic incentives pro-
vided by the non-linear contract, then not only does information
arrive gradually, but also early purchase decisions reflect individuals’
expectations about future health shocks and their associated out-
of-pocket price, adding yet another important dynamic effect. For
example, the static analysis, by construction, limits the behavioral
response to the kink to those near the kink. Yet, the set of people
“near” the kink – and therefore “at risk” of bunching – may in fact be
endogenously affected by the presence of the kink; forward-looking
individuals, anticipating the increase in price if they experience a
series of negative health shocks, are likely to make purchase deci-
sions that decrease their chance of ending up near the kink, even if
at that point they are far from reaching it.

This is not merely a theoretical point. In prior empirical work,
we produced reduced form, descriptive evidence that is consistent
with such forward looking behavior; in particular, in both prescrip-
tion drug purchasing in Medicare Part D and in medical spending
decisions in employer-sponsored health insurance we presented evi-
dence that individuals’ health care utilization decisions respond to
the future price of health care (Aron-Dine et al., 2015). Specifically,
in both settings, we found that individuals in the same health insur-
ance contract who face the same spot price of healthcare but a

4 Although, as noted by Manoli and Weber (forthcoming), even in the labor supply
context, retirement incentives can create important dynamic considerations, which
suggest a need to adapt the static bunching model.
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higher expected end-of-year price of care (because they joined the
non-linear contract at different points during the year) have lower
initial healthcare spending. This evidence of a response to the future
price of care, among individuals who face the same spot, or initial
price of care, is consistent with individuals taking into account the
entire non-linear budget set in making current healthcare utilization
choices.

Relatedly, our prior estimates of the dynamic model described
in the previous section found a non-trivial role for such “antici-
patory” behavioral responses by people who expected to end up
far below the kink; for example, we estimated that about a quar-
ter of the spending increase that we project will occur from “filling
the donut hole” in Medicare Part D is associated with beneficiaries
whose spending prior to the policy change would leave them short
of reaching the donut hole (Einav et al., 2015). Any such anticipatory
response to the donut hole (or any non-linear feature of the health
insurance contract), will be mechanically missed by a Saez-style
“bunching” estimator since, by definition, this behavioral response
does not happen around the kink.

Thus, qualitatively, both the assumption of a frictionless envi-
ronment and the assumption of a static environment seem likely
to contribute to the lower Saez-based elasticity in Table 1 com-
pared to the dynamics-based elasticity in Table 2. We now endeavor
to explore the quantitative importance of each factor by estimat-
ing various restricted versions of the “full” dynamic model that shut
down various features. Of course, these various modeling features
are unlikely to have an additively separable effect on the estimates.
so it will not be possible to do a strict accounting-style decom-
position of the contribution of frictions vs. static modeling to the
differences between the two estimates.

Relatedly, an important point to keep in mind in any such exercise
is that if we re-estimate the “restricted” models, all of the parameter
estimates will change in an attempt to have the restricted models fit
the various moments in the data (including the bunching at the kink)
as well as possible. In other words, this exercise is different from a
theoretical comparative statics exercise. This is because the data, and
in particular the bunching pattern, is held fixed, and is being fitted by
any of the models we propose, so as we move from one specification
to another, the parameters are re-estimated and change in response
to modeling restrictions. As a result, a comparison of implied elastic-
ities from various alternative models – each separately estimated to
fit the data – may not lead to intuitive (or conceptually interesting)
comparative statics.

4.2. Quantitative differences

We consider two “restricted” versions of the “full” dynamic model
presented earlier. These versions are designed to shut down vari-
ous features that are absent from the Saez-style model. In the first
– which we refer to as Restricted Model A (“no dynamics” ) – we
restrict the full model to shut down dynamics. Specifically, we start
with the full model and its parameterization, but then assume no
discounting or uncertainty as in Saez (2010). Yet, we continue to
allow for frictions in the form of lumpy spending. To do so, con-
sider the dynamic model from the previous section, but assume that
individuals’ discount factor is d = 1 and that they do not face
any uncertainty regarding the future. That is, as of the first week
of the year individuals have complete information about the pre-
cise set of health events that they would experience throughout the
year.

These assumptions make the individual drug expenditure deci-
sion a static problem. To see this, let H =

{
(ht ,yt)

}T=52
t=1 denote the

set of health events realized during the coverage year, with (ht,yt) =
(0, 0) if there was no health event at week t, and it is easy to see
that the individual optimal decision is simply a linear programming

problem of choosing the subset D ⊆ H of the prescriptions that get
filled. The individual will choose D to solve the following problem:

max
D⊆H

[−C (
∑

t∈Dht) − ∑
t/∈Dyt] , (10)

which is conceptually very similar to the individual problem of max-
imizing Eq. (2) in the Saez-style model in Section 3. A key difference
between our static version of the dynamic model and the Saez-style
model is that the former allows for the lumpiness of claims, rela-
tive to the frictionless spending model of Saez (of course, there are
also unavoidable functional form differences between the two). In
particular, given 52 weeks in the year and an estimated average
weekly arrival rate of a health shock of approximately 0.4 (see the
estimates of k in Appendix Table A1), the typical individuals faces
about 20 shocks, so a relatively finite set of choices of which to make
claims (some of which will have h>y and therefore are effectively
non-discretionary).

In the second restricted model – which we refer to as Restricted
Model B (“no discounting” ) – we impose d = 1 on the full model,
rather than allowing d to be a free estimable parameter. It thus allows
for lumpiness of spending, as in the first restricted model, but also
allows for uncertainty in the timing and nature of health shocks
throughout the year. By imposing d = 1, all the dynamic behavior
is due to uncertainty and incomplete information about the future,
rather than due to time preferences.

Both of these restricted models use a similar basic structure to
that of the full model presented in the previous section. We thus
follow the same econometric and parametric assumptions regard-
ing functional form, distributions, and heterogeneity, and use the
same method of simulated moments and the same set of empirical
moments for estimation. We should note, however, that the combi-
nation of lumpiness and complete information in Restricted Model
A leads to a computational problem: although conceptually trivial,
solving the optimization problem in Eq. (10) is in fact complicated
as it leads to a large combinatorial choice. Therefore, to estimate
Restricted Model A we use approximation techniques, as detailed in
the appendix.

In the appendix (Appendix Table A2 and Appendix Table A3), we
report the underlying parameter estimates that are associated with
each model. Loosely, the parameter estimates are reasonably similar
across models. This is not particularly surprising given how similar
the models are, and the fact that they try to fit the same descrip-
tive (bunching) patterns in the data. Indeed, like the full dynamic
model and the Saez-style model, these two restricted models also
fit the bunching pattern well as we show in Figs. 5 and 6. Yet, it is
interesting to discuss the parameter that have changed as we move
from the full dynamic model to restricted models A and B. Those
changing parameters are those that “compensate” for the changes in
the modeling assumptions, and may provide some intuition for why
the elasticity estimates change. For example, comparing the esti-
mates for model A (Appendix Table A2) with the estimates of the full
model (Appendix Table A1) reveals that imposing certainty makes us
estimate health shocks that are slightly more persistent, and most
importantly make us estimate lower moral hazard parameter p for
the two high-spending types, and this latter difference is presumably
what drives the lower price elasticity implied by the certainty model.

The key focus is the implications of these different models – all
of which are designed to fit the bunching pattern – for the economic
object of interest: the elasticity of annual spending with respect to
the out-of-pocket price. The main results are presented in Table 3.
Panel A shows the results for Restricted Model A (“no dynamics” )
and panel B for Restricted Model B (“no discounting” ). Each table
reports the implied elasticities in a parallel fashion to the way Table 2
was generated for the “full” dynamic model of Section 3. Recall that
the Saez-style model predicted Saez-based elasticity estimates in the
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Fig. 5. Observed and fitted bunching using restricted model A (“no dynamics”). Figure shows the distribution of observed and predicted total annual drug spending, zooming in
on spending within $1000 of the (year-specific) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins, where each point represents individuals
who spend within $20 above the value on the x-axis. Frequencies in the bottom panel are normalized to sum to 1 across the displayed range.

range of −0.04 to −0.05 (Table 1) while the “full” dynamic model
produced dynamics-based estimates of −0.22 to −0.26 (Table 2). For
ease of discussion we focus on the midpoint of this range, looking at
a 15% reduction in price in Tables 2 and 3.

The “full” dynamic model generates an “elasticity” with respect to
the 15% price reduction of −0.25 (Table 2) while the “no dynamics”
model in Panel A of Table 3 generates an elasticity of −0.13. This “no
dynamics” model represents our attempt to approximate – within
our more richly parametrized model – a static model à-la Saez. A
key difference between the “no dynamics” model and the Saez-style
model is that the latter, as discussed, is frictionless, whereas the “no

dynamics” model allows for lumpiness in drug purchases. Thus, one
way to interpret these results is that lumpiness in purchases may
explain about half of the difference in elasticity estimates between
the two models. Of course, there are functional form differences
between the “no dynamics” model and the Saez-style model which
may also impact the results.

As noted, the “no dynamics” model shuts down both discount-
ing and uncertainty. Panel B of Table 3 explores the importance of
discounting by estimating a version of the full model that allows for
uncertainty but imposes no discounting (d = 1). As it turns out, the
assumption regarding the discount factor do not have a major effect

Fig. 6. Observed and fitted bunching using restricted model B (“no discounting”). Figure shows the distribution of observed and predicted total annual drug spending, zooming in
on spending within $1000 of the (year-specific) kink (which is normalized to 0). It reports observed and predicted spending in $20 bins, where each point represents individuals
who spend within $20 above the value on the x-axis. Frequencies in the bottom panel are normalized to sum to 1 across the displayed range.
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Table 3
Elasticity estimates from restricted versions of the dynamic model.

(Uniform) price reductiona Average annual spending Implied “elasticity”b

Restricted Model A (”No dynamics”)
0 % (Baseline) 1824
1 .0% 1826 −0.11
5 .0% 1836 −0.13
10 .0% 1848 −0.13
15 .0% 1860 −0.13
25 .0% 1887 −0.14

Restricted Model B (”No discounting”)
0 % (Baseline) 1825
1 .0% 1828 −0.16
5 .0% 1844 −0.21
10 .0% 1863 −0.21
15 .0% 1884 −0.22
25 .0% 1930 −0.23

Table reports estimates of the implied elasticities using the restricted versions of the
dynamic model (models A and B as described in the text). The structure of each panel
parallels that of Table 2.

a “Uniform price reduction” is achieved by reducing the price (i.e. consumer coin-
surance) in every arm of each plan by the percent shown in the table.

b The implied “elasticity” is calculated by computing the ratio of the percent change
in spending (relative to the baseline) to the percent change in price (relative to the
baseline).

on the implied elasticity. The “no discounting” model in Panel B of
Table 3 yields an elasticity (for a 15% price reduction) of −0.22, which
is quite close to the “full model” estimate of −0.25 (relative to the
“no dynamics” estimate of −0.13). In other words, after lumpiness,
allowing for dynamics in the form of uncertainty appears important
for the elasticity estimate, but discounting per se does not (although
could be important for other objects of interest).

We close by re-emphasizing our earlier caveat that comparisons
across the “full” dynamic model and the various restricted mod-
els are not “real” comparative statics. In each case, the model was
re-estimated and the parameters changed (see Appendix Tables A1
through A3) as the restricted models also tried to match the
(observed) bunching moments. As a result, it is hard to develop eco-
nomic intuition for “why” the restricted models deliver the results
that they do relative to the full model. In practice, in our setting
we found that the “real” comparative statics generate much smaller
changes in elasticities than the re-estimated restricted models. For
example, if we take the parameter estimates from the full model
(Table A1) but impose the restrictions of the “no discounting” model
(i.e. we impose d = 1), we estimate that the elasticity declines from
−0.25 to −0.23, which is only two-thirds as much as the decline if
we instead re-estimate the model after imposing no discounting (in
which case, we estimate an elasticity of −0.22). Similarly, if we take
the parameter estimates from the full model but impose the restric-
tions of the “no dynamics” model (i.e. assume perfect foresight of
the sequence of health events, and assume d = 1), we estimate that
the elasticity declines from −0.25 to −0.20, which less than a half of
the decline if we instead re-estimate the model (in which case, we
estimate an elasticity of −0.13).

5. Conclusions

This paper documents a case in which two different models both
fit well in sample, but have different implications out of sample. We
illustrated this point in the specific context of translating bunching
estimates – which are being increasingly used in public economics
– to behavioral elasticities, and in the specific setting of study-
ing the spending (or “moral hazard” ) effects of health insurance

contracts. We showed that the translation of a descriptive bunching
pattern to an elasticity estimate using a Saez-style frictionless model
could lead to fivefold lower counterfactual predictions relative to
those generated by a richer dynamic model. While this qualitative
result – that two different models lead to different results – by
itself should be hardly surprising, we did not expect a-priori such
a large difference in the magnitude of the prediction. We explored
several “in-between” specifications to help assess which modeling
assumptions may be most responsible for the differences in results.

Given these results, an obvious question is how to select among
the many models that could rationalize an observed pattern. There is
of course no algorithmic answer to this question, and model selection
should likely depend on the context, the data at hand, and the key
counterfactual exercise for which it is used. Additional moments and
external information could help with model selection. Other aspects
that could factor into such a decision are tradeoffs between trans-
parency, simplicity, and speed of communication on the one hand,
and richness of the model on the other hand. When there is enough
reason (or evidence) to believe that a richer model could lead to sub-
stantially different results, it seems more important to move away
from the simpler model.

However, we should note that even when simpler models are
inferior in terms of a bottom-line counterfactual, they may still prove
quite useful in other respects. For example, going back to the spe-
cific application of the current paper, even though the Saez-style
model delivers elasticities that are much lower, it may generate use-
ful qualitative results regarding elasticity differences across groups.
It can provide a relatively easy and quick way for general testing
and assessment before developing and estimating more complete
models.

The exercise in our paper is a specific illustration of a broader
challenge facing applied work. There is a growing premium on
compelling, transparent, “reduced form” evidence of a behavioral
response. At the same time, there is growing appreciation of the
observation that translation of that reduced form evidence into
an economic object of interest often requires additional modeling
assumptions and data moments. The “bunching” literature – which
has focused on visually compelling evidence of behavioral responses
– has been particularly attuned to this issue, and developed sev-
eral modeling approaches, as summarized in Kleven (2016). While
our paper fits squarely in that “bunching” literature, the challenge
is of course much broader, and applies to any attempt to translate
reduced form evidence of a behavioral response – be it the excess
mass at a convex kink or a treatment effects from a randomized
controlled trial – into an underlying economic object.

Appendix

In this appendix we describe the approximation we use to
Restricted Model A in the paper. That is, the version of the model that
has no uncertainty (and therefore no dynamics). With full certainty, a
consumer faces a collection of potential prescriptions {ht ,yt}T

t=1 and
must choose which ones to fill. Denote dt = 1 if a prescription is
filled and dt = 0 if not. The consumer’s problem is

max
dt∈{0,1}

T∑
t=0

−dt

[
(1 − dt)yt + dtC

(
ht ,

t−1∑
s=0

dshs

)]
. (A1)

It is very difficult to solve this discrete optimization problem. There
are 252 possible sequences of dt, so a brute force solution is compu-
tationally intractable. The dynamic programming approach that we
used in the model with uncertainty is also not applicable here. With
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Table A1
Parameter estimates from the dynamic model.

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.60 4.02 −4.37 −4.39
Beta_Risk 0.00 −2.44 −2.81 4.09 6.17
Beta_65 0.00 −0.13 1.35 0.93 −1.59
d ——————- 0.97 ——————-
l 0.013 3.96 2.93 4.38 4.35
s 2.35 1.14 1.57 0.43 1.42
p 0.86 0.91 0.52 0.51 0.44
klow 0.013 0.15 0.65 0.86 0.47
khigh 0.011 0.13 0.57 0.75 0.41
Pr(kt = klow|kt+1 = klow) ——————- 0.557 ——————-
Pr(kt = khigh|kt+1 = khigh) ——————- 0.565 ——————-
Implied shares:
Overall 0.05 0.27 0.34 0.03 0.31
For age=65 0.00 0.13 0.87 0.00 0.00
For age>65 0.05 0.27 0.32 0.03 0.33
Other implied quantities:
d(Share)/d(Risk) 0.00 −0.37 −0.52 0.06 0.83
E(h) 16 101 65 87 211
Implied annual expected spending:
Full insurance 11 811 2,198 3,891 5,110
0 .25 coins. Rate 8 627 1,914 3,398 4,542

Top panel reports parameter point estimates (standard errors are available from the authors upon request) from the dynamic model of Einav,
Finkelstein, and Schrimpf (2015). Bottom panels report implied quantities based on these parameters.

uncertainty, spending until time t and the current yt and ht are the
relevant state variables for a consumer. With certainty, the consumer
knows the entire sequence of ht and yt, so this entire sequence is
relevant for the consumer’s decision at time t.

To make computation tractable, we exploit the fact that the bud-
get, C( • ), is piecewise linear, impose d = 1, and settle for an
approximate solution when the exact solution lies near the convex
kink. Given that the budget is piecewise linear, we can write it as

C(x) = yg + bg(x − kg) for kg ≤ x ≤ kg+1 (A2)

where kg are increasing with g. Once restricted to lie on a given seg-
ment of the budget set, the consumer’s problem is an integer linear
program,

max
dt∈{0,1}

−yg + bgkg +
T∑

t=1

− [(1 − dt)yt + bgdtht]

s.t. kg ≤
T∑

t=1

dtht ≤ kg+1. (A3)

Although there are algorithms to solve integer linear programs,
integer linear programs are NP hard, so the performance of these

Table A2
Parameter estimates from restricted model A (“no dynamics”).

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.56 4.03 −4.29 −4.66
Beta_Risk 0.00 −2.39 −2.63 6.37 4.10
Beta_65 0.00 0.01 1.34 −1.61 0.85
d ——————- 1.00 (Imposed) ——————-
l 0.043 3.98 2.95 4.34 4.52
s 2.29 1.08 1.64 1.42 0.51
p 0.82 0.84 0.47 0.10 0.41
klow 0.010 0.14 0.60 0.35 0.99
khigh 0.008 0.10 0.46 0.27 0.77
Pr(kt = klow|kt+1 = klow) ——————- 0.611 ——————-
Pr(kt = khigh|kt+1 = khigh) ——————- 0.540 ——————-
Implied shares:
Overall 0.04 0.24 0.36 0.34 0.02
For age=65 0.00 0.14 0.85 0.00 0.00
For age>65 0.05 0.25 0.33 0.35 0.02
Other implied quantities:
d(Share)/d(Risk) 0.00 −0.36 −0.55 0.88 0.03
E(h) 14 96 73 210 104
Implied annual expected spending:
Full insurance 8 674 2,257 3,850 5,377
0 .25 coins. Rate 6 532 1,994 3,755 4,821

Table reports estimation results from restricted model A (“no dynamics”), which is described in the main text. Table structure parallels that of
Appendix Table A1.
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Table A3
Parameter estimates from restricted model B (“no discounting”).

j=1 j=2 j=3 j=4 j=5

Parameter estimates:
Beta_0 0.00 3.63 4.01 −4.28 −4.36
Beta_Risk 0.00 −2.49 −2.85 4.07 6.27
Beta_65 0.00 −0.07 1.28 0.97 −1.65
d ——————- 1.00 (Imposed) ——————-
l -0.015 4.02 2.94 4.43 4.32
s 2.34 1.24 1.55 0.32 1.39
p 0.86 0.96 0.46 0.49 0.39
klow 0.012 0.14 0.63 0.90 0.49
khigh 0.010 0.12 0.52 0.75 0.41
Pr(kt = klow|kt+1 = klow) ——————- 0.570 ——————-
Pr(kt = khigh|kt+1 = khigh) ——————- 0.568 ——————-
Implied shares:
Overall 0.05 0.26 0.33 0.03 0.33
For age=65 0.00 0.15 0.85 0.00 0.00
For age>65 0.05 0.27 0.31 0.03 0.34
Other implied quantities:
d(Share)/d(Risk) 0.00 −0.39 −0.52 0.05 0.86
E(h) 15 120 62 89 196
Implied annual expected spending:
Full insurance 9 891 2,038 4,137 5,018
0 .25 coins. Rate 7 678 1,804 3,626 4,529

Table reports estimation results from restricted model B (“no discounting”), which is described in the main text. Table structure parallels that of
Appendix Table A1.

algorithms can be poor. Using them in our context was too time con-
suming; we must solve the above problem thousands of times to
estimate the model. Instead, we compute an approximate solution as
follows. Consider the relaxation of (A3) to a linear program by allow-
ing dt to take any value in the interval [0, 1] (instead of either 0 or 1,
as in the original problem):

max
dt∈[0,1]

−yg + bgkg +
T∑

t=1

− [(1 − dt)yt + bgdtht]

s.t. kg ≤
T∑

t=1

dtht ≤ kg+1. (A4)

There are three possible solutions. Two corner solutions and an
interior one,

dt = 1(yt > bght) and kg <
T∑

t=0

dtht < kg+1. (A5)

Note that the interior solution has all dt ∈ {0, 1}, so if the solution
is interior, then the solution is the same with or without the integer
constraint. To describe the upper corner solution, sort prescriptions
such that

yt(0)

ht(0)
≥ yt(1)

ht(1)
≥ · · · yt(T)

ht(T)
. (A6)

Let r∗ = min
{
r :

∑r
i=0 ht(i) > kg

}
. Then dt(r) = 1 for r < r∗, 0 for r > r∗

and

dt(r∗) =
kg − ∑r∗−1

i=0 ht(i)

ht(r∗)
. (A7)

The solution is very intuitive and simple. We sort potential pre-
scriptions by their relative cost of not filling, y

h , and then fill from
most costly to least costly until we reach the corner. Unfortunately,
the corner solution violates the integer constraint. Simply rounding

the solution to the not-integer-constrained linear program does not
necessarily give the solution to the integer constrained linear pro-
gram. Nonetheless, we adapt the rounded solution as an approximate
optimum.

After (approximately) solving the model along each segment, we
take the segment solution that gives the highest utility as the solu-
tion. Note that the only time an approximate corner solution will be
used is if the solution is at the single convex kink. Also, in these cases,
the true and approximate solutions both have the feature that either
switching a single prescription from filled to not filled (or vice versa)
would move total spending from above to below the convex kink.
The solution is only approximate in that there may be a better set of
prescriptions to fill with this feature.
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