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ABSTRACT 
 

Causal Effects of Monetary Shocks: Semiparametric Conditional 
Independence Tests with a Multinomial Propensity Score*

 
Macroeconomists have long been concerned with the causal effects of monetary policy. 
When the identification of causal effects is based on a selection-on-observables assumption, 
non-causality amounts to the conditional independence of outcomes and policy changes. 
This paper develops a semiparametric test for conditional independence in time series 
models linking a multinomial policy variable with unobserved potential outcomes. Our 
approach to conditional independence testing is motivated by earlier parametric tests, as in 
Romer and Romer (1989, 1994, 2004). The procedure developed here is semiparametric in 
the sense that we model the process determining the distribution of treatment – the policy 
propensity score – but leave the model for outcomes unspecified. A conceptual innovation is 
that we adapt the cross-sectional potential outcomes framework to a time series setting. This 
leads to a generalized definition of Sims (1980) causality. A technical contribution is the 
development of root-T consistent distribution-free inference methods for full conditional 
independence testing, appropriate for dependent data and allowing for first-step estimation of 
the propensity score. 
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1 Introduction

The possibility of a causal connection between monetary policy and real economic variables is one of the

most important and widely studied questions in macroeconomics. Most of the evidence on this question

comes from regression-based statistical tests. That is, researchers regress an outcome variable such as

industrial production on measures of monetary policy, while controlling for lagged outcomes and contem-

poraneous and lagged covariates, with the statistical signi�cance of policy variables providing the test

results of interest. Two of the most in�uential empirical studies in this spirit are by Sims (1972, 1980),

who discusses conceptual as well as empirical problems in the money-income nexus.

The foundation of regression-based causality tests is a simple conditional independence assumption.

The core null hypothesis is that conditional on lagged outcomes and an appropriate set of control variables,

the absence of a causal relationship should be manifest in a statistically insigni�cant connection between

policy surprise variables and contemporaneous and future outcomes. In the language of cross-sectional

program evaluation, policy variables are assumed to be �as good as randomly assigned�after appropriate

regression conditioning, so that conditional e¤ects have a causal interpretation. While this is obviously

a strong assumption, it seems like a natural place to begin empirical work, at least in the absence of

a randomized trial or a compelling exclusion restriction. This assumption is equivalent to postulating

independent structural innovations in structural vector autoregressions (SVAR) which have taken center

stage in the analysis of monetary policy e¤ects. Recent contributions to this literature include Bernanke

and Blinder (1992), Christiano, Eichenbaum and Evens (1996, 1999), Gordon and Leeper (1994), Sims and

Zha (2006) and Strongin (1995).

While providing a �exible tool for the analysis of causal relationships, an important drawback of

regression-based conditional independence tests, including those based on SVAR�s, is the need for an

array of auxiliary assumptions that are hard to assess and interpret, especially in a time series context.

Essentially, regression tests rely on a model of the process determining GDP growth or other macroeconomic

outcomes. Much of the recent literature in monetary macroeconomics has focused on dynamic stochastic

general equilibrium (DSGE) models for this purpose. As discussed by Sims and Zha (2006), SVAR�s can

be understood as �rst-order approximations to a potentially non-linear DSGE model. Moreover, as a

framework for hypothesis testing, the SVAR approach implicitly requires speci�cation of both a null and

an alternative model.

The principal contribution of this paper is to develop an approach to time series causality testing that

shifts the focus away from a complete model of both the processes determining outcomes and the process

determining policies towards a model of the process determining policy decisions alone. In particular, we

develop causality tests that rely on a model for the conditional probability of a policy shift, which we call

the �policy propensity score�, leaving the model for outcomes unspeci�ed. In the language of the SVAR
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literature, our approach reduces the modeling burden to the speci�cation, identi�cation, and estimation of

the structural policy innovation while leaving the remaining part of the system unspeci�ed. This limited

focus should increase robustness. For example, we do not need to specify the functional form or lag length

in a model for GDP growth. Rather, we need be concerned solely with the horizon and variables relevant

for Federal Open market Committee (FOMC) decision-making, issues about which there is considerable

institutional knowledge. Moreover, the multinomial nature of some policy variables provides a natural

guide as to the choice of functional form for the policy model.

A second contribution of our paper is the outline of a potential-outcomes framework for causal re-

search using time series data. In particular, we show that a generalized Sims-type de�nition of dynamic

causality provides a coherent conceptual basis for time series causal inference analogous to the selection-on-

observables assumption in cross-section econometrics. The analogy between a time series causal inquiry

and a cross-sectional selection-on-observables framework is even stronger when the policy variable can be

coded as a discrete treatment-type variable. In this paper, therefore, we focus on the causal e¤ect of

changes in the federal funds target rate, which tends to move up or down in quarter-point jumps. Our

empirical work is motivated by Romer and Romer�s (2004) analysis of the FOMC decisions regarding the

intended federal funds rate. This example is also used to make our theoretical framework concrete. In

an earlier paper, Romer and Romer (1989) described monetary policy shocks using a dummy variable

for monetary tightening. An application of our framework to this binary-treatment case appears in our

working paper (Angrist and Kuersteiner, 2004). Here, we consider a more general model of the policy

process where Federal Funds target rate changes are modeled as a dynamic multinomial process.

Propensity score methods, introduced by Rosenbaum and Rubin (1983), are now widely used for cross-

sectional causal inference in applied econometrics. Important empirical examples include Dehejia and

Wahba (1999) and Heckman, Ichimura and Todd(1998), both of which are concerned with evaluation of

training programs. Heckman, Ichimura, and Todd (1997), Heckman, et al (1998), and Abadie (2005)

develop propensity score strategies for di¤erences-in-di¤erences estimators. The di¤erences-in-di¤erences

framework often has a dynamic element since these models typically involve intertemporal comparisons.

Similarly, Robins, Greenland and Hu (1999), Lok et.al. (2004) and Lechner (2004) have considered panel-

type settings with time-varying treatments and sequential randomized trials. At the same time, few, if

any, studies have considered propensity score methods for a pure time series application. This in spite

of the fact that the dimension-reducing properties of propensity score estimators would seem especially

attractive in a time series context. Finally, we note that Imbens (2000) and Lechner (2000) generalize the

binary propensity score approach to estimation to allow for ordered treatments, though this work has not

yet featured widely in applications.

Implementation of our semiparametric test for conditional independence in time series data generates
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a number of inference problems. First, as in the cross-sectional and di¤erences-in-di¤erences settings

discussed by Hahn (1999), Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder(2003), and

Abadie (2005), inference should allow for the fact that in practice the propensity score is unknown and

must be estimated. First-step estimation of the propensity score changes the limiting distribution of our

Kolmogorov-Smirnov (KS) and von Mises (VM) test statistics.

A second and somewhat more challenging complication arises from the fact that non-parametric tests of

distributional hypotheses such as conditional independence may have a non-standard limiting distribution,

even in a relatively simple cross-sectional setting. For example, in a paper closely related to ours, Linton

and Gozalo (1999) consider KS- and VM-type statistics, as we do, but the limiting distributions of their test

statistics are not asymptotically distribution-free, and must therefore be bootstrapped.1 More recently,

Su and White (2003) propose a nonparametric conditional independence test for time series data based on

orthogonality conditions obtained from an empirical likelihood speci�cation. The Su and White procedure

converges at a less-than-standard rate due to the need for nonparametric density estimation. In contrast,

we present new Kolmogorov-Smirnov (KS) and von Mises (VM) statistics that provide distribution-free

tests for full conditional independence, suitable for dependent data, and which converge at the standard

rate.

The key to our ability to improve on previous tests of conditional independence, and an added bene�t

of the propensity score, is that we are able to reduce the problem of testing for conditional distributional

independence to a problem of testing for a martingale di¤erence sequence (MDS) property of a certain

functional of the data. This is related to the problem of testing for the MDS property of simple stochastic

processes, which has been analyzed by, among others, Bierens (1982, 1990), Bierens and Ploberger (1997),

Chen and Fan (1999), Stute, Thies and Zhu (1998) and Koul and Stute (1999). Our testing problem

is more complicated because we simultaneously test for the MDS property of a continuum of processes

indexed in a function space. Earlier contributions propose a variety of schemes to �nd critical values

for the limiting distribution of the resulting test statistics but most of the existing procedures involve

nuisance parameters.2 Our work extends Koul and Stute (1999) by allowing for more general forms of

dependence, including mixing and conditional heteroskedasticity. These extensions are important in our

application because even under the null hypothesis of no causal relationship, the observed time series are

not Markovian and do not have a martingale di¤erence structure. Most importantly, direct application

of the Khmaladze (1988,1993) method in a multivariate context appears to work poorly in practice. We

1See also Abadie (2002), who proposes a bootstrap procedure for nonparametric testing of hypotheses about the distribution

of potential outcomes, when the latter are estimated using instrumental variables.
2 In light of this di¢ culty, Bierens and Ploberger (1997) propose asymptotic bounds, Chen and Fan (1999) use a bootstrap

and Koul and Stute (1999) apply the Khmaladze transform to produce a statistic with a distribution-free limit. The univariate

version of the Khmaladze transform was �rst used in econometrics by Bai (2002) and Koenker and Xiao (2002) .
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therefore use a Rosenblatt (1952) transformation of the data in addition to the Khmaladze transformation3.

This combination of methods seems to perform well, at least for the low-dimensional multivariate systems

explored here.

The paper is organized as follows. The next section outlines our conceptual framework, while section

3 provides a heuristic derivation of the testing strategy. Section 4 discusses the construction of feasible

critical values using the Khmaladze and Rosenblatt transforms as well as a bootstrap procedure. Finally,

the empirical behavior4 of alternative causality concepts and test statistics is illustrated through a re-

analysis of the Romer and Romer (2004) data in Section 5. As an alternative to the Romers�approach,

and to illustrate the use of our framework for speci�cation testing, we also explore a model for monetary

policy based on a simple Taylor rule.

2 Notation and Framework

Causal e¤ects are de�ned here using the Rubin (1974) notion of potential outcomes. The potential

outcomes concept originated in experimental studies where the investigator has control over the assignment

of treatments, but is now widely used in observational studies. Our de�nition of causality relies on

distinguishing the potential outcomes that would be realized with and without a change in policy. In the

case of a binary treatment, these are denoted by Y1t and Y0t: The observed outcome in period t can then

be written Yt = Y1tDt+(1�Dt)Y0t; where Dt is treatment status. In the absence of any serial correlation

or covariates, the causal e¤ect of a treatment or policy action is unambiguously de�ned as Y1t � Y0t: It is

clear that this e¤ect can never be measured in practice. Researchers therefore focus on either the average

e¤ect E(Y1t � Y0t); or the e¤ect in treated periods, E(Y1t � Y0tjDt = 1): We refer to both of these as the

average causal e¤ect of policy action Dt; since under our identifying assumptions they are the same. When

Dt takes on more than two values, there are multiple incremental average treatment e¤ects, e.g., the e¤ect

of going up or down. This is spelled out further below.

Time series data are valuable in that, by de�nition, a time series sample includes repeated observations

on treatment and outcome variables. At the same time, time series application pose special problems

for causal inference. In a dynamic setting, the de�nition of causal e¤ects is complicated by the fact that

potential outcomes are determined not just by current policy actions but also by past actions and covariates.

To capture dynamics, we assume the economy can be described by the observed vector stochastic process

�t = (Yt; Xt; Dt) ; de�ned on the probability space (
;F ;P), where Yt is a vector of outcome variables, Dt

is a vector of policy variables, and Xt is a vector of other exogenous and (lagged) endogenous variables that

3 In recent work, independent of ours, Delgado and Stute (2005) discuss a speci�cation test that also combines the Khmal-

adze and Rosenblatt transforms.
4A small Monte Carlo study can be found in our NBER working paper Angrist and Kuersteiner (2004).
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are not part of the null hypothesis of no causal e¤ect of Dt: Let �Xt = (Xt; :::; Xt�k; :::) denote the covariate

path, with similar de�nitions for �Yt and �Dt: We assume that the information used by policy makers at

time t; denoted Ft; is contained in the public record or otherwise available to researchers. Formally, the
relevant information is assumed to be described by Ft = � (zt) where zt = �t( �Xt; �Yt; �Dt�1) is a sequence of

�nite dimensional functions �t :
Ndim(�t)

i=1 R1 ! Rk2 of the entire observable history of the joint process.
For the purposes of empirical work, the mapping �t is assumed to be known.

A key to identi�cation in our framework is the distinction between systematic and random components

in the process by which policy is determined. Speci�cally, decisions about policy are assumed to be

determined in part by a time-varying but non-stochastic function of observed random variables, denoted

D(zt; t). This function summarizes the role played by observable variables in the policy makers�decision-

making process. In addition, policy makers are assumed to react to idiosyncratic information, represented

by the scalar "t, that is not observed by researchers and therefore modeled as a stochastic shock. The

policy Dt is determined by both observed and unobserved variables according to Dt =  (D(zt; t); "t),

where  is a general mapping. Without loss of generality we can assume that "t has a uniform distribution

on [0; 1]. This is because  (a; b; t) can always be de�ned as ~ (a; F�1(b); t) where F is any parametric or

non-parametric distribution function. We assume that  takes values in the set of functions 	t: A common

speci�cation in the literature on monetary policy is a Taylor (1993) rule for the nominal interest rate. In

this literature,  is usually linear while zt is lagged in�ation and unemployment (see, e.g., Rotemberg and

Woodford (1997)). A linear rule implicitly determines the distribution of "t:

A second key assumption is that the stochastic component of the policy function, "t, is independent

of potential outcomes. This assumption is distinct from the policy model itself and therefore discussed

separately, below. Given this setup, we can de�ne potential outcomes as the possibly counterfactual

realizations of Yt that would arise in response to a hypothetical change in policy as described by alternative

realizations for  (D(zt; t); "t). The de�nition allows counterfactual outcomes to vary with changes in policy

realizations for a given policy rule, or for a changing policy rule:

De�nition 1 A potential outcome, Y  
t;j (d), is de�ned as the value assumed by Yt+j if Dt =  (D(zt; t); "t) =

d, where d is a possible value of Dt and  2 	t:

The random variable Y  
t;j (d) depends in part on future policy shocks such as "t+j�1, that is, random

shocks that occur between time t and t + j. When we imagine changing d or  to generate potential

outcomes, the sequence of intervening shocks is held �xed. This is discussed further in Example 1, below.

It�s also worth noting that our setup focuses on the e¤ect of a single policy shock on subsequent outcomes.

This is consistent with the tradition of impulse response analysis in macroeconomics. Our setup is more

general, however, in that it allows the distributional properties of Y  
t;j (d) to depend on the policy parameter
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d in arbitrary ways. In contrast, traditional impulse response analysis looks at the e¤ect of d on the mean

of Y  
t;j (d) only.

It also bears emphasizing that both the timing of policy adoption and the horizon matter for Y  
t;j (d).

For example, Y  
t;j (d) and Y

 
t+1;j�1 (d

0) may di¤er even though both occur in period t + j: In particular,

Y  
t;j (d) and Y

 
t+1;j�1 (d

0) may di¤er because Y  
t;j (d) does not constrain the policy in period t+1 to equal d

0

and Y  
t+1;j�1 (d

0) does not constrain the policy in period t to equal d; a point that will be further illustrated

in Example 1 below.

Under the null hypothesis of no causal e¤ect, potential and realized outcomes coincide. This is formal-

ized in the next de�nition.

Condition 1 The sharp null hypothesis of no causal e¤ects means that Y  0
t;j (d

0) = Y  
t;j (d) ; j > 0 for

all d; d0 and for all possible policy functions  ; 0 2 	t: In addition, under the no-e¤ects null hypothesis,
Y  
t;j (d) = Yt+j for all d,  , t, j:

In the simple situation studied by Rubin (1974), the no-e¤ects null hypothesis states that Y0t =

Y1t.5 Our approach to causality testing leaves Y  
t;j (d) unspeci�ed. In contrast, it�s common practice in

econometrics to model the joint distribution of the vector of outcomes and policy variables (�t) as a

function of lagged and exogenous variables or innovations in variables, and so it�s worth thinking about

what potential outcomes would be in this case. When economic theory provides a model for �t; as is the

case for DSGE models, there is a direct relationship between potential outcomes and the solution of the

model. As in Blanchard and Kahn (1980) or Sims (2001) a solution ~�t = ~�t (�"t; ��t) is a representation

of �t as a function of past structural innovations �"t = ("t; "t�1; :::) in the policy function and structural

innovations ��t =
�
�t; �t�1; :::

�
in the rest of the economy. Further assuming that  (D(zt; t); "t) = d

can be solved for "t such that for some function  �; "t =  �(D(zt; t); d) we can then partition ~�t =�
~Yt; ~Xt; ~Dt

�
and focus on ~Yt = ~Yt (�"t; ��t) : The potential outcome Y

 
t;j (d) can now be written as Y

 
t;j (d) =

~Yt+j

�
"t+j ; :::"t+1;  

�( ~Dt; d);�"t�1; ��t

�
6: It is worth pointing out that the solution ~�t; and thus the potential

outcome Y  
t;j (d) ; in general both depends on D (:; :) and on the distribution of "t. With linear models,

a closed form for ~�t can be derived. Given such a functional relationship, Y
 
t;j (d) can be computed in

5 In a study of sequential randomized trials, Robins, Greenland and Hu (1999) de�ne potential outcome Y (0)
t as the outcome

that would be observed in the absence of any current and past interventions, i.e. when Dt = Dt�1 = ::: = 0: They denote by

Y
(1)
t the set of values that could have potentially been observed if for all i � 0; Dt�i = 1: This approach seems too restrictive
to �t the macroeconomic policy experiments we have in mind.

6When Dt = D (zt; t) + "t;  
� (D (zt; t) ; d) = d � D (zt; t) : However, the function  � may not always exist. Then, it

may be more convenient to index potential outcomes directly as functions of "t rather than d. In that case, one could de�ne

Y  t;j (e) =
~Yt+j ("t+j ; :::"t+1; e;�"t�1; ��t) where we use e instead of d to emphasize the di¤erence in de�nition. This distinction

does not matter for our purposes and we focus on Y  t;j (d) :
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an obvious way. As recently highlighted by Clarida, Gali and Gertler (2000) and Lubik and Schorfheide

(2003, 2004), however, New Keynesian monetary models have multiple equilibria under certain interest

rate targeting rules. Lubik and Schorfheide (2003) in particular show that the e¤ect of policy shocks "t may

not be unique for some models and parameter combinations. In this case, potential outcomes are also non-

unique, but we can accommodate non-uniqueness by allowing Y  
t;j (d) to be a set-valued random variable.

Lubik and Schorfheide (2003) provide an algorithm that can be used to compute potential outcomes for

linear rational expectations models even when there are multiple equilibria. Multiplicity of equilibria is

compatible with Condition 1 as long as the multiplicity disappears under the Null hypothesis of no causal

e¤ect. Moreover, uniqueness of equilibria under the no-e¤ects null only needs to hold for the component
~Yt (�"t; ��t) of ~�t =

�
~Yt; ~Xt; ~Dt

�
: In the context of testing for the e¤ects of monetary policy on the real

economy, this means that under the null hypothesis only real variables need to be uniquely determined,

while nominal variables such as the in�ation rate still may be subject to multiplicity.

The link between the potential outcomes concept and structural macroeconomic models can be made

more speci�c using Bernanke and Blinder�s (1992) SVAR model for the e¤ects of money (see also Bernanke

and Mihov (1998)). This example illustrates how potential outcomes can be computed explicitly in simple

linear models, and the link between observed and potential outcomes under the no-e¤ects null.

Example 1 Suppose that the SVAR takes the form �0�t = �� (L)�t + (�0t; "t)
0 where �0 is a matrix

of constants conformable to �t and � (L) = �1L + ::: + �pL
p is a lag polynomial such that C (L) :=

(�0 + � (L))
�1 =

P1
k=0CkL

k exists. The policy innovations are denoted by "t and other structural inno-

vations are �t: Then, �t = C (L) (�0t; "t)
0 such that Yt has a moving average representation

Yt =
P1

k=0 cy";k"t�k +
P1

k=0 cy�;k�t�k

where cy";k and cy�;k are blocks of Ck partitioned conformably to Yt; "t and �t: In this setup, potential

outcomes are de�ned as

Y  
t;j (d) =

P1
k=0;k 6=j cy";k"t+j�k +

P1
k=0 cy�;k�t+j�k + cy";jd:

Potential outcomes answer the following question: assume that everything else equal, which in this case

means keeping "t+j�k and �t+j�k �xed for k 6= j, how would the outcome variable Yt+j change if we

change the policy innovation from "t to d? The sharp null hypothesis of no causal e¤ect holds if and

only if cy";j = 0 for all j: This is the familiar restriction that the impulse response function be identically

equal to zero. In general, Y  
t+1;j�1 (d

0) =
P1

k=0;k 6=j�1 cy";k"t+j�k +
P1

k=0 cy�;k�t+j�k + cy";j�1d0 di¤ers

from Y  
t;j (d) ;except when the potential outcomes are evaluated at the realized policy innovations "t and

"t+1; in which case Y
 
t;j ("t) = Y  

t+1;j�1 ("t+1) = Yt or under the null hypothesis of no causal e¤ects, where

Y  
t+1;j�1 (d

0) = Y  
t;j (d) = Yt+j.
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De�nition 1 extends the conventional potential outcome framework in a number of important ways. A

key assumption in the cross-sectional causal framework is non-interference between units, or what Rubin

(1978) calls the Stable Unit Treatment Value Assumption (SUTVA). Thus, in a cross-sectional context,

the treatment received by one subject is assumed to have no causal e¤ect on the outcomes of others. The

overall proportion treated is also taken to be irrelevant. For a number of reasons, SUTVA may fail in a

time series setup. First, because the units in a time series context are serially correlated, current outcomes

depend on past policies. This problem is accounted for by statistically conditioning on the history of

observed policies, covariates and outcomes, so that in practice when we discuss potential outcomes, we

have in mind alternative states of the world that might be realized for a given history. Second, and more

importantly, since the outcomes of interest are often assumed to be equilibrium values, potential outcomes

may depend on the distribution �and hence all possible realizations �of the unobserved component of

policy decisions, "t: The dependence of potential outcomes on the distribution of "t is captured by  .

Finally, the fact that potential outcomes depend on  allows them to depend directly on the decision-

making rule used by policy makers even when policy realizations are �xed. Potential outcomes can

therefore be de�ned in a rational-expectations framework where both the distribution of shocks and policy

makers reaction to these shocks matter.

The framework up to this point de�nes causal e¤ect in terms of unrealized potential or counterfactual

outcomes. In practice, of course, we obtain only one realization each period, and therefore cannot directly

test the non-causality null. Our tests therefore rely on the identi�cation condition below, referred to in the

cross-section treatment e¤ects literature as �ignorability� or �selection-on-observables.� This condition

allows us to establish a link between potential outcomes and the distribution of observed random variables.

Condition 2 Selection on observables:

Y  
t;1 (d) ; Y

 
t;2 (d) ; :::?Dtjzt; for all d and  2 	t:

The selection on observable assumption says that policies are independent of potential outcomes after

appropriate conditioning. Note also that Condition 2 implies that Y  
t;1 (d) ; Y

 
t;2 (d) ; :::?"tjzt. This is

because Dt =  (zt; "t; t) such that conditional on zt, randomness in Dt is due exclusively to randomness

in "t: The variation in "t is shorthand for idiosyncratic factors such as those detailed for monetary policy

by Romer and Romer (2004). These factors include the variation over time in policy makers� beliefs

about the workings of the economy, decision-makers�tastes and goals, political factors, and the temporary

pursuit of objectives other than changes in the outcomes of interest (e.g., monetary policy that targets

exchange rates instead of in�ation or unemployment), and �nally harder-to-quantify factors such as the

mood and character of decision-makers. Conditional on observables, this idiosyncratic variation is taken

to be independent of potential future outcomes.
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The sharp null hypothesis in Condition 1 implies Y  0
t;j (d

0) = Y  
t;j (d) = Yt+j . Using this to substitute in

Condition 2 produces the key testable conditional independence assumption, written in terms of observable

distributions as:

Yt+1; :::; Yt+j ; ::: ? Dtjzt: (1)

In other words, conditional on observed covariates and lagged outcomes, there should be no relationship

between treatment and outcomes.

Identi�cation Condition 2 plays a central role in the applied literature on testing the e¤ects of monetary

policy. Of course, Condition 2 is a strong restriction. Nevertheless, a corresponding version of it has been

widely used in SVAR analysis of monetary policy shocks. Bernanke and Blinder (1992), Gordon and Leeper

(1994), Christiano, Eichenbaum and Evans (1996, 1999), Bernanke and Mihov (1998) all assume a block

recursive structure to identify policy shocks. In terms of Example 1, this is equivalent to imposing zero

restrictions on the coe¢ cients in �0 corresponding to the policy variables Dt in the equations for Yt and

Xt (see Bernanke and Mihov, 1998, p 874). Together with the assumption that "t and �t are independent

this implies that Condition 2 holds in Example 1. To see this, note that conditional on zt the distribution

of Dt only depends on "t whose distribution in turn is independent of zt and thus all past and future "t

and all �t: Christiano, Eichenbaum and Evans (1999) discuss a variety of di¤erent speci�cations within the

SVAR literature that are based on recursive identi�cation. The key assumption in all these approaches

is that an instantaneous response of the conditioning variables zt to the policy shock "t can be ruled out

a priori. Leeper, Sims and Zha (1996) and Sims and Zha (2006) argue that these assumptions are often

not satis�ed and propose identi�cation based on restrictions that involve the entire system matrix �0.

When simultaneity is indeed a problem, in other words when the distribution of "t conditional on zt does

depend on zt then Condition 2 can not hold in general because potential outcomes Y
 
t;j (d) generally are

not independent of zt:

Tests based on Condition 1 can be seen as testing a generalized version of Sims causality similar to the

one introduced by Chamberlain (1982). A natural question is how this relates to the Granger causality

tests widely used in empirical work. Note that ifXt can be subsumed into the vector Yt; Sims non-causality

simpli�es to Yt+1; :::; Yt+k; ::: ? Dtj �Yt; �Dt�1. Chamberlain (1982) and Florens and Mouchart (1982, 1985)

show that under plausible regularity conditions this is equivalent to generalized Granger non-causality, i.e.,

Yt+1 ? Dt; �Dt�1j �Yt: (2)

In the more general case, however, where Dt potentially causes Xt+1; so �Xt can not be subsumed into �Yt,

(1) does not imply

Yt+1 ? Dt; �Dt�1j �Xt; �Yt: (3)

This result was shown for the case of linear processes by Dufour and Tessier (1993), but seems to
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have received little attention in the literature.7 We summarize the non-equivalence of Sims and Granger

causality in the following theorem:

Theorem 1 Let �t be a stochastic process de�ned on a probability space (
;F ;P) as before, assuming also
that conditional probability measures Pr(Yt+1; Dtjzt) are well de�ned 8t except possibly on a set of measure
zero. Then (1) does not imply (3) and (3) does not imply (1).

The intuition for the Granger/Sims distinction is that while Sims causality looks forward only at

outcomes, the Granger causality relation is de�ned by conditioning on potentially endogenous responses

to policy shocks and other disturbances.

A scenario with Granger non-causality but Sims causality is of potential relevance in the debate over

money-output causality. Suppose yt is output, xt is in�ation and Dt is a proxy for monetary policy. Then

this stylized model captures a direct e¤ect of monetary policy on in�ation and an indirect e¤ect on output

through the e¤ect of in�ation on output. In this case, Granger tests will fail to detect a causal link between

monetary policy and output while Sims tests will detect this relationship. One way to understand this

di¤erence is through the impulse response function, which shows that Sims looks for an e¤ect of structural

innovations in policy (i.e., "Dt). In contrast, Granger non-causality is formulated as a restriction on the

relation between output and all lagged variables, including covariates that themselves have responded to

the policy shock of interest. Granger causality therefore provides an incorrect answer to a question that

Sims causality tests answer correctly: will output change in response to a random manipulation if we

randomly shock monetary policy?

This example raises the question of how important time-varying, policy-sensitive covariates are in

practice. In research on monetary policy, Shapiro (1994) and Leeper (1997) argue that it is important to

include in�ation in the conditioning set when attempting to isolate the causal e¤ect of monetary policy

innovations.

The nonequivalence between Granger and Sims causality has important operational consequences:

testing for (3) can be done easily with regression analysis by regressing Yt+1 on lags of Dt; Yt and Xt:

Tests of (1) on the other hand are di¢ cult to construct unless Dt; Yt and Xt can be nested within a linear

dynamic model such as an SVAR model. One of the main contributions of this paper is to relax linearity

assumptions implicitly imposed on Y  
t;j (d) by SVAR or regression analysis and to allow for non-linearities

in the policy function.

7Many authors have studied the relationship between Granger and Sims-type conditional independence restrictions. See,

for example, Dufour and Renault (1998) who consider a multi-step forward version of Granger causality testing, and Robins,

Greenland, and Hu (1999) who state something like theorem 1 without proof. Robins, Greenland and Hu also present

restrictions on the joint process of wt under which (1) implies (3) but these assumptions are unrealistic for applications in

macroeconomics.
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In the remainder of the paper, we assume the policy variable of interest is multinomial. This is in

the spirit of a line of research focusing on Federal Reserve decisions regarding changes in the federal funds

rate, which are by nature discrete (e.g., Hamilton and Jorda (2002)). Typically changes come in widely-

publicized movements up or down, usually in multiples of 25 basis points if nonzero. As noted in Romer

and Romer (2004), the Federal Reserve actively sets interest rate targets for most of the period since 1969,

even when targeting was not as explicit as it is today.

The discrete nature of monetary policy decisions leads naturally to a focus on the propensity-score, the

conditional probability of a rate change (or a change of a certain magnitude or sign)8 To develop this setup,

we assume that models for the policy function can be written in the parametric form Pr(Dtjzt) = p(zt; �0)

for some function p(:; :) and an unknown parameter vector, �0: There is a direct analogy to SVAR analysis

when �t has a representation such as in Example 1. In that case, p(zt; �0) corresponds to the SVAR

policy-determination equation. In the recursive identi�cation schemes discussed earlier, this equation can

be estimated separately from the system. Our method di¤ers in two important respects: We do not assume

a linear relationship between Dt and zt and we do not need to model the elements of zt as part of a bigger

system of simultaneous equations. This increases robustness and saves degrees of freedom relative to a

conventional SVAR analysis.

Under the non-causality null hypothesis it follows that Pr(Dtjzt; Yt+1; :::; Yt+j ; :::) = Pr(Dtjzt): A Sims-
type test of the null hypothesis can therefore be obtained by augmenting the policy function p(zt; �0) with

future outcome variables. This test has correct size though it will not have power against all alternatives.

Below, we explore simple parametric Sims-type tests constructed by augmenting the policy function with

future outcomes. But our main objective is use of the propensity score to develop a �exible class of

semiparametric conditional independence tests that can be used to direct power in speci�c directions or

to construct tests with power against general alternatives.

A natural substantive question at this point is what should go in the conditioning set for the policy

propensity score and how this should be modeled. In practice, Fed policy is commonly modeled as being

driven by a few observed variables like in�ation and lagged output growth. Examples include Romer

and Romer (1989, 2000, 2004) and others inspired by their work.9 The fact that Dt is multinomial

in our application also suggests that Multinomial Logit and Probit or similar models provide a natural

functional form. A motivating example that seems especially relevant in this context is Shapiro (1994), who

8The recent empirical literature on the e¤ects of monetary policy has focused on developing policy models for the federal

funds rate. See, e.g., Bernanke and Blinder (1992), Christiano, Eichenbaum, and Evans (1996), and Romer and Romer (2004).

In future work, we hope to develop an extension for mutli-valued or continuous causal variables like the Federal funds rate.

For a recent extension of cross-sectional propensity-score methods to multi-valued treatments, see Hirano and Imbens (2004).
9Stock and Watson (2002a, 2002b) propose the use of factor analysis to construct a low-dimensional predictor of in�ation

rates from a large dimensional data set. This approach has been used in the analysis of monetary policy by Bernanke and

Boivin (2003) and Bernanke, Boivin and Eliasz (2005).
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develops a parsimonious Probit model of Fed decision-making as a function of net present value measures

of in�ation and unemployment10. Importantly, while it is impossible to know for sure whether a given set

of conditioning variables is adequate, our framework naturally generates a diagnostic test that can be used

to decide when the model for the policy propensity score is consistent with the data. We illustrate the

interaction between speci�cation testing and causality testing in Section 5, below.

3 Semiparametric Conditional Independence Tests Using the Propen-

sity Score

We are interested in testing the conditional independence restriction yt?Dtjzt where yt takes values in Rk1

and zt takes values in Rk2 with k1 + k2 = k �nite. Typically, yt = (Y 0t+1; :::; Y
0
t+m)

0 but it is also possible

to focus on particular future outcomes, say, yt = Y 0t+m, when causal e¤ects are thought to be delayed

by m periods. Assuming that Dt is a discrete variable taking on M + 1 distinct values, the conditional

independence hypothesis can be written

Pr(yt � y;Dt = ijzt) = Pr(yt � yjzt) Pr(Dt = ijzt) for i = f0; 1; :::;Mg : (4)

We use the short hand notation pi(zt) = Pr(Dt = ijzt) and assume that pi(zt) = pi(zt; �) is known up to a

parameter �: A convenient representation of the hypotheses we are interested in testing can be obtained

by noting that under the null,

Pr(yt � y;Dt = ijzt)�Pr(yt � yjzt)p (zt) = E [1 (yt � y) (1 (Dt = i)� pi(zt)) jzt] = 0 for i = f0; 1; :::;Mg :
(5)

It is convenient to write the moment conditions (5) in vector notation. Noting that
PM+1

i=0 1 (Dt = i) =

1 and
PM+1

i=0 pi(zt; �) = 1 we de�ne M�1 vectors Dt = (1 (Dt = 1) ; :::;1 (Dt =M))0 and p(zt) =

(p1 (zt) ; :::; pM (zt))
0 such that theM non-redundant moment conditions of (5) can be expressed as

E [1 (yt � y) (Dt � p(zt)) jzt] = 0: (6)

This leads to a simple interpretation of test statistics based on this moment condition as looking for a

relation between (generalized) policy innovations, Dt � p(zt); and the distribution of future outcomes.

Note also that, like the Hirano, Imbens and Ridder (2000) and Abadie (2005) propensity-score-weighted

estimators and the Robins, Mark, and Newey�s (1992) partially linear estimator, test statistics constructed

10Also related are Eichengreen, Watson and Grossman (1985), Hamilton and Jordà (2002) , and Genberg and Gerlach

(2004), who use ordered probit models for central bank interest rate targets.
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from moment condition (5) work directly with the propensity score; in particular, no matching step or

nonparametric smoothing is required once estimates of the score have been constructed.11

We now de�ne Ut = (yt; zt) so that the null hypothesis of conditional independence can be represented

very generally in terms of moment conditions for functions of Ut: Let �(:; :) : Rk1 �Rk2 ! H be a function
of Ut and some index v where H is some set. Our development below allows for � (Ut; v) to be aM�M
matrix of functions of Ut and v such that H = RM � RM: However, it is often su¢ cient to consider the

case where � (:; :) is scalar valued with H = R, a possibility that is also covered by our theory: Under the
null we then have E [�(Ut; v)(Dt � p(zt))jzt] = 0: Examples of functions � are �(Ut; v) = 1 fUt � vg or
�(Ut; v) = exp(iv0Ut) where i =

p
�1; as suggested by Bierens (1982) and Su and White (2003). Since

correct speci�cation of the policy model implies that E [(Dt � p(zt))jzt] = 0 testing (6) is equivalent to

testing the unconditional moment condition E [�(Ut; v)(Dt � p(zt))] = 0 over a su¢ ciently �exible class of
functions �(Ut; v) such as 1 fUt � vg :

While omnibus tests can detect departures from the null in all directions this is associated with a loss

in power and may not shed light on speci�c alternatives of interest. Additional tests of practical relevance

therefore focus on speci�c alternatives. Possibilities include � (Ut; v) = yt1 fzt � v2g which could be used
to test if the policy innovation a¤ects the mean of yt: Generalizations to the e¤ects on higher moments can

be handled in the same way. For example, if yt is univariate, the function � (Ut; v) = yrt 1 fzt � v2g can be
used to test if the policy innovation a¤ects the r-th moment of the distribution of the outcome variables.

A series of tests thus can be designed to distinguish the e¤ects of policy innovations on the mean and

variance of the outcome variable.

The fact that Dt takes on distinct values is well suited to analyze the e¤ects of speci�c policy actions

on the outcome variable. In our empirical application, Dt is modelled to represent situations where

the Fed raises, lowers or leaves the interest rates unchanged. By focusing on speci�c cases, such as

E [�(Ut; v) (1 (Dt = i)� pi(zt))] = 0 for i = 1; :::M separately and therefore allowing for the possibility

that the non-causality moment condition may be violated only for certain values of i, we can test if raising

or lowering the interest rate has a di¤erent e¤ect on the outcome variable. Our approach thus allows for

general non-linear responses to policy innovations without the need to explicitly model the functional form

of these responses.

An implication of (6) is that the average policy e¤ect is zero as well. In other words, letting Ez be the

expectation operator integrating over zt one obtains, from the law of iterated expectations, that

Ez [E [1 (yt � y) (Dt � p(zt)) jzt]] = E [1 (yt � y) (Dt � p(zt))] = 0: (7)
11Hirano, Imbens and Ridder (2003) show in a somewhat di¤erent context that non-parametric estimation of the propensity

score may lead to more e¢ cient inference. Based on their insight it is possible that a test based on a non-parametric estimate

of the propensity score would be more powerful than our semiparametric test. We do not consider this type of procedure

because the sample size in our application does not lend itself to non-parametric estimation of the propensity score.
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In practice, the unconditional moment restriction (7) is often of more direct interest than testing for full

conditional independence in (6). Partitioning v = (v1; v2) where v1; v2 2 Rk one then can restrict attention
to tests based on �(yt; v1) : Rk1 ! H. In addition it is often the case in applications, as our empirical work
in Section 5 illustrates, that the case where yt is scalar is of most interest.

A third version of our test concerns speci�cation tests for the policy model. Under correct speci�-

cation of p(zt) the conditional moment restriction E [(Dt � p(zt))jzt] = 0 must hold. Choosing functions
�(zt; v2) : Rk2 ! H which are su¢ ciently �exible, the conditional moment restriction is equivalent to the

unconditional moment restriction

E [�(zt; v2)(Dt � p(zt))] = 0: (8)

In our empirical application we use tests based on (8) to validate our empirical speci�cation of p (zt) :

Equation (5) shows that the hypothesis of conditional independence, whether formulated directly

or for conditional moments, is equivalent to a martingale di¤erence sequence (MDS) hypothesis for a

certain empirical process. In particular, the moment condition in (5) implies that for any �xed y;

1 (yt � y) (Dt � p(zt)) is a MDS. Our test is a joint test of whether the set of all processes indexed by
y 2 Rk1 have the MDS property. We use the terminology of a functional martingale di¤erence hypothesis
to distinguish the hypothesis being tested here from the simple MDS hypothesis usually covered in the

literature. The functional MDS hypothesis is an extension of the case analyzed by Koul and Stute (1999).

The functional nature of the MDS hypothesis related to tests of (6) implies that the test statistic depends

on the parameter v 2 Rk where for k it is necessary that k � 2 while Koul and Stute only consider the

case k = 1.12

To move from population moment conditions to the sample, we start by de�ning the empirical process

Vn (v) = n�1=2
nX
t=1

m(yt; Dt; zt; �0; v)

with

m(yt; Dt; zt; �; v) = �(Ut; v) [Dt � p(zt; �)] :

Under regularity conditions that include stationarity of the observed process, we show in Appendix A that

Vn(v) converges weakly to a limiting mean-zero Gaussian process V (v) on the space of cadlag functions13

denoted by D [�1;1]k with covariance function �(v; �), de�ned as

�(v; �) = E
�
Vn(v)Vn(�)

0�
12Another important di¤erence is that in our setup, the process 1 (yt � y) (Dt � p(zt)) is not Markovian even under the

null hypothesis. This implies that the proofs of Koul and Stute do not apply directly for our case.
13Cadlag functions are functions which are continuous from the right with left limits.
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where �; � 2 Rk.14 Using the fact that under the null E [Dtjzt; yt] = E [Dtjzt] = p (zt) and partitioning

u = (u1; u2) with u2 2 [�1;1]k2 we de�ne H(v ^ �) with

H(v) =

Z v

�1

�
diag (p(u2))� p(u2)p (u2)0

�
dFu (u) (9)

where diag (p(u2)) is the diagonal matrix with diagonal elements pi (zt) ; Fu(u) is the cumulative marginal

distribution function of Ut and ^ denotes the element by element minimum. The covariance function
�(v; �) can now be written as �(v; �) =

R
�(u; v)dH (u)�(u; �)0: Note that if �(Ut; v) = 1 fUt � vg then

�(v; �) = H(v ^ �): This is the case we consider in the empirical application. Let kmk2 = tr (mm0) be

the usual Euclidean norm of a vector m: The statistic Vn(v) can be used to test the null hypothesis of

conditional independence by comparing the value of KS= supv kVn (v)k or

VM =

Z
kVn (v)k2 dFu(v) (10)

with the limiting distribution of these statistics under the null hypothesis.

Implementation of statistics based on Vn(v) requires a set of appropriate critical values. Construction

of critical values is complicated by two factors a¤ecting the limiting distribution of Vn(v): One is the

dependence of Vn(v) on � (Ut; v), which induces data-dependent correlation in the process Vn(v): Hence,

the nuisance parameter �(v; �) appears in the limiting distribution. This is handled in two ways: �rst,

critical values for the limiting distribution of Vn(v) are computed numerically conditional on the sample

in a way that accounts for the covariance structure � (v; �) : We discuss this procedure in Section 4.3.

An alternative to numerical computation is to transform Vn(v) to a standard Gaussian process on the

k-dimensional unit cube, following Rosenblatt (1952). The advantage of this approach is that asymptotic

critical values can be based on standardized tables that only depend on the dimension k and the function

�, but not on the distribution of Ut and thus not on the sample. We discuss how to construct these tables

numerically in Section 5.

The second factor that a¤ects the limiting distribution of Vn(v) is the fact that the unknown parameter

� needs to be estimated. We use the notation V̂n(v) to denote test statistics that are based on an estimate

�̂ for �: Section 4 discusses a martingale transform proposed by Khmaladze (1988, 1993) to remove the

e¤ect of variability in V̂n(v) stemming from estimation of �: The resulting corrected test statistic then has

the same limiting distribution as Vn(v); and thus, in a second step, critical values that are valid for Vn(v)

can be used to carry out tests based on the transformed version of V̂n(v):
14 It seems likely that stationarity can be relaxed to allow for some distributional heterogeneity over time. But unit root

and trend nonstationarity cannot be handled in our framework because the martinagle transformations in Section 4.1 rely

on Gaussian limit distributions. Park and Phillips develop a powerful limiting theory for the binary choice model when the

explanatory variables have a unit root. Hu and Phillips (2002a, 2002b) extend Park and Phillips to the mulitnomial choice

case and apply it to the fed funds target rate. The quesiton of how to adapt these results to the problem of conditional

independence testing is left for future work.
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The combined application of the Rosenblatt and Khmaladze transforms that we advocate in this paper

leads to an asymptotically pivotal test. Pivotal statistics have the practical advantage of comparability

across data-sets because the critical values for these statistics are not data-dependent. In addition to these

practical advantages, bootstrapped pivotal statistics usually promise an asymptotic re�nement (see Hall,

1992).

4 Implementation

As a �rst step, let V̂n(v) denote the empirical process of interest where p(zt; �) is replaced by p(zt; �̂) and

the estimator �̂ is assumed to satisfy the following asymptotic linearity property:

n1=2
�
�̂ � �0

�
= n�1=2

nX
t=1

l (Dt; zt; �0) + op(1):

A more formal statement of this assumption is contained in Condition 8 in Appendix A. In our context,

l (Dt; zt; �) is the score for the maximum likelihood estimator of the propensity score model. To develop a

structure that can be used to account for the variability in V̂n (v) induced by the estimation of �, de�ne

the function �m(v; �) = E [m(yt; Dt; zt; �; v)] and let

_m(v; �) = �@ �m(v; �)
@�0

:

It therefore follows that V̂n (v) can be approximated by Vn (v) � _m(v; �0)n
�1=2Pn

t=1 l (Dt; zt; �0). The

empirical process V̂n(v) converges to a limiting process V̂ (v) with covariance function

�̂(v; �) = � (v; �)� _m(v; �0)L(�0) _m(� ; �0)
0;

with L (�0) = E
�
l (Dt; zt; �0) l (Dt; zt; �0)

0� as shown in Appendix A. Next we turn to details of the

transformations. Section 4.1 discusses a Khmaladze-type martingale transformation that corrects V̂ (v) for

the e¤ect of estimation of �: Section 4.2 then discusses the problem of obtaining asymptotically distribution

free limits for the resulting process. This problem is straightforward when v is a scalar, but extensions to

higher dimensions are somewhat more involved.

4.1 Khmaladze Transform

The object here is to de�ne a linear operator T V̂ (v) with the property that the transformed process,

W (v) = T V̂ (v), is a mean zero Gaussian process with covariance function �(v; �): While V̂ (v) has a

complicated data-dependent limiting distribution (because of the estimated �), the transformed process
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W (v) has the same distribution as V (v) and can be handled more easily in statistical applications. Khmal-

adze (1981, 1988, 1993) introduced the operator T in a series of papers exploring limiting distributions of

empirical processes with possibly parametric means.

When v 2 R, the Khmaladze transform can be given some intuition. First, note that V (v) has in-

dependent increments �V (v) = V (v + �) � V (v) for any � > 0. On the other hand, because V̂ (v)

depends on the limit of n�1=2
Pn

t=1 l (Dt; zt; �0) this process does not have independent increments. De�n-

ing Fv = �
�
~V (s); s � v

�
, we can understand the Khmaladze transform as being based on the insight that,

because V̂ (v) is a Gaussian process, �W (v) = �V̂ (v)�E
�
�V̂ (v) jFv

�
has independent increments. The

Khmaladze transform thus removes the conditional mean of the innovation �V̂ : When v 2 Rk with k > 1
as in our application, this simple construction cannot be trivially extended because increments of V (v) in

di¤erent directions of v are no longer independent. As explained in Khmaladze (1988), careful speci�cation

of the conditioning set Fv is necessary to overcome this problem.
Following Khmaladze (1993), let fA�g be a family of measurable subsets of [�1;1]k, indexed by

� 2 [�1;1] such that A�1 = ?; A1 = [�1;1]k, � � �0 =) A� � A�0 and A�0nA� ! ? as �0 # �.
De�ne the projection ��f(v) = 1 (v 2 A�) f(v) and �?� = 1� �� such that �?� f(v) = 1 (v =2 A�) f(v): We
then de�ne the inner product hf(:); g (:)i :=

R
f(u)0dH (u) g(u) and, for

�l(v; �) =
�
diag (p(v2))� p(v2)p (v2)0

��1 @p(v2; �)
@�0

;

de�ne the matrix

C� =
D
�?�
�l(:; �); �?�

�l(:; �)
E
=

Z
�?�
�l(u; �)0dH(u)�?�

�l(u; �):

We note that the process V (v) can be represented in terms of a vector of Gaussian processes b(v) with co-

variance function H(v^�) as V (�(:; v)) = V (v) =
R
�(u; v)db(u): Using the same notation the transformed

statistic W (v) is given by

T V̂ (v) :=W (v) = V̂ (v)�
Z 


� (:; v)0 ; d
�
���l(:; �)

��
C�1� V̂ (�?�

�l(:; �)0) (11)

where d
�
���l(:; �)

�
is the total derivative of ���l(:; �) with respect to �.

We show in Appendix A that the process W (v) is zero mean Gaussian and has covariance function

�(v; �):

The transform above di¤ers from that in Khmaladze (1993) in that �l(v; �) is di¤erent from the optimal

score function that determines the estimator �̂: The reason is that here H(v) is not a conventional cumu-

lative distribution function as in these papers. It should also be emphasized that unlike Koul and Stute

(1999), we make no conditional homoskedasticity assumptions. 15

15Stute, Thies and Zhu (1998) analyze a test of conditional mean speci�cation in an independent sample allowing for
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Khmaladze (1993, Lemma 2.5) shows that tests based on W (v) and V (v) have the same local power

against a certain class of local alternatives which are orthogonal to the score process l (:; �0). The reason

for this result is that T is a norm preserving mapping (see Khmaladze, 1993, Lemmas 3.4 and 3.10). The

fact that local power is una¤ected by the transformation T also implies that the choice of fA�g has no
consequence for local power as long as A� satis�es the regularity conditions outlined above.

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that

the transformation T is unknown and needs to be replaced by an estimator Tn where

Ŵn(v) = TnVn (v) = V̂n (v)�
Z �Z

�(u; v)dĤn(u)d
�
���l(u; �)

��
Ĉ�1� V̂n(�

?
�
�l(:; �̂)0) (12)

with V̂n(�?� �l(:; �̂)
0) = n�1=2

Pn
s=1 �

?
�
�l(Us; �̂)

0
�
Ds � p(zs; �̂)

�
and the empirical distribution Ĥn(v) is de�ned

in Appendix B.

The transformed test statistic depends on the choice of the sets A� although, as pointed out earlier,

the choice of A� does not a¤ect local power. Computational convenience thus becomes a key criterion in

selecting A�: Here we focus on sets

A� = [�1; �]� [�1;1]k�1 ; (13)

which lead to test statistics with simple closed form expressions. Denote the �rst element of yt by y1t:

Then (12) can be expressed more explicitly as

Ŵn(v) = V̂n(v)� n�1=2
nX
t=1

"
� fUt; vg

@p(zt; �̂)

@�0
Ĉ�1y1tn

�1
nX
s=1

1 fy1s > y1tg �l(Us; �̂)0
�
Ds � p(zs; �̂)

�#
(14)

In the appendix we show that Ŵn(v) converges weakly to W (v): In the next section we show how a further

transformation can be applied that leads to a distribution free limit for the test statistics.

4.2 Rosenblatt Transform

The implementation strategy discussed above has improved operational characteristics when the data

are modi�ed using a transformation proposed by Rosenblatt (1952). This transformation produces a

multivariate distribution that is i.i.d on the k-dimensional unit cube, and therefore leads to a test that

can be based on standardized tables. Let Ut = [Ut1; :::; Utk] and de�ne the transformation w = TR (v)

component wise by w1 = F1(v1) = Pr (Ut1 � v1) ; w2 = F2 (v2jv1) = Pr(Ut2 � v2jU1t = v1); :::; wk =

heteroskedasticity by rescaling the equivalent of our m(yt; Dt; zt; �0; v) by the conditional variance. But their approach does

not work for our problem because the relevant conditional variance depends on the unknown parameter �: Instead of correcting

m(yt; Dt; zt; �0; v) we adjust the transformation T in the appropriate way.

18



Fk (vkjvk�1; :::; v1) where Fk (vkjvk�1; :::; v1) = Pr (Utk � vkjUtk�1 = vk�1; :::; Ut1 = v1) : The inverse v =

T�1R (w) of this transformation is obtained recursively as v1 = F�11 (u1) ;

v2 = F�12
�
w2jF�11 (w1)

�
; ::::

Rosenblatt (1952) shows that the random vector wt = TR (Ut) has a joint marginal distribution which is

uniform and independent on [0; 1]k :

Using the Rosenblatt transformation we de�ne

mw(wt; Dt; �jv) = �(wt; w)
�
Dt � p

��
T�1R (wt)

�
z
; �
��

where w = TR(v) and zt =
�
T�1R (wt)

�
z
denotes the components of T�1R corresponding to zt.

The null hypothesis is now that E [�(wt; w)Dtjzt] = E [�(wt; w)jzt] p(zt; �); or equivalently,

E [mw(wt; Dtjv)jzt] = 0:

Also, the test statistic Vn(v) becomes the marked process

Vw;n(w) = n�1=2
Pn

t=1mw(wt; Dt; �jw):

Rosenblatt (1952) notes that tests using TR are generally not invariant to the ordering of the vector

wt because TR is not invariant under such permutations. Of course, our test statistic also depends on the

choice of �(:; :): This sort of dependence on the details of implementation is a common feature of consistent

speci�cation tests. From a practical point of view it seems natural to �x �(:; :) using judgements about

features of the data where deviations from conditional independence are likely to be easiest to detect (e.g.,

moments). In contrast, the wt ordering is inherently arbitrary16.

We denote by Vw (v) the limit of Vw;n (v) and by V̂w (v) the limit of V̂w;n (v) which is the process

obtained by replacing � with �̂ in Vw;n (v) : De�ne the transform TwV̂w(w) as before by17

TwV̂w (w) :=Ww(w) = V̂w (w)�
Z 


� (:; w)0 ; d���lw(:; �)
�
C�1� V̂w(�

?
�
�lw(:; �)

0): (15)

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modi�ed version

of the �nal transformation proposed by Khmaladze (1988, p. 1512) to the process W (v): In particular,

using the notation Ww(�(:; w)) = Ww(w) to emphasize the dependence of W on �, it follows from the

previous discussion that

Bw(w) =Ww

�
�(:; w)(hw(:))

�1=2
�

16 In the working paper (Angrist and Kuersteiner, 2004) we discuss ways to resolve the problem of the ordering in wt:
17For a more detailed derivation see Appendix B.
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is a Gaussian process with covariance function
R 1
0 � � �

R 1
0 �(u;w)�(u;w

0)0du; where

hw(:) =
�
diag

�
p(
�
T�1R (:)

�
z
)
�
� p(

�
T�1R (:)

�
z
)p
��
T�1R (:)

�
z

�0�
:

In practice, wt = TR(Ut) is unknown because TR depends on unknown conditional distribution func-

tions. In order to estimate TR we introduce the kernel function Kk(x) where Kk(x) is a higher order

kernel satisfying Conditions (10) of Section A.2. A simple way of constructing higher order kernels is

given in Bierens (1987). Let Kk(x) = (2�)�k=2
P!

j=1 �j j�j j
�k exp

�
�1=2x0x=�2j

�
with

P!
j=1 �j = 1 andP!

j=1 �j j�j j
2` = 0 for ` = 1; 2; :::; ! � 1: Let mn = O(n�1=(2+k)) be a bandwidth sequence and de�ne

F̂1(x1) = n�1
nX
t=1

1 fUt1 � x1g

...

F̂k(xkjxk�1; :::; x1) =
n�1

Pn
t=1 1 fUtk � xkgKk�1((xk� � Utk�) =mn)

n�1
Pn

t=1Kk�1((xk� � Utk�) =mn)

where xk� = (xk�1; :::; x1)
0 and Utk� = (Utk�1; :::; Ut1)

0 : An estimate ŵt of wt is then obtained from the

recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(UtkjUtk�1; :::; Ut1):

We de�ne Ŵw;n (w) = Tw;nV̂w;n (w) where Tw;n is the empirical version of the Khmaladze transform applied

to the vector wt: Let Ŵŵ;n (w) denote the process Ŵw;n(w) where wt has been replaced with ŵt: For a

detailed formulation of this statistic see Appendix B. An estimate of hw(w) is de�ned as

ĥw(:) =

�
diag

�
p(:; �̂)

�
� p(:; �̂)p

�
:; �̂
�0�

:

The empirical version of the transformed statistic is

B̂ŵ;n (w) = Ŵŵ;n

�
�(:; w)ĥw(:)

�1=2
�

= n�1=2
nX
t=1

� (ŵt; w) ĥ(zt)
�1=2

h
Dt � p(zt; �̂)� Ân;t

i
(16)

where Ân;s = n�1
Pn

t=1 1 fŵt1 > ŵs1g @p(zs;�̂)@�0
Ĉ�1ŵ1s

�l(zt; �̂)
0
�
Dt � p(zt; �̂)

�
: Finally, Theorem 7 in Appendix

A formally establishes that the process B̂ŵ;n (v) converges to a Gaussian process with covariance function

equal to the uniform distribution on [0; 1]k :
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Note that the convergence rate of B̂ŵ;n (v) to a limiting random variable does not depend on the

dimension k or the bandwidth sequence m: Theorem 7 shows that B̂ŵ;n(w)) Bw(w) on D
�
�[0;1]

�
where

Bw(w) is a standard Gaussian process and �[0;1] =
n
w 2 [0; 1]k jw = �xw

o
where �xw = 1 (w 2 Ax)w for

x 2 R and Ax is the set de�ned in (13). The restriction to �[0;1] is needed to avoid problems of invertibility
of Ĉ�1w : It thus follows that transformed versions of the VM and KS statistics converge to functionals of

Bw(w): These results can be stated formally as

VMw =

Z
�[0;1]




B̂ŵ;n(w)


2 dw ) Z
�[0;1]

kBw(w)k2 dw (17)

and

KSw = sup
v2�[0;1]




B̂ŵ;n(w)


) sup
v2�[0;1]

kBw(w)k : (18)

Here VMw and KSw are the VM and KS statistics after both the Khmaladze and Rosenblatt transforms

have been applied to V̂n(v). In practice the integral in (17) and the supremum in (18) can be computed

over a discrete grid. The asymptotic representations (17) and (18) make it possible to use asymptotic

statistical tables. For the purposes of the empirical application below, we computed critical values for

the VM statistic in the special case where � (:; v) = 1 f: � vg These critical values depend only on the
dimension k and are thus distribution free.

4.3 Bootstrap-Based Critical Values

In addition to tests using critical values computed using asymptotic formulas, we also experimented with

bootstrap critical values for the raw statistic, V̂n (v) ; and the transformed statistic, B̂ŵ;n (w) : This pro-

vides a check on the asymptotic formulas and gives some independent evidence on the advantages of the

transformed statistic. Also, because the transformed statistic has a distribution free limit, we can expect

an asymptotic re�nement: tests based on bootstrapped critical values for this statistic should have more

accurate size than bootstrap tests using V̂n (v).

Our implementation of the bootstrap is similar to a procedure by Chen and Fan (1999) and Hansen

(1996), a version of the wild bootstrap called conditional monte carlo. This procedure seems especially

well-suited to time series data since it provides a simple strategy to preserve dependent data structures

under resampling. Following Mammen (1993), the wild bootstrap error distribution is constructed by

sampling "�t;s for s = 1; :::; S bootstrap replications according to

"�t;s = "��t;s=
p
2 +

��
"��t;s
�2 � 1� =2 (19)

where "��t;s � N (0; 1) is independent of the sample. Let the moment condition underlying the transformed

test statistic (16) be denoted by

mT;t

�
v; �̂
�
= � (ŵt; w) ĥ(zt)

�1=2
h
Dt � p(zt; �̂)� Ân;t

i
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and write

B̂�ŵ;n;s (w) = n�1=2
nX
t=1

"�t;s

�
mT;t

�
v; �̂
�
� �mn;T

�
v; �̂
��

(20)

to denote the test statistic in a bootstrap replication, with �mn;T

�
v; �̂
�
= n�1

Pn
t=1mT;t

�
v; �̂
�
: The distri-

bution of "�t;s induced by (19) guarantees that the �rst three empirical moments ofmT;t

�
v; �̂
�
� �mn;T

�
v; �̂
�

are preserved in bootstrap samples. Theorem 8 in the appendix shows that the asymptotic distribution of

B̂ŵ;n (w) under the null hypothesis is the same as the asymptotic distribution of B̂�ŵ;n (w) conditional on

the data. This implies that critical values for B̂ŵ;n (w) can be computed as follows: 1) Draw s = 1; :::S

samples "�1;s; :::; "
�
n;s independently from the distribution (19); 2) compute VMs =

R
�[0;1]




B̂�ŵ;n;s (w)


2 dw
for s = 1; :::; S; 3) obtain the desired empirical quantile from the distribution of VMs; s = 1; :::; S: The

empirical quantile then approximates the critical value for
R
�[0;1]




B̂ŵ;n (w)


2 dw:
Bootstrap critical values for the untransformed statistic are based in an equivalent way on S bootstrap

samples of

V̂ �n;s (v) = n�1=2
nX
t=1

"�t;s

�
m(yt; Dt; zt; �̂; v)� �mn(v; �̂)

�
(21)

where �mn(v; �̂) = n�1
Pn

t=1m(yt; Dt; zt; �̂; v) and "�t;s is generated in the same way as before.

5 Causal E¤ects of Monetary Policy Shocks Revisited

We use the machinery developed here to test for the e¤ects of monetary policy using data from Romer and

Romer (2004). The key monetary policy variable in this study is the change in the FOMC�s intended federal

funds rate. This rate is derived from the narrative record of FOMC meetings and internal Federal Reserve

memos. The conditioning variables for selection-on-observables identi�cation are derived from Federal

Reserve forecasts of the growth rate of real GNP/GDP, the GNP/GDP de�ator, and the unemployment

rate, as well as a few contemporaneous variables and lags. The relevant forecasts are prepared by Federal

Reserve researchers and are called Greenbook forecasts.

The key identifying assumption in this context is that conditional on Greenbook forecasts and a handful

of other variables, including lagged policy variables, changes in the intended federal funds target rate are

independent of potential outcomes (in this case, the monthly percent change in industrial production).

The Romer�s (2004) detailed economic and institutional analysis of the monetary policy-making process

makes their data and framework an ideal candidate for an investigation of causal policy e¤ects using the

policy propensity score.18 In much of the period since the mid-1970s, and especially in the Greenspan era,

18Romer and Romer (2004) can be seen as a response to critiques of Romer and Romer (1989) by Leeper (1997) and Shapiro

(1994). These critics argued that monetary policy is forward-looking in a way that induces omitted variables bias in the

Romers�(1989) regressions.
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the FOMC targeted the funds rate explicitly. The Romers argue, however, that even in the pre-Greenspan

era, when the FOMC targeted the funds rate less closely, the central bank�s intentions can be read from

the documentary record. Moreover, the information used by the FOMC to make the decisions about

whether and how to redirect policy is available to researchers studying the e¤ects of monetary policy. The

propensity-score approach begins with a statistical model predicting the intended federal funds rate as a

function of the publicly available information used by the FOMC.

The propensity-score approach contrasts with SVAR-type identi�cation strategies of the sort used by

(among others) Bernanke and Blinder (1992), Bernanke, Boivin and Eliasz (2005), Christiano, Eichenbaum,

and Evans (1996), Cochrane (1994), Leeper, Sims and Zha (1996). In this work, identi�cation turns on a

fully-articulated model of the macro economy, as well as a reasonably good approximation of the policy-

making process. One key di¤erence between the propensity-score approach developed here and the SVAR

literature is that in the latter, policy variables and covariates entering the policy equation may also be

endogenous variables. Identi�cation assumptions about the transmission mechanism of policy innovations

are then required to disentangle the e¤ects of monetary policy.

Our approach is closer to the recursive identi�cation strategy employed by Christiano, Eichenbaum,

and Evans (1999), hereafter CEE. The CEE study similarly makes the central bank�s policy function a key

element in an analysis of monetary policy e¤ects. Important di¤erences, however, are that CEE formulate

a monetary policy equation in terms of the actual federal funds rate and non-borrowed reserves and that

they include contemporaneous values of real GDP, the GDP de�ator and commodity prices as covariates.

These variables are determined in part by market forces and are therefore potentially endogenous. For

example, Sims and Zha (2006) argue that monetary aggregates and the producer price index are both

endogenous because of an immediate e¤ect of monetary policy shocks on producer prices. In contrast, the

intended funds rate is determined by forecasts of market conditions and intentions formed by policy makers

only based on predetermined information, and thus is sequentially exogenous by construction. Moreover,

the CEE approach is parametric and relies on linear models for both outcomes and policy.

The substantive identifying assumption in our framework (and Romer and Romer, 2004) is that, condi-

tional on the information used by the FOMC and now available to outside researchers (such as Greenbook

forecasts), changes in the intended funds rate are essentially idiosyncratic or �as good as randomly as-

signed.�At the same time, we don�t really know what the best model for the policy propensity score is

(.e.g., there is some uncertainly as to the �exibility and lag length). We explore these issues by experi-

menting with variations on the Romers�original speci�cation. We also consider an alternative somewhat

less institutionally grounded model based on a simple Taylor rule. Our Taylor speci�cation is motivated

by Rotemberg and Woodford (1997).

Our reanalysis of the Romer data uses a discretized version of changes in the intended federal funds
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rate. Speci�cally, to allow for asymmetric policy e¤ects while keeping the model parsimonious, we treat

policy as having three values: up, down, or no change. The change in the intended federal funds rate

is denoted by d¤ t, and the discretized change by dD¤ t: The monthly sample includes 29% reductions,

32% increases and 39% no change in the intended funds rate.19 Following Hamilton and Jorda (2002), we

�t ordered probit models with dD¤ t as the dependent variable. Hamilton and Jorda (2002) derive their

speci�cation using a linear latent-index model of the central bank�s intentions.

The �rst speci�cation we report on, labeled model (a), uses the variables from Romer and Romer�s

(2004) policy model as controls, with the modi�cations that the lagged level of the intended funds rate is

replaced by the lagged change in the intended federal funds rate and the unemployment level is replaced

by the unemployment innovation.20 Our modi�cations are motivated in part by a concern that the lagged

intended rate and the unemployment level are nonstationary. In addition, the lagged change in the

intended federal funds rate captures the fact that the FOMC often acts in a sequence of small increments.

This results in higher predicted probabilities of a change in the same direction conditional on past changes.

A modi�ed speci�cation, constructed by dropping regressors without signi�cant e¤ects, leads to model (b).

To allow for non-linear dynamic responses, model (c) adds a quadratic function of past intended changes

in the federal funds rate to the restricted model (b). We also consider versions of (a)-(c) using a discretized

variable for the lagged change in the intended federal funds rate. These are labeled (d), (e), and (f).

As an alternative to the policy model based on Romer and Romer (2004) we consider a Taylor-type

model similar to the one used by Rotemberg and Woodford (1997). The Taylor models have dD¤ t as the

dependent variable in an ordered Probit model, as before. The covariates in this case consist of two lags

of d¤ t; 9 lags of the growth rate of real GDP, and 9 lags of the monthly in�ation rate.21 This baseline

Taylor speci�cation is labeled model (g). We also consider a modi�cation replacing d¤ t�2 with (d¤t�1)
2

to capture non-linearities (model h). Finally, we look at variants (i) and (j) of (g) and (h), that replace

lags of d¤ t with the corresponding lags of dD¤ t:

As a benchmark for our semiparametric analysis, our analysis begins with parametric Sims-type causal-

ity tests. These are simple parametric tests of the null hypothesis of no causal e¤ect of monetary policy

shocks on outcome variables, constructed by augmenting ordered Probit models for the propensity score

19We use the data set available via the Romer and Romer (2004) AER posting. Our sample period starts in March 1969

and ends in December 1996. Data for estimation of the policy propensity score are organized by �meeting month�: only

observations during months with Federal Open Market meetings are recorded. In the early part of the sample there are a few

occasions when the committee met twice in a month. These instances were treated as separate observations.
20The unemployment innovation is the Romer�s ~um0, the Greenbook forecast for the unemployment rate in the current

quarter, minus the unemployment rate in the previous month.
21Monthly GDP is interpolated from quarterly using a program developed by Mönch and Uhlig (2005). We thank Emanuel

Mönch and Harld Uhlig for providing the code for this. The in�ation rate is calculated as the change in the log of the

seasonally unadjusted CPI of urban consumers, less food and energy.

24



with future outcome variables. Under the null hypothesis of no causal e¤ect, future outcome variables

should have insigni�cant coe¢ cients in the policy model.22 This is the essence of Condition 2.

Tables 1a and 1b report results for parametric Sims tests for the e¤ect of policy on the non-seasonally-

adjusted index of industrial production. The table shows tests for the e¤ect on the cumulated change

in industrial production up to three years ahead. This is presented at quarterly, half year and full year

intervals. The models with lagged dD¤ t on the right hand side point to a signi�cant response to a change

in monetary policy at a 5% signi�cance level at 8 and more quarters lead. This result is robust across

models (d)-(f) and (i)-(j). There is also some isolated signi�cance at the 10% level at earlier leads for

models (e)-(j). For models with d¤ t on the right hand side, the lag pattern is more mixed. Models (a),(b)

and (h) predict a response after 7 quarters, while model (c) predicts a response after 8 quarters and model

(g) predicts a response after 6 quarters. We note that model (h) generates an isolated initial impact of

the monetary policy shock, but this does not persist in the coarser half and full year tests. Tests at the 10

percent level generally show earlier e¤ects, 6-7 quarters out for models (b) and (c).

While easy to implement, the parametric Sims-causality tests do not tell us about di¤erences in the

e¤ects of rate increases and decreases, and may not detect nonlinearities in the relationship between policy

and outcomes, or e¤ects of policy on higher-order moments. The semiparametric tests developed in Sections

3 and 4 do all this in an internally consistent way that does not require speci�cation of an elaborate model

for the response function. Importantly, the semiparametric tests can also be used to evaluate the policy

model speci�cation and explore possible misspeci�cation due to functional form or omitted covariates. This

is done by using the moment condition in (8) with the function �(zt; v2) con�gured to equal 1 fzti � v2ig
and i ranging across all covariates of models (a) through (j). Rejection of the test statistic based on (8)

implies that the policy model is misspeci�ed.

The results of speci�cation tests for the policy models appear in Tables 2a and 2b. Speci�cally, the

table shows test statistics for possibly omitted covariates (or lagged covariates), and starred signi�cance

levels (*=10%, **=5% and ***=1%) for each covariate-speci�c test in each model. The table reports test

results using asymptotic critical values (ASY), the bootstrap de�ned in (20, BSK) and the bootstrap for

the untransformed statistic (21, BS).23 Tests based on (20) should have the most accurate size since the

test statistic is asymptotically pivotal.

The best �t in the speci�cation tests, as determined by BSK, is the baseline Romer model (a) as well as

22See also the discussion at the end of Section 2.
23Critical values for the asymptotic distribution were obtained by randomly drawing the k-dimensional vector U��

t;i

from a multivariate independent uniform distribution. In addition we draw independetly "t;i from an iid standard

normal distribution. The sample size was set to n = 300 and 100,000 replications were done. We then compute

B��
i (w) = n�1=2

Pn
t=1 "

�
t1
�
U��
t;i � x

	
for each replication sample i. The �nal step consists in forming the sum B��

i =

n�1
Pn
t=1 1

�
U��
j;i 2 �[0;1]

	

B��
i

�
U��
j;i

�

2 : Asymptotic critical values are then obtained from the quantiles of the empirical

distribution of B��
i :
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modi�cations (c) and (e). The Taylor models generally �t less well, with moment restrictions violated most

notably for the innovation in the Greenbook forecast for the percentage change in GDP/GNP variables.

This suggests that the Taylor models do not fully account for all information the Federal Reserve seems

to rely on in its policy decisions. The Taylor models also generate some rejections of moment conditions

related to lagged dD¤ t, an indication that they do not fully account for the dynamic pattern of Federal

Reserve policy actions. The Romer models on the other hand seem to implicitly take account of lagged real

GDP growth and in�ation, in spite of the fact that these variables are not included in the Romer propensity

score. Of the Romer models (a), (c) and (e) look best, while for the Taylor models, speci�cation (h) seems

best.

We now turn to the semiparametric causality tests based on the unconditional moment conditions in

(7) with �(Ut; v) con�gured to equal 1 fyt � v1g. In the �rst implementation, Dt is a bivariate vector
containing dummy variables for an up or down movement in dD¤ t: This amounts to a joint test of the

overall e¤ect of a monetary policy shock analogous to the parametric tests in Tables 1a and 1b.

The �rst set of semiparametric test results are reported in Tables 3a and 3b. As in Tables 2a 2b,

these tables report test statistics and starred signi�cance levels. Results using ASY and BSK are generally

similar, though ASY appears to reject slightly more often. This is particularly true for the Romer model (d)

in Table 3b and to a lesser extent for models (a) and (f). Size distortions may arise due to multicollinearity

induced by discretizing the lagged d¤ t variables in these speci�cations. At the same time BSK sometimes

rejects where ASY does not, for example, in Models (i) and (j) in Table 3b. Bootstrap based critical

values based on untransformed statistic and based on (21) tend to reject much less often in most models,

indicating some undersizing for these tests, especially in light of the parametric tests in Tables 1a and 1b.

The multivariate tests look simultaneously at the signi�cance of up and down movements in a single

test statistic, in a manner analgous to the parametric tests in table 1. All speci�cations in Table 3 show

signi�cant e¤ects at the 5% level starting 10 quarters ahead. Model (a) also generates signi�cant e¤ects as

early as in quarter 7, using both asymptotic and bootstrap critical values. The Taylor models (h), (i) and

(j) also generate signi�cant e¤ects starting in quarter 8 using both ASY and BSK. The restricted Romer

models, (b), (c), (e) and (f), generate the longest lag in policy e¤ects at about 10 quarters, although

models (e) and (f) also show weaker signi�cance at the 10% level as early as 4 quarters ahead in model

(e) and 3 quarters ahead in model (f).

We also considered the e¤ects of positive and negative monetary shocks separately. The asymmetric

tests again use the moment conditions (7), but the tests in this case are constructed from Dt =dD¤U t

indicating upward movements in the intended funds rate and Dt =dD¤D t indicating decreases in the

intended funds rate. Ordered Probit models for the policy propensity score generate the conditional

expectation of both dD¤D t and dD¤U t; and can therefore be used to construct the expectational surprise
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variable at the core of our testing framework. To save space, the asymmetric results are shown only for

models that do well in the model speci�cation tests in Table 2. These are (a), (c), and (e) for the Romer

speci�cations and (h) for the Taylor model.

The picture that emerges from Table 4 is mostly one of insigni�cant responses to a surprise reduction in

the intended Federal Funds rate. In particular, the only models to show a statistically signi�cant response

to a decrease at the 5% ciritcal level are (a) and (c), where a response appears after 10 quarters. (The ASY

and BSK results are similar on this point). Results for Taylor model, (h), generate an isolated signi�cant

test two-and-a-half years out, though only when using the bootstrap critical values, BSK. There is a less

signi�cant (10% level) response in models (e) and (h) at a 10-11 quarter lead as well.

The results in Table 5 contrast sharply with those in Table 4, showing signi�cant e¤ects of an increase

in the funds rate after 6 quarters for Romer speci�cation (a) and after 3 quarters for Romer speci�cation

(e). Taylor speci�cation (h) also shows a strongly signi�cant e¤ect somewhere between quarter 7 or 8.

Model (c) also shows a signi�cant e¤ect, but only for critical values based on BS. For models (a) and (h)

we also �nd a less signi�cant early response at 4 and 5 quarters. The e¤ects are generally more signi�cant

in Table 5 than in Table 4. This is evident both from the fact that the BS-based test generates a signi�cant

result and from the fact that some results are signi�cant at the 1% level using both the ASY and BSK

tests. Overall, test results using ASY and BSK are similar, except for the quarterly tests of the Taylor

model where the BSK based tests indicate slightly more signi�cance at shorter leads.

The results in Table 5 shed some light on the �ndings in Tables 3a and 3b, which pool up and down

policy changes. The pooled results suggest a somewhat more immediate response for the Romer based

speci�cations (a) than for the Taylor based speci�cation (h). This is consistent with the results in Table 5,

where Romer model (a) uncovers a more immediate response to interest rate increases with a particularly

strong response at 7 quarters lead but generates less signi�cant test results than the Taylor models at leads

farther out.

6 Conclusions

This paper develops a causal framework for time series data. The foundation of our approach is an

adaptation of the potential-outcomes and selection-on-observables ideas widely used in cross-sectional

studies. This adaptation leads to a de�nition of causality similar to that proposed by Sims (1972). For

models with covariates, Sims causality di¤ers from Granger causality, which potentially confuses enogenous

system dynamics with the causal e¤ects of isolated policy actions. In contrast, Sims causality hones in on

the e¤ect of isolated policy shocks relative to a well-de�ned counterfactual baseline.

Causal inference in our framework is based on a multinomial model for the policy assignment mech-

anism, a model we call the policy propensity score. In particular, we develop a new semiparametric test
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of conditional independence that uses the policy propensity score. This procedure tests the selection-

on-observables null hypothesis that lies at the heart of much of the empirical work on time series causal

e¤ects. A major advantage of our approach is that it does not require researchers to model the process

determining the outcomes of interest. The resulting test has power against all alternatives but can be

�ne-tuned to look at speci�c alternatives of interest, such as mean independence or a particular direction

of causal response. Our testing framework can also be used to evaluate the speci�cation of the policy

propensity score.

Our approach is illustrated with a re-analysis of the data and policy model in Romer and Romer (2004)

along with a simple Taylor model. Our �ndings point to a signi�cant response to monetary policy shock

after about 7 quarters, while the Taylor model and a restricted Romer speci�cation shows responses that

take a little longer to develop. Our results are broadly in line with those in Romer and Romer (2004), who

�nd the strongest response to a monetary shock after about 2 years with continued signi�cance for another

year. Our results therefore highlight the robustness of the Romers�original �ndings. An investigation

that allows for di¤erent reponses to rate increases and decreases shows an earliy and strong response to

increases without much response to decreases. This �nding has not featured in most previous discussions

of the causal e¤ects of monetary shocks.

Finally, in contrast with the Romer�s �ndings and those reported here, the SVAR literature generally

�nds somewhat less signi�cant and more immediate responses to a monetary shock. For example, Chris-

tiano, Eichenbaum and Evans (1999) report a decline in real GDP two quarters after a policy shock with

the impulse response function showing a �hump�shaped pattern and a maximal decline one to one and

half years after the shock. Sims and Zha (2006) also �nd a statistically signi�cant decline of real GDP in

response to a money supply shock with most of the e¤ect occurring in the �rst year after the shock. SVAR

analysis of Taylor-type monetary policy functions in Rotemberg and Woodford (1997) similarly generates

a response of real GDP after 2 quarters and a rapdily declining hump shaped response. Thus, while SVAR

�ndings similarly suggest that monetary policy matters, some of the early impact in the SVAR literature

may be generated in part by the structural assumptions used to identify these models.
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A Asymptotic Critical Values

This Appendix provides formal results on the distribution of the test statistics described above and forms

the basis for the construction of asymptotic critical values. The theorems and proofs use the additional

notation outlined below.

A.1 Additional Notation and Assumptions

We focus initially on the process Vn(v) and the associated transformation T: Results for Vw;n(w) and the

transformed process TwVw;n(w) then follow as a special case.

Let �t = [y0t; z
0
t; Dt]

0 be the vector of observations. Assume that f�tg1t=1 is strictly stationary with
values in the measurable space

�
Rk+1;Bk+1

�
where Bk+1 is the Borel �-�eld on Rk+1 and k is �xed with

2 � k <1. Let Al1 = � (�1; :::; �l) be the sigma �eld generated by �1; :::; �l: The sequence �t is �-mixing

or absolutely regular if

�m = sup
l�1

E

"
sup

A2A1l+m

���Pr�AjAl1�� Pr (A)���
#
! 0 as m!1:

A sequence is called �-mixing if

�m = sup
l�1

E

24 sup
A2Al1;B2A1l+m

jPr (A \B)� Pr (A) Pr (B)j

35! 0 as m!1

and it is well known that �m � �m.

Condition 3 Let �t be a stationary, absolutely regular process such that for some 2 < p <1 the �-mixing

coe¢ cient of �t satis�es m
p=(p�2) (logm)2(p�1)=(p�2) �m ! 0:

Condition 4 Let Fu(u) be the marginal distribution of Ut: Assume that Fu (:) is absolutely continuous

with respect to Lebesgue measure on Rk and has a density fu(u)

Condition 5 The matrix of functions �(:; :) belongs to a VC subgraph class of functions with envelope

M(�t) such that E kM(�t)k2+� <1 for some � > 0:

We note that jm(yt; Dt; zt; �0jv)j � 2 for �(:; v) = 1 f: � vg such that by Pollard (1984) Theorem II.25,

mv(Wt) = m(yt; Dt; zt; �0jv) is a VC subgraph class of functions indexed by v with envelope 2:

Condition 6 Let H(v) be as de�ned in (9) : Assume that H(v) is absolutely continuous in v with respect

to Lebesgue measure and for all v; � such that v � � with vi < � i for at least one element vi of v it

follows that H(v) < H(�): Let the M�M matrix of derivatives h(v) = @kH(v)=@v1:::@vk and assume

that det (h(v)) > 0 for all v 2 Rk:

29



Remark 1 A su¢ cient condition for Condition 6 is that 0 < pi(zt; �0) < 1 almost surely for all i =

0; 1; :::;M.

A.2 Limiting Distributions

Let D [�1;1]k be the space of functions that are continuous from the right with left limits (Cadlag)

mapping [�1;1]k ! R. We consider weak convergence on D [�1;1]k equipped with the sup norm:
Here [�1;1]k denotes the k-fold product space of the extended real line equipped with the metric q(v; �) =�Pk

i=1 j�(vi)� �(� i)j
2
�1=2

where � is a �xed, bounded and strictly increasing function. It follows that

[�1;1]k is totally bounded. The function space F =
n
m(:; v)jv 2 [�1;1]k

o
of functions m indexed by

v then is a subset of the space of all bounded functions on [�1;1]k denoted by l1([�1;1]k):

Proposition 2 Assume that Conditions 3, 4 and 6 are satis�ed. Let vi 2 [�1;1]k for i = 1; :::; s be a
�nite collection of points: Then, for all �nite s; Vn (v1) ; ::::; Vn (vs) converges in distribution to a Gaussian

limit with mean zero and covariance function �(vi; vj): Moreover, Vn (v) converges in D [�1;1]k to a
Gaussian process V (v) with covariance kernel �(v; �) with v; � 2 [�1;1]k and V (�1) = 0, H(v) is

positive de�nite with H(v) increasing in v:

Proof of Proposition 2. As noted before, under H0; mv(�t) is a martingale di¤erence sequence such

that E (mv(�t)jzt) = 0: Let � = (�1; :::; �s)0 with k�k = 1 and �i 2 RM: For �nite dimensional convergence

we apply Corollary 3.1 of Hall and Heyde (1980) to Yt = �01mv1(�t) + �02mv2(�t) + :::+ �0smvs(�t): Then,

clearly Yt is also a martingale di¤erence sequence. Consider Ynt = Yt=
p
n: Then, for all " > 0;X

t

E
�
Y 2nt1 fjYntj � "g jAt�11

�
�
X
t

E
�
Y 2nt1

�
kM(�t)k

P
i k�ik �

p
n"
	
jAt�11

�
! 0 a.s.

because E kM(�t)k2+� is bounded for some � > 0. Also,X
t

E
�
Y 2ntjAt�11

�
= n�1

nX
t=1

E
�
Y 2t jAt�11

�
= n�1

nX
t=1

sX
i;j=1

E
�
�0i� (ut; vi)

�
diag (p(zt))� p(zt)p (zt)0

�
� (ut; vj)

0 �j jAt�11

�
p!

sX
i;j=1

�0i�(vi; vj)�j

where the last line is a consequence of Theorem 2.1 in Arcones and Yu (1994). By the Cramer-Wold theorem

this establishes �nite dimensional convergence. The functional central limit theorem again follows from

Theorem 2.1 in Arcones and Yu (1994).
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The next proposition establishes a linear approximation to the process V̂n (v) evaluated at the estimated

parameter value �̂: The fact that l (Dt; zt; �0) is a martingale di¤erence sequence is critical to the develop-

ment of a distribution free test statistic. The next condition states that the propensity score p(zt; �) is the

correct parametric model for the conditional expectation of Dt and lists a number of additional regularity

conditions.

Condition 7 Let �0 2 � where � � Rd is a compact set and d < 1: Assume that E [Dtjzt] = p(ztj�0)
and for all � 6= �0 it follows E [Dtjzt] 6= p(ztj�): Assume that p(ztj�) is di¤erentiable a.s. for � 2
f� 2 �j k� � �0k � �g := N�(�0) for some � > 0: Let N(�0) be a compact subset of the union of all

neighborhoods N� (�0) where @p(ztj�)=@�; @2p(ztj�)=@�i@�j exists and assume that N(�0) is not empty. Let
@pi(ztj�)=@�j be the i; j-th element of the matrix of partial derivatives @p(ztj�)=@�0 and let �li;j(zt; �) be the
i; j-th element of �l (zt; �) : Assume that there exists a function B(x) and a constant � > 0 such that��@pi(xj�)=@�j � @pi(xj�0)=@�j�� � B(x)



� � �0

� ;��@2pk(xj�)=@�i@�j � @2pk(xj�)=@�i@�j�� � B(x)


� � �0

� and ��@�li;j(xj�)=@�k � @�li;j(xj�0)=@�k�� � B(x)



� � �0

�
for all i; j; k and �; �0 2 intN (�0), E jB(zt)j2+� <1; E j@pi(ztj�0)=@�j j4+� <1;

E
h
pi(zt; �0)

�(4+�)
i
<1

and

E
h
j@pi(ztj�0)=@�j j

4+�
2

i
<1

for all i; j and some � > 0:

Remark 2 By Pakes and Pollard (1989, Lemma 2.13) the uniform Lipschitz condition for the derivatives

@pi(ztj�)=@�j guarantees that the functions @p(ztj�)=@�0 indexed by � form a Euclidean class for the envelope
B(zt)

�
2
p
d supN(�0)



� � �0

�� + j@pi(ztj�0)=@�j j :
Condition 8 Let

l (Dt; zt; �) = �
�1
�

@p0 (zt; �)

@�
h (zt; �)

�1 (Dt � p(zt; �)) (22)

where

h(zt; �) =
�
diag (p(zt; �))� p(zt; �)p (zt; �)0

�
and

�� = E

�
@p0 (Dtjzt; �)

@�
h (zt; �)

�1 @p (Dtjzt; �)
@�0

�
: (23)

Assume that �� is positive de�nite for all � in some neighborhood N � � such that �0 2 intN and

0 < k��k < 1 for all � 2 N: Let li (Dt; zt; �) be the i-th element of l (Dt; zt; �) : Assume that there

exists a function B(x1; x2) and a constant � > 0 such that


@li (x1; x2; �) =@�j � @li �x1; x2; �0� =@�j

 �

B(x)


� � �0

� for all i and �; �0 2 intN , EB(zt) <1 and E jl (Dt; zt; �)j <1 for all i:
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Remark 3 Note that for P (zt; �) = diag (p(zt; �)) it follows that

h (zt; �)
�1 = P (zt; �)

�1 +
P (zt; �)

�1 p (zt; �) p (zt; �)
0 P (zt; �)

�1�
1� p (zt; �)0 P (zt; �)�1 p (zt; �)

� = P (zt; �)
�1 +

110

1�
PM

j=1 pi (zt; �)
: (24)

Simple algebra then shows that

(Dt � p(zt; �))0 h (zt; �)�1 @p (Dtjzt; �) =@�0 = @` (Dt; zt; �) =@�0

where ` (Dt; zt; �) =
PM

j=0Dj;t log pi (zt; �) is the log likelihood of the multinomial distribution and Dj;t =

1 fDt = jg :

Proposition 3 Assume that Conditions 3, 4,5, 6, 7 and 8 are satis�ed. Then

sup
v2[�1;1]k






V̂n (v)� Vn (v) + _m(v; �0)n
�1=2

nX
t=1

l (Dt; zt; �0)






 = op(1) (25)

and if l (Dt; zt; �0) is as de�ned in 22 and 23 then V̂n (v) converges weakly in D[ � 1;1]k equipped
with the sup norm to a limiting Gaussian process with mean zero and covariance function �̂(v; �) =

� (v; �)� _m(v; �0)L(�0) _m(� ; �0)
0 where L(�0) = ��1�0 is de�ned in 23.

Proof of Proposition 3. Note that V̂n (v) � Vn (v) = n�1=2
Pn

t �(Ut; v)
h
p(zt; �0)� p(zt; �̂)

i
such

that we can approximate

V̂n (v)� Vn (v) =
1

n

nX
t

�
�(Ut; v)

�
@p(zt; �n)

@�0
� @p(zt; �0)

@�0

���
n1=2

�
�̂ � �0

��
+
1

n

nX
t

�
�(Ut; v)

@p(zt; �0)

@�

��
n1=2

�
�̂ � �0

��
where k�n � �0k �




�̂ � �0


 by the mean value theorem. Let _m (�; v) = E
h
�(Ut; v)

@p(zt;�)
@�0

i
and _m(Ut; �; v) =

�(Ut; v)
@p(zt;�)
@�0

� _m (�; v) : From Pakes and Pollard (1989, Lemmas 2.13 and 2.14) and Condition 7 it follows

that _m(:; �; v) is a matrix of funcitions in a Euclidean class indexed on N(�0) � [�1;1]k with envelope
MB(zt)

�
2
p
d supN(�0)



� � �0

�� +PM
i=1 j@pi(ztj�0)=@�j j)M(�t) for all the elements in the j-th column

of _m(Ut; �; v): Note that the factor M can be replaced with the constant 1 if �(Ut; v) is scalar valued.

Then 




 1n
nX
t

�(Ut; v)

�
@p(zt; �n)

@�
� @p(zt; �0)

@�

�





� sup

k���0k��
sup
v






 1n
nX
t

[ _m(Ut; �; v)� _m(Ut; �0; v)]






+ sup
k���0k��

k _m(�; v)� _m(�0; v)k+ op(1) = op(1)
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since supk���0k�� supv


 1
n

Pn
t [ _m(Ut�; v)� _m(Ut; �0; v)]



 = op(1) by applying Lemma 2.1 of Arcones and

Yu (1994) to each element supk���0k�� supv
�� 1
n

Pn
t [ _mi;j(Ut�; v)� _mi;j(Ut; �0; v)]

��. This completes the proof
of 25.

The second part of the result follows from the fact that the class of functions F = [mv(:)]i+[ _m (�; v) l(:; :; �0)]i

where [:]i denotes the i-the element of a vector, is a Euclidean class by Lemma 2.14 of Pakes and Pollard

(1989). Sincemv(Xt)+ _m (�; v) l(Dt; zt; �0) is a martingale di¤erence sequence with respect to the �ltration

At�11 �nite dimensional convergence to a Gaussian random vector with zero mean and covariance function

�̂(v; �) follows from the martingale CLT (Hall and Heyde, Corollary 3.1) and the fact that 0 < k��0k <1
by Condition 8. Convergence to a weak limit in D [�1;1]k then follows again by Theorem 2.1 of Arcones
and Yu (1994) as well as van der Vaart and Wellner (1996, Corollary 1.4.5) together with Pakes and Pollard

(1989, Lemmas 2.13 and 2.15) to handle the vector case.

We now establish that the process T V̂ (v); de�ned in (11) is zero mean Gaussian with covariance

function �(v; �): This establishes that the process T ~V (v) = W (v) can be transformed to a distribution

free process via Lemma 3.5 and Theorem 3.9 of Khmaladze (1993).

In order to de�ne the transform T we choose a grid �1 = �0 < �1 < ::: < �N = 1 on [�1;1] ; let
���i = ��i+1 � ��i and set

cN (V ) =

NX
i=1



� (:; v) ;���i

�l(:; �)
�
C�1�i V (�

?
�i
�l(#; �)): (26)

This construction is the same as in Khmaladze (1993) except that we work on [�1;1] rather than [0; 1] :
In Proposition (4) we show that cN (V ) converges as N ! 1 and maxi (�(�i+1)� � (�i)) ! 0: Let the

limit of cN (V ) be denoted as c(V ) =
R 


� (:; v) ; d���l(:; �)
�
C�1� V

�
�?�
�l(:; �)

�
Condition 9 Let fA�g be a family of measurable subsets of [�1;1]k, indexed by � 2 [�1;1] such that
A�1 = ?; A1 = [�1;1]k, � � �0 =) A� � A�0 and A�0nA� ! ? as �0 # �. Assume that the sets
fA�g form a V-C class (polynomial class) of sets as de�ned in Pollard (1984, p.17). De�ne the projection

��f(v) = 1 (v 2 A�) f(v) and �?� = 1� �� such that �?� f(v) = 1 (v =2 A�) f(v): We then de�ne the inner
product hf(:); g(:)i :=

R
f(u)dH(u)g(u)0 and the matrix

C� =
D
�?�
�l(:; �); �?�

�l(:; �)
E
=

Z
�?�
�l(u; �)dH(u)�?�

�l(u; �)0:

Assume that hf(v); ��g(v)i is absolutely continuous in � and C� is invertible for � 2 [�1;1):

Proposition 4 Assume condition 9 holds. De�ne �x =
n
v 2 [�1;1]k jv = �xv

o
for some x < 1: Let

cN (v) be de�ned as in 26. Then cN (v) converges with probability 1 to c(v) for all v 2 �x. Let T V̂ (v) be
as de�ned in 11. Then T V̂ (v) is a Gaussian process with zero mean and covariance function �(v; �) for

all v; � 2 �x:
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Proof of Proposition 4. The proof of this result follows closely Khmaladze (1993) with the

necessary adjustments pointed out. First, let V (v) be a Gaussian process on [�1;1]k and taking values
in RM with zero mean and covariance function �(v; �) and V (�1) = 0: See Kallenberg (1997, p. 201) for
the construction of such a process. Then, V (�?� �l(:; �)) is a process with trajectories that are continuous

in � by essentially the same argument as in Lemma 3.2 of Khmaladze. To see this �x � 2 RM such

that �0V (�?� �l(:; �)) is a Wiener process on [�1;1] with mean zero, �0V (�?1�l(:; �)) = 0 and variance

�0C�� with almost all trajectories continuous in � on [�1;1]: To show that cN (v) ! c(v) almost

surely we adapt the proof of Lemma 3.3 of Khmaladze (1993). As there, de�ne �1(�) = j�1j + ::: + j�kj
for any vector � = (�1; :::; �k) 2 Rk and �1 (�) = maxi j�ij : Set � =



�;����l(:; �)

�
and � (�; �) =

C�1� V (�?� �l(:; �)) � C�1� V (�?�
�l(:; �)): By Condition 9 the matrix C� is invertible on [�1;1) and C�1� is

continuous in �: Then, since V (�?� �l(:; �)) is continuous in � almost surely, we have

sup
j�(�)��(�)j<�
�;�2[�1;x]

�1 (� (�; �))! 0

with probability 1 for any �xed x <1: The remainder of the proof in Khmaladze (1993) then goes through
without change.

We �rst represent V̂ (v) in terms of V (v). Let V (l (:; �0)) =
R
l(u; �0)db(u) as before for any function

l(v; �) and b(v) a zero mean vector Gaussian process with covariance function H(v ^ �) and note that
V̂ (v) = V (�(:;v)) � _m(v; �)��1� V (�l(:; �0)

0): In order to establish a corresponding result to Lemma 3.4 of

Khmaladze (1993) we �rst show that V̂ (v) = V (�(:;v))� _m(v; �)��1� V (�l(:; �0)
0) is a valid representation of

the limiting distribution of V̂n(v) which was derived in Proposition 3. Clearly, V̂ (v) is zero mean Gaussian

and the covariance function is

E
�
V (v)V (�)0

�
� _m(v; �0)�

�1
�

Z
� (u; �)H(du)�l(u; �0)�

�Z
� (u; v)H(du)�l(u; �0)

�
��1� _m(� ; �0)

0

+ _m(v; �0)
0��1�

�Z
�l(u; �0)

0H(du)�l(u; �0)

�
��1� _m(� ; �0):

Note that dH(u) =
�
diag (p(u2))� p(u2)p (u2)0

�
dFu (u) such thatZ

� (u; �) dH(u)�l(u; �0) =

Z
� (u; �) dH(u)

�
diag (p(u2))� p(u2)p (u2)0

��1 @p(u2; �)
@�0

=

Z
� (u; �)

@p(u2; �0)

@�
dFu(u) = _m(� ; �0)

and Z
�l(u; �0)

0dH(u)�l(u; �0)

=

Z
@p0(u2; �)

@�

�
diag (p(u2))� p(u2)p (u2)0

��1 @p(u2; �)
@�0

dFu(u) = ��
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such that E
h
V̂ (v)V̂ (�)0

i
= H(v ^ �)� _m(v; �0)

0��1� _m(� ; �0) as required.

We now verify that the transformation T has the required properties. Note that



�(:;v)0; �l(:; �)

�
=

Z
� (u; v) dH(u)

�
diag (p(u2))� p(u2)p (u2)0

��1 @p(u2; �)
@�0

= _m(v; �0)

such that V̂ (v) = V (� (:; v))�


� (:; �)0 ; �l(:; �)

�
C�1�1V (

�l(v; �)):

In order to establish that T V̂ (v) = V̂ (v)�
R 


� (:; v)0 ; d���l(:; �)
�
C�1� V̂ (�?�

�l(:; �)) has covariance func-

tion �(v; �) we �rst consider E (TV (v))2 where

E

�
V (v)�

Z 

� (:; v)0 ; d���l(:; �)

�
C�1�

Z
�?�
�l(#; �)0db(u)

�2
= �(v; v)� 2

Z 

� (:; v)0 ; d���l(:; �)

�
C�1�

D
�?�
�l(:; �); � (:; v)0

E
+

Z Z 

� (:; v) ; d���l(:; �)

�
C�1�

�Z
�?�
�l(u; �)0dH(u)�?� �l(u; �)

�
C�1�



d���l(:; �); � (:; v)

0�
= �(v; v)� 2

Z 

� (:; v) ; d���l(:; �)

�
C�1�

D
�?�
�l(:; �); � (:; v)0

E
+

Z Z 

� (:; v) ; d���l(:; �)

�
C�1� C�_�C

�1
�



d���l(:; �); � (:; v)

0� :
Note that



� (:; v) ; d���l(:; �)

�
C�1� C�_�C

�1
�



d���l(:; �); � (:; v)

0� is symmetric in � and � such thatZ Z 

� (:; v) ; d���l(:; �)

�
C�1� C�_�C

�1
�



� (:; v) ; d���l(:; �)

0�
= 2

Z 

� (:; v) ; d���l(:; �)

�
C�1�

Z 1

�



d���l(:; �); � (:; v)

0�
= 2

Z 

� (:; v) ; d���l(:; �)

�
C�1�



���l(:; �); � (:; v)

0�
such that E

�
V (v)�

R 

� (:; v) ; d���l(:; �)

�
C�1� V (�?�

�l(:; �))
�2
= � (v; v) : By the same arguments it follows

that E [TV (v)TV (�)] = � (v; �) :

That the result then also holds for T V̂ (v) follows from Khmaladze (1993, Theorem 3.9).

Khmaladze (1993, Lemmas 3.2-3.4) shows that the argument need not be limited to all v such that

v 2 �x. As noted by Koul and Stute, however, once T is replaced by Tn convergence can only be shown on
the subset �xv of [�1;1]k for some �nite x due to the instability of the estimated matrix C� as �!1:

The next step is to analyze the transform T when applied to the empirical processes Vn(v) and V̂n(v)

and in particular to show convergence to the limiting counterpart, T V̂ (v):
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Proposition 5 Assume Conditions 3, 4, 5, 6, 7, 8 and 9 are satis�ed. Fix x < 1 arbitrary and de�ne

�x =
n
v 2 [�1;1]k jv = �xv

o
. Then,

sup
v2�x

���T V̂n(v)� TVn(v)��� = op(1)

and TVn(v)) TV (v) in D [�x] where ) denotes weak convergence.

Proof of Proposition 5. By Theorem 3 we have uniformly on [�1;1]k that V̂n (v) � Vn (v) =

_m(v; �0)n
�1=2Pn

t=1 l (Dt; zt; �0) + op(1): Thus consider the di¤erence

T V̂n � TVn (27)

= � _m(v; �0)n�1=2
nX
t=1

l (Dt; zt; �0)

�
Z 


� (:; v)0 ; d���l(:; �0)
�
C�1�

�
V̂n

�
�?�
�l(:; �0)

0
�
� Vn

�
�?�
�l(:; �0)

0
��
+ op (1)

where Ĥn and Hn are de�ned in Appendix B.1 for k�n � �0k �



�̂ � �0


 it follows by the mean value

theorem that

V̂n

�
�?�
�l(:; �0)

0
�
� Vn

�
�?�
�l(:; �0)

0
�

= n�1=2
nX
t=1

1 fUt =2 A�g �l(zt; �0)0
�
p(zt; �0)� p(zt; �̂)

�
= n�1=2

nX
t=1

1 fUt =2 A�g �l(zt; �0)0
�
@p(zt; �n)

@�0
� @p(zt; �0)

@�0

��
�̂ � �0

�
+n�1=2

nX
t=1

1 fUt =2 A�g �l(zt; �0)0
@p(zt; �0)

@�0

�
�̂ � �0

�
: = R1 (�) +R2 (�) :

Let _m (�) = E
h
@p(zt;�)
@�0

i
and _m(zt; �) =

@p(zt;�)
@� � _m (�) : First consider

sup
�
kR1 (�)k � n1=2




�̂ � �0


n�1 nX
t=1



�l(zt; �0)





@p(zt; �n)@�0
� @p(zt; �0)

@�0






� n1=2




�̂ � �0


n�1 nX
t=1



�l(zt; �0)

 k _m(zt; �n)� _m(zt; �0)k

+n1=2



�̂ � �0


n�1 nX

t=1



�l(zt; �0)

 k _m (�n)� _m (�0)k

� n1=2



�̂ � �0


 n�1 nX

t=1



�l(zt; �0)

2!1=2 n�1 nX
t=1

k _m(zt; �n)� _m(zt; �0)k2
!1=2
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where the third inequality follows from Hölder�s inequality. Since k�n � �0k = op(1) it follows from the

continuous mapping theorem that k _m (�n)� _m (�0)k = op(1): Together with the fact that E


�l(zt; �0)

 <1

and Lemma 2.1 of Arcones and Yu (1994) this implies that

n1=2



�̂ � �0


n�1 nX

t=1



�l(zt; �0)

 k _m (�n)� _m (�0)k = op(1):

By Condition 7 it follows that

k _m(zt; �n)� _m(zt; �0)k2 � k jB(zt)j2 k�n � �0k2�

for some � > 0 such that

n�1
nX
t=1

k _m(zt; �n)� _m(zt; �0)k2 � k k�n � �0k2� n�1
nX
t=1

jB(zt)j2 = op(1):

This establishes sup� kR1 (�)k = op(1) such that uniformly on �x



Z 
� (:; v)0 ; d���l(:; �0)�C�1� R1 (�)





 � sup
�
kR1 (�)k sup

�:��2�x
kC�k�1

Z 


� (:; v)0 ; d���l(:; �0)�

 = op (1) :

Next consider R2 (�)�
�R

�?�
�l(#; �0)

0 @p(u2;�0)
@�0

dFu (u)
�
n1=2

�
�̂ � �0

�
: Note that

E

�
1 fUt =2 A�g �l(zt; �0)

@p(zt; �0)

@�0

�
=

Z
�?�
�l(u; �0)

0@p(u2; �0)

@�0
dFu (u)

and

sup
�





1 fUt =2 A�g �l(zt; �0)0@p(zt; �0)@�0






�





�l(zt; �0)0@p(zt; �0)@�0






=





@p0(zt; �0)@�

�
diag (p(u2))� p(u2)p (u2)0

��1 @p(zt; �0)
@�0






�





@p0(zt; �0)@�





2 


�diag (p(u2))� p(u2)p (u2)0��1=2


2
�

�
sup
u2

�
10M

�
diag (p(u2))� p(u2)p (u2)0

��1
1M
�� MX

i=1

dX
j=1

�
@pi(zt; �0)

@�j

�2

where
�
supu2

�
10M

�
diag (p(u2))� p(u2)p (u2)0

��1
1M
��

is bounded by Condition 6 and E
��

@pi(zt;�0)
@�j

�2�
is bounded by Condition 7. This shows that (1� 1 f(yt; zt) 2 A�g) �l(zt; �0)@p(zt;�0)@�0

is a Euclidean class

with integrable envelope



�l(zt; �0)@p(zt;�0)@�0




 such that by Lemma 2.1 of Arcones and Yu it follows that
sup
�





R2 (�)� �Z �?�
�l(#; �0)

0@p(u2; �0)

@�0
dFu (u)

�
n�1=2

�
�̂ � �0

�



 = op(1):

37



It then follows that uniformly on �xZ 

� (:; v) ; d���l(:; �0)

�
C�1�

�
R2 (�)�

Z
�?�
�l(#; �0)

0@p(u2; �0)

@�0
dFu (u)n

�1=2
�
�̂ � �0

��
= op (1) :

Now note that
R
�?�
�l(#; �0)

0 @p(u2;�0)
@�0

dFu (u) = C� such thatZ 

� (:; v)0 ; d���l(:; �0)

�
C�1�

Z
�?�
�l(#; �0)

0@p(u2; �0)

@�0
dFu (u)n

�1=2
�
�̂ � �0

�
=

Z 

� (:; v)0 ; d���l(:; �0)

�
n�1=2

�
�̂ � �0

�
= _m(v; �0)n

�1=2
�
�̂ � �0

�
:

Substituting back in 27 then shows that supv2�x

���T V̂n (v)� TVn (v)��� = op(1):

For the second part of the proposition consider

TVn (v) = Vn (v)�
Z 


� (:; v)0 ; d���l(:; �0)
�
C�1� n�1=2

nX
t=1

1 fUt =2 A�g �l(zt; �0)0 (Dt � p(zt; �0)) :

Under H0 it follows that

E
�
1 fUt =2 A�g �l(zt; �0) (Dt � p(zt; �0)) jzt

�
= E [(Dt � p(zt; �0)) jzt]E [1 fUt =2 A�g jzt] �l(zt; �0) = 0

such that Vn (v) is a martingale. The �nite dimensional distributions can therefore be obtained from a

martingale di¤erence CLT. Let

g(yt; zt; v) =

Z 

� (:; v) ; d���l(:; �0)

�
C�1� 1 fUt =2 A�g �l(zt; �0)0

such that TVn(v) = n�1=2
Pn

t=1 (� (Ut; v)� g(yt; zt; v)) (Dt � p(zt; �0)) : Then let

Y1t (v) = � (Ut; v) (Dt � p(zt; �0)) ;

Y2t (v) = g(yt; zt; v) (Dt � p(zt; �0)) ;

Yt (v) = Y1t (v)� Y2t (v) and Ynt (v) = n�1=2Yt (v) : It follows that

E
�
Y1t (v)Y1t (v)

0� = �(v; v);
E
�
Y2t (v)Y2t (v)

0� =

Z Z �

� (:; v) ; d���l(:; �0)

�
C�1�

�E
�
E [1 fUt =2 A�g1 fUt =2 A�g jzt]

@pt (zt; �0)

@�0
�
diag (p(zt))� p(zt)p (zt)0

��1 @pt (zt; �0)
@�

�
� C�1�



� (:; v) ; d���l(:; �0)

0�	
=

Z Z 

� (:; v) ; d���l(:; �0)

�
C�1� C�_�C

�1
�



� (:; v) ; d���l(:; �0)

0�
= 2

Z 

� (:; v) ; d���l(:; �)

�
C�1�

D
� (:; v) ; �?�

�l(:; �)
E
;
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and

E [Y1t (v)Y2t (v)] =

Z 

� (:; v) ; d���l(:; �0)

�
C�1� E

�
E [1 fUt =2 A�g� (Ut; v) jzt]

@pt (zt; �0)

@�0

�
=

Z 

� (:; v) ; d���l(:; �)

�
C�1�

D
� (Ut; v) ; �

?
�
�l(:; �)

E
which shows that E

�
Yt (v)Yt (v)

0� = �(v; v): Also, E �Y1t (v)Y1t (�)0� = � (v; �) ;
E
�
Y2t (v)Y2t (�)

0� = 2Z 
� (:; v) ; d���l(:; �)�C�1� D
� (:; �) ; �?�

�l(:; �)
E

and

E
�
Y1t (v)Y2t (�)

0� = Z 
1 (: � v) ; d���l(:; �)
�
C�1�

D
1 (: � �) ; �?�

�l(:; �)
E

such that E
�
Yt (v)Yt (�)

0� = � (v; �) : It also follows that E kYtk2 <1 such that the conditional Lindeberg

condition of the CLT is satis�ed. We conclude that the �nite dimensional distributions of TVn(v) converge

to a Gaussian limit with mean zero and covariance function �(v; �): For weak convergence in the function

space note that

kg(yt; zt; v)k �
Z 


� (:; v) ; d���l(:; �0)�C�1� �l(zt; �0)

0


�

Z 


� (:; v) ; d���l(:; �0)�C�1� 



�l(zt; �0)


where

R 


� (:; v) ; d���l(:; �0)�C�1� 

 is uniformly bounded on�x and 

�l(zt; �0)

2 =PM
j=1

Pd
i=1

���li;j(zt; �0)��2
such that by the Hölder inequality

���li;j(zt; �0)��2+� � (M+ 1)1+�=2

0B@����@pi(zt; �0)=@�jpi (zt; �0)

����2+� +
PM

j=1 j@pj(zt; �0)=@�j j
2+����1�PM

j=1 pj(zt; �0)
���2+�

1CA :

By the Cauchy Schwartz inequality it then follows that

E
���li;j(zt; �0)��2+� � (M+ 1)1+�=2

�
E
h
j@pi(zt; �0)=@�j j4+2�

i�1=2 �
E
h
pi (zt; �0)

�(4+2�)
i�1=2

+(M+ 1)1+�=2
PM

j=1

�
E
h
j@pj(zt; �0)=@�j j4+2�

i�1=2�
E

����1�PM
j=1 pj(zt; �0)

����(4+2�)��1=2
< 1

which is bounded for some � by Condition 7. This shows that g(yt; zt; v) is a Euclidean class of functions

and by Lemma 2.14 of Pakes and Pollard it follows that Yt(v) is a Euclidean class of functions. Lemma

2.1 of Arcones and Yu then can be used to establish weak convergence on D [�x] :

Our main formal result is established next.
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Theorem 6 Assume Conditions 3, 4, 5, 6,7, 8 and 9 are satis�ed. Fix x < 1 arbitrary and de�ne

�x =
n
v 2 [�1;1]k jv = �xv

o
: Then, for Tn de�ned in (12),

sup
v2�x

���TnV̂n(v)� TVn(v)��� = op(1):

Proof of Theorem 6. We start by considering Ĉ� � C�: Let

C� (�) = E

�
1 fUt =2 A�g �l(zt; �)0

@p(zt; �)

@�0

�
such that C� = C� (�0) and

Ĉ� � C� = n�1
nX
t=1

1 fUt =2 A�g �l(zt; �̂)0
@p(zt; �̂)

@�0
� C� (�0)

= n�1
nX
t=1

1 fUt =2 A�g �l(zt; �̂)0
@p(zt; �̂)

@�0
� C�

�
�̂
�
+ C�

�
�̂
�
� C� (�0) :

Note that C� (�) =
R
(1� 1 (u 2 A�)) �l(u; �)0H(du)�l(u; �) such that for any �; � it follows that

C�0 ��0�� C� (�)

 �





Z (1 (u 2 A�0)� 1 (u 2 A�)) �l(u; �0)0dH(u)�l(u; �0)






+





Z 1 (u 2 A�)
�
�l(u; �0)0dH(u)�l(u; �0)� �l(u; �)0dH(u)�l(u; �)0

�




where j1 (u 2 A�0)� 1 (u 2 A�)j � 1

�
u 2 Amax(�;�0)nAmin(�;�0)

�
! 0 as �0 ! � by Condition 9. Continuity

of �l(u; �)0�l(u; �) and integrability of the envelope function


�l(u; �0)

2 then establish uniform continuity of

C�(�) on �x � N(�0) by use of the dominated convergence theorem. By continuity of C� (�) and the

continuous mapping theorem it now follows that



C� ��̂�� C� (�0)


 = op(1) uniformly on �x � N(�0):

Let vn(�; �) = n�1
Pn

t=1 1 fUt =2 A�g �l(zt; �)0
@p(zt;�)
@�0

� C� (�) : We note that



1 fUt =2 A�g �l(zt; �)0@p(zt; �)@�0





 � 2

�l(zt; �)

2 

diag (p(zt))� p(zt)p (zt)0

 � 2M

�l(zt; �)

2
where �li;j(zt; �) has the integrable Envelope B(zt)

�
2
p
d supN(�0)



� � �0

�� + ���li;j(zt; �0)�� on N (�0) by
Condition 7. By Condition 9 the functions 1 f(yt; zt) 2 A�g form a Euclidean class. It now follows from

Lemma 2.1 of Arcones and Yu (1994) that, because n1=2vn(�; �) converges weakly to a Gaussian limit, a

tightness condition must hold, i.e. for any "; � > 0; 9� > 0 such that

lim sup
n

Pr

 
sup

�;�2�x�N(�0)
sup

�0;�0:d((�;�);(�0;�0))<�



vn(�0; �0)� vn(�; �)

 > "

!
< �: (28)
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Property 28 together with the boundedness of the space �x � N(�0) now implies by a conventional ap-

proximation argument, that

sup
�;�2�x�N(�0)

kvn (�; �)k = op(1):

It now follows that

Pr
�


Ĉ� � C� ��̂�


 > "

�
� Pr

 
sup

�;�2�x�N(�0)
kvn (�; �)k > "

!
+ Pr

�
�̂ =2 N(�0)

�
p! 0 (29)

such that sup�2�x




Ĉ� � C�


 = op(1):

Then

TnV̂n(v)� TVn(v) = � _m(v; �0)n�1=2
nX
t=1

l (Dt; zt; �0) + op(1)

�
Z
d

�Z
� (u; v) dĤn(u)���l(:; �̂)

�
Ĉ�1� V̂n(�

?
�
�l(:; �̂)0)

+

Z 

� (:; v) ; d���l(:; �0)

�
C�1� Vn(�

?
�
�l(:; �0)

0):

From before we have Z
d

�Z
� (u; v) dĤn(u)���l(:; �̂)

�
Ĉ�1� V̂n(�

?
�
�l(:; �̂)0)

=

Z
d

�Z
� (u; v) dĤn(u)���l(:; �̂)

��
Ĉ�1� � C�1�

�
V̂n(�

?
�
�l(:; �̂)0)

+

Z
d

�Z
� (u; v) dĤn(u)���l(:; �̂)

�
C�1� V̂n(�

?
�
�l(:; �̂)0)

where 



Z d

�Z
� (u; v) dĤn(u)���l(:; �̂)

��
Ĉ�1� � C�1�

�
V̂n(�

?
�
�l(:; �̂))






� sup

�2[�1;x]




Ĉ�1� � C�1�



Z 



d�Z � (u; v) dĤn(u)���l(:; �̂)

�






V̂n(�?� �l(:; �̂))


 = op(1)
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by 29. Next we consider

V̂n(�
?
�
�l(:; �̂)0) = n�1=2

nX
t=1

1 fUt =2 A�g �l(Ut; �̂)0
�
Dt � p(zt; �̂)

�
= n�1=2

nX
t=1

1 fUt =2 A�g �l(Ut; �0)0 (Dt � p(zt; �0))

+

"
n�1=2

nX
t=1

1 fUt =2 A�g
�
(Dt � p(zt; �0))0 
 IM

� @ vec �l(Ut; �n)0
@�0

#�
�̂ � �0

�
�
"
n�1=2

nX
t=1

1 fUt =2 A�g �l((yt; zt) ; �0)0
@p(zt; �n)

@�0

#�
�̂ � �0

�
�
��

�̂ � �0
�0

 IM

�"
n�1=2

nX
t=1

1 fUt =2 A�g
�
@p0(zt; �n)

@�

 IM

�
@ vec �l(Ut; �n)

@�0

#�
�̂ � �0

�
� R1 (�) +R2 (�)

�
�̂ � �0

�
+R3 (�)n

1=2
�
�̂ � �0

�
+ n1=2

�
�̂ � �0

�0
R4 (�)

�
�̂ � �0

�
where k�n � �0k �




�̂ � �


 and we have used the mean value theorem. Note that R1 = R �?� �l(#; �0)dVn(u);
R2 (�) = n�1=2

nX
t=1

1 fUt =2 A�g
�
(Dt � p(zt; �0))0 
 IM

� @ vec �l(Ut; �0)0
@�0

+n�1=2
nX
t=1

1 fUt =2 A�g
�
(Dt � p(zt; �0))0 
 IM

��@ vec �l(Ut; �n)0
@�0

� @ vec �l(Ut; �0)
0

@�0

�
� R21 (�) +R22 (�; �n)

satis�es ER21 (�) = 0 because

E

�
1 fUt =2 A�g

�
(Dt � p(zt; �0))0 
 IM

� @ vec �l(Ut; �0)0
@�0

jzt
�

= E
��
(Dt � p(zt; �0))0 
 IM

�
jzt
�
E

�
1 fUt =2 A�g

@ vec �l(Ut; �0)
0

@�0
jzt
�
= 0

under H0 such that �nite dimensional convergence follows by the martingale di¤erence CLT and uniform

convergence follows from the fact that 1 fUt =2 A�g
�
(Dt � p(zt; �0))0 
 IM

� @ vec �l(Ut;�0)0
@�0

is a Euclidean class

of functions by Condition 9. It thus follows that sup�R21(�) = Op(1) and R21(�)
�
�̂ � �0

�
= op(1)

uniformly in �: For the term R22 (�; �n) we note that

E

�
1 fUt =2 A�g

�
(Dt � p(zt; �0))0 
 IM

� @ vec �l(Ut; �)0
@�0

jzt
�
= 0

for any �: By Lemma 2.1 of Arcones and Yu it thus follows that R22 (�; �) converges to a Gaussian limit

process uniformly in � and �: Consequently, a tightness condition implied by this result can be used to show
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that lim supPr
h
sup�:d(�;�0)�� kR22 (�; �)k > "

i
< � for all "; � > 0 and some � > 0: Use root-n convergence

of �n to conclude from this that R22 (�; �n) = op(1): The terms involving �n in the remainder terms R3

and R4 containing �n can be handled in similar form and we therefore only consider the leading terms

where �n is replaced by �0: For R4 (�) where

R4 (�) = n�1
nX
t=1

1 fUt =2 A�g
�
@p0(zt; �n)

@�

 IM

�
@ vec �l(Ut; �n)

@�0

we note that n1=2 (R4 (�)� ER4 (�)) satis�es the conditions of Lemma 2.1 of Arcones and Yu (1994)
such that it follows by similar arguments as before that sup�R4 (�) = Op(1). Then conclude that

n1=2
�
�̂ � �0

�0
R4 (�)

�
�̂ � �0

�
= op(1) uniformly in �:

For R3 (�) note that

R3 (�) = n�1
nX
t=1

1 fUt =2 A�g �l(Ut; �0)0
@p(zt; �0)

@�0

uniformly converges to

ER3 (�) = E

�
1 fUt =2 A�g �l(Ut; �0)

@p(zt; �0)

@�0

�
= C�:

We have thus established that

sup
�




V̂n(�?� �l(:; �̂))� Vn(�?� �l(:; �0))� C�n1=2 ��̂ � �0�


 = op (1) :

Using this result we obtainZ
d

�Z
� (u; v) dĤn(u)���l(u; �̂)

�
C�1�

�
V̂n(�

?
�
�l(:; �̂))� Vn(�?� �l(:; �0))

�
=

Z
d

�Z
� (u; v) dĤn(u)���l(u; �̂)

�
n1=2

�
�̂ � �0

�
+ op(1):

The leading term is then

vec

Z
d

�Z
� (u; v) dĤn(u)���l(u; �̂)

�
= vec

Z
d

�Z
� (u; v) dHn(u)���l(u; �0)

�
(30)

+

Z
d

�Z
� (u; v)��

@ vec @p(u2; �n)=@�
0

@�0
dF̂u(u)

��
�̂ � �0

�
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where F̂u(u) is de�ned in (33) in Appendix B.1 and



Z d

Z
� (u; v)��

@ vec @p(u2; �n)=@�
0

@�0
dF̂u(u)






� n�1

nX
t=1





1 fUt � vg1 fUt 2 A�g
@ vec @p(u2; �n)=@�

0

@�0






� n�1

nX
t=1





@ vec @p(u2; �0)=@�0@�0






+n�1

nX
t=1





@ vec @p(u2; �n)=@�0@�0
� @ vec @p(u2; �0)=@�

0

@�0






� n�1

nX
t=1





@ vec @p(u2; �0)=@�0@�0





+ C k�n � �0k� n�1 nX
t=1

B(zt)

= Op(1)

where C is a �nite constant, the third inequality uses Condition 7 and the last equality follows from a

standard law of large numbers for strong mixing sequences. The �rst term in 30 then isZ
d

�Z
� (u; v) dHn(u)���l(u; �0)

�
= n�1

nX
t=1

� (Ut; v)1 fUt 2 A�g
@p(zt; �0)

@�0

where E
h
� (Ut; v)1 fUt 2 A�g @p(zt;�0)@�

i
= _m(��v; �0) for v 2 �x: It thus follows again by a law or large

numbers that
R
d
�R
� (u; v) dHn(u)���l(u; �0)

�
= _m(v; �0) + op (1) uniformly on �x:

Finally we need to show thatZ �
d

�Z
� (u; v) dHn(u)���l(u; �0)

�
�


� (:; v)0 ; d���l(:; �0)

��
C�1� Vn(�

?
�
�l(u; �0)) = op(1): (31)

Let g(zt; �; v) = � (Ut; v)1 fUt 2 A�g @p(zt;�0)@� : We �rst note that uniformly in � on [�1; x] and v 2 �x;Z
� (:; v)��dHn(v)�l(:; �0)�



� (:; v)0 ; ���l(:; �0)

�
= n�1

nX
t=1

g(zt; �; v)� E (g(zt; �; v))! 0 a.s.

Weak convergence of C�1� Vn(�
?
�
�l(u; �0)) uniformly in � on [�1; x] can be established by the same methods

as for TVn(v)) TV (v) in the second part of the proof of Proposition 5. We can thus proceed in the same

way as Koul and Stute (1999, Lemma 4.2). Let Gn(�; v) = n�1
Pn

t=1 g(zt; �; v); G(�; v) = E (g(zt; �; v))

and let �n(�) = C�1� Vn(�
?
�
�l(u; �0)

0): Then each component �ni(�) of the vector �n(�) is asymptotically

tight by Prohorov�s Theorem. In other words there exists a compact set H such that �ni(�) 2 H with

probability no less than 1� � for any � > 0: Following the proof of Lemma 3.1 of Chang (1990) we choose
step functions a1; a2; :::; ak 2 D [�1; x] such that for any � 2 H; sup jai � �j < " for some i; 1 � i � k: The
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right hand side of 31 can now be written as
R x
�1 �n (�)

0 (Gn(d�)�G(d�)) such that for any � > 0

Pr

�



Z x

�1
�n (�)

0 (Gn(d�)�G(d�))




 > �

�
� Pr

 
sup

�2H;v2�x





Z x

�1
� (�)0 (Gn(d�; v)�G(d�; v))





 > �

!
+Pr (�n =2 H) :

Since � 2 H it follows that

sup
�2H;v2�x

����Z x

�1
� (�)0 (Gn(d�; v)�G(d�; v))

���� � sup
�2H

k� (�)k
�
sup
v2�x

Z x

�1
kG(d�; v)k+ sup

v2�x

Z x

�1
kGn(d�; v)k

�
where

R x
�1 kG(d�; v)k = kG(x; v)k and

R x
�1 kGn(d�; v)k = kGn(x; v)k : Since G(x; v) ! 0 uniformly in v

as x! �1 and Gn(�; v) converges uniformly to G(x; v) we can focus on a subset [xu; x] � [�1; x] where
xu is such that

sup
�2H;v2�x





Z xu

�1
� (�)0 (Gn(d�; v)�G(d�; v))





 < �

with probability tending to one. Now, for any component i; there exists a strictly increasing, con-

tinuous mapping � of [�1; x] onto itself, depending on �i such that sup�1���x j� (�)� �j < " and

sup�1���x j�i (�)� ai(�(�))j < ": Then for any element i; j of � (�)0 (Gn(d�; v)�G(d�; v))����Z x

xu

�i (�) (Gni;j(d�; v)�Gi(d�; v))
���� �

����Z x

xu

(�i (�)� ai(�(�))) (Gni;j(d�; v)�Gi;j(d�; v))
����

+

����Z x

xu

ai(�(�)) (Gni;j(d�; v)�Gi;j(d�; v))
����

which implies that for some N0 and all n > N0;
���R x�1 �i (�) (Gni;j(d�; v)�Gi;j(d�; v))

��� < 3" uniformly on
H ��x by the arguments of Chang (1994, p.396) which establishes 31. This now implies that TnV̂n(v)�
TVn(v) = op(1).

Theorem 6 together with Propositions 5 and 4 implies that Ŵn(v)�Vn(v) = op(1) uniformly in v 2 �x:
This in turn means that the limiting distribution of Ŵn(v) is a zero mean Gaussian process with covariance

function H(v; �): This distribution is not nuisance parameter free but can be computed conditional on the

sample relatively easily as pointed out in Section 4.

Section 4.2 introduced the distribution free statistic B̂w;n(w), de�ned as B̂w;n(w) = Ŵw;n

�
�(:; w)hw(:)

�1=2� :
By the arguments preceding Theorem 6, it follows that B̂w;n(w) =) Bw(w) on �[0;1]: The only adjustments

necessary are a restriction of [�1;1]k to [0; 1]k. What remains to be shown is that

sup
v2�[0;1]

���B̂ŵ;n(w)� B̂w;n(w)��� = op(1): (32)

This is done in the next Theorem. We impose the following assumptions on the kernel function and density.
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Condition 10 The density fu(u) is continuously di¤erentiable to some integral order ! � max(2; k) on

Rk with supx2Rk jD�h(x)j < 1 for all j�j � ! where � = (�1; :::; �k) is a vector of non-negative inte-

gers, j�j =
Pk

j=1 �j ; and D
�f(x) = @j�jh(x)=@x

�1
1 ::::@x

�k
k is the mixed partial derivative of order j�j :

The kernel K(:) satis�es i)
R
K(x)dx = 1;

R
x�K(x)dx = 0 for all 1 � j�j � ! � 1;

R
jx�K(x)j dx < 1

for all � with j�j � !; K(x) ! 0 as kxk ! 1 and supx2 Rk (1 + kxk) jDeiK(x)j < 1 for all i � k

and ei is the i-th elementary vector in Rk: ii) K(x) is absolutely integrable and has Fourier transform
K(r) = (2�)k

R
exp(ir0x)K(x)dx that satis�es

R
jK(r)j dr <1 where i =

p
�1:

Theorem 7 Assume Conditions 3, 4, 5, 6,7, 8, 9 and 10 are satis�ed. Fix x < 1 arbitrary and de�ne

�[0;1] =
n
w 2 [0; 1]k jw = �xw

o
: Then,

sup
w2�[0;1]

���B̂ŵ;n(w)� B̂w;n(w)��� = op(1):

Proof of Theorem 7:. By Theorem 1 of Andrews (1995) it follows that

sup
x

���F̂k(xkjxk�1; :::; x1)� Fk(xkjxk�1; :::; x1)��� = Op(T
�1=2m�k

n ) +Op(m
!
n):

By Pakes and Pollard (1989, Lemma 2.15) it follows that the composition of a function from a Euclidean

class with envelope M and a measurable map with envelope M1 forms another Euclidean class with

envelope M �M1. Since Fk(xkjxk�1; :::; x1) takes values in [0; 1] it clearly has an envelope M1: It follows

that Ŵw;n is a sample average over functions that belong to a Euclidean class plus remainder terms that

vanish by similar arguments as before. It thus follows by the same arguments as before that for all "; � > 0

there exists an � > 0 such that

lim sup
n
Pr

0BBB@ sup
w;w02�[0;1];kw�w0k<�;
w1;w012[0;1]

k;kw1�w01k<�

���B̂w1;n(w)� B̂w01;n(w0)��� > "

1CCCA < �:

It then follows that B̂n(s)) B(s):

This result allows us to conduct inference using critical values that do not depend on nuisance para-

meters. Although these critical values must be calculated numerically, they are invariant to the sample

distribution for a given design.

Theorem 8 Assume Conditions 3, 4, 5, 6,7, 8, 9 and 10 are satis�ed. Fix x < 1 arbitrary and de�ne

�[0;1] =
n
w 2 [0; 1]k jw = �xw

o
: For B̂�ŵ;n (w) de�ned in (20) it follows that B̂

�
ŵ;n (w) converges on �[0;1]

to a Gaussian process Bw(w):
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Proof. Following Chen and Fan (1999) we note that conditional on the data, B̂�ŵ;n (w) is a Gaussian

process with covariance function given by

�̂w (v; �) = n�1
nX
t=1

�
mT;t

�
v; �̂
�
� �mn;T

�
v; �̂
���

mT;t

�
� ; �̂
�
� �mn;T

�
� ; �̂
��0

:

By (32) and similar arguments as in the proof of Proposition 4 and Theorems 5 and 6 it follows that

�̂w (v; �) converges uniformly on �[0;1] to the covariance function of Bw (w) ;
R
�(u; v)�(u; �)du. The result

then follows in the same way as Theorem 5.2 of Chen and Fan (1999).

B Implementation Details

B.1 Details for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the

transformation T is unknown and needs to be replaced by an estimator. In this section, we discuss the

details that lead to the formulation in (14). We also present results for general sets A�: We start by

de�ning the empirical distribution

F̂u(v) = n�1
nX
t=1

fUt � vg ; (33)

and let

Hn(v) =

Z v

�1

�
diag (p(u2; �0))� p(u2; �0)p (u2; �0)0

�
dF̂u (u)

= n�1
nX
t=1

�
diag (p(zt; �0))� p(zt; �0)p (zt; �0)0

�
1 fUt � vg

as well as

Ĥn(v) =

Z v

�1

�
diag

�
p(zt; �̂)

�
� p(zt; �̂)p

�
zt; �̂

�0�
dF̂u (u)

= n�1
nX
t=1

�
diag

�
p(zt; �̂)

�
� p(zt; �̂)p

�
zt; �̂

�0�
1 fUt � vg :

We now use the sets A� and projections �� as de�ned in Section 4.1. Let

Ĉ� =

Z
�?�
�l(v; �̂)dĤn(v)�

?
�
�l(v; �̂)0

= n�1
nX
t=1

(1� 1 fUt 2 A�g) �l(Ut; �̂)0
�
diag

�
p(zt; �̂)

�
� p(zt; �̂)p

�
zt; �̂

�0�
�l(Ut; �̂)

such that

TnV̂n (v) = V̂n (v)�
Z
d

�Z
�(u; v)dĤn(u)���l(u; �)

�
Ĉ�1� V̂n(�

?
�
�l(u; �̂))
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where Z
� (u; v) dĤn(u)���l(:; �̂) = n�1

nX
t=1

1 fUt 2 A�g�(Ut; v)
@p(zt; �̂)

@�0
:

Finally, write

V̂n(�
?
�
�l(u; �̂)) = n�1=2

nX
t=1

(1� 1 fUt 2 A�g) �l(Ut; �̂)0
�
Dt � p(zt; �̂)

�
:

We now specialize the choice of sets A� to A� = [�1; �]� [�1;1]k�1 : Denote the �rst element of yt
by y1t: Then

Ĉ� = n�1
nX
t=1

1 fy1t > �g �l(zt; �̂)
�
diag

�
p(zt; �̂)

�
� p(zt; �̂)p

�
zt; �̂

�0�
�l(zt; �̂)

0; (34)

V̂n(�
?
�
�l(u; �̂)) = n�1=2

nX
t=1

1 fy1t > �g �l(Ut; �̂)0
�
Dt � p(zt; �̂)

�
(35)

and Z
�(u; v)dĤn(u)���l(u; �̂) = n�1

nX
t=1

1 fy1t � �g� fUt; vg
@p(zt; �̂)

@�0
(36)

Combining 34, 35 and 36 then leads to the formulation 14.

B.2 Details for the Rosenblatt Transform

As before implementation requires replacement of � with an estimate. We therefore work with the process

V̂w;n (v) = n�1=2
Pn

t=1mw(wt;Dt; �̂;w): De�ne

E [mw(wt; Dt; �);w)] =

Z 1

0
� � �
Z 1

0
�(u;w)

�
p
��
T�1R (u)

�
z
; �0
�
� p(

�
T�1R (u)

�
z
; �)
�
du

such that _m(w; �) evaluated at the true parameter value �0 is

_mw(w; �0) = E
�
�(Ut; w)@p(zt; �0)=@�

0�
=

Z
[0;1]k

�(u;w)
@p(
�
T�1R (u)

�
z
; �0)

@�0
du

It therefore follows that V̂w;n (v) can be approximated by Vw;n (v) � _mw(w; �0)
0n�1=2

Pn
t=1 l (Dt; zt; �0).

This approximation converges to a limiting process V̂w (v) with covariance function

�̂w(w; �) = �w (w; �)� _mw(w; �0)
0L(�0) _mw(� ; �0)

where

�w (w; �) =

Z
[0;1]k

�(u;w)hw (u)�(u; �)
0du:
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where hw(:; �) =
�
diag

�
p(
�
T�1R (:) ; �

�
z
)
�
� p(

�
T�1R (:) ; �

�
z
)p(
�
T�1R (:)

�
z
; �)0

�
and hw (:) := hw(:; �0):

We represent V̂w in terms of Vw. Let Vw(lw (:; �0)) =
R
lw(w; �0)bw(dv) where bw(v) is a Gaussian

process on [0; 1]k with covariance function �w (v; �) as before, for any function lw(w; �): Also, de�ne

�lw(w; �) = hw (w; �)
�1 @p(

�
T�1R (w)

�
z
; �)

@�0

such that V̂w(w) = Vw(w)� _mw(w; �0)Vw
�
�lw(w; �)

�
as before.

Let fAw;�g be a family of measurable subsets of [0; 1]k, indexed by � 2 [0; 1] such that Aw;0 = ?;
Aw;1 = [0; 1]

k, � � �0 =) Aw;� � Aw;�0 and Aw;�0nAw;� ! ? as �0 # �. We then de�ne the inner product
hf(:); g(:)iw :=

R
[0;1]k f(w)

0dHw(w)g(w)
0 where

Hw(w) =

Z
u�w

hw (u) du

and the matrix

Cw;� =
D
�?�
�lw(:; �); �

?
�
�lw(:; �)

E
w
=

Z
�?�
�lw(w; �)

0dHw(w)�
?
�
�lw(w; �):

and de�ne the transform TwVw(w) as before by

TwV̂w (w) :=Ww(w) = V̂w (w)�
Z 


� (:; w)0 ; d���lw(:; �)
�
C�1� V̂w(�

?
�
�lw(:; �)

0):

Finally, to convertWw(w) to a process which is asymptotically distribution free we apply a modi�ed version

of the �nal transformation proposed by Khmaladze (1988, p. 1512) to the process W (v): In particular,

using the notation Ww(�(:; w)) = Ww(w) to emphasize the dependence of W on �, it follows from the

previous discussion that

Bw(w) =Ww

�
�(:; w)(hw(:))

�1=2
�

where Bw(w) is a Gaussian process on [0; 1]
k with covariance function

R 1
0 � � �

R 1
0 �(u;w)�(u;w

0)du:

The empirical version of Ww(w), denoted by Ŵw;n(w) = T̂wV̂w;n(w), is obtained as before from

Ŵw;n(w) = n�1=2
nX
t=1

"
mw(wt; Dt; �̂jw)� � (wt; w)

@p(zt; �̂)

@�0
Ĉ�1wt1n

�1
nX
s=1

1 fws1 > wt1g �l(zs; �̂)0
�
Ds � p(zs; �̂)

�#

where Ĉws1 = n�1
Pn

t=1 1 fwt1 > ws1g �l(zt; �̂)0h
�
zt; �̂

�
�l(zt; �̂):
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C Model De�nitions

� Models (a) to (f) �t an ordered Probit model to the change in the discretized intended federal funds
rate (dD¤ t).

�Baseline speci�cation (a) uses the covariates included in Romer and Romer�s (2004) equation

(1), with two modi�cations: We use the change in the lagged intended federal funds rate instead

of the lagged level of the intended federal funds rate; we use the innovation in the unemployment

rate, de�ned as the Greenbook forecast for the unemployment rate in the current quarter minus

the unemployment rate in the previous month, instead of the unemployment level used by the

Romers. These modi�cations are meant to eliminate possibly nonstationary regressors. The

complete conditioning list includes: the lagged change in the intended federal funds rate, plus

the covariates graymt, gray0t, gray1t, gray2t, igrymt, igry0t, igry1t, igry2t, gradmt, grad0t,

grad1t, grad2t, igrdmt, igrd0t, igrd1t, igrd2t, and our constructed unemployment innovation.

For variable names, see the variable names appendix.

� Speci�cation (b) modi�es our baseline speci�cation by eliminating variables with very low sig-

ni�cance levels in the multinomial Probit model for the intended rate change. Speci�cally, we

dropped variables with low signi�cance subject to the restriction that if a �rst-di¤erenced vari-

able from the Romers�list is retained, then the undi¤erenced version should appear as well. The

retained variable list includes the lagged intended rate change, gray0t, gray1t, gray2t, igry0t,

igry1t, igry2t, grad2t, and our constructed unemployment innovation.

� Speci�cation (c) adds a quadratic term in the lagged intended federal funds rate change to the

restricted model (b).

� Speci�cations (d)-(f) are versions of (a)-(c) which use a discretized variable for the lagged change

in the intended federal funds rate.

� Models (g) to (h) use a Taylor speci�cation in an ordered probit model for the the change in the
discretized intended federal funds rate (dD¤ t).

� Speci�cation (g) uses two lags of d¤ t; 9 lags of the growth rate of real GDP as well as 9 lags of

the monthly in�ation rate as covariates.

� Speci�cation (h) replaces d¤ t�2 with (d¤t�1)
2 in speci�cation (g).

� Speci�cations (i) and (j) are versions of (g) and (h) where covariates based on d¤ t are replaced

by covariates based on dD¤ t:
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D Variable Names

d¤ t Change in the intended federal funds rate

D¤ t Discretized intended federal funds rate

dD¤ t Change in the discretized intended federal funds rate

innovationt Unemployment innovation

dD¤U t a dummy indicating increases in the intended federal funds rate

dD¤D t a dummy indicating decreases in the intended federal funds rate

gdpt�k kth lag of GDP growth

inft�k kth lag of in�ation

From Romer and Romer (2004)

graymt Greenbook forecast of the percentage change in real GDP/GNP (at an annual rate) for the

previous quarter.

gray0t Same as above, for current quarter.

gray1t Same as above, for one quarter ahead.

gray2t Same as above, for two quarters ahead.

igrymt The innovation in the Greenbook forecast for the percentage change in GDP/GNP (at an

annual rate) for the previous quarter from the meeting before. The horizon of the forecast

for the meeting before is adjusted so that the forecasts for the two meetings always refer to

the same quarter.

igry0t Same as above, for current quarter.

igry1t Same as above, for one quarter ahead.

igry2t Same as above, for two quarters ahead.

gradmt Greenbook forecast of the percentage change in the GDP/GNP de�ator (at an annual rate)

for the previous quarter.

grad0t Same as above, for current quarter.

grad1t Same as above, for one quarter ahead.

grad2t Same as above, for two quarters ahead.
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igrdmt The innovation in the Greenbook forecast for the percentage change in the GDP/GNP

de�ator (at an annual rate) for the previous quarter from the meeting before. The horizon

of the forecast for the meeting before is adjusted so that the forecasts for the two meetings

always refer to the same quarter.

igrd0t Same as above, for current quarter.

igrd1t Same as above, for one quarter ahead.

igrd2t Same as above, for two quarters ahead.
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Horizon
Quarter Lead 1 1.08 0.99 1.50 1.64 2.34 **

2 0.25 0.17 0.73 0.60 1.45
3 -0.40 -0.48 0.04 -0.37 0.36
4 -1.30 -1.55 -0.40 -1.40 -0.15
5 -0.93 -1.16 -0.23 -1.32 -0.32
6 -1.42 -1.69 * -0.89 -2.06 ** -1.27
7 -2.21 ** -2.45 ** -1.66 * -2.69 *** -1.97 **
8 -3.67 *** -3.84 *** -3.19 *** -4.16 *** -3.45 ***
9 -3.92 *** -4.01 *** -3.36 *** -4.72 *** -3.97 ***

10 -3.86 *** -3.98 *** -3.41 *** -4.82 *** -4.20 ***
11 -4.03 *** -4.12 *** -3.66 *** -4.82 *** -4.34 ***
12 -4.02 *** -4.03 *** -3.90 *** -4.93 *** -4.70 ***

Half Year Lead 1 0.25 0.17 0.73 0.60 1.45
2 -1.30 -1.55 -0.40 -1.40 -0.15
3 -1.42 -1.69 * -0.89 -2.06 ** -1.27
4 -3.67 *** -3.84 *** -3.19 *** -4.16 *** -3.45 ***
5 -3.86 *** -3.98 *** -3.41 *** -4.82 *** -4.20 ***
6 -4.02 *** -4.03 *** -3.90 *** -4.93 *** -4.70 ***

Year Lead 1 -1.30 -1.55 -0.40 -1.40 -0.15
2 -3.67 *** -3.84 *** -3.19 *** -4.16 *** -3.45 ***
3 -4.02 *** -4.03 *** -3.90 *** -4.93 *** -4.70 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports results for parametric Sims-causality tests for the response of the change in the log of the non-
seasonally-adjusted index of industrial production to monetary policy shocks. Columns report results using  alternative models 
for the policy propensity score. Model details are summarized in the model definitions appendix.

Table 1a: Parametric Sims-causality Tests for models using dfft-1

Model
 (a)  (b)  (c)  (g)  (h)
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Horizon (i)

Quarter Lead 1 1.18 1.04 0.98 * 1.88 1.92 *

2 0.94 0.96 0.92 1.41 1.50

3 -0.37 -0.30 -0.40 0.05 0.14

4 -0.94 -0.92 -0.99 -0.49 -0.42

5 -0.49 -0.52 -0.60 -0.34 -0.27

6 -0.62 -0.63 -0.71 -0.85 -0.72

7 -1.59 -1.55 * -1.65 * -1.65 * -1.49

8 -2.78 *** -2.70 *** -2.78 *** -2.75 *** -2.55 **

9 -3.02 *** -2.97 *** -3.05 *** -3.29 *** -3.05 ***

10 -2.83 *** -2.81 *** -2.83 *** -3.32 *** -3.02 ***

11 -3.28 *** -3.23 *** -3.25 *** -3.53 *** -3.27 ***

12 -3.37 *** -3.26 *** -3.27 *** -3.62 *** -3.45 ***

Half Year Lead 1 0.94 0.96 0.92 1.41 1.50

2 -0.94 -0.92 -0.99 -0.49 -0.42

3 -0.62 -0.63 -0.71 -0.85 -0.72

4 -2.78 *** -2.70 *** -2.78 *** -2.75 *** -2.55 **

5 -2.83 *** -2.81 *** -2.83 *** -3.32 *** -3.02 ***

6 -3.37 *** -3.26 *** -3.27 *** -3.62 *** -3.45 ***

Year Lead 1 -0.94 -0.92 -0.99 -0.49 -0.42

2 -2.78 *** -2.70 *** -2.78 *** -2.75 *** -2.55 **

3 -3.37 *** -3.26 *** -3.27 *** -3.62 *** -3.45 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports results for parametric Sims-causality tests for the response of the change in the log of the non-seasonally-
adjusted index of industrial production to monetary policy shocks. Columns report results using  alternative models for the 
policy propensity score. Model details are summarized in the model definitions appendix.

Table 1b: Parametric Sims-causality Tests for models using dDfft-1

 (d)  (e)  (f)  (j)
Model
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Variable ASY BSK BS ASY BSK BS ASY BSK BS ASY BSK BS ASY BSK BS
dfft-1 5.62 *** 8.09 *** * 2.43 ** 14.32 *** *** * 4.61 ***
graymt 0.85 1.08 0.42 0.48 0.47
gray0t 1.88 * 0.25 0.63 1.08 1.98 * *
gray1t 0.96 1.49 0.23 0.68 0.66
gray2t 1.49 1.63 0.38 0.35 0.22
igrymt 0.86 0.30 0.57 0.88 0.47
igry0t 0.71 0.30 0.47 7.09 *** *** ** 7.05 *** *** ***
igry1t 1.27 0.48 0.61 1.61 * 1.23 **
igry2t 2.55 ** 0.57 0.59 3.08 ** ** 3.87 *** *** **
gradmt 0.74 1.83 * 1.78 * 4.78 *** 2.96 **
grad0t 1.35 0.95 0.78 3.16 ** 2.31 **
grad1t 1.42 2.56 ** 2.70 ** * 3.67 *** 3.26 ***
grad2t 0.59 0.81 1.42 2.47 ** 1.83 *
igrdmt 0.86 0.30 0.57 0.88 0.47
igrd0t 0.23 0.31 0.27 0.20 0.26
igrd1t 1.03 1.77 * 0.78 2.76 ** 1.47
igrd2t 2.97 ** * 0.99 1.23 1.84 * * 1.53
innovationt 1.19 2.44 ** ** 0.20 2.01 * 0.97
gdpt-1 1.15 1.09 0.85 0.45 0.32
gdpt-2 0.67 1.17 0.86 0.27 1.09
gdpt-3 0.40 0.78 0.45 1.12 0.24
gdpt-4 0.49 0.48 1.98 * 0.48 0.39
gdpt-5 2.74 ** * 1.52 0.84 0.87 0.54
gdpt-6 1.15 0.65 1.50 0.61 1.40
gdpt-7 0.42 0.33 1.05 0.43 0.16
gdpt-8 0.41 0.34 0.17 0.48 0.66
gdpt-9 1.44 0.74 0.76 0.40 0.36
Inft-1 1.24 0.64 0.59 0.45 0.31
Inft-2 0.20 0.35 0.19 0.31 0.26
Inft-3 0.18 0.59 1.03 0.69 0.95
Inft-4 2.54 ** 1.26 2.10 * * 0.43 0.56
Inft-5 0.80 0.67 0.72 1.11 0.57
Inft-6 1.32 0.40 0.53 0.86 0.16
Inft-7 0.24 0.63 0.22 0.37 0.10
Inft-8 1.87 * * 0.58 0.85 1.08 0.29
Inft-9 0.51 0.41 0.35 0.45 0.11

* significant at 10%; ** significant at 5%; *** significant at 1%

Sig. level

Table 2a: Specification Tests for models using dfft-1

Model
 (a)  (b)  (c)  (g)  (h)

Notes: The table reports results for the semiparametric causality tests based on the moment condition (8) with !(zt,i,v2) equal to 1{zt,i ! v2}. Each line uses the specified variable as 
zt,i. Variables are defined in the variable names appendix.  Columns report results using  alternative models for the policy propensity score. Model details are summarized in the 
model definitions appendix.  Critical values use an asymptotic approximation (ASY), a bootstrap of the transformed test statustic (BSK), and a bootstrap of the untransformed 
statistic (BS).  See text for details.

TEST Sig. level TEST Sig. levelTEST Sig. level TEST Sig. level TEST
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Horizon ASY BSK BS ASY BSK BS ASY BSK BS ASY BSK BS ASY BSK BS
dDfft-1 8.13 *** ** 14.49 *** 10.39 *** *** 2.22 ** 5.34 *** **
graymt 1.18 0.36 1.70 * 0.18 0.20
gray0t 2.94 ** ** 2.08 * 2.36 ** 1.84 * 2.07 *
gray1t 1.82 * 1.10 0.54 0.56 0.58
gray2t 2.88 ** 1.03 0.37 0.48 0.50
igrymt 2.03 * 1.23 0.65 0.98 0.97
igry0t 0.98 0.45 0.48 7.27 *** ** * 7.10 *** *** *
igry1t 1.87 * 1.35 2.84 ** 2.24 ** ** * 2.30 ** ** *
igry2t 1.73 * 1.37 0.71 3.66 *** *** * 3.75 *** *** *
gradmt 0.98 2.90 ** 3.04 ** 3.48 *** 3.71 ***
grad0t 1.11 0.87 1.59 2.39 ** 2.72 **
grad1t 1.07 2.72 ** 2.13 ** 3.45 *** 3.92 ***
grad2t 0.52 1.36 1.42 2.16 ** 2.64 **
igrdmt 2.03 * 1.23 0.65 0.98 0.97
igrd0t 0.58 0.70 1.08 0.30 0.28
igrd1t 0.79 0.54 0.36 1.90 * 1.83 *
igrd2t 5.74 *** ** 2.09 * 3.03 ** * 1.95 * * 1.90 * *
innovationt 3.57 *** 1.14 0.71 0.79 0.72
gdpt-1 1.41 0.85 1.30 0.34 0.28
gdpt-2 0.73 1.23 1.49 0.26 0.28
gdpt-3 1.14 0.86 1.87 * 0.46 0.55
gdpt-4 0.59 0.51 2.07 * 0.43 0.38
gdpt-5 3.69 *** * 1.86 * 1.37 0.64 0.49
gdpt-6 0.58 0.73 0.33 0.41 0.45
gdpt-7 0.40 1.12 0.57 0.22 0.20
gdpt-8 0.82 0.72 0.79 0.70 0.80
gdpt-9 2.67 ** 0.98 1.57 0.44 0.40
Inft-1 2.50 ** 1.38 1.17 0.39 0.48
Inft-2 0.43 0.23 0.39 0.51 0.54
Inft-3 0.41 0.42 0.28 0.97 1.04
Inft-4 2.89 ** 2.18 ** * 1.65 0.33 0.40
Inft-5 1.99 * 1.09 2.15 ** 1.35 1.15
Inft-6 1.73 * 0.72 1.03 0.87 0.70
Inft-7 0.28 0.40 0.68 0.18 0.12
Inft-8 3.64 *** * 0.96 1.27 0.74 0.61
Inft-9 0.42 0.35 0.21 0.25 0.26

* significant at 10%; ** significant at 5%; *** significant at 1%

Sig. level TESTSig. level TEST Sig. level TEST Sig. level TEST Sig. level

Notes: The table reports results for the semiparametric causality tests based on the moment condition (8) with !(zt,i,v2) equal to 1{zt,i ! v2}. Each line uses the 
specified variable as zt,i. Variables are defined in the variable names appendix.   Columns report results using  alternative models for the policy propensity 
score. Model details are summarized in the model definitions appendix.  Critical values use an asymptotic approximation (ASY), a bootstrap of the transformed 
test statustic (BSK), and a bootstrap of the untransformed statistic (BS).  See text for details.

Table 2b: Specification Tests for models using dDfft-1

Model
 (d)  (e)  (f)  (i)  (j)

TEST
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