
Cooperation in Large Societies∗

Alexander Wolitzky

MIT

July 28, 2022

Abstract

I survey models of cooperation in large populations. Topics include repeated

games with public monitoring, random matching games, games on networks, infinite-

population games, and models of legal or coercive enforcement. I emphasize how the

scope of cooperation depends on the structure of social interactions, the information

available to agents, and the feasibility of different types of rewards and punishments.

1 Introduction

Economists and other social scientists have long recognized that trust, cooperation, and

reciprocity are critical determinants of societal outcomes. But what determines society’s

prospects for supporting cooperative behavior? Following seminal contributions by scholars

such as Olson (1965), Williamson (1985), Ostrom (1990), North (1990), and Greif (1993),

this question has been studied from a variety of perspectives, including (and often combining)

game theory, historical and anthropological research, empirical economic analysis, and lab

and field experiments. The current paper surveys the game theory literature in this area,

focusing on repeated games and related models of long-run interaction.

∗For helpful comments, I thank Daron Acemoglu, Anne Carlstein, Dan Clark, Drew Fudenberg, Bob
Gibbons, Matt Jackson, George Mailath, Eric Maskin, Stephen Morris, Eitan Sapiro-Gheiler, and Takuo
Sugaya.
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I begin in Section 2 by discussing three empirical cases where societal cooperation is

supported by long-run incentives: the provision of schools and wells in rural western Kenya

(Miguel and Gugerty, 2005), informal lending and borrowing in Peruvian shantytowns (Kar-

lan et al., 2009), and large-scale decentralized exchange on eBay (Resnick and Zeckhauser,

2002; Tadelis, 2016). These cases illustrate some real-world situations that repeated game

models can shed light on– although the models I will focus on are not specifically tailored

to these settings. They also highlight the wide range of conceptual issues that our models

seek to understand, such as the structure of social interactions, the role of information, and

the potential sanctions that are available to the community.

The bulk of this paper surveys the repeated game literature on cooperation in large soci-

eties. Traditional repeated game models are typically motivated by situations with a small

number of relatively sophisticated players and “centralized” interactions and information,

such as collusion in Cournot oligopoly (Green and Porter, 1984) or relational contracting

(Bull, 1987; MacLeod and Malcomson, 1989; Levin, 2003). As we will see, the usual as-

sumptions and results in this literature must be substantially modified to account for settings

with a large number of diverse participants and “decentralized” interactions and informa-

tion, like those discussed in Section 2. Nonetheless, it is useful to start by briefly reviewing

the standard repeated game model, as well as some recent results for the large-population

case– where, for example, players may have long time-horizons or high discount factors, but

the discount factor may not be high “in comparison to the population size.”As I show in

Section 3, results in this case are quite different from standard folk theorems.

Section 4 covers the simplest and most canonical model of “decentralized” repeated

games: games with uniform random matching. I offer a somewhat revisionist account of

these games. Classic results in this area suggest that communities can sometimes rely on

the threat of collective sanctions to sustain cooperation despite very limited monitoring. In

contrast, I will argue that in a slightly richer and more realistic model that allows for a small

amount of incomplete information, community enforcement instead requires personalized

sanctions that rely on extensive information and communication.

Interactions in large groups are typically not only decentralized, but also non-random.

Models with interaction structures other than uniform random matching are surveyed in
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Section 5, under the heading of “repeated games on networks.”Some of these models literally

assume a fixed network structure of interactions or information flows, while others allow more

flexible forms of non-random matching (the latter case is, however, relatively understudied).

Here it is interesting to consider how standard results from fixed-partner repeated games

or random matching games change when network structure is introduced. In addition, one

can also ask new, network-specific questions, such as how network position determines which

players take more cooperative actions.

In settings like E-commerce or modern credit and insurance markets, the population

size is effectively infinite. There are essentially two ways to support cooperation in infinite

populations: individual pairs or finite subsets of players can interact repeatedly (as in, e.g.,

long-term employment relationships), or players can have access to some centralized source

of information about their current partner (as in, e.g., online ratings systems). I consider

such models in Section 6. A theme here is that the scope for cooperation often depends on

the type of information that players have access to– for example, information about one’s

partner’s past actions only, as opposed to richer information about the context of these

actions, or about the partner’s “social standing.”

Finally, Section 7 discusses a few models that go beyond the standard repeated game

framework by introducing some kind of “institution” that can help support cooperation,

either by providing some new type of information or by introducing new sanctioning in-

struments. These models aim to interpolate between repeated game models of informal

enforcement and more traditional economic models, which implicitly assume that agree-

ments are enforced by a powerful legal system. While it is still in its infancy, this approach

may someday yield a more unified view of enforcement across different institutional settings.

The questions of how large societies support cooperation– and how researchers can pro-

ductively model this behavior– are inherently interdisciplinary. This survey focuses on work

by economists, but there are also related strands of research in other fields. The most

active of these is probably the literature on “indirect reciprocity” in evolutionary biology

(Alexander, 1987; Nowak and Sigmund, 1998; see Sigmund, 2010, for a survey). The models

considered in this literature are essentially repeated games; however, this literature tends

to focus on comparing the performance of a few pre-specified strategies (Always Cooperate,
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Always Defect, Tit-for-Tat, etc.) and the resulting evolutionary dynamics, rather than an-

alyzing the set of equilibria when players can choose any strategy. Evolutionary dynamics

in this type of model have also been studied by physicists (Szabó and Fáth, 2007). Models

of large-group cooperation also play a role in sociology (Granovetter, 1985; Coleman, 1990),

political science (Axelrod, 1984; Keohane, 1984; Fearon and Laitin, 1996), anthropology

(Boyd and Richerson, 1992; Henrich, 2004), law (Ellickson, 1991), and computer science

(Friedman and Resnick, 2001).

2 Case Studies

I begin by reviewing some real-world examples of informal (repeated game) enforcement

of public goods provision and bilateral exchange in large groups. These cases serve to (i)

illustrate some applications we can bear in mind when considering the subsequent models,

(ii) show how repeated game-type modeling can help guide empirical work in this area, and

(iii) raise several theoretical issues that have not yet received much formal attention.

2.1 Public Goods in Rural Kenya

Why do some groups provide high levels of public goods, while others do not? A important

empirical finding is that ethnically diverse groups generally provide fewer public goods (East-

erly and Levine, 1997; Alesina, Baqir, and Easterly, 1999). This association is intriguing–

Banerjee, Iyer, and Somanathan (2005) call it “one of the most powerful hypotheses in

political economy”– but the underlying mechanism is controversial. Early explanations fo-

cused on commonalities of preferences or altruism among co-ethnics (Alesina and LaFerrara,

2000; Lutmer, 2001; Vigdor, 2004). However, some subsequent evidence favors an alternative

interpretation based on repeated-game effects: it may be easier to apply sanctions for failing

to contribute to public goods within ethnic groups rather than across groups, which leads to

higher equilibrium contributions within groups.

Miguel and Gugerty (2005) argue for the importance of this social sanctioning mechanism

in the context of public goods provision in rural Western Kenya. They find that ethnic

diversity predicts not only lower primary school funding, worse school facilities, and worse
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maintenance of water wells, but also fewer social sanctions and less verbal pressure directed

at non-contributors, as recorded in the minutes of school committee meetings. For example,

school committees in more ethnically diverse areas were less likely to exhort parents who

were behind on their school fees to pay promptly, or to recommend that the village chief

visit these parents to encourage payment. The authors’explanation for these findings is that

“social sanctions and coordination are possible within groups due to the dense networks of

information and mutual reciprocity that exist in groups but are not possible across groups.”1

However, their formal model simply assumes that sanctions are possible within groups but not

across groups, rather than deriving this property as an implication of differences in network

structure, information, or the existence of cooperative equilibria in a larger dynamic game.

As we will see, explicitly modeling these features not only provides a foundation for the

authors’assumption, but also leads to new, more detailed predictions, for example about

how an individual’s contributions may vary with her position in the social network.

Further evidence that causality runs from ethnic diversity to (lack of) social sanctions,

and thence to (lack of) public goods comes from lab experiments run in Kampala, Uganda by

Habyarimana et al. (2007). These authors find that subjects in a dictator game are equally

generous toward co-ethnics and other participants when the recipient cannot observe the

offerer’s identity, but are substantially more generous toward co-ethnics when the offerer’s

identity is observable. The interpretation of the difference between the two treatments is that

the non-anonymous treatment proxies for real-world situations where future punishment is

possible (following Hoffman, McCabe, and Smith, 1996), so the results indicate that greater

generosity toward co-ethnics is due to fear of punishment. Consistent with this interpretation,

the authors obtain similar results in a prisoner’s dilemma experiment where the possibility

of punishment by a third-party is explicitly introduced. In contrast, little support is found

for mechanisms based on common preferences or altruism within groups.2

1Besley, Coate, and Loury (1993) previously emphasized the importance of social sanctions in supporting
collective action in their study of rotating savings and credit associations (Roscas).

2Additional experimental evidence consistent with Habyarimana et al.’s results come from Glaeser et
al. (2000), who find that Harvard undergraduates with more mutual friends exhibit more trusting and
trustworthy behavior; and from Leider et al. (2009) and Ligon and Schechter (2012), who use anonymous
and non-anonymous variants of dictator games to distinguish between altruistic and repeated game motives
for giving in different contexts.
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2.2 Lending and Borrowing in Peru

Repeated game effects also play a role in informal contract enforcement, as in the large

literature on risk-sharing without commitment (e.g., Coate and Ravallion, 1993; Udry, 1994;

Foster and Rosenzwieg, 2001; Ligon, Thomas, and Worrall, 2002; Fafchamps and Lund,

2003). An example of such an analysis, which combines theory and empirics, is Karlan et al.’s

(2009) study of “socially collateralized”lending and borrowing.3 I will review Karlan et al.’s

model in Section 5, but the key implication is that the maximum amount that individual i can

credibly promise to repay to individual j– and hence the maximum amount that j is willing

to lend to i– equals the “maximum flow”from i to j in a weighted social network, where the

weight on the link between two individuals is the (exogenously given) value of maintaining

their bilateral relationship beyond the current interaction. The interpretation is that players

along a path from i to j can “vouch”that i will repay j, and that these relationships are lost

if i fails to repay. The model is thus a reduced-form repeated game, where it is assumed that

any deviation in a relationship causes the relationship to be permanently destroyed. This

model makes strong predictions about the scope of lending and borrowing between any two

agents. For example, since a path from i to j affects the maximum flow between these agents

only through the weakest link in the path (i.e., the least valuable bilateral relationship), the

model implies that the predictive value of adding a new path between i and j for lending

and borrowing between them likewise depends only on the weakest link.

The authors test the model using survey data they collected from two shantytown com-

munities with several hundred residents in Lima, Peru. Respondents were asked to name

up to ten individuals with whom they spend the most time in an average week, as well as

the set of friends from whom they borrowed money in the previous twelve months. The

authors use the amount of time a pair of individuals spent together to proxy for the value

of their relationship, and study how the resulting weighted social network predicts lending

and borrowing. They find evidence in favor of some subtle predictions of the theory, such

as a prediction that direct and indirect links matter roughly equally for borrowing, and a

3Other papers emphasizing the role of repeated game effects in supporting informal credit arrangements in
developing economies include Karlan (2007), Feigenberg, Field, and Pande (2013), Giné and Karlan (2014),
and de Quidt, Fetzer, and Ghatak (2016).
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prediction that the importance of a path in the social network is largely determined by its

weakest link. This is a nice example of how detailed, repeated game-type modeling can

inform empirical work on cooperation in large groups.

2.3 Reputation Systems in Online Platform Markets

Informal enforcement is not confined to local communities like Kenyan villages or Peruvian

shantytowns. In large online marketplaces like eBay or AirBnB, buyers and sellers can be

separated by thousands of miles and often interact only once. These markets also feature

a wide scope for opportunistic behavior, as when an eBay seller delivers a sub-standard

product, or an AirBnB guest trashes an apartment. Such opportunism cannot be effectively

constrained by the legal system, which involves itself in these transactions only in the most

egregious cases of misbehavior. Instead, online marketplaces use centralized ratings systems

to facilitate informal contractual enforcement: if individual i cheats individual j, j can give i

a bad rating, which is observed by i’s future potential partners and may discourage them from

trading with i. A large literature (surveyed by Cabral, 2013, and Tadelis, 2016) documents

the practical effectiveness of these ratings systems. Note that, as in the other case studies

discussed in this section, the enforcement of cooperative behavior here is “multilateral,”in

that punishments are ultimately delivered by third parties. Just as a villager who fails to

repay a loan may lose valuable relationships with individuals other than the lender, so an

eBay seller who receives a bad rating may lose business from many potential buyers.

To successfully facilitate trade, online ratings systems must contend with several chal-

lenges, which interact with standard repeated-game considerations in interesting ways. For

instance, an individual is usually free to quit a platform and then rejoin under a different

name. This availability of “cheap pseudonyms”implies that an established agent’s contin-

uation payoff can never fall below that of a new entrant. Friedman and Resnick (2001)

show that, if there is a positive chance of random “mistakes” in the players’interactions,

this constraint imposes an upper bound on payoffs in the prisoner’s dilemma with random

matching, which applies for any discount factor. Payoffs close to this bound can be attained

with simple “dues paying”strategies, where new entrants trade with established agents on

unfavorable terms (e.g., new entrants always cooperate in the prisoner’s dilemma, while es-
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tablished agents who match with new entrants sometimes defect), which discourages entrants

from cheating and then re-entering under a pseudonym.

Another important challenge for ratings systems is eliciting honest feedback. When a

given pair of agents interact only once, why do they rate each other accurately, or even

bother leaving a rating at all? A particular diffi culty is that, if agents on both sides of the

market rate each other, an agent who has been cheated may hesitate to give her partner a

bad rating, for fear that the partner will retaliate by rating her badly in return. Bolton,

Greiner, and Ockenfels (2013) find strong evidence of retaliatory behavior by sellers in eBay

transactions in 2006 and 2007: ratings were highly correlated between the two parties to

a transaction, and sellers disproportionately rated buyers shortly after buyers rated them,

especially in instances where both parties left negative feedback. In 2008, eBay switched

to a one-sided reputation system where only sellers are rated, likely in response to concerns

about retaliatory rating (Tadelis, 2016).

3 Repeated Games with Many Players

Repeated game models are economists’main tool for understanding long-run cooperative

relationships of the kind discussed in the previous section. Repeated games have been well-

studied for many decades, and in principle can allow any number of players, N . However,

some important assumptions and results that seem natural when N is small become unreal-

istic when N is large. For example:

1. Much research on repeated games concerns the limit case where players are very pa-

tient: that is, where the discount factor δ converges to 1. If we want to model coop-

eration among a large number of patient players, it is more natural to vary N and δ

simultaneously, so that δ → 1 but (1− δ)N may or may not converge to 0.

2. Classical repeated games often assume that players condition their behavior only on

publicly available information. But information in large societies is typically decentral-

ized. For example, each player may accurately observe her current trading partner’s

behavior, while knowing little about other agents’behavior.
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3. Classical repeated games usually assume that all players are rational and play equilib-

rium strategies. But in large societies the possibility that at least a few players may

be irrational cannot be ignored.

While I will eventually consider models that relax all of these assumptions, it is useful to

start by quickly reviewing the classical repeated game model and some standard results, with

a focus on the large-N case. This is done in Sections 3.1—3.3.4 Section 3.4 then considers

the implications of varying N and δ simultaneously in the classical model, which leads to

quite different results. Subsequent sections introduce decentralized information (i.e., private

monitoring) and irrational player-types.

3.1 The Standard Repeated Game Model

This section introduces the standard repeated game model and the accompanying notation.

Readers familiar with repeated games may wish to skim or skip it.

A (finite) stage game G = (I, A, u) consists of finite set of players I = {1, . . . , N},

together with a finite set of actions Ai and a payoff function ui : A → R for each player

i ∈ I. Here A = ×i∈IAi, and u : A → RN is given by u (a) = (ui (a))Ni=1 for each a ∈ A.5

Payoff functions extend linearly to mixed actions: given a mixed action profile α ∈ ×i∈I∆Ai,

we have u (α) =
∑

a∈A Pr (a|α)u (a). The feasible payoff set is

V = conv
{
v ∈ RN : v = u (a) for some a ∈ A

}
,

where conv denotes convex hull. Player i’s (mixed-action) minmax payoff is

vi = min
α−i∈×j∈I\{i}∆Aj

max
ai∈Ai

ui (ai, α−i) .

A payoff vector is v is individually rational if vi ≥ vi for all i. Thus, the set of feasible and

4See Mailath and Samuelson (2006) for a thorough textbook treatment of this material.
5In general, given a collection of sets (Xi)

N
i=1 with generic elements xi ∈ Xi, their product is denoted

X = ×i∈IXi with generic element x ∈ X. I also write X−i = ×j∈I\{i}Xj with generic element x−i ∈ X−i.
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individually rational payoff vectors is

V ∗ = {v ∈ V : vi ≥ vi for all i ∈ I} .

For example, in the prisoner’s dilemma (PD) stage game, given by

C D

C 1, 1 −`, 1 + g

D 1 + g,−` 0, 0

with g, ` > 0 and g < 1 + `, each player’s minmax payoff is 0, so

V ∗ = conv
{

(0, 0) ,
(
0, 1+g+`

1+`

)
,
(

1+g+`
1+`

, 0
)
, (1, 1)

}
. I will return to this stage game repeat-

edly.

In a (discounted) repeated game, the stage game is played repeatedly in periods t =

1, 2, . . ., players get some information before taking actions in each period, and players max-

imize discounted expected payoffs. Formally, a repeated game Γ = (G, δ, Y, p) consists of a

stage game G, a discount factor δ ∈ (0, 1) (assumed for simplicity to be common among

the players), and a monitoring structure (Y, p), which summarizes the players’information.

Here, Y = ×Ni=1Yi, where Yi is the set of possible signal realizations for player i, and at

the end of each period t a signal yt ∈ Y is drawn according to the probability distribution

p (·|at) ∈ ∆Y , where at ∈ A is the period-t action profile. Note that this notation implicitly

assumes that the monitoring structure remains the same in every period, and that the dis-

tribution of signals depends only on current-period actions. Special monitoring structures

include perfect monitoring, where Yi = A for all i ∈ I and p (y|a) = 1 {yi = a ∀i ∈ I} (where

1 {·} is the indicator function); and public monitoring, where Yi = Yj for all i, j ∈ I, and

p (y|a) > 0 implies yi = yj for all i, j ∈ I. The general, non-public case is called private

monitoring.6

A history hti ∈ H t
i for player i at the beginning of period t takes the form hti = (ati, y

t
i),

where ati = (ai,0, . . . , ai,t−1) and yti = (yi,0, . . . , yi,t−1), with a0
i = y0

i = ∅. Letting Hi =

6It is sometimes assumed that in every period the players can also observe the outcome of a public
randomizing device: e.g., a uniform [0, 1] random variable, independent of actions and signals. None of the
results surveyed here require this assumption, although allowing public randomization simplifies some proofs.
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⋃∞
t=1H

t
i , a (behavior) strategy σi ∈ Σi for player i is a mapping σi : Hi → ∆Ai. That

is, players can condition their play on their own past actions and observations. Player

i’s discounted expected payoff under strategy profile i (measured in per-period terms) is

Ui (σ) = (1− δ)
∑∞

t=1 δ
t−1Eσ [ui (at)], where Eσ [·] denotes expectation under the probability

distribution over histories induced by strategy profile σ.7 As usual, a Nash equilibrium is

a strategy profile σ where Ui (σ) ≥ Ui (σ
′
i, σ−i) for all i ∈ I, σ′i ∈ Σi. A subgame perfect

equilibrium of a repeated game with perfect monitoring is a strategy profile where the pre-

scribed continuation play at any history forms a Nash equilibrium. Further refinements of

Nash equilibrium, such as perfect public equilibrium and sequential equilibrium, are defined

below as needed.

3.2 The Folk Theorem with Perfect Monitoring

Perhaps the best-known result on repeated games is the “folk theorem,”which says that

if players are patient, monitoring is perfect, and V ∗ has non-empty interior (as a subset

of RN), then every payoff vector in intV ∗ is attainable in subgame perfect equilibrium.

This is a classical formalization of the idea that the “shadow of the future”can incentivize

cooperation when it weighs heavily and when behavior is well-observed.8 The folk theorem

is an important benchmark result that we will return to repeatedly under different sets

of assumptions. Of course, it may be possible to support some cooperative behavior in

equilibrium even if the full conclusion of the folk theorem fails, and we will also see some

settings where this occurs.

Theorem 1 (Perfect Monitoring Folk Theorem) Assume that intV ∗ 6= ∅. For any v ∈

intV ∗, there exists δ̄ < 1 such that, for every δ > δ̄, there is a subgame perfect equilibrium

of the repeated game with discount factor δ that gives payoff vector v.

Proving the perfect monitoring folk theorem at this level of generality is not trivial, but

a simple case that suffi ces for our purposes arises when v = u (a) for some pure action profile

7Formally, this can be defined recursively starting from t = 1.
8Early versions of the perfect-monitoring folk theorem were developed by several authors, including

Friedman (1971), Aumann and Shapley (1976), and Rubinstein (1979). The version reproduced here is due
to Fudenberg and Maskin (1986); see also Abreu, Dutta, and Smith (1994) and Proposition 3.8.1 of Mailath
and Samuelson (2006).
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a ∈ A, and v strictly Pareto-dominates a static Nash equilibrium payoff vector, vNE. In this

case (which was addressed by Friedman, 1971), the theorem is proved by considering “Nash-

reversion”strategies that prescribe action profile a so long as a has always been taken so far,

and that otherwise prescribe a static equilibrium that gives payoff vector vNE. If we denote

player i’s maximum static deviation gain at action profile a by di = maxa′i∈Ai ui (a
′
i, a−i)− v,

it is easy to see that these strategies form a subgame perfect equilibrium whenever

di ≤
δ

1− δ
(
vi − vNEi

)
for all i ∈ I.

Observe that, so long as the deviation gain is bounded from above and the desired payoff

vector v is bounded away from vNE, the discount factor δ does not need to be close to 1

for Nash reversion strategies to form an equilibrium. Moreover, the required discount factor

is independent of N . There is thus no obvious reason why it is more diffi cult to support

cooperation in larger groups under perfect monitoring.9 However, the perfect monitoring

assumption– which is already a strong assumption when N is small– seems even more ex-

treme when N is large. For example, it is hard to imagine that all actions are observed by

everyone in the community in any of the settings discussed in Section 2. For this reason,

most models of cooperation in large groups assume some form of imperfect monitoring.

3.3 The Folk Theorem with Imperfect Public Monitoring

The simplest form of imperfect monitoring is public monitoring, where all players observe

the same signal. Fudenberg, Levine, and Maskin (1994) show that the folk theorem extends

to imperfect public monitoring, if the monitoring structure satisfies appropriate statistical

conditions.10 To give one of their suffi cient conditions, let Y0 denote the set of possible

public signal realizations, and for any mixed action profile α ∈ ×i∈I∆Ai and any player
9This statement of course assumes that the players play an equilibrium, and furthermore coordinate on

the desired equilibrium. One might wonder if the problem of coordinating on a desired equilibrium– what
Bowles and Gintis (2013) call the “missing choreographer”problem– is more diffi cult in larger groups. The
literature on large-population coordination games following Kandori, Mailath, and Rob (1993) and Young
(1993) bears on this type of question in static games. I am not aware of such work in repeated games.
10Related ideas appear in Matsushima (1989), Fudenberg and Levine (1994), and Kandori and Matsushima

(1998). Mertens and Parthasarathy (1987) and Abreu, Pearce, and Stacchetti (1990) develop important
results on the structure of the equilibrium payoff set in repeated games with imperfect public monitoring.
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i, define the |Ai| × |Y0| matrix Ri (α−i) with elements [Ri (α−i)]ai,y = p (y|ai, α−i), and

define the (|Ai|+ |Aj|) × |Y0| matrix Rij (α) given by stacking the matrices Ri (α−i) and

Rj (α−j). Say that action profile α has pairwise full rank for players i and j if rankRij (α) =

|Ai| + |Aj| − 1.11 Intuitively, this condition says that any deviation from α by player i or

player j is statistically identifiable, and that moreover deviations by player i and player j

are statistically distinguishable from each other. Fudenberg, Levine, and Maskin show that,

to establish the folk theorem for payoffs that Pareto-dominate a static Nash equilibrium,

it suffi ces to assume that all Pareto-effi cient pure action profiles have pairwise full rank

for all pairs of players.12 Their result concerns perfect public equilibria, which are profiles

of strategies that depend only on the history of public signals yt, and that form a Nash

equilibrium conditional on any such history.

Theorem 2 (Imperfect Public Monitoring Folk Theorem) Assume that intV 6= ∅ and

that all Pareto-effi cient pure action profiles have pairwise full rank for all pairs of players.

For any v ∈ intV that Pareto-dominates a static Nash equilibrium, there exists δ̄ < 1 such

that, for every δ > δ̄, there is a perfect public equilibrium of the repeated game with discount

factor δ that gives payoff vector v.

This important result influenced research on problems such as collusion among oligopolists

(Athey and Bagwell, 2001) and relational contracts in organizations (Levin, 2003). Two is-

sues should be borne in mind regarding its implications for cooperation in larger groups. The

first is that, as I have already noted, monitoring in large groups is often far from public, as is

the case when interactions are decentralized and players observe only their current partners’

behavior. I discuss models of this type in Sections 4—6.

The second issue is that, even under public monitoring, Theorem 2 does not address

how the value of the discount factor δ and the “precision”of the monitoring structure (Y, p)

that are required to provide incentives vary with the population size N . In particular, note

that Theorem 2 makes no reference to the signals’statistical informativeness. Intuitively,

11Note that |Ai| + |Aj | − 1 is the maximum possible rank of the matrix Rij (α), because αiRi (α−i) =
[p (y|α)]y = αjRj (α−j).
12They also show that a minmax-threat folk theorem holds if in addition every pure action profile a has

individual full rank, which means that the matrix Ri (a−i) has full row rank for every player i.
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even if p (y|a) ≈ 1/ |Y0| for all y– so that signals are almost completely uninformative–

strong incentives can still be provided on the basis of these signals when δ is suffi ciently

large, because large changes in continuation payoffs can offset noisy signals. Of course,

the less informative are the signals, the higher δ must be.13 For example, if the number of

possible signal realizations |Y0| is held fixed as N grows, the informativeness of the signals for

distinguishing between deviations by different players necessarily decreases: while pairwise

full rank may hold for any N , as N grows large the full row rank submatrices of the matrix

Rij (α) must become close to singular for some pairs of players (i, j). A corresponding

increase in δ is then required to preserve incentives.

This discussion indicates that the scope for cooperation in large-population repeated

games with imperfect public monitoring depends on a three-way interaction among N , δ,

and “monitoring precision.”This interaction is the subject of the next subsection (where

some results will also apply under private monitoring).

3.4 Anti-Folk Theorems with Many Players

A series of papers by Green (1980), Sabourian (1990), Levine and Pesendorfer (1995), Fu-

denberg, Levine, and Pesendorfer (1998), al-Najjar and Smorodinsky (2000, 2001), and Pai,

Roth, and Ullman (2016) provide conditions under which, as the population size N →∞ for

a fixed discount factor δ, players behave approximately myopically in every repeated game

equilibrium. These negative results concerning the prospects for cooperation (“anti-folk the-

orems”) establish continuity at the infinite population limit, where players act myopically.

The key feature of these models is that, in a large population, most players’individual

actions have only a small effect on the signal distribution, and hence on other players’be-

havior. This condition is directly assumed in Green and Sabourian’s models. Subsequent

models (e.g., Fudenberg, Levine, and Pesendorfer, 1998; al-Najjar and Smorodinsky, 2000,

2001) instead derive this feature from an assumption that signals are generated through

individual noise: each player’s action ai stochastically determines an individual outcome xi

(independently across players), and the distribution of the signal profile y depends on the

action profile a only through the profile of individual-level outcomes x = (xi)
N
i=1. For exam-

13Kandori (1992a) formalizes this point.
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ple, when there are two individual outcomes for each player, and each individual outcome

occurs with probability at least ε > 0 due to noise, al-Najjar and Smorodinsky (2000) show

that the average probability that a player is pivotal for the realization of a binary signal

y ∈ {0, 1} is maximized when each player “votes”yea and nay with probability ε each (and

abstains with probability 1 − 2ε), and the signal takes value 1 iff the yea votes exceed the

nays. This scheme yields a pivot probability of order 1/
√
ε (1− ε)N , the reciprocal of the

standard deviation of the number of yea votes. Since the impact on a player’s continuation

payoff in the event that her action is pivotal is of order at most 1/ (1− δ), it follows that

non-trivial incentives cannot be provided if N →∞ while δ and the number of possible signal

realizations |Y | are held fixed, or more generally if (1− δ)
√
N →∞ while |Y | is fixed.14

Sugaya and Wolitzky (2022b) study the three-way interaction among N , δ, and |Y |

in more detail, under the same ε-individual noise assumption as in Fudenberg, Levine, and

Pesendorfer, and al-Najjar and Smorodinsky. LetK = log2 |Y |, so the signal can be viewed as

aK-dimensional binary random variable. Their main result implies that if (1− δ)N/K →∞

along any sequence of games where N , δ, and K vary simultaneously (subject to a uniform

upper bound on stage-game payoffs |ui| and a uniform lower bound on individual noise ε),

then only vanishingly weak incentives can be provided in any Nash equilibrium. To state

this result formally, for any player i and any distribution over action profiles α ∈ ∆A, denote

player i’s maximum expected deviation gain at action distribution α by

di (α) = max
ãi:Ai→Ai

∑
r

α (r) (ui (ãi (ri) , r−i)− ui (r)) .

In addition, for any number η > 0, say that a payoffvector v ∈ RN is consistent with η-myopic

play if there exists an action distribution α ∈ ∆A such that u (α) = v and
∑

i di (α) /N ≤ η:

that is, if the per-player average deviation gain at α is less than η.

Theorem 3 (Limits of Individual Incentives) Fix any upper bound on stage-game pay-

offs and any lower bound on individual noise. For any η > 0, there exists k > 0 such that,

for any repeated game satisfying these bounds as well as the condition that (1− δ)N/K > k,

any Nash equilibrium payoff vector in this repeated game is consistent with η-myopic play.

14Fudenberg, Levine, and Pesendorfer (1998) derive a similar result.
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Under the stronger hypothesis that (1− δ)
√
N/K → ∞, the theorem’s conclusion fol-

lows from probability results which imply that the average “influence” of N independent

binary random variables on a K-dimensional binary random variable is of order at most√
K/N , and that therefore the maximum per-player incentive that can provided on the ba-

sis of such a random variable is of order at most
√
K/N/ (1− δ). The hypothesis can be

weakened to (1− δ)N/K → ∞ by combining this type of probability result with recursive

methods developed in Sugaya and Wolitzky (2022a).

Theorem 3 can be further generalized to apply for any monitoring structure where the

mutual information between signals and actions is bounded byK, which is a weaker condition

on the monitoring structure than the requirement than log2 |Y | = K. Conversely, a folk

theorem holds for some sequence of monitoring structures satisfying (1− δ)N log (N) /K →

0: for example, it suffi ces to perfectly monitor the actions of K randomly selected players in

every period.15 These results imply that the scope for cooperation in many-player repeated

games is determined by the ratio of the discount rate (1− δ) and the number of “bits of

information per player,”K/N (up to the log (N) gap between the necessary and suffi cient

conditions for cooperation). Thus, a high degree of patience and/or a large amount of

information are required to incentivize cooperation in large groups.

How restrictive is the condition that discounting is low relative to per-player information?

The answer depends on the type of game under consideration. The condition is restrictive

in situations where a large population of players are monitored by a fixed “aggregate signal”

that does not scale with the population size. For example, this case arises when the signal is

the market price facing Cournot competitors, the level of pollution in a common water source,

or the output of team production. On the other hand, the condition is much less restrictive

in situations where players are monitored “separately,” in a manner that scales with the

population size. For example, this situation arises in the random matching games studied

in Section 4, where each player observes her partner’s action, as well as in games where a

centralized rating system records a signal of each player’s action, as in the models studied in

Section 6. In sum, in public-monitoring models such as Fudenberg, Levine, and Pesendorfer

15The basic logic is that if a player is monitored with probability K/N , she can then be provided with an
incentive of “size”K/ (N (1− δ)). The extra log (N) term provides some slack that is used in the equilibrium
construction.

16



(1998), al-Najjar and Smorodinsky (2000, 2001), and Sugaya and Wolitzky (2022a), the

obstacle to supporting cooperation is that societal information is insuffi ciently precise; while

in the community enforcement models covered in Sections 4 and 6, the obstacle is instead

that societal information is disaggregated.

While the condition in Theorem 3 may already be restrictive, matters are far worse

if we restrict attention to strongly symmetric equilibria, where all players have the same

continuation payoff at every history, so that rewards and punishments are provided only

“collectively.”16 Collective incentives have the well-known shortcoming that they encourage

free-riding in large populations. In the repeated game context, the following result (also

due to Sugaya and Wolitzky, 2022b) formalizes this intuition by showing that incentives can

provided in strongly symmetric equilibria only if δ → 1 almost as fast as expN →∞, which

is an extremely restrictive condition.

Theorem 4 (Limits of Collective Incentives) Fix any upper bound on stage-game pay-

offs and any lower bound on individual noise. For any η > 0 and ρ > 0, there exists

k > 0 such that, for any repeated game satisfying these bounds as well as the condition that

(1− δ) exp (N1−ρ) > k, any strongly symmetric equilibrium payoff vector in this repeated

game is consistent with η-myopic play.

To understand this result, suppose we wish to enforce a symmetric pure action profile

a at which the maximum static deviation gain equals η. Once we restrict ourselves to

strongly symmetric equilibria, it is without further loss to restrict attention to “tail tests,”

where continuation values take one (low) value whenever the number n of players who take

action a falls below a cutoff n∗, and another (high) value whenever n ≥ n∗. Under ε

individual noise, the number n follows a binomial distribution with mean (1− ε)N and

standard deviation
√
ε (1− ε)N . Thus, the probability that each player is pivotal for passing

the tail test is maximized by setting n∗ ≈ (1− ε)N , which yields a pivot probability of order

1/
√
ε (1− ε)N , as in Fudenberg, Levine, and Pesendorfer, or al-Najjar and Smorodinsky.

Now, to enforce action profile a, the static deviation gain η must be less than the product

16Strongly symmetric equilibria are defined only in symmetric games. However, the same results hold for
a class of “linear equilibria” in general games, where all players’continuation payoffs are required to lie on
a line.
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of the pivot probability (a term of order 1/
√
N) and the maximum difference between any

two continuation payoffs (a term of order 1/ (1− δ)). Hence, if η is to remain bounded away

from 0 as N →∞ and δ → 1, the product (1− δ)
√
N cannot explode.

The more restrictive condition of Theorem 4– that (1− δ) exp (N1−ρ) cannot explode for

any ρ > 0– follows because if n∗ ≈ (1− ε)N , then the tail test is failed with probability

bounded away from 0 in every period, which leads to the destruction of all continuation value

when δ → 1. To prevent this value destruction while still providing incentives, the statistical

score of the tail test– that is, the ratio Pr (n = n∗) /Pr (n ≤ n∗)–must increase linearly with

the variance of n, and hence with N .17 Since the distribution of n is approximately normal

when N is large, and the density of the normal distribution decreases exponentially with

the score,18 it follows that Pr (n = n∗)– the pivot probability– must decrease exponentially

with N . Theorem 4 now follows because the product of the pivot probability and 1/ (1− δ)

cannot explode if η is to remain bounded away from 0.19

To summarize, in large-population repeated games with imperfect monitoring, collective

incentives cannot be provided unless δ is extremely (likely implausibly) high, and even indi-

vidual incentives can be provided only if δ is high and/or signals are informative. While this

is a rather negative result for settings where a large population of players is monitored by a

fixed aggregate signal, suffi ciently informative monitoring structures arise naturally in “de-

centralized”settings such as random-matching games or games on networks. These settings

are the subject of the following two sections.

4 Repeated Games with Random Matching

First introduced by Rosenthal (1979), repeated games with random matching are a canonical

model of cooperation in decentralized groups. There are several versions of the model, which

can all be formally nested as special cases of the general repeated game model presented in

Section 3.1. In this section, I consider games with uniform random matching, meaning that

17Sannikov and Skrzypacz’s (2007) result that collusion in Cournot duopoly is impossible with frequent
actions and Brownian noise depends on a similar observation; see also Fudenberg and Levine (2007, 2009).
18Because φ (z) /Φ (z) is of order |z|, where φ and Φ are the standard normal pdf and cdf.
19Conversely, tail tests can support a Nash-threat folk theorem if there exists ρ > 0 such that

(1− δ) exp
(
N1+ρ

)
→ 0.
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in each period the population of N players (here assumed to be even) breaks into pairs to

play a 2-player stage game G̃ =
(
Ã, ũ

)
, where each player’s partner is selected uniformly at

random from among the other N − 1 players.

Matching is anonymous if players choose actions without observing their current partner’s

identity, so that A (the action set in each period of the N -player repeated game) is the same

as Ã (the action set in the 2-player stage game). Matching is non-anonymous if players

observe their current partner’s identity before choosing actions, in which case A = Ã(N−1),

the set of mappings from the partner’s identity to the stage game action. Either way, I

assume that each player perfectly observes her current partner’s action at the end of each

period, but learns nothing about the actions taken in other matches.20 The model thus

abstracts from monitoring imperfections within each match but completely rules out public

signals, in stark contrast to the public monitoring structures considered in Section 3.

4.1 Anonymous Matching

Because players receive so little information under anonymous random matching, a natural

first question is whether non-myopic play can be supported at all. Early results by Kandori

(1992b), Ellison (1994), and Harrington (1995) show that cooperation can be supported in

the PD by relying on a form of collective punishment called contagion strategies. Contagion

strategies are simply grim trigger strategies adapted to anonymous random matching games:

each player starts by playing C (cooperate), but switches toD (defect) whenever she observes

a single play of D. Note that each player i is incentivized to play C on path (i.e., when she

has observed only C so far) because playing D causes her current partner j to switch to D

in the next period, which subsequently causes j’s future partners to switch to D, and so on

until the contagion of playing D spreads throughout the population, eventually reducing i’s

payoff. We obtain the following result of Kandori’s.

Theorem 5 (Anonymous Cooperation in Nash Equilibrium) In the repeated PD with

anonymous random matching, there exists δ̄ < 1 such that, for every δ > δ̄, there is a Nash

20Monitoring structures of this type, where each action is observed either perfectly or not at all, are
sometimes called semi-standard monitoring (Lehrer, 1990), partial monitoring (Ben-Porath and Kahneman,
1996), or network monitoring (Wolitzky, 2013).
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equilibrium where all players take C in every period along the equilibrium path.

This result depends on the order of limits between N and δ. For any N , contagion

spreads throughout the population in finite time with high probability, so deviating from

C to D is unprofitable whenever δ is suffi ciently high (and hence contagion strategies form

a Nash equilibrium, since C is prescribed at every on-path history). However, the amount

of time that it takes for contagion to spread goes to infinity as N → ∞, so for any δ < 1

deviating from C to D is profitable when N is suffi ciently high. Nevertheless, the joint

condition on N and δ required for contagion strategies to form a Nash equilibrium is actually

quite permissive. Since the diffusion of contagion is well-approximated by a logistic curve,

the number of “infected”players increases exponentially until a substantial fraction of the

population is infected, so it can be shown that contagion strategies form a Nash equilibrium

whenever (1− δ) logN → 0.21

Another apparent limitation of Theorem 5 is that it applies only to Nash equilibrium.

A more natural solution concept in this model is sequential equilibrium (Kreps and Wilson,

1982), which requires sequential rationality with respect to beliefs that arise as the limit

of conditional probabilities derived from completely mixed strategies. The simplest version

of contagion strategies– where switching from C to D is permanent– may be inconsistent

with sequential equilibrium, because a patient player who observes D in period 1 (say) may

benefit from playing C for several periods to slow the spread of contagion.22 However, Ellison

(1994) shows that contagion strategies can be modified to form a sequential equilibrium.23

The key observation is that, under contagion strategies, switching to D is more attractive

when a greater number of other players have already switched to D. Hence, if the severity

of the punishment incurred by starting contagion is reduced to the point where a player

is indifferent to starting contagion on path (i.e., when only C has been observed), then

21That contagion spreads approximately logistically in an N -player random matching model can be shown
by arguments akin to those in Frieze and Grimmett (1985), who consider a similar process whereby a “rumor”
spreads through a finite population in discrete time.
22If such a player believes that not only her period-1 partner but also all of the other N − 2 players in the

population deviated to D in period 1, then playing D from period 2 on as prescribed by contagion strategies
is sequentially rational. Since seeing one’s partner take D in period 1 is off path, this belief is consistent
with Bayes’rule, and hence with (weak) perfect Bayesian equilibrium. However, it is not consistent with the
belief that the opponents “tremble”independently, and hence is not consistent with sequential equilibrium.
23Kandori (1992b) showed that standard contagion strategies already form a sequential equilibrium for

some parameters.
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spreading contagion is always optimal off path (i.e., once D has been observed). Ellison

describes two ways of reducing the severity of contagion: occasionally restarting cooperation

according to a public randomizing device, and conditioning play on calendar time in such

a way that a given occurrence of contagion only periodically affects play (a technique now

known as “threading”). While the realism of such strategies is debatable, they suffi ce to

establish the following important result.

Theorem 6 (Anonymous Cooperation in Sequential Equilibrium) In the repeated PD

with anonymous random matching, there exists δ̄ < 1 such that, for every δ > δ̄, there is a

sequential equilibrium where all players take C in every period along the equilibrium path.

While suitably modified contagion strategies can be used to support cooperation as a

sequential equilibrium in the repeated PD, it is not straightforward to extend these strategies

to support non-myopic behavior in other games (or to support outcomes in the PD other

than mutual cooperation, such as profiles where some players cooperate while others defect).

For example, consider the product choice game, where player 1 produces a high or low quality

product, player 2 buys or does not buy, and payoffs are given by

B ¬B

H 1, 1 −`, 0

L 1 + g,−c 0, 0

with g, `, c > 0. This is an asymmetric game, so let us suppose that there are separate,

equal-sized populations of player 1’s and player 2’s, where every period each player 1 meets

a random player 2. Suppose we try to support the outcome (H,B) with the threat of

contagion to the Pareto-inferior Nash equilibrium (L,¬B): that is, each player 1 takes H so

long as (H,B) is observed, and otherwise switches to L; and each player 2 takes B so long as

(H,B) is observed, and otherwise switches to ¬B. These strategies form a Nash equilibrium

whenever δ is suffi ciently high, but modifying them to form a sequential equilibrium is

challenging. To see the problem, suppose that some player 2 sees his partner deviate to

L in period 1. By Kreps-Wilson consistency, this player 2 must believe no one other than

his period 1 partner deviated in period 1, and that therefore (in a large population) his
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period 2 partner is very likely to play H. But then player 2 should play B rather than

¬B in period 2, since this yields a higher expected stage game payoff, as well as slowing

contagion. In general, the problem is that since the “punishment”profile (L,¬B) is not in

dominant strategies (in contrast to the punishment profile (D,D) in the PD), players who

observe deviations do not want to switch to the punishment profile unless they believe that

suffi ciently many other players have already switched, and this belief may not be consistent

under contagion strategies.

Deb and González-Díaz (2019) use a clever and intricate argument to extend contagion

strategies to establish a partial folk theorem (in sequential equilibrium, for symmetric payoffs

that Pareto-dominate a static Nash equilibrium) for a class of stage games that includes the

product choice game. The key idea is to specify that deviations from the desired action

profile (e.g., (H,B) in the product choice game) during a long “trust-building”phase at the

beginning of the game do not spark contagion until after the end of the trust-building phase.

Due to the existence of the trust-building phase, once players are supposed to switch to

the punishment profile, they are free to believe that the earliest deviation actually occurred

a long time ago, and that consequently many other players have already switched (or will

switch at the same time). This belief then rationalizes the prescribed switch.24

The strategies considered by Kandori, Ellison, and Deb and González-Díaz all rely on col-

lective punishment: if a single player deviates, the entire community is eventually punished.

While such strategies seem natural in anonymous games, individualized incentives can also

be provided even under anonymity. For example, suppose that some particular player– say

player 1– is prescribed to take D in each of T consecutive periods in the repeated PD, while

the other N−1 players are prescribed to take C during this T -period block. This behavior is

potentially enforceable, because if some player other than player 1 deviates to taking D dur-

ing the block, then there will be two players taking D rather than one, which is statistically

detectable by the other players. Asymmetric behavior of this type features in a construction

by Deb, Sugaya, and Wolitzky (2020), which establishes the full folk theorem for anonymous

random matching games. The construction is rather complicated, and it resembles equilibria

used to establish the folk theorem for general private monitoring structures (in particular, the

24Deb (2020) proves a more general folk theorem when matched players can communicate by cheap talk.
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“block belief-free” strategies introduced by Matsushima, 2004, and Hörner and Olszewski,

2006) more than it does contagion strategies.25 In the following statement of their theorem,

V ∗ refers to set of feasible and individually rational payoffs in the N -player stage game in-

duced by anonymous random matching. For example, if the underlying 2-player stage game

is the PD, then the payoff vector that results when player 1 takes D while everyone else

takes C is feasible (and also individually rational, if N is large), while the payoff vector that

results when player 1 takes D while everyone else takes C iff they match with player 1 is

infeasible, as it cannot be attained under anonymity.

Theorem 7 (Anonymous Folk Theorem) Assume that intV ∗ 6= ∅. For any v ∈ intV ∗,

there exists δ̄ < 1 such that, for every δ > δ̄, there is a sequential equilibrium of the anony-

mous random matching repeated game with discount factor δ that gives payoff vector v.

The positive results reported in Theorems 5—7 may strike the reader as being “too good to

be true.”Even if we are willing to assume that players can coordinate on the most effi cient

sequential equilibrium, however complicated, is it really possible that large, decentralized

groups can support cooperation when players are completely anonymous and have no in-

formation beyond their own personal experiences? If not, what explains the discrepancy

between the model’s prediction that cooperation is possible despite minimal information,

and our intuition that this prediction is likely too optimistic?

One possible explanation is that the models considered in this subsection do not allow

“noise”: actions are implemented without error, and within-match monitoring is perfect.

At first glance, contagion strategies seem extremely non-robust to noise, since a single error

would spark contagion.26 However, Ellison shows that the modified contagion strategies used

to prove Theorem 6 are robust to introducing suffi ciently small noise. To see the intuition,

note that under the modified contagion strategies that make players indifferent to starting

contagion on path, the expected number of periods before cooperation “restarts”following

an episode of contagion converges to a finite number as δ → 1. Hence, contagion is rarely

25Sugaya (2020) extends block belief-free strategies to prove a general folk theorem for repeated games with
private monitoring under standard full-support and statistical identifiability conditions. These conditions
are robustly violated in random matching games.
26Fearon and Laitin (1996) take this observation as a starting point for considering when relations between

ethnic groups lead to contagion-like “spirals,”rather than being contained through “within-group policing.”
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triggered when noise is small, and the payoff loss when it is triggered is finite. Consequently,

in the iterated limit where first δ → 1 and then ε→ 0, Ellison’s contagion strategies support

mutual cooperation in almost every period of the repeated game.

While this result provides some reassurance that Theorems 5—7 are not entirely non-

robust, it still faces some limitations (as Ellison himself observed). First, the result is

sensitive to the order of limits between N and ε: it applies when ε → 0 for fixed N ,

but not if we instead consider a sequence where Nε (the expected number of “errors”in the

population each period) remains fixed, much less when N →∞ for fixed ε. Second, it applies

only when noise takes the form of implementation or monitoring errors that are independent

across periods. A different type of “noise”that is likely realistic in large populations arises

when a small fraction of players may be irrational, and thus deviate from equilibrium play

in a manner that is correlated across periods. As we will see, introducing a small amount of

this kind of incomplete information is quite devastating for contagion strategies, as well as

for any other strategies that might attempt to provide non-myopic incentives in anonymous

repeated games.

4.2 Incomplete Information and Non-Anonymous Matching

Following a suggestion in Ellison (1994), Sugaya and Wolitzky (2020) investigate the effect of

introducing a slight probability of irrationality in anonymous repeated games.27 They derive

an anti-folk theorem for a large class of symmetric, anonymous games, which specializes as

follows to the repeated PD with anonymous random matching and independent player-types.

(Note that the theorem’s negative conclusion holds for all Nash equilibria, and thus does not

depend on equilibrium refinements.)

Theorem 8 (Anonymous Anti-Folk Theorem with Irrational Types) Consider the

repeated PD with anonymous random matching where each player is committed to the strategy

“play D in every period” with probability ε, independently across players. For any η > 0,

there exists N̄ such that, for any population size N > N̄ and any discount factor δ, in every

27A stage game is anonymous if each player’s payoff depends only on her own action and the number
of other players taking each action (and not their identities). Anonymous random matching games are an
important special case.
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Nash equilibrium the population average payoff is less than u (D,D) + η.

That is, if each player is committed to the strategyAlways D with some fixed independent

probability ε > 0 (which may be arbitrarily small), equilibrium population payoffs are always

close to the mutual defection payoff u (D,D) whenever N is suffi ciently large (even if δ is

arbitrarily high, so that for instance (1− δ)N can be arbitrarily small). The proof is rather

simple. Note that, if a rational (non-committed) player deviates by playing Always D and

the realized number of committed players is some number n, the population distribution of

actions will be the same as it would have been if this player had not deviated and the realized

number of committed players had instead been n+ 1. When players’types are independent

and N is large, the probability that there are n or n+ 1 committed players are similar, so a

deviation by a single rational player to Always D has only a small impact on the population

action distribution. Since a rational player must prefer following her equilibrium strategy

to deviating to Always D, it follows that Always D cannot perform much better than the

rational-player equilibrium strategy against the equilibrium population action distribution.

But, since D is strictly dominant in the stage game, this implies that the rational-player

equilibrium strategy must itself almost always take D. Finally, if committed players always

take D and rational players almost always take D, population payoffs must be close to

u (D,D).28

Theorem 8 brings discouraging news about the prospects for cooperation under anonymity.

However, anonymous matching may be viewed as a theoretical benchmark rather than a re-

alistic model of large-group cooperation: in most real-world settings, it seems likely that

players can usually recognize and remember their partners. It is thus natural to ask whether

the presence of irrational types of the sort considered in Theorem 8 still obstructs cooperation

under non-anonymous matching.29

28This argument is related to Mailath and Postlewaite’s (1990) theorem on the impossibility of large-
population public good provision. An intuition for their theorem is that a player will not reveal that she
values a public good unless her reported value has either a large impact on the probability of provision or a
small impact on her expected payment. Since the former is impossible when N is large, payments must be
insensitive to values, and hence the public good cannot be provided unless every possible type is willing to
pay a 1/N share of the cost.
29Sugaya and Wolitzky (2022c) extends the analysis of the 2020 paper to stage games which are symmetric

but not anonymous. The negative result of the 2020 paper extends for symmetric, non-anonymous games
under a certain “population dominance”condition. However, this condition is violated in the repeated PD
with non-anonymous random matching.
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This question is addressed by Sugaya and Wolitzky (2021). A first observation is that the

stark negative conclusion of Theorem 8 does not fully extend to non-anonymous matching:

if players are suffi ciently patient, they can simply treat the N -player random matching

game as a collection of 2-player games and play grim trigger in each of them, and these

strategies support cooperation among rational players when ε is suffi ciently small. More

specifically, these “bilateral trigger strategies” form an equilibrium if (1− δ)N is small,

which corresponds to situations where each pair of players meet frequently.30 To understand

whether multilateral, community-based enforcement of cooperation is effective, it therefore

makes more sense to consider the case where δ is close to 1 but (1− δ)N is large, so that

each player interacts with other players frequently but meets each particular partner only

infrequently. Somewhat unexpectedly, the result here parallels the negative conclusion of

Theorem 8.

Theorem 9 (Non-Anonymous Anti-Folk Theorem with Irrational Types) Consider

the repeated PD with non-anonymous random matching where each player is committed to

the strategy “play D in every period”with probability ε, independently across players. For

any η > 0, there exists k > 0 such that, if the population size N and the discount factor δ

satisfy (1− δ)N > k, then in every Nash equilibrium the population average payoff is less

than u (D,D) + η.

A rough intuition for this result can be given as follows. In light of Theorem 8, collec-

tive incentives– strategies where players to do not condition their play on their opponent’s

identity– are ineffective in the presence of irrational types. So the only hope for support-

ing cooperation lies with individualized incentives– strategies that somehow monitor all N

players’actions. In the repeated PD with non-anonymous matching, in every period, each

player observes one bit of information concerning the profile of her opponents’actions: the

current opponent’s action, C or D. However, it can be shown that monitoring N players’

actions with non-vanishing precision as N → ∞ requires O (N) bits of information,31 and
30To see why (1− δ)N is an inverse measure of the meeting rate for each pair of players, fix the real-time

discount rate r and suppose matching occurs every ∆ unit of real time, so δ = e−r∆ , which is close to 1−r∆
when ∆ is small. Then on average each pair of players interact 1/ (∆ (N − 1)) ≈ r/ ((1− δ)N) times per
unit of real time.
31This observation extends the pivot probability bounds of Fudenberg, Levine, and Pesendorfer (1998)

and al-Najjar and Smorodinsky (2000), which were discussed in Section 3.4.
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so it takes O (N) periods of play to accumulate enough information to monitor everyone’s

actions. But if (1− δ)N is large, rewards or punishments delivered O (N) periods in the

future are insuffi cient to motivate cooperate, so defection prevails in every equilibrium.

As this intuition suggests, Theorem 9 continues to hold if players observe any additional

K-dimensional signal each period– such as the most recent action of each of K randomly

chosen players, orK signals about the average level of cooperation is the population– for any

number K fixed independently of N .32 While this is a stark negative result, there do exist

realistic mechanisms by which players can obtain enough information to support cooperation.

For instance, suppose that matched partners can communicate freely via cheap talk before

taking actions, so that (for example) each player can tell her partner her opinion of the

“standing”of each of the otherN−2 players in the population. This form of “gossip”provides

a number of bits of information that grows linearly with N , and indeed Sugaya and Wolitzky

(2021) show that allowing such gossip supports a folk theorem under permissive conditions.33

One reason why this is interesting is that gossip seems to help support cooperation in reality

through a roughly similar mechanism as in the theory.34

Overall, Theorems 8 and 9 suggest that the view of large-group cooperation under mini-

mal information expressed in Theorems 5—7 is probably too optimistic. In reality, coopera-

tion in large societies likely requires substantially richer information that these minimalist,

first-generation community enforcement models allowed. Fortunately, suffi cient information

can sometimes be obtained in practice, depending on the communication opportunities and

other “informational institutions”available to the group. I will return to this theme in Sec-

tion 6, which focuses on the question of what kind of information players need to support

cooperation in infinite populations.

32A subtlety here is that signals that arrive at the end of period t are assumed to be independent of the
period t+ 1 match realizations. For example, the signal where each player observes only her next partner’s
most recent action is excluded. That kind of signal can sometimes support cooperation even in infinite
populations, and is thus considered in Section 6.
33The required suffi cient condition is (1− δ) logN → 0. This condition is also almost necessary for non-

myopic incentives to be provided in any model where information is exchanged through pairwise meetings,
as if (1− δ)1+ρ

logN → ∞ for any ρ > 0 then with high probability a player never meets anyone who met
anyone who. . . met her within a payoff-relevant time frame.
34Pertinent discussions of the role of gossip include Gluckman (1963), Ellickson (1994), Noon and Delbridge

(1993), Baumeister, Zhang, and Vohs (2004), Dunbar (2004), Sommerfeld et al. (2007), and Feinberg, Willer,
and Schultz (2014).

27



5 Repeated Games on Networks

I now turn to models with interaction structures that are richer than uniform random match-

ing. This section focuses on “repeated games on networks,”meaning that a network deter-

mines the payoff or information structure.35 Some models in this literature assume that the

network is fixed over time, while others allow it to be redrawn in every period of the re-

peated game– note that the latter assumption allows random pairwise matching as a special

case. Important new issues here include how the network structure determines the scope for

cooperation, and how an individual’s network position determines her behavior.

5.1 Multilateral Punishment and Contagion in Networks

A key question in any model of community enforcement of cooperation is how social interac-

tions facilitate multilateral punishment: that is, punishment by third parties. The canonical

example of multilateral punishment in random matching games is the contagion strategy, dis-

cussed in Section 4.1. For games played on a fixed network (which, depending on the specifics

of the model, determines the payoff and/or monitoring structure of the game), multilateral

punishment arises when a player’s misbehavior toward one player in the network eventually

leads to an adverse reaction by other players. In the typical case where a player’s payoff

is determined only by the actions of her network neighbors, this means that misbehavior

toward one neighbor eventually causes a negative response by other neighbors.

While not explicitly concerned with networks per se, Bernheim and Whinston’s (1990)

early paper on “multimarket contact”is an important starting point for understanding mul-

tilateral punishment on networks. The paper asks whether it is easier for oligopolists to

collude when they interact in many markets rather than just one, and models this by con-

sidering a population of players who play m PD stage games simultaneously (of course, the

m games can be formally viewed as one big stage game). They first establish an “irrelevance

theorem”: if (i) the m stage games are identical, (ii) payoffs are additive across the stage

games, and (iii) actions in all stage games are perfectly observed (so the repeated game has

perfect monitoring), then the equilibrium condition for cooperation to be supportable in the

35Repeated games on networks are also surveyed by Nava (2016).

28



repeated game is independent of the number of stage games, m. The intuition is simply that

a player’s most profitable deviation involves defecting in all m games simultaneously, while

the harshest punishment for any deviation is permanent mutual defection in all m games.

So, both the deviation gain and the harshest punishment are proportional to m, and hence

the equilibrium condition is independent of m.

By the same logic as in Bernheim and Whinston’s irrelevance theorem, if N players on

a network simultaneously play identical 2-player PD’s with each of their neighbors under

perfect (network-wide) monitoring with additive payoffs, the condition for cooperation to

be supportable in the overall repeated game is the same as the condition for cooperation to

be supportable in a single 2-player PD. Consequently, if network structure is to affect the

possibility of cooperation, at least one of the conditions of the irrelevance theorem must be

violated. As Bernheim and Whinston note, the irrelevance theorem breaks down if the stage

games are not identical, monitoring is imperfect, or payoffs are not additive across the stage

games. Many papers on repeated games on networks can be organized according to which

of these violations they involve.

If the stage games are not identical, any slack in the equilibrium conditions in one game

can be used to relax those in the other games. For example, suppose that two PD’s are

played every period, but the games differ in the value of the parameter g in the PD payoff

matrix from Section 3.1. Suppose that the value of this parameter is g1 in the first game

and g2 in the second, where

g1 <
δ

1− δ , g2 >
δ

1− δ , and g1 + g2 <
2δ

1− δ .

If these games are played separately then cooperation is supportable in the first game but

not the second, while if the games are played together then cooperation can be supported

in both of them by specifying that a deviation in either game leads to punishment in both.

This and related points are developed further in the network context by Spagnolo (1999),

Lippert and Spagnolo (2011), Mihm, Toth, and Lang (2009), and Mihm and Toth (2020).

Imperfect monitoring arises naturally in games on networks, for example in the much-

studied case where players observe only their neighbors’actions (so the network determines
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the monitoring structure, perhaps in addition to the payoff structure). An important special

case of imperfect monitoring arises when m stage games are played asynchronously, as in

this case we can consider a player’s “action” to be a mapping from the stage game to be

played in the current period to her action in that game, so that the player’s realized action

is an imperfect signal of this mapping. Indeed, multilateral interaction clearly helps support

cooperation with asynchronous stage games, because when the games are played one-by-

one the maximum deviation gain is independent of m, while the harshest punishment is

still increasing in m, as a deviation in one game can eventually lead to punishments in

other games. Note that the extent to which multilateral interaction facilitates cooperation

depends on how quickly information about a deviation in one stage game spreads to the

other stage games. This information spreads instantaneously under perfect monitoring, but

more generally it spreads through the network according to a contagion-type process.

Understanding how the percolation of information through a network affects the scope

for cooperation is the subject of papers by Wolitzky (2013) and Ali and Miller (2013). In

the former paper, in every period each player i chooses a “cooperation level”ai ∈ R+, and

payoffs are given by

ui (a) =

(∑
j 6=i

fij (aj)

)
− ai,

where fij is an increasing, concave, and bounded function that measures the benefit that

i receives from j’s cooperation. The stage game is thus a continuous-action version of the

PD. At the end of every period, each player observes some other players’actions perfectly,

while observing nothing about the remaining players’actions, where the network of “who

observes whom”is drawn iid across periods and is itself publicly observed.36 For example,

if players randomly match in pairs and observe only their partner’s action, we recover the

standard PD with anonymous random matching studied by Kandori and Ellison (albeit with

continuous actions, and assuming that the realized matching process is observable). On the

36In particular, player i does not observe her own payoff ui (a). This assumption is unproblematic in
several cases. First, since ui (a) is additively separable in the opponents’actions, it can be interpreted as
player i’s expected payoff at action profile a, where player i’s realized payoff depends only on actions that
she observes (e.g., on the actions of her current-period partners). Second, the infinitely repeated game can
be interpreted as a game of uncertain finite duration, where δ is the probability that the game continues for
another period, and all payoffs are received at the end of the game.
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other hand, if each player observes the actions of the same set of opponents in every period,

we have a repeated game with a fixed (directed) monitoring network.

Define player i’s “average cooperation level”under a strategy profile σ by (1− δ)
∑∞

t=1 δ
t−1Eσ [ai,t].

Note that, since the functions fij are concave, if there happens to exist a stationary strategy

profile that maximizes each player’s average cooperation level, Jensen’s inequality implies

that this profile must also maximize utilitarian social welfare, so long as each player i’s av-

erage cooperation level is below the “first-best” level defined by
∑

j 6=i f
′
ji

(
aFBi

)
= 1. The

paper’s main result is that such a strategy profile does exist, and it is given by contagion

strategies. To state this result, fix a period T , and for any two players i, j ∈ I and any

number t, let πjit denote the probability that, by the beginning of period T + t, player j has

observed a player who has observed a player who. . . observed player i’s period-T action.37

For example, if the monitoring network is fixed across periods then πjit = 1 if the distance

from j to i is at most t, and otherwise πjit = 0.

Theorem 10 (Maximal Cooperation with Network Monitoring) There exists a component-

wise maximal action profile a∗ ∈ RN that satisfies

a∗i = (1− δ)
∞∑
t=1

δtπjitfij
(
a∗j
)

for all i ∈ I. (1)

In every Nash equilibrium, each player i’s average cooperation level is at most a∗i . Moreover,

the following contagion strategy profile gives a perfect Bayesian equilibrium where each player

i’s average cooperation level equals a∗i : in every period, each player i takes action a
∗
i so long

as she has never observed another player j 6= i taking any action aj 6= a∗j ; otherwise, she

takes action 0.

Since the functions fij are increasing and actions can be bounded from above by indi-

vidual rationality, the existence of a maximal vector a∗ satisfying equation (1) follows from

Tarski’s fixed point theorem. That the contagion strategies described in the theorem form a

Nash equilibrium is true almost by construction: the left-hand side of equation (1) is player

37This probability does not depend on T , by the assumption that the monitoring network is iid across
periods.
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i’s per-period cost of taking a∗i in every period rather than deviating to the myopically domi-

nant action 0, while the right-hand side is her expected, discounted lost benefits from others’

foregone cooperation if she deviates. Moreover, equation (1) implies that each player i is

indifferent between action a∗i and action 0 at every on-path history, and hence she strictly

prefers action 0 at every off-path history, by a similar argument as in Ellison (1994): con-

sequently, the strategy profile is also sequentially rational.38 Finally, Tarski’s theorem also

implies that cooperation levels above a∗ cannot be supported in any Nash equilibrium where

players use stationary strategies (i.e., where each player’s actions are constant on path).

The most subtle part of Theorem 10 is therefore the claim that such cooperation levels also

cannot be supported by non-stationary strategies.39

Equation (1) is useful for characterizing which network structures support higher levels of

cooperation, as well as which players in a fixed network have greater maximum cooperation

levels than others. For example, suppose that the functions fij are all identical (so each

agent benefits equally from every other agent’s effort), and say that player i is recursively

more central than player j if i has more distance-t neighbors than j does (for each t), i’s

distance-t neighbors have more distance-t′ neighbors than j’s distance-t neighbors do (for

each t and t′), and so on. In this case, it is not hard to see that (1) implies that a∗i ≥ a∗j , for

any δ and f . That is, recursively more central players in a network take higher actions in

all equilibria that support maximal cooperation.40

Ali and Miller (2013) consider a related model, where instead of taking a single cooper-

ative action each period that benefits every opponent, players interact with their neighbors

asynchronously in continuous time and take actions that benefit only one’s current partner.

They show that symmetric contagion strategies on a clique graph of degree d maximize util-

itarian welfare among all stationary Nash equilibria on all graphs when each player has at

38The feature that “maximal”Nash equilibria are always sequentially rational in a continuous-action PD
also arises by Ali and Miller (2013). In contrast, Haag and Lagunoff (2006) consider a repeated local-
interaction model with binary actions, where off-path incentives are non-trivial.
39This last claim is also the only part of the theorem that uses the assumption that the monitoring

network– “who observes whom”– is itself observable. The proof involves averaging incentives across a
player’s information sets and applying monotone methods.
40Recursive centrality is similar to the “ordinal centralities”studied by Sadler (2020). Sadler shows that

if i is ordinally more central than j, then i takes a higher action than j in the maximal equilibrium of any
game with strategic complements.
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most d neighbors. The intuition is that cliques maximize a quantity that Ali and Miller term

viscosity, which is similar the right-hand side of equation (1), and likewise captures a player’s

future payoff loss when she deviates from equilibrium play. Other versions of the point that

cooperative incentives are strengthened when information percolates through the network

faster– and that some types of networks support faster percolation than others, and hence

support stronger incentives– have been made by Raub and Weesie (1990), Klein (1992),

Ahn and Suominen (2001), Dixit (2003), Vega Redondo (2006), Bloch, Genicot, and Ray

(2008), Lippert and Spagnolo (2011), Fainmesser (2012), Balmaceda and Escobar (2017),

Larson (2017), and Fainmesser and Goldberg (2018). For example, Lippert and Spagnolo

consider a model where cheap talk communication can potentially spread information more

quickly than can contagion via actions, and show that this feature can rationalize “forgiv-

ing”strategies where contagion is temporary, because players who observe a deviation under

permanent contagion strategies have no incentive to tell others about the deviation, whereas

such communication can be incentivized under temporary contagion strategies. Similarly,

Ali and Miller (2016, 2021) show that strategies where deviators are “ostracized”only tem-

porarily can induce truthful communication about each player’s standing, while “permanent

ostracism”strategies cannot.41

The papers considered in this section so far study how the threat of multilateral pun-

ishment can enforce cooperation when the discount factor δ is too low for bilateral punish-

ment to do so. A related literature derives folk theorems in network games where bilateral

incentives are insuffi cient even when δ is close to 1. For example, this situation arises

when payoffs are not additively separable across bilateral interactions (while monitoring is

nonetheless determined by a network). A key obstacle to establishing the folk theorem in

this setting is that decentralized information about each player’s action must be aggregated

across the network, but individual players may sometimes benefit from misrepresenting or

concealing information. Thus, a typical suffi cient condition for the folk theorem is that

the network is 2-connected–meaning that the network remains connected when any single

player is removed– as this condition ensures that a single player cannot prevent the rest of

41Bowen, Kreps, and Skrzypacz (2013) and Barron and Guo (2021) discuss other mechanisms by which
the need to induce honest communication constrains community enforcement.
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the community from aggregating information.42 Papers on this topic include Ben-Porath

and Kahneman (1996), Renault and Tomala (1998), Tomala (2011), Laclau (2012, 2014),

Kinateder (2013), and Cho (2014). Nava and Piccione (2014) establish a folk theorem for

binary-action local interaction games, using strategies that are independent of players’be-

liefs about the global network structure. Wolitzky (2015) asks the related question of when

the equilibrium payoff set in a network game is the same when players observe only their

neighbors’actions as when they observe everyone’s actions. The answer again hinges on

2-connectedness when players communicate with their neighbors through cheap talk, while

a positive answer is given for any network if players can exchange a form of hard evidence

akin to fiat money.

5.2 Robustness and Renegotiation in Networks

As we discussed in the context of random matching games in Section 4.1, an important

concern regarding contagion strategies is their possible non-robustness to various types of

noise. The basic point that the simplest version of contagion strategies are not robust– so

that some type of error tolerance or forgiveness is necessary in the presence of noise– applies

whether interactions are organized by random matching or a network. Other considerations

are specific to the network context, such as a possible desire for the repercussions of a single

deviation not to spread too far in the network, or a concern that a subnetwork of players

might jointly deviate by splitting off from the rest of the group.43

Jackson, Rodriguez-Barraquer, and Tan (2012) consider an asynchronous PD-type game

on a network, where in each a period a random player i gets an opportunity to do a favor for

a random neighbor of hers, j. The arrival of favor-opportunities, as well as whether the favor

was done, are publicly observed. The authors assume that if i ever declines to do a favor for

42The earliest reference to this type of condition in the repeated games literature that I am aware of is
Fudenberg and Levine (1991).
43Another issue is that– whether the interaction structure is given by random matching or a network–

robustness concerns differ in binary-action games (like those of Kandori and Ellison) and continuous-action
games (like those of Wolitzky and Ali and Miller). In binary-action games, on-path incentive constraints are
often slack when δ is high, so softening punishments by introducing some error tolerance can be costless.
In continuous-action games, on-path incentive constraints bind in the maximial equilibrium, so softening
punishments reduces the maximal incentive-compatible level of cooperation. There is thus a tradeoffbetween
robustness and incentives in continuous-action games.
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j, then i and j never do favors for each other in the future: equivalently, the link between

them is permanently severed. The main case of interest is when this bilateral punishment

is insuffi cient to motivate favors, and that instead a player provides a favor iff she loses at

least m ≥ 2 links if she declines to provide it. Clearly, the strongest incentives to do favors

are provided by multilateral punishment strategies, where a player loses all her links if she

ever fails to do a favor. Under these strategies, a favor-exchange network is sustainable iff

each player has at least m links.

However, the authors argue that these strategies are not renegotation-proof: while it

is assumed that i and j can never repair their link if i declines to do a favor for j, this

presumption does not extend to links between i and her other neighbors. This reasoning

leads the authors to introduce a recursive definition of renegotation-proof networks, where

a network is renegotiation-proof if, whenever a player i fails to do a favor for a neighbor

j (and hence the ij link is deleted), i ends up with at least m fewer links in the largest

renegotiation-proof network that is a subnetwork of the original network without the ij

link. Many networks are renegotiation-proof in this sense, but the authors then additionally

impose a form of “robustness against contagion,”which says that if a link ij is deleted and

the largest renegotiation-proof subnetwork forms, players other than mutual neighbors of i

and j cannot lose any links. It turns out that robustness against contagion and renegotiation-

proofness jointly imply that the network must take a particular form that the authors call

a “social quilt,” which is a union of m-player cliques.44 Finally, one implication of this

structure is that each ij link is “supported”– meaning that i and j have at least one mutual

neighbor, k– and the authors verify that most links are supported in survey data on social

networks in a sample of Indian villages.

Karlan et al. (2009) and Ambrus, Möbius, and Szeidl (2014) consider a different type of

renegotiation in models of informal lending and risk-sharing, respectively. In Karlan et al.’s

model (which was briefly discussed in Section 2.2), an agent i needs a loan from another agent

j. If i gets the loan, she can then obtain some gain g by strategically defaulting; however,

44Jackson, Rodriguez-Barraquer, and Tan’s approach depends on assuming that some punishments– in
particular, deleting link ij when i fails to do a favor for j– cannot be renegotiated. Ali, Miller, and Yang
(2017) consider a related model without this assumption and show that the resulting notion of renegotiation-
proofness is much less restrictive. Notions of renegotiation for general repeated games (where all punishments
can be renegotiated) were previously developed by Farrell and Maskin (1989) and others.
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doing so may cause her to lose her relationship with j, as well as possibly her relationships

with some third parties. These losses are costly because each relationship is assumed to have

some value, which is given exogenously but can be interpreted as a reduced form for some

continuation play.

Without renegotiation, the harshest possible punishment would specify that i loses all

of her relationships if she defaults on the loan. However, the authors assume that i can

organize a coalitional deviation by offering to pay third parties to maintain some of their

relationships. For example, if the set of players is {i, j, k} and the relationship values satisfy

0 = vij+vjk < g < vij+vik, then the threat to destroy the valuable ik relationship (in addition

to the ij relationship) if i fails to repay j is deemed non-credible, because if i fails to repay j

while paying k an amount vjk (which compensates k for the potential loss of his relationship

with j), then i nets a profit of g − vij − vjk > 0. Extending this logic, the authors show

that the maximum amount that i will repay to j when only renegotiation-proof punishments

are allowed is equal to the maximum flow from i to j in the weighted network where the

weight on each link equals the corresponding relationship value. This result follows from

the max-flow min-cut theorem (Ford and Fulkerson, 1956), because coalitional deviations

correspond to network “cuts” that separate i and j, where the amount i must pay third

parties to go along with the deviation equals the value of the cut (i.e., the total value of all

severed relationships), and the max-flow min-cut theorem says that the value of the least

expensive cut that separates i and j equals the maximum flow from i to j. As discussed in

Section 2.2, the authors find some empirical support for the model’s predictions.

Ambrus, Möbius, and Szeidl (2014) consider a similar model, where now many agents

may be called upon simultaneously to make bilateral transfers (which are similar to the

repayments in Karlan et al.) as part of a risk-sharing arrangement. Such an arrangement is

coalition-proof if no set of agents S ⊂ N is called upon to jointly transfer to the remaining

agents Sc = N\S an amount of money that exceeds the total value of all relationships

between agents in S and agents in Sc. In the special case where all relationships are equally

valuable, this observation has interesting implications about the geometry of networks that

support a high degree of risk-sharing. For example, if society tries to support perfect risk-

sharing, the most tempting deviation for coalition S arises when everyone in S has the
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maximum possible income (say 1) and everyone else has the minimum possible income (say

0). In this case, the total on-path consumption of agents in S is given by |S|2 /N (which

equals the size of coalition S, |S|, multiplied by per-capita consumption under perfect risk-

sharing, |S| /N), while the maximum total consumption of these agents if they deviate equals

|S|. Therefore, the coalition S will share risk as prescribed iff the difference |S| − |S|2 /N =

|S| (1− |S| /N) is less than the per-relationship value v multiplied by the size of the perimeter

of S, denoted c (S), which is the number of links between S and Sc. This condition reduces

to a (S) v ≥ 1−|S| /N , where a (S) = c (S) / |S| is the perimeter-area ratio of the set S. This

condition implies in particular that perfect risk-sharing is sustainable only if the perimeter-

area ratio of every set of agents consisting of less than half the community is at least 1/2,

which is a restrictive condition. For example, if agents are arranged on a two-dimensional

grid and S is rectangle, then c (S) is of order
√
|S|, so a (S) is of order 1/

√
|S|, which is

much less than 1/2 when |S| is large. However, the paper goes on characterize conditions

for partial risk-sharing (i.e., relaxing the assumption that risk is shared perfectly even after

extreme shocks like the one where everyone in S has income 1 and everyone else has income

0), and shows that these conditions are satisfied in “plane-like”networks of the kind often

encountered in actual village economies.45

6 Repeated Games in Infinite Populations

In order to understand, say, informal contract enforcement on an online platform like eBay, or

the cooperative norms that prevail in large modern societies more broadly, we must consider

situations where the population size is effectively infinite. If matching in an infinite popula-

tion is uniformly random, then strategies based only on players’personal experiences– such

as contagion strategies– are ineffective, because it is very unlikely that an individual meets

someone who met someone who. . . met her within a payoff-relevant time frame.46 There

45A related kind of coalitional deviation arises in some models of repeated games where players choose
their partners. Such models are considered by Jackson and Watts (2010) in the context of general finitely-
repeated games, and by Xing (2020) in the context of repeated risk-sharing games. These models are also
related to the endogenous matching games discussed in Section 6.1. Relatedly, Bendor et al. (2022) analyze
how frequently to “re-shuffl e”players across parallel repeated games.
46By some reasoning laid out in Section 4.1, the same argument applies when N is finite but larger than

exp (1/ (1− δ)). So there is no discontinuity between large finite populations and infinite ones.
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are thus two broad ways in which cooperation can be supported in an infinite population:

matching can be non-random (as when pairs of players can form long-term relationships), or

players can have access to some additional information about their current partner’s history

(such as a user’s rating on an online platform, or a consumer’s credit rating). I consider the

former type of model in Section 6.1 and the latter type in Section 6.2

6.1 Endogenous Matching

Many economic relationships are naturally modeled as long-term partnerships that can be

ended voluntarily by either party, where separation triggers a search process for both parties

that eventually leads to rematching with new partners. The canonical example is the em-

ployment relationship between a worker and a firm, but business and romantic partnerships

also fit the model well. Such voluntarily severable relationships are a hybrid of standard,

fixed-partner repeated games, and random-matching games of the kind discussed in Section

4. As compared to fixed-partner games, the ability to separate and rematch poses a new ob-

stacle to cooperation, as it can allow a deviating agent to escape punishment. As compared

to random matching games, the ability to stick with one’s current partner helps support

cooperation, as it can allow an agent who behaves well to enjoy future rewards.

The seminal voluntary separation model is Shapiro and Stiglitz’s (1984) work on unem-

ployment as a worker disciplining device. In their model, employees who are caught shirking

are fired and return to the pool of unemployed workers, where it takes time to match with

a new firm. To incentivize workers to exert effort, firms pay “effi ciency wages”that exceed

the present value of unemployment. Shapiro and Stiglitz’s key observation– that incentive

provision depends on matched agents’ continuation payoffs strictly exceeding unmatched

agents’– is fundamental in voluntary separation models.

To see how these models work, suppose there is a continuum of identical agents, and

consider the frictionless benchmark case where each agent is always matched with a partner.

In each period t = 1, 2, . . ., fraction 1 − γ of agents die and are replaced by newborns who

immediately form matches, and each matched pair of players play the PD stage game from

Section 3.1. Note that the survival probability γ replaces the discount factor δ: the per-

period expected lifetime payoff of a player whose expected payoff in her tth period of life is ut
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equals (1− γ)
∑∞

t=1 γ
t−1ut. Assume for simplicity that matched partners always die at the

same time. At the end of every period t, each player can sever her match, which sends both

partners back to the pool, whereupon they immediately rematch with random unmatched

agents at the beginning of period t + 1. Assume that players are anonymous, so when a

player forms a match she does not know if her partner is a new agent or an old agent whose

match has just broken up.47 Players perfectly observe behavior in their own matches, but

get no information about behavior in other matches.

In this model, there is no Nash equilibrium where players cooperate in every period. For,

if there were, players would take C in the first period of every new match; but then a deviant

who in every period takes D and then separates from her current partner and rematches

would obtain a payoff of 1 + g in every period, which exceeds the mutual cooperation payoff

of 1. This observation just restates the point that incentive provision depends on matched

agents’continuation payoffs strictly exceeding unmatched agents’.

While cooperation cannot be supported in every period, it can be supported in most

periods if γ is suffi ciently high.48

Theorem 11 (Cooperation with Voluntary Separation) For any T ∈ N such that

γT+1 ≤ γ − (1− γ) g, (2)

there exists a sequential equilibrium where each player’s per-period expected payoff equals

γT+1. In particular, for any ε > 0, there exists γ̄ < 1 such that, for every γ > γ̄, there is

a sequential equilibrium of the voluntary separation game with survival probability γ where

each player’s per-period expected payoff exceeds 1− ε.

This result follows from considering T -period trust-building strategies, where newly matched

partners play D for the first T periods of their relationship and then switch to playing C

forever, with any deviation punished by immediate break-up. This strategy profile– which I

47The difference between the voluntary separation models covered in the current section and models where
players have the option of exiting and re-entering under a pseudonym (as in Friedman and Resnick, 2001) is
that in the latter case the partner of a player who exits can carry his reputation over to his next match– his
record is not wiped clean just because his partner’s is. Thus, while the two models are similar, there are
more equilibria in “cheap pseudonym”models than in standard voluntary separation models.
48This type of result seems to have been first noted by Datta (1993) and Kranton (1996a).
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will denote by σT– gives each player an expected payoff of γT+1, since on path ut = 0 for for

the first T periods of a player’s life and ut = 1 thereafter. To see when strategy σT forms an

equilibrium, note that there is nothing to be gained by deviating fromD to C during the first

T periods of a relationship, or by breaking up a relationship prematurely (since continuation

payoffs increase over the course of each relationship). So, the only tempting deviation is

playing D rather than C in a relationship that has already lasted more than T periods. A

player who deviates in this way gets a current-period payoff of 1 + g and then rematches,

for a total continuation payoff of (1− γ) (1 + g) + γT+1 (1). Therefore, σT is an equilibrium

iff this deviation payoff is less than the equilibrium continuation payoff of a player whose

relationship has already lasted more than T periods, which equals 1. This inequality reduces

to (2). Finally, the right-hand side of (2) converges to 1 as γ → 1, so T can be chosen as a

function of γ so that σT (γ) is an equilibrium yielding payoffs that converge to 1 as γ → 1.

This last step reflects the fact that, when γ ≈ 1, approximately g periods of trust building

are required to deter deviations, and waiting g periods before starting to cooperate is almost

costless when γ ≈ 1.

The essential feature of trust-building strategies is that newly matched players do not im-

mediately start cooperating. This feature is reflected in many real-world social and economic

relationships, presumably for much the same reason as in the model: if strangers are trusted

as thoroughly as long-term partners, the ability to repeatedly exploit new partners destroys

cooperation. This and related points are discussed by Carmichael and MacLeod (1997), who

also note that other mechanisms besides delay can serve to build trust, such as ceremonial

gift exchanges at the start of relationships that amount to a form of “money-burning.”The

exchange of wedding rings is a standard example.49

While trust-building strategies are approximately effi cient when the survival probability

γ is high, they can generally be improved upon for a given value of γ. Eeckhout (2006) shows

that one way to do this is through “endogenous segregation,”where a payoff-irrelevant trait

like skin color determines the time at which cooperation commences in each relationship.

In his model, skin color serves as a correlating device, the availability of which is shown to

49The relationship-building role of gift exchanges has also been intensively studied by anthropologists,
dating back to the foundational works of Malinowski (1922) and Mauss (1925).
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yield a strict Pareto improvement for generic values of the parameters (g, `, γ). To see the

basic idea, suppose that γ is low enough that 1-period trust-building strategies (i.e., σ1)

form an equilibrium, and that moreover so do strategies where new partners mix between

C and D with some probabilities in the first period of their relationship (before taking C

with probability 1 beginning in the second period). Such independent mixing between C and

D typically entails some ineffi ciency as compared to the case where the players can jointly

mix between (C,C) and (D,D), which becomes possible if a correlating device is available.

Fujiwara-Greve and Okuno-Fujiwara (2009) show that it is also possible to improve on the

T -period trust-building strategy σT without exogenously introducing correlating devices, by

instead considering equilibria where players mix between σT and σT−1.

It is also interesting to consider the effects of introducing adverse player types in voluntary

separation models, such as a fraction of players who are committed to always playing D (like

the commitment types in Section 4.2). Ghosh and Ray (1996) show that the presence of

such types can sometimes help support cooperation. This is because the presence of adverse

types in the matching pool discourages players from exploiting and then separating from

their current partners. For example, in this model σ0 (i.e., immediate cooperation in each

relationship) is an equilibrium iff the population share of adverse types is intermediate.

Indeed, if the share of adverse types is close to 0, then rational player payoffs under σ0 are

close to 1, while a deviator who always takes D gets a payoff close to 1+g; while if the share

of adverse types is close to 1, then rational player payoffs under σ0 are close to −`, while a

deviator who always takes D gets a payoff close to 0; however, it is not hard to show that

σ0 is sometimes an equilibrium for an intermediate share of adverse types.50

6.2 Uniform Matching and Record-Keeping

The applications just discussed notwithstanding, there are also many economic relationships

which are necessarily short-term: for instance, a consumer is typically interested in trans-

50Conversely, features of the environment that improve payoffs for the pool of anonymous, unmatched
players can undermine cooperation by making separation more attractive. Kranton (1996b) argues that the
development of market exchange can play such a role (see also Baker, Gibbons, and Murphy, 1994). Gagnon
and Goyal (2017) analyze a related model where long-run relationships are governed by a network, and
Banerjee et al. (2021) develop an empirical application to credit markets in rural India.
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acting at most once with any one eBay seller or AirBnB host. In an effectively infinite

population with short-term relationships, incentives can be provided only if players have

access to some information about their current partners’ histories. We will see that the

richness of this information is a key determinant of the scope for cooperation. In particular,

if players receive information about their partners’past actions but not about the context

of these actions– such as, for example, what actions their partners’past partners took to-

ward them– then whether non-myopic play can be supported may depend on the details

of the stage game. In contrast, the folk theorem holds quite generally when this type of

contextualizing information is available.

To state these results precisely, we must first specify a model of repeated games with

random matching in an infinite population, given an underlying symmetric, 2-player stage

game (A, u). There are two main ways of doing this. The first adapts the fixed finite-

population models discussed in Section 4.1 to a fixed infinite population, and in particular

assumes that all players start the game at the same time, share a common notion of calendar

time, and are infinitely-lived with discount factor δ. This approach is taken by Okuno-

Fujiwara and Postlewaite (1995) and Takahashi (2010). The second approach modifies the

models with entry and exit covered in Section 6.1 by replacing voluntary separation with

uniform random matching, and thus considers steady states in a model where each player has

a geometric lifespan with survival probability γ. This approach is taken by Clark, Fudenberg,

and Wolitzky (2020). As we will see, many results in these two classes of models are similar,

although there are also some differences.

In either model, one assumes that each player carries a record r that summarizes some

information about her history, and that when two players meet, each observes the other’s

record but no further information.51 At the end of each period, a player’s record is updated

according to an exogenous rule that typically depends on at most the current partner’s record

and both players’actions. If the updating rule depends only on a player’s own action, the

record is called first-order. A leading example of first-order records arises when a player’s

record consists of the entire history of her own actions, so that players perfectly observe their

51The term record is from Clark, Fudenberg, and Wolitzky. Okuno-Fujiwara and Postlewaite call the
same object a status level ; Kandori (1992b) calls it a player’s state; and the evolutionary biology literature
surveyed by Sigmund (2010) often calls it a player’s standing.
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partners’past play but get no further information– this is the case considered by Takahashi

(2010). If the updating rule additionally depends on the partner’s action– as for example in

the case where a player’s record consists of the entire history of the (own action, opponent’s

action) outcomes of her past matches– the record is called second-order. In the general

case where the updating rule can also depend directly on the partner’s record– as in certain

models of “social standing”(Sigmund, 2010)– records are called interdependent.

Second-order records turn out to be rich enough to support a general folk theorem. Let A0

denote each player’s stage-game action set, and let vP = minaj∈A0 maxai∈A0 u (ai, aj) denote

the pure-strategy minmax payoff.

Theorem 12 (Folk Theorem with Second-Order Records) There exists a second-order

record system such that the following holds: for any action a0 satisfying u (a0, a0) > vP , there

exists δ̄ < 1 such that, for every δ > δ̄, there is a sequential equilibrium of the repeated game

with discount factor δ where all players take a0 in every period along the equilibrium path.

This result combines ideas from Okuno-Fujiwara and Postlewaite and Clark, Fuden-

berg, and Wolitzky.52 It applies equally for fixed-population games and games with geo-

metric player lifespans (with γ in place of δ). To prove it, fix a minmaxing action a− ∈

argminaj∈A0 maxai∈A0 u (ai, aj) and a best response a+ 6= a0 to a−, and let (α, α) be a sym-

metric stage-game Nash equilibrium.53 Suppose that each player’s record is Good if the

outcome of each of her past matches is either (a0, a0) or (a−, a+), and is Bad otherwise: note

that, by definition, such records are second-order. Finally, suppose that when two players

meet, both take a0 if both of their records are Good ; both take α if both of their records

are Bad ; and otherwise the Good-record player takes a− and the Bad-record player takes

a+. To see that these strategies form an equilibrium when δ is suffi ciently high, note that

the Bad record is absorbing and that Bad-record players always take myopic best responses.

Since a+ 6= a0, a Good-record player who meets a Good-record opponent (and thus antici-

pates that the opponent will play a0) must play a0 to maintain her Good record; similarly, a

52Sugden (1986) and Kandori (1992b) established related results.
53Such (a−, a+) always exist unless a0 is the unique best response to every minmaxing action. In this

case, Theorem 12 remains true, but the proof requires a more complicated construction. See Theorem 2(i)
of Clark, Fudenberg, and Wolitzky for the details.
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Good-record player who meets a Bad-record opponent must play a− to maintain her record.

Note that in equilibrium all players’records are Good, so a Good-record player’s continuation

payoff is u (a0, a0), while that of a Bad-record is vP . Therefore, when δ is suffi ciently high,

it is optimal for Good-record players to play a0 against Good-record opponents and to play

a− against Bad-record opponents, as prescribed.

This argument invites the question of whether Theorem 12 is robust to introducing

noise– e.g., constraining players to take each action with at least ε probability– which would

guarantee that a positive share of players has every possible record. Clark, Fudenberg, and

Wolitzky show that the result is indeed robust, in that there exists a sequence of equilibrium

steady states that converges to the steady state where all players have Good records in the

double limit where (γ, ε) → (1, 0). Moreover, the corresponding equilibria are strict, which

ensures robustness to various further perturbations of the model.

Theorem 12 shows that a relatively small amount of contextualizing information is enough

to support cooperation in large populations: it suffi ces to observe summary statistics of one’s

partner’s past outcomes, meaning both their own actions and what actions were taken toward

them. However, in some settings contextualizing information is entirely absent, such as when

a platform user’s rating depends only on the quality of the products she has sold, so that

only first-order records are available. In this case, whether cooperation is supportable for

high δ turns out to depend on the details of the stage game.

To see the idea, consider again the PD stage game introduced in Section 3.1, and suppose

that records are first-order, so that a player’s continuation payoff at the beginning of period

t + 1 depends only on her own period t record and action. If a player is supposed to take

C rather than D against an opponent whom she expects to take C, her continuation payoff

must be at least g utils higher when she takes C rather than D (because she would gain g

in the current period by taking D). On the other hand, if she is supposed to take D against

an opponent whom she expects to take D, her continuation payoff must be at most ` utils

higher when she takes C rather than D (because she would lose ` in the current period by

taking C). In particular, if g > `– so that the game is strictly submodular, meaning that C

is relatively more attractive when the opponent takes D– then it is impossible to motivate

a player to take C against opponents who take C while taking D against opponents who
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take D. Moreover, in the absence of such “reciprocating”behavior, it can be shown that

cooperation cannot be supported in any strict equilibrium.54

Theorem 13 (Anti-Folk Theorem with First-Order Records) For any first-order record

system and any discount factor δ, if the stage game is the submodular PD then the unique

strict equilibrium in the repeated game is Always Defect.

By contrast, in the strictly supermodular PD (where g < `) with a fixed population of

infinitely-lived players, Takahashi shows that there exists a strict equilibrium where players

cooperate in every period along the equilibrium path. This result follows by using Ellison’s

“threading”technique to tune the effective discount factor so that the difference in a player’s

continuation payoff when she takes C rather than D lies in between g and `. However, if

one introduces noise in the model, then eventually play in such an equilibrium converges to

mutual defection in every period, so these equilibria do not seem very robust. Consistent with

this intuition, Clark, Fudenberg, and Wolitzky establish necessary and suffi cient conditions

for mutual cooperation to be supported in a robust equilibrium steady state with geometric

player lifespans and noise when (γ, ε) → (1, 0), and find that these conditions are strictly

more restrictive than g < `.55

While Theorem 13 shows that cooperation with first-order records in the PD is delicate,

cooperation becomes much more robust if the game is augmented with an “exit option,”

which yields some payoff between 0 and 1 for both players whenever either player takes it.

Intuitively, the problem with first-order records in the PD is that they cannot distinguish

between “justified” defections that are taken to punish an opponent with a bad record,

and “unjustified”defections that are taken to exploit an opponent with a good record. If

punishments are instead delivered by “exiting,”this distinction does not need to be drawn,

because a player who expects her opponent to cooperate is not tempted to exit. Clark,

54This result was established for fixed-population games by Takahashi, and for games with geometric player
lifespans by Clark, Fudenberg, and Wolitzky. Heller and Mohlin (2018) derive the same result in a model
with infinitely-lived players and doubly-infinite time. Takahashi shows that cooperation can be supported
in a non-strict, belief-free equilibria when g ≥ l; however, Heller and Mohlin exhibit a sense in which these
equilibria are non-robust. Dilmé (2016) establishes related results, focusing on the case where g = l.
55Heller and Mohlin (2018) derive related conditions for the existence of cooperative equilibria in their

doubly-infinite time model. Their equilibria are not strict but do satisfy a stability condition.
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Fudenberg, and Wolitzky formalize this point by deriving a folk theorem with first-order

records for games where such “unprofitable punishments”are available.56

The models discussed so far involve normal-form stage games. Bhaskar and Thomas

(2018) consider a sequential-move stage game, where a lender decides whether to extend a

loan, and then a borrower decides whether to repay. They show that cooperative equilibria

unravel when records are of any bounded length T (under a “purifiability” refinement),

because lenders cannot be prevented from lending to borrowers who last defaulted exactly

T periods ago, which effectively reduces records to length T − 1, and so on. However,

cooperation is restored if lenders learn only whether or not the borrower defaulted at some

point in the last T periods. This result provides a rationalization for coarse credit reports.57

Finally, a number of important papers analyze how specific institutional mechanisms pro-

vide enough information for large groups to cooperate in particular contexts. In addition to

the work on online ratings systems and credit ratings already discussed, these include Mil-

grom, North, and Weingast (1990) on private judges in medieval trade fairs, Greif, Milgrom,

and Weingast (1994) and Clay (1997) on merchant coalitions in medieval Europe and 19th-

century California, respectively, Kiyotaki and Wright (1993) on fiat money, Kandori and

Obayashi (2014) on Japanese labor unions, and Budish (2018), Abadi and Brunnermeier

(2019), and Biais et al. (2019) on blockchains.

7 Institutionalized Enforcement

In all of the models I have considered so far, cooperative behavior is enforced informally

through repeated game effects. In contrast, traditional economic models implicitly assume

the existence of an all-powerful legal system that perfectly enforces any agreement that

agents may make. In reality, incentives derive from both informal, relational sources and

formal, institutionalized ones. A number of recent papers have tried to understand how these

56This result resonates with a debate in evolutionary biology as to whether the inability to distinguish
warranted punishments from unwarranted deviations is a significant impediment to supporting cooperation.
Feher and Gächter (2002) and Boyd et al. (2003) argue for the importance of costly punishments, while
Baumard (2010) and Guala (2012) suggest that human cooperation is supported by the threat of simply
avoiding deviators (an example of an “unprofitable punishment”), rather than actively punishing them.
57Other studies of credit reporting as an information system in a repeated game include Klein (1992) and

Padilla and Pagano (2000).
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different sources of incentives interact. For example, what types of behaviors are, or should

be, enforced only informally, and when instead does the legal system or another institution

with coercive power involve itself in regulating behavior? Are formal and informal incentives

“complements” or “substitutes”? Given that judges, police offi cers, and armed goons are

presumably all rational agents in their own rights, should we even distinguish between formal

and informal enforcement at all, rather than viewing all of society as being constantly engaged

in a single “game of life”(Binmore, 1994)? No standard modeling approach for addressing

these questions has yet emerged, but I will nonetheless try to give a snapshot of the state of

the literature.

I will distinguish between two general perspectives on how institutionalized enforcement

relates to standard repeated game enforcement of the kind discussed in the earlier sections.

The first is that institutionalized enforcement is that subset of repeated game enforcement

which is carried out by special agents whom we call “judges,”“police,”or “goons,”where

these agents differ from “regular agents”in that they have access to special types of punishing

actions, such as imprisonment or corporal punishment. This perspective of “institutional en-

forcement as special sanctions”is taken by Ramey and Watson (2002), Dixit (2003a,b, 2004),

Sánchez-Pagés and Straub (2010), Aldashev et al. (2012), Andreoni and Gee (2012), Masten

and Prüfer (2014), Acemoglu and Jackson (2016), Levine and Modica (2016), Aldashev and

Zanarone (2017), and Acemoglu and Wolitzky (2020, 2021). The second perspective is that

institutionalized enforcement refers to a special type of payoff-irrelevant signal or message

that serves to coordinate the players in the game, such as a legal ruling or royal decree.

This perspective of “institutional enforcement as special communication”(which is related

to the analysis of information systems in Section 6.2) is taken by Myerson (2004), Benabou

and Tirole (2011), Hadfield and Weingast (2012), McAdams (2015), Mailath, Morris, and

Postlewaite (2017), Basu (2018), and Jackson and Xing (2020). A thorough survey of this

literature would require its own paper, so I will just discuss a couple articles from each of

these two lines of research that are especially closely related to standard repeated game

models of community enforcement.58

58There are also other perspectives on institutional enforcement besides these two. For example, a third
perspective, emphasized by North, Wallis, and Weingast (2009), is that laws are distinguished by being
“impersonal”: that is, by treating agents differently based only on their societal positions, rather than their
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Acemoglu and Wolitzky (2020) add agents specialized in coercive enforcement to a stan-

dard community enforcement model, so the population consists of N “regular agents”and

M “enforcers,”where for simplicity I here take M = 1. Every period, each regular agent i

chooses a “cooperation level”ai ∈ R+, which provides a benefit of f (ai) to every other agent

(both the other regular agents and the enforcer) at a cost of ai to agent i, where f is an in-

creasing, concave, and bounded function.59 At the end of every period, after observing each

regular agent’s chosen cooperation level, the enforcer chooses a “punishment level”bi ∈ R+

for each regular agent i, which inflicts a disutility of g (bi) upon agent i at a cost of bi to

the enforcer, where g is another increasing and concave function (which may or may not be

bounded). Thus, just as regular agents must be incentivized to operate their “production

technology”f , so the enforcer must be incentivized to operate his “punishment technology”

g. The game is repeated under perfect monitoring, and all agents (both regular agents and

the enforcer) share a common discount factor δ.

The paper asks what subgame perfect equilibrium maximizes cooperation among regular

agents.60 Since monitoring is assumed to be perfect, an obvious candidate is grim trigger

strategies, where regular agents take some prescribed action a∗ so long as no regular agent

has yet deviated, and otherwise take the myopically optimal action, 0. These strategies

always form an optimal equilibrium without an enforcer, but they are never optimal when

an enforcer is present (though they remain an equilibrium, since everyone can always ignore

the enforcer). The reason is that grim trigger strategies give the enforcer no incentives to

operate the punishment technology: under these strategies, cooperation completely breaks

down after any deviation, so the enforcer has no incentive to exert “punishment effort”

himself.

Instead, consider “repentance strategies,”where if some regular agent i deviates in period

t, she is supposed to be punished by the enforcer at the end of period t, and then is supposed

to cooperate in period t+ 1 while all other regular agents exert 0 effort; and then (assuming

that the enforcer punishes agent i at the end of period t and agent i exerts effort in period

personal identities.
59The modeling of regular agents here is thus as in Wolitzky (2013), which I discussed in Section 5.1.
60This equilibrium also maximizes utilitarian social welfare if the maximum cooperation level is below the

first-best level.
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t+1) all regular agents resume cooperation at the original on-path level a∗ in period t+2. It

is not hard to see that in the absence of an enforcer, repentance strategies support the same

maximum cooperation level as grim trigger strategies.61 Hence, since repentance strategies

provide some incentive to the enforcer, they support a strictly higher cooperation level in

the game with an enforcer. Indeed, the optimal equilibrium with an enforcer can be shown

to take a form similar to repentance strategies, with the difference that if the punishment

technology is suffi ciently effective, the optimal equilibrium may involve no reduction in effort

by regular agents following a deviation by another regular agent. In this case, the threat of

reduced effort by regular agents is used exclusively to motivate the enforcer; and, conversely,

regular agents are motivated solely by the threat of being punished by the enforcer. A

suffi cient condition for such “enforcer punishment strategies”to be optimal is that g′ (b) ≥ 1

for all b ∈ R+.

Acemoglu and Wolitzky (2021) extend this model to develop a theory of the emergence

of legal equality. Suppose that the coercive punishment technology is now in the hands of a

“state,”and that there are two types of productive agents: “regular agents”and “elites.”The

difference between these two types of agents is that elites are partially immune to coercive

punishment: while the state can inflict a punishment of g on a regular agent, it can only

inflict a punishment of ρg on an elite, where ρ ∈ [0, 1] is a parameter that measures the

extent to which elites are “above the law.”The paper asks what level of ρ is collectively

preferred by elites. Intuitively, a higher value of ρ (corresponding to greater legal equality)

commits elites to exerting more effort, which is myopically costly but has the benefit of

increasing continuation values for both regular agents and elites, which in turn increases

the maximum incentive-compatible effort level of regular agents. A key comparative static

is that the elite-preferred level of ρ is decreasing in g: that is, the greater is the “coercive

capacity”of the state, the less inclined are elites to move toward legal equality. The logic of

this result is that, since there are diminishing returns to effort (i.e., f is concave), trading off

greater own effort for greater normal-agent effort by increasing ρ is less attractive for elites

61Intuitively, under repentance strategies the deviator “burns her own utility” instead of facing future
punishment. The observation that optimal equilibria are stationary when unbounded money-burning is
available is similar to results that arise in repeated games with transferrable utility (Levin, 2003; Goldlücke
and Kranz, 2012).
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when the threat of coercive punishment already induces a higher level of normal-agent effort.

Turning from enforcement-based theories to informational ones, Hadfield and Weingast

(2012) articulate a view of legal decisions as mechanisms for coordinating multilateral pun-

ishment. In their model, a seller interacts repeatedly with each of two buyers. The seller has

occasional opportunities to short-change each buyer, and can be deterred from doing so by

the threat of a coordinated boycott, where both buyers break off trade; however, the threat

of a unilateral boycott is assumed to be insuffi cient to deter opportunism by the seller. Each

buyer receives a private signal of whether she was short-changed in the current period, so it

is possible for each buyer to threaten to boycott the seller when she is short-changed. But,

since it is assumed that the buyers cannot communicate with each other, a buyer cannot

threaten to boycott the seller when the other buyer is short-changed, and hence seller op-

portunism cannot be deterred.62 To this model, Hadfield and Weingast add a “classification

institution,”where each buyer reports her signal to the institution at the end of each period,

and the institution then issues a public “ruling”regarding the seller’s behavior. The authors

show that, if the institution’s rulings are suffi ciently accurate, they can form the basis for

coordinated boycotts, and can thereby deter seller opportunism.

Jackson and Xing (2020) develop another model where legal decisions coordinate multi-

lateral punishment, with the novel feature that these punishments can be carried out only

within an individual’s own community. In the model, each individual needs a task to be

completed in every period. A binding societal convention dictates which tasks are to be

completed within the community, and which are to be completed in the market. Due to gains

from specialization, tasks can always be completed more effi ciently in the market. However,

agents are assumed to interact in the market anonymously, whereas their identities are ob-

served within their community. This implies that an agent who fails to complete another

community member’s task can be completely ostracized within her community, while an

agent who fails to complete a market task can only be forced to pay a fine (which is assumed

to be capped at a certain level). There is thus a familiar tradeoff between more-effi cient

62This situation is similar to the models of multilateral enforcement on networks that we encountered in
Section 5.1. View the seller as the center node in a three-node line, and suppose that simultaneous PD’s
are played on each link, and that the peripheral nodes cannot directly communicate with each other. Then
cooperation by the seller can be supported iff it can be supported in each bilateral relationship independently.
This result is formalized by Proposition 1 in Wolitzky (2015).
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market exchange and better-monitored and enforced community exchange. The model adds

to this standard situation the assumption that if an agent shirks a market task, then not

only is she fined, but with some probability the information that she shirked in the market

spreads to her community, in which case she may also be ostracized by her community. Due

to this effect, allocating more tasks to the community effectively makes market exchange

more enforceable, as it increases the penalty for shirking in market exchange (i.e., the fine

plus the product of the probability of ostracism and the loss from being excluded from com-

munity tasks). Together with the assumption that market exchange is more effi cient, this

effect implies that it is typically optimal to allocate some tasks to the market and others to

the community. The model thus uncovers a novel complementarity between community and

market exchange.

8 Conclusion

Our theoretical understanding of large-group cooperation has already come a long way. A

generation ago, economists were just beginning to understand the importance of informal

contractual enforcement and collective action, as well as the role of information and repeated

interaction in supporting these behaviors. We now have a much more sophisticated under-

standing of, for example, the interaction among group size, patience, and information; the

distinct roles of collective and individual sanctions; the significance of whether behavior is

monitored through centralized, public signals or decentralized, private ones; the role of social

structures such as networks and voluntarily separable relationships; and the importance of

various types of informational and coercive institutions.

Nonetheless, in reviewing this literature I am mostly struck by how much we still have

to learn. In almost every area I have touched on, only a couple papers have been written

(or at most a small handful), and there are many wide open questions with prima facie

relevance to important applied questions. For example, while we are beginning to appreciate

the significance of various model features, such as whether signals are public or private,

whether noise is modeled as independent shocks or the presence of adverse types, or whether

matching is random or network-like, we seem to know extremely little about how these
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different features interact with each other. Since theory research in this area aspires to

influence more applied thinking on social cooperation as well as empirical work (which are,

of course, proceeding apace), constructing more unified models that take these interactions

into account seems to be a relatively urgent task.

Finally, I have said very little about other areas of economic theory that bear on social co-

operation, such as behavioral economics (e.g., Sobel, 2005), organizational economics (Kreps,

1990; Baker, Gibbons, and Murphy, 2002), and political economy (Myerson, 2008; North,

Wallis, and Weingast, 2009; Acemoglu and Robinson, 2012). Synthesizing some of the core

models in these areas– such as models of social preferences, corporate culture, and organi-

zational or political hierarchies– with those considered in this survey is another promising

direction for future research.
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