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We are witnessing a growing awareness among applied researchers about the possi-

bility of having weak identification and its consequences such as large biases, incorrect

coverage of confidence sets, and the wrong size of tests.

Weak identification literature began more than a decade ago by documenting

cases of weak instruments in important economic applications and by creating tests

for weak identification. Two step procedures, or so-called pre-testing procedures,

were popular for some extended period of time. In such a procedure one initially

tests for weak instruments and then chooses a testing procedure, or a confidence set

depending on the result of the pre-test; in particular, the 2SLS results are usually

used if the pretest indicates strong instruments. However, pre-testing procedures are

not always reliable in controlling size, and are considered an inferior solution to weak

identification problem (see for example, Andrews and Stock (2005)). A qualitative

change in the current literature is an attempt to create and use weak identification

robust procedures as opposed to pre-testing procedures. The paper by Kleibergen

and Mavroeidis is a big step forward in this direction.

In this comment I first discuss the theoretical advantage provided by a series of

papers by Kleibergen and Mavroeidis that I really like. Then I move on to the applica-

bility of the suggested methodology to the Phillips curve, which, to my understanding,

still poses some questions.

1 Procedures robust to weak instruments

The ideal weak identification robust procedure would possess two properties: 1) it

should control for size no matter how strong or weak identification is; 2) it should not

lose efficiency when compared to standard procedures if the identification is strong.

Such a procedure may not exist if robustness incurs costs in terms of a power loss.

Until now only one case (linear IV regression with a single endogenous regressor)

seemed to be fully solved, and for this case the robustness to weak identification is
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achieved without loss of power in a strong instrument asymptotic. In this case we have

several testing procedures (examples are Anderson and Rubin’s (1949) test, the LM

test of Kleibergen (2002) and the Conditional LR test by Moreira (2003)) satisfying

the two conditions stated above. Andrews, Moreira and Stock (2007) studied the

optimality properties of such tests under an assumption of homoskedasticity. There

is also software (condivreg procedure in STATA) that allows for production of robust

tests and confidence sets in no time and is easy to use (Mikusheva and Poi (2006)).

The paper we are discussing today is a big step forward in creating robust pro-

cedures in a more general situation. The authors consider a GMM setting, which

includes linear IV as a special case, and allow for a multidimensional parameter space

(in the IV case it corresponds to more than one endogenous regressor).

While there were several known tests that control for size under weak instruments,

such as a GMM analog of the Anderson-Rubin test (Stock and Wright(2000)) and

Kleibergen’s KLM, JKLM, and MQLR, they produce conservative confidence sets

if they are applied to a subset of parameters and if instruments are strong. That

is, there existed a trade-off between robustness to weak identification and efficiency

under strong identification. Such a trade-off creates incentives to use pre-testing. The

paper by Kleibergen and Mavroeidis solves this problem by correcting critical values

for subset testing. The procedures suggested by the authors would asymptotically

be the same as the usual GMM procedures if identification is strong, but would

have correct coverage if in some dimensions identification fails. The main message of

the discussed paper is that one should not use pre-testing, but rather a fully robust

procedure.

2 Application to Phillips curve

Before discussing the Phillips curve application I want to draw special attention to

the question of what robustness to weak identification means. The problem of weak

identification can be explained as a problem of non-uniform or discontinuous asymp-

totics.
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In the discussion below I would distinguish between a parameter of interest, θ,

and a nuisance (potentially infinitely dimensional) parameter, F. In the example of

the Phillips curve the parameter of interest consists of coefficients (γb, γf , λ), while

the nuisance parameter includes everything else that can affect the finite sample

distribution of the data, for example, it contains the parameters of a data- generating

process for xt and the distribution of error terms.

A GMM model parameter of interest is identified if the nuisance parameter is such

that there exists a unique value of the parameter of interest that solves the theoretical

moment condition. According to classic GMM asymptotic theory, if a parameter of

interest is identified then, as the sample size increases, the GMM estimate for θ

converges to a normal distribution, or, in other words, the usual GMM t-statistic

based inferences are point-wise asymptotically correct. The statement does not hold

if the parameter is not identified. We can conclude that the asymptotic theory is

discontinuous at the point of non-identification. It means that the closer the nuisance

parameter to the value for which the parameter of interest is not identified, the larger

the sample required for the asymptotics to provide an accurate approximation. Put

differently, the usual GMM inferences are not uniformly asymptotically correct. Or,

in other words, if the parameter is very close to a non-identification point, the normal

distribution provides a very poor description of the finite sample distribution of GMM

t-statistics.

Kleibergen and Mavroeidis make the inferences robust to weak instruments by

suggesting a procedure that is point-wise asymptotically correct and in which asymp-

totics is uniform along this one specific direction, closeness to a non-identification

point. The authors do not attempt to make inferences uniformly asymptotically cor-

rect over the whole space of possible values of F. The main reason is that asymptotic

uniformity often bears some costs in terms of power.

The main assumption (Assumption 1) states that the nuisance parameter is such

that the convergence below holds:

ψT (θ) =
1√
T

T∑
t=1


 f t(θ)

qt(θ)


 →d


 ψf (θ)

ψθ(θ)



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It differs from the standard GMM assumptions by substituting an identification as-

sumption with an assumption that the sum of the derivative qt is an asymptotically

Gaussian process. The authors claim that Assumption 1 is very general. Assumption

1 is a point-wise asymptotic assumption, while the inferences about θ using a realiza-

tion of (ψf (θ), ψθ(θ)) are done uniformly with respect to the rank of the covariance

matrix.

Whenever we want to apply the suggested procedures we have to ask ourselves

whether Assumption 1 seems reasonable in the setting discussed. In the Phillips curve

application I can see at least two complications: the persistence of variables and the

many instruments problem.

Assumption 1 suggests that the sums of moment conditions and their first deriva-

tives should be approximately normal. The inflation πt (lags of which are used as

instruments) is a highly persistent time series; the unit root hypothesis for it usu-

ally cannot be rejected. One can observed the normalized sum 1√
T

∑T
t=1 f t(θ0) =

1√
T

∑T
t=1 Ztet has 1√

T

∑T
t=1 πt−1et as one of the components. The normality of this sum

for a highly persistent series could be problematic. For example, consider a case when

λ = 0, γb+γf = 1, then πt is a unit root process and 1
T

∑T
t=1 πt−1et →d ω

∫ 1

0
w(t)dw(t).

Notice two things: a non-standard normalization should be used to get a limiting dis-

tribution, and the limit is not normal. A similar problem arises when the process does

not have a unit root but is modeled as local to unit root (see for example Bobkoski

(1983) and Phillips (1987)). We can also argue that the partial sums of qt may

also be non-normal for non-stationary components. In general, a use of persistent

instruments may lead to Assumption 1’s failure to hold.

One of the solutions suggested in the paper is to use only stationary series as

instruments, for example, lags of differenced inflation ∆π rather than lags of inflation

itself. This is, however, only a partial solution. If all instruments are stationary

then it seems plausible that the sum 1√
T

∑T
t=1 f t(θ0) is approximately normally dis-

tributed. This suggests that an S-statistic for the whole parameter vector θ will be

approximately χ-square distributed and can produce a test with a good size prop-

erty. However, since γb and γf are coefficients on inflation, the first derivative of the
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moment condition, qt, involves persistent summands such as a lag of inflation. And

we are back to the problem discussed in the previous paragraph, namely, that the

validity of Assumption 1 can be questioned. This makes the critical value correction

suggested by Kleibergen and Mavroeidis unapplicable to the Phillips curve. While

Kleibergen and Mavroeidis’s procedure is robust to weak identification, the assump-

tion it is based on is non-uniform to the persistence of regressors and instruments.

This may lead to unreliable inferences.

The second concern I have is that requiring normality of sums of qt in addition

to the sums of f t increases the dimensionality of the applied Central Limit Theorem

and makes the many instrument problem more severe. In the Phillips curve case

the authors consider 6 instruments, which is a moderate number for a sample size

of slightly less than 200. While the dimensionality of f t is 6, the dimensionality of

qt is 18, which makes the total dimensionality of Assumption 1 equal to 24. It is

very hard to believe that a 24-dimensional Central Limit Theorem would provide a

good approximation when one has only 200 time periods, even though in a case of

stationarity one can easily believe in the 6-dimensional Central Limit Theorem for f t

only.

To summarize, Assumption 1 may be somewhat restrictive and questionable in the

Phillips curve application. It is partially due to the time series nature of the problem

and not very large sample sizes. An asymptotic efficiency oriented Kleibergen and

Mavroeidis procedure seems to be more applicable to large cross-section data sets.
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