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Abstract

This paper studies the maximum level of cooperation that can be sustained in perfect

Bayesian equilibrium in repeated games with network monitoring, where players observe each

other’s actions either perfectly or not at all. The foundational result is that the maximum

level of cooperation can be robustly sustained in grim trigger strategies. If players are equally

well monitored, comparative statics on the maximum level of cooperation are highly tractable

and depend on the monitoring technology only through a simple statistic, its effective conta-

giousness. Typically, cooperation in the provision of pure public goods is greater in larger

groups, while cooperation in the provision of divisible public goods is greater in smaller groups,

and making monitoring less uncertain in the second-order stochastic dominance sense increases

cooperation. For fixed monitoring networks, a new notion of network centrality is developed,

which determines which players cooperate more in a given network, as well as which networks

support greater cooperation.

1 Introduction

How can groups sustain as much cooperation as possible? Should they rely exclusively on punishing

individuals who are caught shirking, or should they also reward those who are “caught working?”
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Relatedly, what kinds of groups can sustain the most cooperation? Large ones or small ones?

Ones where “who observes whom”in the group is known, or where it is uncertain?

These are fundamental questions in the social sciences (Olson, 1965; Ostrom, 1990; Coleman,

1990; Putnam, 1993; Greif, 2006). In economics, existing work on the theory of repeated games

provides a framework for answering these questions when individuals can perfectly observe each

other’s actions (e.g., Abreu, 1988), but provides much less explicit answers in the more realistic case

where monitoring is imperfect. This weakness is particularly acute in settings where public signals

are not very informative about each individual’s actions and high quality– but dispersed– private

signals are the basis for cooperation. Consider, for example, the problem of maintaining a school

in a small village in the developing world. Every year, say, different villagers must contribute

different inputs to running the school: some provide money, some provide labor to maintain the

building, some volunteer in other capacities, etc. These inputs are not publicly observable, and

different villagers observe each other’s actions with different probabilities. The overall quality of

the school is very hard to observe directly, and indeed one might not be able to infer much about

it until one sees how well the students do years down the road, by which time the entire system of

providing education in the village may have changed. This problem was studied theoretically and

empirically (using data on schools and wells in rural Kenya) by Miguel and Gugerty (2005), under

the assumption that each household’s contribution is publicly observable, but this assumption is

often unrealistic; for example, Miguel and Gugerty emphasize the importance of ethnic divisions

in the villages they study, so a natural assumption would be that a household is more likely to

be monitored by households from the same ethnic group. A second example is the problem

of cooperation in long-distance trade, argued by Greif and others to be an essential hurdle to

the development of the modern economy. Here, a key issue is often how sharing information

through network-like institutions like trading coalitions (Greif 1989, 1993), trade fairs (Milgrom,

North, and Weingast, 1990), and merchant guilds (Greif, Milgrom, and Weingast, 1994) facilitates

cooperation. Thus, it is certainly plausible that local, private monitoring plays a larger role than

public monitoring in sustaining cooperation in many interesting economic examples, and very little

is known about how cooperation is best sustained under this sort of monitoring.

This paper studies cooperation in repeated games with network monitoring, where in every

period a network is independently drawn from a (possibly degenerate) known distribution, and

players perfectly observe the actions of their neighbors but observe nothing about any other player’s

action. The model covers both monitoring on a fixed network (as when a household’s actions are
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always observed by its geographic neighbors, or by households in the same ethnic group), and

random matching (as when traders randomly meet in a large market). Each player’s action is

simply her level of cooperation, in that higher actions are privately costly but benefit others.

The goal is to characterize the maximum level of cooperation that can be sustained robustly in

equilibrium, in that it can be sustained for any information that players may have about who has

monitored whom in the past. This robustness criterion captures the perspective of an outside

observer, who knows what information players have about each other’s actions, but not what

information players have about each other’s information about actions (or about their information

about others’information about actions, and so on), and who therefore must make predictions that

are robust to this higher-order information.1

A first observation is that for any given specification of players’higher-order information, the

strategies that sustain the maximum level of cooperation can depend on players’private information

in complicated ways that involve a mix of rewards and punishments, and determining the maximum

level of cooperation appears intractable. In contrast, my main theoretical result is that the robust

maximum level of cooperation is always sustained by simple grim trigger strategies, where each

player cooperates at a fixed level unless she ever observes another player fail to cooperate at

his prescribed level, in which case she stops cooperating forever. Thus, robust cooperation is

maximized through strategies that involve punishments but not rewards. In addition, grim trigger

strategies also maximize cooperation when players have perfect knowledge of who observed whom in

the past (as is the case when the monitoring network is fixed over time, for example); interestingly,

it is when players have less higher-order information that more complicated strategies can do better

than grim trigger. A rough intuition for these results is that when players know who observed

whom in the past there is a kind of “strategic complementarity” in which a player is willing to

cooperate more at any on-path history whenever another player cooperates more at any on-path

history, because– with network monitoring and grim trigger strategies– shirking makes every on-

path history less likely; but this strategic complementarity breaks down when players can disagree

about who has observed whom.

This result about how groups can best sustain cooperation has implications for what groups

can sustain the most cooperation. For these more applied results, I focus on two important special

cases of network monitoring: equal monitoring, where in expectation players are monitored “equally

1There are of course other kinds of robustness one could be interested in, and strategies that are robust in one

sense can be fragile in others. See the conclusion of the paper for discussion.
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well”; and fixed monitoring networks, where the monitoring network is fixed over time.

With equal monitoring, I show that the effectiveness of a monitoring technology in supporting

cooperation is completely determined by one simple statistic, its effective contagiousness, which is

defined as

∞∑
t=0

δtE [number of players who learn about a deviation within t periods] .

This result formalizes the simple idea that more cooperation can be sustained if news about a

deviation spreads throughout the network more quickly. It implies that cooperation in the provision

of pure public goods (where the marginal benefit of cooperation is independent of group size) is

increasing in group size if the expected number of players who learn about a deviation is increasing

in group size, while cooperation in the provision of divisible public goods (where the marginal benefit

of cooperation is inversely proportional to group size) is increasing in group size if the expected

fraction of players who learn about a deviation is increasing in group size. Hence, cooperation

in the provision of pure public goods tends to be greater in larger groups, while cooperation in

the provision of divisible public goods tends to be greater in smaller groups. In addition, making

monitoring more “uncertain”in a certain sense reduces cooperation.

With fixed networks, I develop a new notion of network centrality that determines both which

players cooperate more in a given network and which networks support more cooperation overall,

thus linking the graph-theoretic property of centrality with the game-theoretic property of robust

maximum cooperation. For example, adding links to the monitoring network necessarily increases

all players’ robust maximum cooperation, which formalizes the idea that individuals in better-

connected groups cooperate more.

The results of this paper may bear on questions in several fields of economics. First, a literature

in public economics studies the effect of group size and structure on the maximum equilibrium level

of public good provision. One strand of this literature studies repeated games, but characterizes

maximum cooperation only with perfect monitoring. Papers in this strand have found few un-

ambiguous relationships between group size and structure and maximum cooperation.2 A second

2Pecorino (1999) shows that with perfect monitoring public good provision is easier in large groups, because

shirking– and thus causing everyone else to start shirking– is more costly in large groups. Haag and Lagunoff (2007)

show that with heterogeneous discount factors and a restriction to stationary strategies, maximum cooperation is

increasing in group size. Bendor and Mookherjee (1987) consider imperfect public monitoring, and present numerical

evidence evidence suggesting that higher payoffs can be sustained in small groups when attention is restricted to

trigger strategies. In a second paper, Bendor and Mookherjee (1990) allow for network structure but return to the
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strand studies one-shot games of public good provision in networks (Ballester, Calvó-Armengol, and

Zenou, 2006; Bramoullé and Kranton, 2007a; Bramoullé, Kranton, and D’Amours, 2011), where the

network determines local payoff interactions– and, in particular, incentives for free-riding– rather

than monitoring. These papers find that more central players (measured by Bonacich central-

ity or a modification thereof) cooperate less and receive higher payoffs, due to free-riding, and

that adding links to a network decreases average maximum cooperation, by increasing free-riding.

In contrast, my model, which combines elements from both strands of the literature, makes the

following predictions, which are made precise later:

1. Cooperation in the provision of pure public goods is greater in larger groups, while cooperation

in the provision of divisible public goods is greater in smaller groups.

2. Less uncertain monitoring increases cooperation.

3. More central players cooperate more (unlike in the public goods in networks literature) but

still receive higher payoffs with local public goods (like in that literature).

4. Adding links to a monitoring network increases all players’cooperation.

Second, several seminal papers in institutional economics study the role of different institutions

in sharing information about past behavior to facilitate trade (Greif, 1989, 1993; Milgrom, North,

and Weingast, 1990; Greif, Milgrom, and Weingast, 1994). Ellison (1994) notes that the models

underlying these studies resemble a prisoner’s dilemma, and shows that cooperation is sustainable

in the prisoner’s dilemma with random matching for suffi ciently patient players, which suggests

that information-sharing institutions are not always necessary. The current paper contributes

to this literature by determining the maximum level of cooperation in a prisoner’s dilemma-like

game at any fixed discount factor for any network monitoring technology. Thus, it allows one

to determine the exactly how much more cooperation can be sustained in the presence of a given

information-sharing institution.

Third, a young and very active literature in development economics studies the impact of

network structure on different kinds of cooperation, such as favor exchange (Karlan et al, 2009;

Jackson, Rodriguez-Barraquer, and Tan, 2011) and risk-sharing (Ambrus, Möbius, and Szeidl, 2010;

Bramoullé and Kranton, 2007b; Bloch, Genicot, and Ray, 2008). The predictions of this paper

enumerated above can be suggestively compared to some early empirical results in this literature,

assumption of perfect monitoring, and find an ambiguous relationship between group size and maximum cooperation.
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although clearly much empirical work remains to be done. For example, Karlan et al (2009) find

that indirect network connections between individuals in Peruvian shantytowns support lending

and borrowing, consistent with my finding that more central players cooperate more. More subtly,

Jackson, Rodriguez-Barraquer, and Tan (2011) find that favor-exchange networks in rural India

exhibit high support, the property that linked players share at least one common neighbor. While

it seems natural that support (which is the key determinant of cooperation in Jackson, Rodriguez-

Barraquer, and Tan’s model) should be correlated with robust maximum cooperation in my model,

I leave studying the precise empirical relationship between the two concepts for future research.

A few final comments on related literature: It should be noted that the aforementioned paper of

Ellison (1994), along with much of the related literature (e.g., Kandori, 1992; Deb, 2009; Takahashi,

2010) focuses on the case of suffi ciently high discount factors and does not characterize effi cient

equilibria at fixed discount factors, unlike my paper. In addition, a key concern in these papers

is ensuring that players do not cooperate off the equilibrium path. The issue is that grim trigger

strategies may provide such strong incentives to cooperate on-path that players prefer to cooperate

even after observing a deviation. Ellison resolves this problem by introducing a “relenting”version

of grim trigger strategies tailored to make players indifferent between cooperating and shirking

on-path, and then noting that cooperation is more appealing on-path than off-path (since off-path

at least one opponent is already shirking). This issue does not arise in my analysis because, with

continuous action spaces, players must be just indifferent between cooperating and shirking on-path

in the most cooperative equilibrium, as otherwise they could be asked to cooperate slightly more.

By essentially the same argument as in Ellison, this implies that players weakly prefer to shirk

off-path. Hence, the key contribution of this paper is showing that grim trigger strategies provide

the strongest possible incentives for (robust) cooperation on-path, not that they provide incentives

for shirking off-path.3

The most closely related paper is contemporaneous and independent work by Ali and Miller

(2011). Ali and Miller study a network game in which links between players are recognized

according to a Poisson process. When a link is recognized, the linked players play a prisoner’s

dilemma with variable stakes, and can also make transfers to each other. Like my model, Ali and

Miller’s features smooth actions and payoffs, so that, with grim trigger strategies, binding on-path

incentive constraints imply slack off-path incentive constraints. The most important difference

3Another difference is that it is important for the current paper that in each period the monitoring network is

observed after actions are chosen, whereas this timing does not matter in most papers on community enforcement.
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between Ali and Miller’s paper and mine is that they do not show that grim trigger strategies

always maximize cooperation in their model. Ali and Miller also do not emphasize strategic

complementarity or robustness to higher-order information. They do however discuss network

formation and comparisons among networks, developing insights that are complementary to mine.

Finally, this paper is related more broadly to the study of repeated games with private mon-

itoring. Most papers in this literature study much more general models than mine, and either

prove folk theorems or study robustness to small deviations from public monitoring (Mailath and

Morris, 2002, 2006; Sugaya and Takahashi, 2011).4 However, to my knowledge this is the first

paper that characterizes even a single point on the Pareto frontier of the set of perfect Bayesian

equilibrium payoffs in a repeated game with imperfect private monitoring where first-best payoffs

are not attainable. I make no attempt to characterize the entire set of perfect Bayesian equilibria,

or any large subset thereof. Instead, I use the strategic complementarity discussed above to derive

an upper bound on each player’s maximum cooperation, and then show that this bound can be

attained with grim trigger strategies. It would be interesting to see if similar indirect approaches,

perhaps also based on strategic complementarity, can be useful in other classes of repeated games

with private monitoring of applied interest.

The paper proceeds as follows: Section 2 describes the model. Section 3 presents the key

result that maximum cooperation is robustly sustained in grim trigger strategies. Section 4 derives

comparative statics in games with equal monitoring. Section 5 studies games with fixed monitoring

networks. Section 6 concludes and discusses directions for future research. Major omitted proofs

and examples are in the appendix, and minor ones are in the online appendix.

2 Model

There is a set N = {1, . . . , n} of players. In every period t ∈ N = {0, 1, . . .}, every player i

simultaneously chooses an action (“level of cooperation,” “contribution”) xi ∈ R+. The players

have common discount factor δ ∈ (0, 1). If the players choose actions x = (x1, . . . , xn) in period t,

player i’s period-t payoff is

ui (x) =

∑
j 6=i

fi,j (xj)

− xi,
where the functions fi,j : R+ → R+ satisfy

4Of the many private monitoring folk theorem papers, the most related are probably Ben-Porath and Kahneman

(1996) and Renault and Tomala (1998), which assume a fixed monitoring network.
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• fi,j (0) = 0, fi,j is non-decreasing, and fi,j is either strictly concave or identically 0.

• limx1→∞
(∑

j 6=i fi,j (x1)
)
− x1 = limx1→∞

(∑
j 6=i fj,i (x1)

)
− x1 = −∞.

The assumption that fi,j is non-decreasing for all i 6= j is essential for interpreting xj as player

j’s level of cooperation. Note that the stage game is a prisoner’s dilemma, in that playing xi = 0

(“shirking”) is a dominant strategy for player i in the stage game. The second assumption states

that the cost of cooperation becomes infinitely greater than the benefit for suffi ciently high levels of

cooperation. Concavity and the assumption that ui (x) is separable in (x1, . . . , xn) play important

roles in the analysis, and are discussed below.

Every period t, a monitoring network Lt = (li,j,t)i,j∈N×N , li,j,t ∈ {0, 1}, is drawn independently

from a fixed probability distribution µ on {0, 1}n
2

. In addition, higher-order information yt =

(yi,t)i∈N , yi,t ∈ Yi is drawn independently from a probability distribution π (yt|Lt), where the Yi
are arbitrary finite sets. At the end of period t, player i observes hi,t = {zi,1,t, . . . , zi,n,t, yi,t}, where

zi,j,t = xj,t if li,j,t = 1, and zi,j,t = ∅ if li,j,t = 0. That is, player i observes the action of each of her

out-neighbors and also observes the signal yi,t, which may contain information about who observes

whom in period t (as well as information about others’information about who observes whom, and

so on).5 The special case of perfect higher-order information is when yi,t = Lt with probability 1

for all i ∈ N ; this is the case where who observes whom is common knowledge (while monitoring

of actions remains private). Assume that Pr (li,i = 1) = 1 for all i ∈ N ; that is, there is perfect

recall. A repeated game with such a monitoring structure has network monitoring, the distribution

µ is the monitoring technology, and the pair (Y = Y1 × . . .× Yn, π) is the higher-order information

structure. Let hti ≡ (hi,0, hi,1, . . . , hi,t−1) be player i’s private history at time t ≥ 1, and denote the

null history at the beginning of the game by h0 = h0
i for all i. A (behavior) strategy of player i’s,

σi, specifies a probability distribution over period t actions as a function of hti.

Many important repeated games have network monitoring, including random matching (as in

Kandori (1992) and Ellison (1994)) and monitoring on a fixed network (where Lt is deterministic and
5As to whether players observe their realized stage-game payoffs, note that fi,j (xj) can be interpreted as player i’s

expected benefit from player j’s action, and player i may only benefit from player j’s action when li,j,t = 1. However,

some combinations of assumptions on fi,j and µ are not consistent with this interpretation, such as monitoring

on a fixed network with global public goods, where Pr (li,j,t = 1) = 0 but fi,j 6= 0 for some i, j. An alternative

interpretation is required in these cases: for example, the infinite time horizon could be replaced with an uncertain

finite horizon without discounting, with payoffs revealed at the end of the game and δ viewed as the probability

of the game’s continuing. The former interpretation is appropriate for the long-distance trade example, while the

alternative interpretation is appropriate for the school example.
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constant, see Section 5). For random matching, by changing the higher-order information structure

the model can allow for the case where players learn nothing about who matches with whom outside

their own matches (Yi = ∅ for all i), the case where who matches with whom is common knowledge

(yi,t = Lt with probability 1 for all i), or any intermediate case. For monitoring on a fixed network,

however, players already know who matches with whom, so higher-order information is irrelevant

(although technically higher-order information could still act as a correlating device in this case).

To fix ideas, note that a repeated game in which players observe the actions of their neighbors on

a random graph that is determined in period 0 and then fixed for the duration of play does not

have network monitoring, because the monitoring network is not drawn independently every period

(e.g., player i observes player j’s action in period 1 with probability 1 if she observes it in period

0, but she does not observe player j’s action with probability 1 in period 0).

Throughout, I study weak perfect Bayesian equilibria (PBE) of this model with the property

that, for every player i, time t, and monitoring network Lt′ , for t′ < t, the sum
∑∞

τ=t δ
τ−tE

[
ui

((
σj

(
hτj

))n
j=1

)
|Lt′
]

is well-defined; that is, lims→∞
∑s

τ=t δ
τ−tE

[
ui

((
σj

(
hτj

))n
j=1

)
|Lt′
]
exists.6 This technical re-

striction ensures that players’continuation payoffs are well-defined, conditional on any past realized

monitoring network. Fixing a description of the model other than the higher-order information

structure– that is, a tuple
(
N, (fi,j)i,j∈N×N , δ, µ

)
– let ΣPBE (Y, π) be the set of PBE strategy

profiles when the higher-order information structure is (Y, π). Player i’s level of cooperation under

strategy profile σ is defined to be (1− δ)
∑∞

t=0 δ
tE
[
σi
(
hti
)]
. The main object of interest is the

highest level of cooperation for each player that can be sustained in PBE for any higher-order

information structure.

Definition 1 Player i’s maximum cooperation with higher-order information structure (Y, π) is

x∗i (Y, π) ≡ sup
σ∈ΣPBE(Y,π)

(1− δ)
∞∑
t=0

δtE
[
σi
(
hti
)]
.

Player i’s robust maximum cooperation is

x∗i ≡ inf
(Y,π)

x∗i (Y, π) .

Player i’s robust maximum cooperation is the highest level of cooperation that is sure to be

sustainable in PBE for a given stage game, discount factor, and monitoring technology. Put
6Recall that a weak perfect Bayesian equilibrium is a strategy profile and belief system in which, for every player i

and private history hti, player i’s continuation strategy is optimal given her beliefs about the vector of private histories(
htj
)N
j=1
, and these beliefs are updated using Bayes’rule whenever possible.
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differently, it is the highest level of cooperation that an outside observer who does not know

the higher-order information structure can be sure is sustainable. This seems reasonable for

applications like local public good provision or long-range trade, where it seems much more palatable

to make assumptions only about the probability that players observe each other’s actions (the

monitoring technology), rather than also making assumptions about what players observe about

each other’s observations, what they observe about what others observe about this, and so on.7

One more definition: a strategy profile σ is higher-order information free if σi
(
hti
)
does not

depend on (yi,τ )t−1
τ=0 for all i ∈ N . A higher-order information free strategy profile can naturally be

viewed as a strategy profile in the game corresponding to any higher-order information structure

(Y, π). So the following definition makes sense.

Definition 2 For any player i ∈ N and level of cooperation xi, a higher-order information free

strategy profile σ robustly sustains xi if xi = (1− δ)
∑∞

t=0 δ
tE
[
σi
(
hti
)]
and σ ∈ ΣPBE (Y, π) for

every higher-order information structure (Y, π).

This definition is demanding, in that a strategy profile can robustly sustain a level of cooperation

only if it is a PBE for any higher-order information structure. However, my main theoretical result

(Theorem 1) shows that there exists a grim trigger strategy profile that robustly sustains all players’

robust maximum cooperation simultaneously (and the applied analysis in Sections 4 and 5 then

focuses on this equilibrium). The resulting equilibrium is particularly important when it is also the

PBE that maximizes social welfare. This is the primary case of interest in the literature on public

good provision, where the focus is on providing incentives for suffi cient cooperation, rather than

on avoiding providing incentives for excessive cooperation. For example, the grim trigger strategy

profile that simultaneously robustly sustains each player’s maximum cooperation also maximizes

utilitarian social welfare if x∗i is below the first-best level (Lindahl-Samuelson benchmark) for every

i ∈ N . Letting f ′j,i denote the left-derivative of fj,i (which exists by concavity of fj,i), this suffi cient

condition is ∑
j 6=i

f ′j,i (x∗i ) ≥ 1 for all i ∈ N .

This condition can be checked easily using the formula for (x∗i )
n
i=1 given by Theorem 1.8 As a

consequence, when this condition holds, all of the comparative statics on robust maximum cooper-
7However, I have implicitly assumption that the higher-order information structure is common knowledge among

the players. But relaxing this would not affect the results.
8 It would of course be desirable to characterize the entire set of payoffs that can be robustly sustained in PBE,

or at least the entire Pareto frontier of this set, rather than only the equilibrium that robustly sustains maximum
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ation derived below are also comparative statics on ineffi ciency relative to the Lindahl-Samuelson

benchmark. I also present some quantitative examples of the relationship between ineffi ciency and

network structure in Sections 4 and 5.

Before beginning the analysis, let me remark briefly on the motivation for studying this model.

The model is intended to capture the essential features of cooperation in settings like those discussed

in the introduction. Consider again the example of maintaining a school in a small village. In

this setting, it is natural to think that villagers sometimes observe each other’s contributions quite

accurately but sometimes do not observe them at all (e.g., a villager might usually know how hard

her friends have been working on the school, and might occasionally see someone else working, or

learn that someone else has contributed money), and that it is very hard to observe the school’s

overall quality (e.g., because school quality might be best measured by students’ labor market

outcomes in the distant future). This suggests that repeated game models with (possibly imperfect)

pure public monitoring are not well-suited for studying cooperation in this setting. My model

instead makes the opposite assumption of pure network monitoring, and this leads to predictions

that are very different from those that would emerge with imperfect public monitoring; for example,

none of the four predictions enumerated in the introduction have been made in the literature on

repeated games with imperfect public monitoring, and those predictions that relate a player’s

location in a monitoring network to her maximum cooperation cannot possibly be made in such

models. It will become clear that my model is also very tractable: given a monitoring technology,

it is easy to calculate each player’s robust maximum cooperation. Of course, allowing players to

access both network monitoring and noisy public monitoring– which is certainly more realistic than

either pure public monitoring or pure network monitoring– remains a very interesting direction for

future research. I discuss this possibility further in the conclusion.

3 Characterization of Robust Maximum Cooperation

This section presents the main theoretical result of the paper, which shows that all players’robust

maximum cooperation can be robustly sustained in grim trigger strategies. To further motivate

the focus on robustness, Section 3.1 presents an example showing that, with a given higher-order

information structure, maximum cooperation may be sustained by complicated strategies that seem

cooperation. However, this problem appears intractable, just as it seems intractable in general repeated games with

imperfect private monitoring (for fixed δ, rather than in the δ → 1 limit).
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Figure 1: An Example where Complex Strategies are Optimal

“non-robust.” Section 3.2 then presents the main theoretical result.

3.1 Optimality of Complex Strategies with Imperfect Higher-Order Informa-

tion

This section shows by example that for some higher-order information structures a player’s maxi-

mum level of cooperation cannot be sustained in (stationary) grim trigger strategies. I sketch the

example here and defer the details to the appendix.

There are three players, arranged as in Figure 1. Player 1 is observed by player 2 with

probability 1/2 and is never observed by player 3. Players 2 and 3 always observe each other.

Player 1 observes nothing. The realized monitoring network (drawn independently every period)

is unobserved; in particular, player 3 does not observe when player 2 observes player 1 and when

he does not (formally, Yi = ∅ for all i). For each player i, ui
(

(xj)
3
j=1

)
=
(∑

j 6=i
√
xj

)
− xi,

and δ = 1/2. It is straightforward to show that player 1’s maximum cooperation in grim trigger

strategies equals 0.25 (see the appendix). I now sketch a strategy profile in which player 1’s

maximum cooperation equals 0.2505.

Player 1 always plays x1 = 0.2505 on-path. Players 2 and 3 each have two on-path actions,

denoted xL2 , x
H
2 , x

L
3 , and x

H
3 , with x

L
2 < xH2 and xL3 < xH3 . Player 2 plays x2 = xH2 in period 0. At

subsequent odd-numbered periods t, player 2 plays xH2 with probability 1 if he observed player 1’s

period-t − 1 action, and otherwise plays each of xH2 and xL2 with probability 1/2. At subsequent

even-numbered periods t, player 2 plays xH2 with probability 1 if he observed player 1’s period-t−2

action, and otherwise plays each of xH2 and xL2 with probability 1/2. Thus, if player 2 observes

player 1’s action in even-numbered period t, he then plays xH2 with probability 1 in both periods

t + 1 and t + 2. Finally, player 3 plays x3 = xH3 in period 0, and in every period t ≥ 1 he plays

xH3 if player 2 played xH2 in period t − 1, and plays xL3 if player 2 played xL2 in period t − 1. If

any player i observes a deviation from this specification of on-path play (i.e., if any player deviates

herself; if player 2 observes x1 6= 0.2505 or observes player 3 failing to take her prescribed action;

or if player 3 observes x2 /∈
{
xL2 , x

H
2

}
), she then plays xi = 0 in all subsequent periods. In the
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appendix, I specify xL2 , x
H
2 , x

L
3 , and x

H
3 , and verify that the resulting strategy profile is a PBE.

Why can strategies of this form sustain greater maximum cooperation by player 1 than grim

trigger strategies can? The key is that the difference between player 1’s expectation of player

3’s average future cooperation when player 1 cooperates and when player 1 shirks, conditional

on the event that player 2 observes player 1 (which is the only event that matters for player 1’s

incentives), is larger than with grim trigger strategies. To understand this, consider what happens

after period 2 sees player 1 play 0.2505 in period t − 1, for t odd. Conditional on this event,

player 1’s expectation of player 3’s action in both periods t+ 1 and t+ 2 equals xH3 ; but player 3’s

expectation of his own action in period t+ 2 after seeing player 2 play xH2 in period t is less than

xH3 , because he is not sure that player 2 observed player 1 in period t− 1. Indeed, if player 3 were

sure that player 2 had observed player 1 in period t− 1, he would not be willing to play xH3 (as he

would have to play xH3 in period t+ 2 in addition to t+ 1). Thus, the disagreement between player

1’s expectation of player 3’s average future cooperation (conditional on player 2 observing player 1)

and player 3’s (unconditional) expectation of his own average future cooperation improves player

1’s incentive to cooperate without causing player 3 to shirk.

Note that all this example directly proves is that player 1’s maximum cooperation is not sus-

tainable in grim trigger strategies. However, it is not hard to show that any strategies that sustain

more cooperation than is possible with grim trigger must involve “rewards,”in that on-path actions

must sometimes increase from one period to the next. This observation places a lower bound on

how “complicated”the strategies that do sustain player 1’s maximum cooperation in the example

must be, even though actually computing these strategies seems intractable.9

3.2 Robust Optimality of Grim Trigger Strategies

This section shows that all players’robust maximum cooperation can be robustly sustained in grim

trigger strategies, defined as follows.

Definition 3 A strategy profile σ is a grim trigger strategy profile if there exist actions (xi)
n
i=1

such that σi
(
hti
)

= xi if zi,j,τ ∈ {xj , ∅} for all zi,j,τ ∈ hi,τ and all τ < t, and σi
(
hti
)

= 0 otherwise.

In a grim trigger strategy profile player i’s action at an off-path history hti does not depend on

the identity of the initial deviator. In particular, by perfect recall, player i plays xi = 0 in every

9 It is also trivial to modify this example to show that a player’s payoff need not be maximized by grim trigger

strategies: simply add a fourth player, observed by no one, who only values player 1’s contributions.
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period following a deviation by player i herself. Also, if a grim trigger strategy profile σ sustains

each player’s robust maximum cooperation, then under σ each player i plays x∗i at every on-path

history. Finally, grim trigger strategy profiles are clearly higher-order information free.

Next, I introduce an important piece of notation: define D (τ , t, i) recursively by

D (τ , t, i) = ∅ if τ < t

D (t, t, i) = {i}

D (τ + 1, t, i) = {j : zj,k,τ = xk,τ for some k ∈ D (τ , t, i)} if τ ≥ t.

That is, D (τ , t, i) is the set of players in period τ who have observed a player who has observed a

player who has observed. . . player i since time t. By perfect recall, D (τ + 1, t, i) ⊇ D (τ , t, i) for

all τ , t, and i. The set D (τ , t, i) is important because j ∈ D (τ , t, i) is a necessary condition for

player j’s time τ history to vary with player i’s actions at times after t. In particular, if players are

using grim trigger strategies and player i shirks at time t, then D (τ , t, i) is the set of players who

shirk at time τ . Note that the probability distribution of D (τ , t, i) is the same as the probability

distribution of D (τ − t, i) ≡ D (τ − t, 0, i), for all i and τ ≥ t.

I now state the main theoretical result of the paper.

Theorem 1 There is a grim trigger strategy profile σ∗ that robustly sustains each player’s robust

maximum cooperation. Furthermore, the vector of players’robust maximum cooperation (x∗i )
n
i=1 is

the (component-wise) greatest vector (xi)
n
i=1 such that

xi = (1− δ)
∞∑
t=0

δt
∑
j 6=i

Pr (j ∈ D (t, i)) fi,j (xj) for all i ∈ N . (1)

Given that grim trigger strategies sustain each player’s robust maximum cooperation, equation

(1) is almost immediate: the left-hand side of (1) is the cost to player i of conforming to σ∗; and

the right-hand side of (1) is the benefit to player i of conforming to σ∗, which is that, if player

i deviated, she would lose her benefit from player j’s cooperation whenever j ∈ D (t, i). Thus,

(1) states that the vector of robust maximum cooperation is the greatest vector of actions that

equalizes the cost and benefit of cooperation for each player. In addition, it is easy to compute

the vector (x∗i )
n
i=1, as discussed in footnote 21 in the appendix.

Thus, the substance of Theorem 1 is showing that grim trigger strategies sustain each player’s

robust maximum cooperation. As shown above, grim trigger strategies do not sustain each player’s

maximum cooperation with every higher-order information structure. However, if one shows that
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a grim trigger strategy profile σ sustains each player i’s maximum cooperation xi with some higher-

order information structure, then this implies that both x∗i ≤ xi (by definition of x∗i ) and x
∗
i ≥ xi

(because σ must robustly sustain xi),10 so Theorem 1 follows. Hence, the following key lemma

implies Theorem 1.

Lemma 1 The grim trigger strategy profile with on-path actions given by (1) sustains each player’s

maximum cooperation with perfect higher-order information.

Lemma 1 is also of interest in its own right, as it shows that grim trigger strategies maximize

cooperation when higher-order information is perfect. For example, Lemma 1 implies that grim

trigger strategies always maximize cooperation for fixed monitoring networks, as with fixed mon-

itoring networks who observes whom is always common knowledge. Since grim trigger strategies

are higher-order information free, Lemma 1 also implies that each player’s maximum cooperation

with perfect higher-order information is weakly less than her maximum cooperation with any other

higher-order information structure.

The key idea behind Lemma 1 is that a player is willing to cooperate (weakly) more at any on-

path history if any other player cooperates more at any on-path history, because the first player is

more likely to benefit from this increased cooperation when she conforms than when she deviates.11

Thus, there is a kind of strategic complementarity between the actions of any two players at any

two on-path histories. This suggests the following “proof”of Lemma 1: Define a function φ that

maps the vector of all players’on-path actions at every on-path history, ~x, to the vector of the

highest actions that each player is willing to take at each on-path history when actions at all other

on-path histories are as in ~x, and players shirk at off-path histories. Let X̄ be an action greater

than any on-path PBE action, and let ~X be the vector of on-path actions X̄. By complementarity

among on-path actions, iterating φ on ~X yields a sequence of vectors of on-path actions that are

all constant across periods and weakly greater than the greatest fixed point of φ, and this sequence

converges monotonically to the greatest fixed point of φ. Therefore, the greatest fixed point of φ

is constant across periods, and it provides an upper bound on each player’s maximum cooperation.

Finally, verify that the grim trigger strategy profile with on-path actions given by the greatest fixed

10 It is not diffi cult to show that if a grim trigger strategy profile sustains a player’s maximum cooperation xi with

some higher-order information structure then it robustly sustains xi. See the appendix.
11This observation relies on the assumption of network monitoring, since otherwise a deviation by the first player

may make some on-path histories more likely.
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point of φ is a PBE.12

The problem with this “proof” (and there must be a problem, because the “proof” does not

mention perfect higher-order information) is that, while the highest action that a player is willing to

take at any on-path history is non-decreasing in every other player’s on-path actions, it is decreasing

in her own future on-path actions. That is, a player is not willing to cooperate as much today when

she knows that she will be asked to cooperate more tomorrow. Hence, the function φ as defined in

the previous paragraph is not isotone, and thus may not have a greatest fixed point. This problem

may be addressed by working not with players’stage-game actions σi
(
hti
)
, but rather with their

“continuation actions”Xt
i ≡ (1− δ)

∑
τ≥t δ

τ−tσi (hτi ). Indeed, it can be shown that

E
[
Xt
i |hti

]
≤
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])
,

for every player i and on-path history hti. The intuition for this inequality is that, if player i shirks

at time t, then player j starts shirking at time τ with probability Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)),

and this yields lost benefits of at least fi,j
(
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])
to player i .

This inequality yields an upper bound on player i’s expected continuation action, E
[
Xt
i |hti

]
, in

terms of her expectation of other players’continuation actions only. This raises the possibility

that the function φ could be isotone when defined in terms of continuation actions Xt
i , rather than

stage-game actions. For an approach along these lines to work, however, one must be able to

express E
[
Xτ
j |j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
in terms of E

[
Xτ
j |hτj

]
for player j’s private histories

hτj . With perfect higher-order information (but not otherwise),

E
[
Xτ
j |j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
= E

[
E
[
Xτ
j |hτj

]
|j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
,

so such an approach is possible.13

4 Equal Monitoring

This section imposes the assumption that all players’actions are equally well-monitored in a sense

that leads to sharp comparative statics results. In particular, assume throughout this section:
12For this last step, one might be concerned that grim trigger strategies do not satisfy off-path incentive constraints,

as a player might want to cooperate off-path in order to slow the “contagion”of defecting, as in Kandori (1992) and

Ellison (1994). As discussed in the introduction, this problem does not arise with continuous actions and payoffs.
13The assumptions that payoffs are concave and separable are also necessary. Without concavity, PBE actions

could be scaled up indefinitely. Without separability, higher cooperation may be sustained when players take turns

cooperating (see Example A1 in the online appendix).
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• Parallel Benefit Functions: There exists a function f : R+→ R+ and scalars αi,j ∈ R+ such

that fi,j (x) = αi,jf (x) for all i, j ∈ N and all x ∈ R+.

• Equal Monitoring :
∑∞

t=0 δ
t∑

k 6=i Pr (k ∈ D (t, i))αi,k =
∑∞

t=0 δ
t∑

k 6=j Pr (k ∈ D (t, j))αj,k

for all i, j ∈ N .

Parallel benefit functions imply that the importance of player j’s cooperation to player i may

be summarized by a real number αi,j . With this assumption, equal monitoring states that the

expected discounted number of players who may be influenced by player i’s action, weighted by

the importance of their actions to player i, is the same for all i ∈ N . To help interpret these

assumptions, note that if αi,j is constant across players i and j then, for generic discount factors

δ, equal monitoring holds if and only if E [#D (t, i)] = E [#D (t, j)] for all i, j ∈ N and t ∈ N; that

is, if and only if the expected number of players who find out about shirking by player i within t

periods is the same for all i ∈ N .

Section 4.1 derives a simple and general formula for comparative statics on robust maximum

cooperation under equal monitoring. Sections 4.2 and 4.3 apply this formula to the leading special

case of (global) public good provision, where αi,j = α for all i 6= j; that is, where all players value

each other’s actions equally. Section 4.2 studies the effect of group size on public good provision,

and Section 4.3 considers the effect of “uncertainty”in monitoring on public good provision.

Finally, the higher-order information structure plays no role in this section or the following one,

because these sections study comparative statics on players’maximum robust cooperation, which

is independent of the higher-order information structure by definition.

4.1 Comparative Statics Under Equal Monitoring

The section derives a formula for comparative statics on robust maximum cooperation under equal

monitoring. The first step is noting that each player’s robust maximum cooperation is the same

under equal monitoring (proof in appendix).

Corollary 1 With equal monitoring, x∗i = x∗j for all i, j ∈ N .

Thus, under equal monitoring each player has the same robust maximum cooperation x∗. I

wish to characterize when x∗ is higher in one game than another, when both games satisfy equal

monitoring and have the same underlying benefit function f . Formally, a game with equal monitor-

ing Γ =
(
N, (αi,j)i,j∈N×N , δ, µ

)
is a model satisfying the assumptions of Section 2 as well as equal
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monitoring. For any game with equal monitoring Γ, let x∗ (Γ) be the robust maximum cooperation

in Γ, and let

B (Γ) ≡ (1− δ)
∞∑
t=0

δt
∑
j 6=i

Pr (j ∈ D (t, i))αi,j

be player i’s benefit of cooperation (i.e., the right-hand side of (1)) when f (xj) = 1 for all j ∈ N ,

which is independent of the choice of i ∈ N by equal monitoring. The comparative statics result

for games with equal monitoring is the following:

Theorem 2 Let Γ′ and Γ be two games with equal monitoring. Then x∗ (Γ′) ≥ x∗ (Γ) if B (Γ′) ≥

B (Γ), with strict inequality if B (Γ′) > B (Γ) and x∗ (Γ′) > 0.

Proof. Since x∗i = x∗ for all i ∈ N , (1) may be rewritten as

x∗ = (1− δ)
∞∑
t=0

δt
∑
j 6=i

Pr (j ∈ D (t, i))αi,jf (x∗) = B (Γ) f (x∗) .

Hence, x∗ (Γ) is the greatest zero of the concave function B (Γ) f (x)− x. If B (Γ′) ≥ B (Γ), then

B (Γ′) f (x∗ (Γ)) − x∗ (Γ) ≥ B (Γ) f (x∗ (Γ)) − x∗ (Γ) = 0, which implies that x∗ (Γ′) ≥ x∗ (Γ). If

B (Γ′) > B (Γ) and x∗ (Γ′) > 0, then either x∗ (Γ) = 0 (in which case x∗ (Γ′) > x∗ (Γ) trivially) or

x∗ (Γ) > 0, in which case B (Γ′) f (x∗ (Γ)) − x∗ (Γ) > B (Γ) f (x∗ (Γ)) − x∗ (Γ) = 0, which implies

that x∗ (Γ′) > x∗ (Γ).

Theorem 2 gives a complete characterization of when x∗ (Γ) is greater or less than x∗ (Γ′), for

any two games with equal monitoring Γ and Γ′. In particular, robust maximum cooperation is

greater when the expected discounted number of players who may be influenced by a player’s action,

weighted by the importance of their actions to that player, is greater. For example, in the case

of global public good provision (where all players value all other players’actions equally), robust

maximum cooperation is greater when the sets D (t, i) are likely to be larger; while if each player

only values the actions of a subset of the other players (her geographic neighbors, her trading

partners, etc.), then robust maximum cooperation is greater when the intersection of the sets

D (t, i) and the set of players whose actions player i values is likely to be larger. Hence, Theorem 2

characterizes how different monitoring technologies sustain different kinds of cooperative behaviors.

4.2 The Effect of Group Size on Global Public Good Provision

This section uses Theorem 2 to analyze the effect of group size on robust maximum cooperation in

the leading special case of global public good provision, where αi,j = α for all i 6= j.
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In the case of (global) public good provision,

B (Γ) = α
∞∑
t=0

δt (E [#D (t, i)]− 1) .

Thus, for public goods, all the information needed to determine whether changing the game in-

creases or decreases the (robust) maximum per capita level of public good provision is contained

in the product of two terms: the marginal benefit to each player of public good provision, α, and

(1/ (1− δ) less than) the effective contagiousness of the monitoring technology,
∑∞

t=0 δ
tE [#D (t, i)].

Information such as group size, higher moments of the distribution of #D (t, i), and which players

are more likely to observe which other players are not directly relevant. In particular, the single

number
∑∞

t=0 δ
tE [#D (t, i)]– the effective contagiousness– completely determines the effectiveness

of a monitoring technology in supporting public good provision.

This finding that comparative statics on the per-capita level of public good provision are de-

termined by the product of the marginal benefit of the public good to each player and the effective

contagiousness of the monitoring technology yields useful intuitions about the effect of group size

on the per capita level of public good provision. In particular, index a game Γ by its group size,

n, and write α (n) for the corresponding marginal benefit of contributions and
∑∞

t=0 δ
tE [#D (t, n)]

for the effective contagiousness (I use this simpler notation for the remainder of this section). Nor-

mally, one would expect α (n) to be decreasing in n (a larger population reduces player i’s benefit

from player j’s contribution to the public good) and
∑∞

t=0 δ
tE [#D (t, n)] to be increasing in n

(a larger population makes it more likely that player i’s action is observed by more individuals),

yielding a tradeoff between the marginal benefit of contributions and the effective contagiousness.

Consider again the example of constructing a local infrastructure project, like a well. In this case,

α (n) is likely to be decreasing and concave: since each individual uses the well only occasionally,

there are few externalities among the first few individuals, but eventually it starts to becomes dif-

ficult to find times when the well is available, water shortages become a problem, etc.. Similarly,∑∞
t=0 δ

tE [#D (t, n)] is likely to be increasing, and may be concave if there are “congestion”effects

in monitoring. Thus, it seems likely that in typical applications α (n)
∑∞

t=0 δ
t (E [#D (t, n)]− 1),

and therefore per capita public good provision, is maximized at an intermediate value of n.

Theorem 2 yields particularly simple comparative statics for the leading cases of pure public

goods (α (n) = 1) and divisible public goods (α (n) = 1/n), which are useful in examples below.

Corollary 2 With pure public goods (α (n) = 1), if E [#D (t, n′)] ≥ E [#D (t, n)] for all t then

x∗ (n′) ≥ x∗ (n), with strict inequality if E [#D (t, n′)] > E [#D (t, n)] for some t ≥ 1 and x∗ (n′) >
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0.

With pure public goods, x∗ (n) is increasing unless monitoring degrades so quickly as n increases

that the expected number of players who find out about a deviation within t periods is decreasing

in n, for some t. This suggests that x∗ (n) is increasing in n in many applications.

Corollary 3 With divisible public goods (α (n) = 1/n), if (E [#D (t, n′)]− 1) /n′ ≥ (E [#D (t, n)]− 1) /n

for all t then x∗ (n′) ≥ x∗ (n), with strict inequality if (E [#D (t, n′)]− 1) /n′ > (E [#D (t, n)]− 1) /n

for some t ≥ 1 and x∗ (n′) > 0.

With divisible public goods, x∗ (n) is increasing only if the expected fraction of players (other

than the deviator herself) who find out about a deviation within t periods is non-decreasing in n,

for all t. This suggests that, with divisible public goods, x∗ (n) is decreasing in many applications.

The following two examples demonstrate the usefulness of Theorem 2 and Corollaries 2 and 3.

An earlier version of this paper (available upon request) contains additional examples.

4.2.1 Random Matching

Monitoring is random matching if in each period every player is linked with one other player at

random, and li,j,t = lj,i,t for all i, j ∈ N and all t. This is possible only if n is even.

It can be show that, with random matching, E [#D (t, n)] is non-decreasing in n and is increasing

in n for t = 2. Therefore, Corollary 2 implies that, with pure public goods, robust maximum

cooperation is increasing in group size.

Proposition 1 With random matching and pure public goods, if n′ > n then x∗ (n′) ≥ x∗ (n), with

strict inequality if x∗ (n′) > 0.

However, it can also be shown that
∑∞

t=0 δ
t (E [#D (t, n′)]− 1) /n′ <

∑∞
t=0 δ

t (E [#D (t, n)]− 1) /n

whenever n′ > n, n′ and n are suffi ciently large, and δ < 1/2. In this case, Theorem 2 implies

that, with divisible public goods, robust maximum cooperation is decreasing in group size.

Proposition 2 With random matching and divisible public goods, if δ < 1
2 then, for any γ > 0,

there exists N̄ such that x∗ (n′) ≤ x∗ (n) if n′ > (1 + γ)n ≥ N̄ , with strict inequality if x∗ (n′) > 0.

20



4.2.2 Monitoring on a Circle

Monitoring is on a circle if the players are arranged in a fixed circle and there exists an integer

d ≥ 1 such that li,j,t = 1 if and only if the distance between i and j is at most d.

It is a straightforward consequence of Corollary 2 that robust maximum cooperation is increasing

in group size with monitoring on a circle and pure public goods.

Proposition 3 With monitoring on a circle and pure public goods, if n′ > n then x∗ (n′) ≥ x∗ (n),

with strict inequality if x∗ (n′) > 0.

In contrast, Corollary 3 implies that robust maximum cooperation is decreasing in group size

with monitoring on a circle and divisible public goods.

Proposition 4 With monitoring on a circle and divisible public goods, if n′ > n then x∗ (n′) ≤

x∗ (n), with strict inequality if d < n′/2 and x∗ (n′) > 0.

Finally, monitoring on a circle is a simple test case in which to compare robust maximum

cooperation with the first-best (Lindahl-Samuelson) benchmark, for various discount factors and

group sizes. Assume that n is odd, and consider first the case of pure public goods, with f (x) =
√
x.

Then first-best cooperation is given by

(n− 1)
1

2
√
xFB

= 1,

or

xFB =

(
n− 1

2

)2

.

Robust maximum cooperation is given by equation (1) (or by the simpler equation (2) of Section

5.1), which yields

x∗ = 2δ

(
1− δ

n−1
2

1− δ

)
√
x∗,

or

x∗ =

(
2δ

(
1− δ

n−1
2

1− δ

))2

.
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The following table displays robust maximum cooperation for various combinations of δ and n.

n

δ

11 31 101 1001

.5 3.75 4.00 4.00 4.00

.7 15.07 21.57 21.78 21.78

.9 54.33 204.3 320.7 324.0

.99 94.17 767.8 6,116.6 38,691

For comparison, first-best cooperation does not depend on δ, and equals 25 when n = 11, 225

when n = 31, 2500 when n = 101, and 250,000 when n = 1001. Several remarks are in order

here. First, robust maximum cooperation is less than first-best cooperation for all combinations

of δ and n other than (δ = .9, n = 11) and (δ = .99, n ∈ {11, 31, 101}). Thus, the equilibrium that

sustains robust maximum cooperation also maximizes utilitarian social welfare, unless players are

very patient and the group is relatively small. Second, robust maximum cooperation falls far

short of the first-best benchmark in large groups, unless players are very patient. Third, network

structure matters: for example, if the monitoring network is a clique rather than a circle (i.e., if

monitoring is perfect), then robust maximum cooperation is given by x∗ = (δ (n− 1))2, and hence

first-best cooperation can be sustained whenever δ ≥ 1/2. Finally, all of these conclusions also

hold for the case of divisible public goods, as with divisible public goods both xFB and x∗ are given

by dividing the corresponding quantities with pure public goods by n2.

4.3 The Effect of Uncertain Monitoring on Global Public Good Provision

This section provides a result comparing monitoring technologies in terms of the maximum level

of (robust) global public good provision they support, for a fixed group size. As discussed in

the previous subsection, a monitoring technology supports greater robust maximum cooperation in

global public good provision if and only if it has greater effective contagiousness,
∑∞

t=0 δ
tE [#D (t)],

where the parameter n is omitted because it is held fixed in this subsection. I compare “less certain”

monitoring, where it is likely that either a large or small fraction about the population finds out

about a deviation, with “more certain”monitoring, where it is likely that an intermediate fraction

of the population finds out about it, in the sense of second-order stochastic dominance. Under

fairly broad conditions, more certain monitoring supports greater robust maximum cooperation.

The analysis of this subsection relies on the following assumption, which states that the distri-

bution over #D (t+ 1) depends only on #D (t).
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• There exists a family of functions {gk : {0, . . . , n}→ [0, 1]}nk=1 with such that, whenever

#D (t) = k, Pr (#D (t+ 1) = k′) = gk (k′), for all t, k, and k′.

This assumption is satisfied by random matching, for example, but not by monitoring on a

circle, because with monitoring on a circle the distribution of #D (t+ 1) depends on the identities

of the of the members of D (t).

Given a probability mass function gk, define the corresponding distribution function Gk (k′) ≡∑k′

s=0 gk (s). Recall that a distribution G̃k strictly second-order stochastically dominates Gk if∑n
s=0 η (s) g̃k (s) >

∑n
s=0 η (s) gk (s) for all increasing and strictly concave functions η : R→ R.

The following result compares monitoring under {g̃k}nk=1 and {gk}
n
k=1.

Theorem 3 Suppose that G̃k (k′) and Gk (k′) are decreasing and strictly convex in k for k ∈

{0, . . . , k′} and k′ ∈ {0, . . . , n}, and that G̃k strictly second-order stochastically dominates Gk for

k ∈ {1, . . . , n− 1}. Then robust maximum cooperation is strictly greater under a monitoring tech-

nology corresponding to {g̃k (·)}nk=1 than under a monitoring technology corresponding to {gk (·)}nk=1.

The intuition for Theorem 3 is fairly simple: If G̃k strictly second-order stochastically dominates

Gk for all k, then under G̃k it is more likely that an intermediate number of players find out about an

initial deviation each period. Since Gk (k′) and G̃k (k′) are decreasing and convex in k, the expected

number of players who find out about the deviation within t periods increases in t more quickly

when it is more likely that an intermediate number of players find out about the deviation each

period. Hence,
∑∞

t=0 δ
tE [#D (t)] is strictly higher under a monitoring technology corresponding

to {g̃k (·)}nk=1 than under a monitoring technology corresponding to {gk (·)}nk=1, and the theorem

then follows from Theorem 2.

5 Fixed Monitoring Networks

This section studies both global and local public good provision with network monitoring when

the monitoring network is fixed over time. That is, throughout this section I make the following

assumption on the (deterministic) monitoring technology.

• Fixed Undirected Monitoring Network: There exists a network L = (li,j)(i,j)∈N×N such that

li,j,t = li,j = lj,i for all t.

I also assume that the stage game satisfies one of the following two properties, where N (i) is

the set of player i’s neighbors in L.
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• Global Public Goods: ui (x) =
(∑

j 6=i f (xj)
)
− xi.

• Local Public Goods: ui (x) =
(∑

j∈N(i) f (xj)
)
− xi.

The extensions of all of the results in this section to directed networks is straightforward. I

discuss below where the assumption of global or local public goods can be relaxed.

Section 5.1 introduces a new definition of centrality in networks, and uses Theorem 1 to show

that more central players have greater robust maximum cooperation. Section 5.2 shows that cen-

trality can also be used to determine when one network “dominates”another in terms of supporting

cooperation. Finally, Section 5.3 remarks on the stability of monitoring networks, emphasizing

differences between the cases of global and local public goods.

5.1 Centrality and Robust Maximum Cooperation

Theorem 1 provides a general characterization of players’robust maximum cooperation as a function

of the discount factor and benefit functions. Here, I provide a partial ordering (“centrality”) of

players in terms of their network characteristics under which higher players have greater robust

maximum cooperation for all discount factors and benefit functions. Intuitively, player i is “more

central”than player j if i has more neighbors (within distance t, for all t ∈ N) than j, i’s neighbors

have more neighbors than j’s neighbors, i’s neighbors’ neighbors have more neighbors than j’s

neighbors’ neighbors, and so on. Formally, let d (i, j) be the distance (shortest path length)

between players i and j, with d (i, j) ≡ ∞ if there is no path between i and j. The definition of

centrality is the following.14

Definition 4 Player i is 1-more central than player j if, for all t ∈ N, # {k ∈ N : d (i, k) ≤ t} ≥

# {k ∈ N : d (j, k) ≤ t}. Player i is strictly 1-more central than player j if in addition

# {k ∈ N : d (i, k) ≤ t} > # {k ∈ N : d (j, k) ≤ t} for some t.

For all integers s ≥ 2, player i is s-more central than player j if, for all t ∈ N, there exists a

surjection ψ : {k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t} such that, for all k with d (j, k) ≤ t,

there exists k′ ∈ ψ−1 (k) such that k′ is s − 1-more central than k. Player i is strictly s-more

central than player j if in addition k′ is strictly s− 1-more central than k for some t, ψ, k, and k′.

Player i is more central than player j if i is s-more central than j for all s ∈ N. Player i is

strictly more central than player j if in addition i is strictly s-more central than j for some s ∈ N.
14This seems like a natural notion of centrality, but I am not aware of any references to it in the literature.
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Figure 2: A Five-Player Example

As a first example, consider five players arranged in a line (Figure 2). Player 3 is strictly more

central than players 2 and 4, who are in turn strictly more central than players 1 and 5. To see

this, note first that player 3 is strictly 1-more central than players 2 and 4, who are in turn each

strictly 1-more central than players 1 and 5. For example, player 2 is strictly 1-more central than

player 5 because player 2 has 3 neighbors within distance 1 (including player 2 herself), 4 neighbors

within distance 2, and 5 neighbors within distance 3 or more; while player 5 has 2 neighbors within

distance 1, 3 neighbors within distance 2, 4 neighbors within distance 3, and 5 neighbors within

distance 4 or more. Next, suppose that player 3 is s-more central than players 2 and 4, and that

players 2 and 4 are both s-more central than players 1 and 5. Then it is easy to check that player

3 is also s + 1-more central than players 2 and 4, who in turn are both s + 1-more central than

players 1 and 5; for example, one surjection ψ : {k ∈ N : d (2, k) ≤ 2} → {k ∈ N : d (5, k) ≤ 2} that

satisfies the terms of the definition is given by ψ (1) = ψ (2) = 5, ψ (3) = 3, ψ (4) = 4 (noting that

a player is always more central than herself, because in this case ψ can be taken to be the identity

mapping). Thus, by induction on s, player 3 is strictly more central than players 2 and 4, who are

in turn strictly more central than players 1 and 5.

The main result of this section states that, with either global or local public goods, more central

players have greater robust maximum cooperation, regardless of the discount factor δ and benefit

function f . The result can easily be generalized to allow for utility functions intermediate between

global and local public goods, where a player’s benefit from another player’s action is a decreasing

function of the distance between them.15 The proof uses a monotonicity argument similar to that

in the proof of Lemma 1, which shows that more central players cooperate more at every step of a

sequence of vectors of actions that converges to the vector of robust maximum cooperation.

Theorem 4 With either global or local public goods, if player i is more central than player j, then

x∗i ≥ x∗j . The inequality is strict if player i is strictly more central than player j and x∗k > 0 for

all k ∈ N .

The proof of the strict inequality in Theorem 4 uses the following lemma.
15Formally, Theorem 4 holds whenever there exist a function f : R+ → R+ and constants αd ∈ R+ such that

αd ≥ αd+1 ≥ 0 for all d ∈ N and ui (x) =
(∑

j 6=i αd(i,j)f (xj)
)
− xi for all i ∈ N .
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Lemma 2 Player i is more central than player j if and only if for all t ∈ N there exists a surjection

ψ : {k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t} such that, for all k with d (j, k) ≤ t, there exists

k′ ∈ ψ−1 (k) such that k′ is more central than k.

Proof of Theorem 4. I prove the result for global public goods. The proof for local public

goods is similar.

Let φ : Rn+ → Rn+, be defined as in the proof of Lemma 1; with a fixed monitoring network and

global public goods, this simplifies to

φi

(
(xj)

n
j=1

)
=
∑
j 6=i

δd(i,j)f (xj) for all i ∈ N .

As in the proof of Lemma 1, define xmi recursively by x1
i = X̄ (a large constant defined in Step

1a of the proof of Lemma 1) and xm+1
i = φi

((
xmj

)n
j=1

)
. The proof of Lemma 1 shows that

x∗i = limm→∞ xmi .

Suppose that player i is more central than player j. I claim that xmi ≥ xmj for all m ∈ N, which

proves the weak inequality. Trivially, x1
i = X̄ ≥ X̄ = x1

j . Now suppose that xmk′ ≥ xmk whenever

player k′ is more central than player k, for some m ∈ N. Since player i is m+ 1-more central than

player j, for any t ∈ N there exists a surjection ψ : {k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t}

such that, for all k with d (j, k) ≤ t, there exists k′ ∈ ψ−1 (k) such that k′ is m-more central than k.

Since xmk′ ≥ xmk , this implies that
∑

k:d(i,k)≤t f (xmk ) ≥
∑

k:d(j,k)≤t f (xmk ). This holds for all t, which

implies that xm+1
i = (1− δ)

∑∞
t=0 δ

t∑
k:d(i,k)≤t f (xmk ) ≥ (1− δ)

∑∞
t=0 δ

t∑
k:d(j,k)≤t f (xmk ) = xm+1

j .

It follows by induction that xmi ≥ xmj for all m ∈ N.

To prove the strict inequality, suppose that player i is strictly more central than player j and

that x∗k > 0 for all k ∈ N . Rewrite (1) as

x∗i =
∑
j 6=i

δd(i,j)f
(
x∗j
)
. (2)

Suppose that i is more central than j and strictly 1-more central than j, let x∗ ≡ mink x
∗
k (which

is positive by assumption), let x̄∗ ≡ maxk x
∗
k, and let d̄ be the diameter of L (i.e., the maximum

distance between any two path-connected nodes in L). Then, by Lemma 2 and (2), x∗i ≥ x∗j +

δd̄−1 min {δ, 1− δ} f (x∗), as player i has at least one more distance-t neighbor than player j for

some t ∈ N.16 Therefore, there exists ε1 > 0 such that x∗i − x∗j ≥ ε1 > 0 whenever i is more

16The min {δ, 1− δ} term corresponds to the possibility that player i may have one more distance-d̄ neighbor than

player j, or may have one more distance-d̄− 1 neighbor and the same number of distance-d̄ neighbors.
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central than j and strictly 1-more central than j. Now suppose that there exists εs > 0 such

that x∗i − x∗j ≥ εs > 0 whenever i is more central than j and strictly s-more central than j.

Suppose that i is more central than j and strictly s + 1-more central than j. Then x∗i ≥ x∗j +

δd̄−1 max {δ, 1− δ} (f (x̄∗ + εs)− f (x̄∗)), by Lemma 2 and (2), which implies that there exists

εs+1 > 0 such that x∗i − x∗j ≥ εs+1 > 0. By induction on s, it follows that x∗i > x∗j whenever i is

strictly more central than j.

Four remarks on Theorem 4 are in order. First, the conclusion of Theorem 4 would still hold

for local public goods (but not global public goods) if the definition of centrality was weakened by

specifying that player i is 1-more central than player j whenever #N (i) ≥ #N (j) (by essentially

the same proof). Thus, players’robust maximum cooperation can be ordered for more networks

with local public goods than with global public goods. Second, the fixed point equation (2)– which

is substantially simpler than the general fixed point equation (1)– orders players’robust maximum

cooperation for any fixed monitoring network. So comparing players’robust maximum cooperation

for any fixed monitoring network is not diffi cult, even if the centrality ordering is very incomplete.

Third, Theorem 4 provides a new perspective on the Olsonian idea of the “exploitation of the

great by the small.” Olson (1965) notes that small players may free ride on large players if larger

players have greater private incentives to contribute to public goods. Theorem 4 illustrates an

additional reason why larger players might contribute disproportionately to public goods: larger

players may be more central, in which case they may be punished more effectively for shirking.

While this “exploitation” implies that more central players receive lower payoffs than less central

players with global public goods, Corollary 7 below implies that more central players receive higher

payoffs than less central players with local public goods, which shows that with local public goods

the benefit of having more neighbors more than offsets the cost of contributing more.

Fourth, my definition of centrality is related to Bonacich centrality (Bonacich, 1987). My

definition of centrality is a partial order, as it ranks players in a way that is invariant to the benefit

function and discount factor, so a more direct comparison with Bonacich centrality results from

comparing players’robust maximum cooperation for a fixed benefit function, f , and discount factor,

δ; in this case, δ is analogous to the decay factor in the definition of Bonacich centrality, β. Indeed,

the formula for a player’s robust maximum cooperation, (2), is very similar to the formula for her

Bonacich centrality, with the important difference that a player’s robust maximum cooperation

depends on other players’ robust maximum cooperation through the concave function f , while

this dependence in linear for Bonacich centrality. As a consequence, the vector of players’robust
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Figure 3: A Seven-Player Example

maximum cooperation is unique, while the vector of players’Bonacich centrality is determined only

up to multiplication by a constant.

For general monitoring networks, it may be diffi cult to verify that one player is more central than

another, making it hard to apply Theorem 4. Sometimes, however, symmetries in the network can

be exploited to determine which players are more central than others more easily. The remainder

of this section shows how this can be done. Corollary 4 states that, if player i is closer to all

players k 6= i, j than is player j, then player i is more central than player j. Corollary 5 shows

that if players i and k are in “symmetric”positions in the monitoring network (in that there exists

a graph automorphism ρ on L such that k = ρ (i)) and player k is more central than player j, then

player i is more central than player j as well.17

Corollary 4 If d (i, k) ≤ d (j, k) for all k 6= i, j, then player i is more central than player j. Player

i is strictly more central than player j if in addition the inequality is strict for some k 6= i, j.

Corollary 5 If there exists a graph automorphism ρ : N → N such that ρ (i) is more central (resp.,

strictly more central) than j, then i is more central (resp., strictly more central) than j.

The “bow tie” network in Figure 3 illustrates the usefulness of Corollaries 4 and 5.18 First,

Corollary 4 immediately implies that player 3 is more central than players 1 and 2, and that player 5

is more central than players 6 and 7. Second, observe that the following map ρ is an automorphism

17A graph automorphism on L is a permutation ρ on N such that li,j = lρ(i),ρ(j) for all i, j ∈ N . That is, a graph

automorphism is a permutation of vertices that preserves links.
18This example is the same as that in Figure 2.13 of Jackson (2008), which Jackson uses to illustrate various

graph-theoretic concepts of centrality. An impotant difference between my definition and those discussed by Jackson

is that my definition gives a partial order on nodes, while all the definitions discussed by Jackson give total orders.
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of L: ρ (1) = 7, ρ (2) = 6, ρ (3) = 5, ρ (4) = 4, ρ (5) = 3, ρ (6) = 2, and ρ (7) = 1. Thus, Corollary

5 implies that each player in {3, 5} is more central than each player in {1, 2, 6, 7}. Given this

observation, it is not hard to show that player 4 is more central than each player in {1, 2, 6, 7}.

Finally, neither of players 3 and 4 are more central than the other, as player 3 has more immediate

neighbors while player 4 has more neighbors within distance 2. Therefore, Theorem 5 does not say

whether player 3 or player 4 has greater robust maximum cooperation. This is reassuring, because

one can easily construct examples in which x∗3 > x∗4 and others in which the reverse inequality

holds: for example, if f (x) =
√
x (with global public goods), then x∗1 ≈ 2.638, x∗3 ≈ 3.425, and

x∗4 ≈ 3.475 if δ = 0.5, whereas if δ = 0.4 then x∗1 ≈ 1.378, x∗3 ≈ 1.849, and x∗4 ≈ 1.839. Indeed, it

is not surprising that player 3 contributes more relative to player 4 when δ is lower, as in this case

the fact that player 3 has more immediate neighbors is more important, while player 4’s greater

number of distance-2 neighbors matters more when δ is higher (since δ2 is low relative to δ when

δ is low). However, there are networks in which a player i is not more central than player j

but nonetheless x∗i ≥ x∗j for every concave benefit function f and discount factor δ, as shown by

Example A2 in the online appendix. This implies that centrality is not necessary to order players’

maximum equilibrium cooperations for every benefit function and discount factor.

As an aside, the bow tie network also provides an interesting example of how social welfare

depends on network structure, and how this varies with the discount factor. When f (x) =
√
x,

first-best cooperation is xFB = ((7− 1) /2)2 = 9, so robust maximum cooperation is below first-

best for δ = 0.5 or 0.4.19 Were the seven players arranged in a circle rather than a bow tie,

then robust maximum cooperation would be 3.984 if δ = 0.5, and would be 1.777 if δ = 0.4. In

particular, compared to the bow tie, utilitarian social welfare is much higher with monitoring on

a circle when δ = 0.5, but is similar if δ = 0.4 (and is lower if δ = 0.3). The intuition is that

the circle supports more cooperation relative to the bow tie when δ is higher, as when δ is higher

players’lower average degree in the circle is more than offset by the circle’s smaller diameter. More

generally, networks that have lower average degree but also have shorter average distance between

nodes that are not neighbors tend to support relatively more cooperation– and thus relatively

greater effi ciency– when δ is higher.

19All calculations in this paragraph follow from the relevant formulas in Section 4.2.2.
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5.2 Comparing Networks

This section shows that centrality is a key tool for comparing different networks in terms of their

capacity to support cooperation, not just for comparing individuals within a fixed network. To

see this, note that the “more central”relation can be immediately extended to pairs of players in

different networks L′ and L by specifying that player i′ ∈ L′ is more central than player i ∈ L if

player i′ is more central than player i in the network consisting of disjoint components L′ and L.

With this definition, the result is the following.

Theorem 5 For any network L′ and connected network L, if there exists players i′ ∈ L′ and i ∈ L

such that player i′ is more central than player i, then there exists a surjection ψ : L′ → L such that,

for all j ∈ L, there exists j′ ∈ ψ−1 (j) such that x∗j′ ≥ x∗j .

Proof. Let d̄ be the diameter of L (which is finite because L is connected). Since player i′ is more

central than player i, Lemma 2 implies that there exists a surjection ψ :
{
j ∈ L′ : d (i′, j) ≤ d̄

}
→{

j ∈ L : d (i, j) ≤ d̄
}
such that, for all j with d (i, j) ≤ d̄, there exists j′ ∈ ψ−1 (j) such that j′ is

more central than j. By Theorem 4, x∗j′ ≥ x∗j for any such j′ and j. Finally,
{
j ∈ L : d (i, j) ≤ d̄

}
=

L, by definition of d̄.

It is easy to see that Theorem 5 applies if L′ ⊇ L, in which case any surjection ψ : L′ → L

such that ψ (i) = i for all i ∈ L satisfies the condition of the theorem. This implies the following

corollary, which formalizes in a natural way the widespread idea that better-connected societies

can provide more public goods.20

Corollary 6 Adding links to a network weakly increases each player’s robust maximum cooperation.

However, Theorem 5 is much more general than this. For example, if L′ is a circle with n′

nodes and L is a circle with n nodes, then Theorem 5 applies whenever n′ ≥ n. Similarly, if L′

is a symmetric graph of degree k′ on n nodes and L is a symmetric graph of degree k on n nodes,

then Theorem 5 applies whenever k′ ≥ k. Finally, the example in Figure 4 shows that Theorem

5 can even apply if L′ and L have the same number of nodes and the same number of links (here,

six and seven, respectively), because a simple application of Lemma 2 and Corollary 4 shows that

players 1, 2, 5, and 6 are more central than players 7, 8, 11, and 12, and that players 3 and 4 are

more central than players 9 and 10.
20An earlier version of this paper proves that, in addition, adding a link to a network strictly increases the robust

maximum cooperation of every player in the same component as the added link, if the robust maximum cooperation

of every such player is strictly positive.
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Figure 4: Comparing Networks with Theorem 5

5.3 Network Stability

This section briefly considers the implications of allowing players to sever links in the monitoring

network before the beginning of play. I assume that the resulting equilibrium involves each player

making her robust maximum contribution with respect to the remaining monitoring network. I

show that, with local public good provision, no player ever has an incentive to sever a link, but

that this is not true with global public good provision. Given that adding any link to a monitoring

network increases all players’robust maximum cooperation (by Corollary 6), these results suggest

that it may be easier to sustain monitoring networks that support high robust maximum cooperation

with local public goods than with global public goods.

With local public goods, every player is made worse-offwhen any link in the monitoring network

is severed. This implies that any monitoring network is stable, in that no individual can benefit

from severing a link; if players can also add links, then only the complete network is stable. Note

that a less restrictive definition of local public goods is needed for this result.

Corollary 7 Suppose that L is a subnetwork of L′. If ui
(

(xj)
n
j=1

)
=
(∑

j∈N(i) fi,j (xj)
)
− xi for

all i ∈ N , then every player i’s payoff when all players make their robust maximum contributions

is weakly greater with monitoring network L′ than with monitoring network L.

Proof. Note that (1) simplifies to x∗i = δ
∑

j∈N(i) fi,j

(
x∗j

)
. Therefore,

ui

((
x∗j
)n
j=1

)
=

 ∑
j∈N(i)

fi,j
(
x∗j
)− x∗i = (1− δ)

∑
j∈N(i)

fi,j
(
x∗j
)
. (3)

The set N (i) is weakly larger in L′ than in L (in the set-inclusion sense), and by Corollary 6

every player’s robust maximum cooperation is weakly greater with monitoring network L′ than

with monitoring network L. Hence, the result follows from (3).
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Corollary 7 does not hold with global public goods. The key difference between global and local

public goods is that with global public goods a player can benefit from another player’s cooperation

even if she is not observed by the other player, and in this case her own robust maximum cooperation

is lower. Formally, with global public goods (3) becomes

ui

((
x∗j
)n
j=1

)
=
∑
j 6=i

(
1− δd(i,j)

)
fi,j
(
x∗j
)
.

This equation clarifies the tradeoff player i faces when deciding whether to sever a link with player

j: severing the link increases d (i, k) for some players k ∈ N , which increases ui
((

x∗j

)n
j=1

)
(by

reducing player i’s robust maximum cooperation x∗i ), but also decreases x
∗
k for some players k ∈ N ,

which decreases ui

((
x∗j

)n
j=1

)
. It is easy to construct examples where the first effect dominates.

6 Conclusion

This paper studies repeated cooperation games with network monitoring and characterizes the

robust maximum equilibrium level of cooperation and its dependence on group size and structure,

where the notion of robustness is independence from players’information about others’information

(holding fixed players’information about others’actions). The key theorem, which underlies all

the results in the paper, is that robust maximum cooperation can be sustained by grim trigger

strategies. This theorem is driven by an intuitive– but subtle– strategic complementarity between

any two players’actions at any two on-path histories. With equal monitoring, robust maximum

cooperation is typically increasing in group size with pure public goods and decreasing in group

size with divisible public goods. In general, comparative statics on robust maximum cooperation

depend on the product of the marginal benefit of cooperation and the effective contagiousness of

the monitoring technology, which is thus identified as the property of a monitoring technology

that determines how much cooperation it can support. Less uncertain monitoring, which in some

cases may be interpreted as reliable local monitoring rather than unreliable public monitoring,

supports greater robust maximum cooperation. With a fixed monitoring network, a new notion

of network centrality is developed, under which more central players have greater robust maximum

cooperation. In addition, all players have greater robust maximum cooperation when the network

is better connected, although better connected networks are more likely to be stable with local

public goods than with global public goods.

I conclude by discussing some limitations of the current paper and the prospects for addressing

them in future research. First, it would be interesting to compare the equilibrium that sustains
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robust maximum cooperation with equilibria that satisfy other desiderata, such as fairness (as

payoffs in the equilibrium that sustains maximum robust cooperation can be highly asymmetric).

It would also be interesting– though challenging– to try to say something about the set of payoffs

that can be robustly sustained, or the set of payoffs that can be sustained with particular higher-

order information structures.

Second, the assumption that players learn about actions only through network monitoring,

rather than also observing public signals about aggregate outcomes, is very strong. For example,

villagers certainly observe something about the quality of their schools and wells directly, in addition

to observing others’contributions to their maintenance. An immediate observation here is that

grim trigger strategy equilibria in games with only network monitoring continue to be equilibria

when noisy public monitoring of aggregate outcomes (e.g., the sum of players’actions plus noise) is

added to the game, as it is optimal for each player to ignore the public signal if everyone else does.

In general, more cooperation could be sustained by using the public signal as well as information

from the network, so grim trigger would no longer be optimal; however, a natural conjecture is that

grim trigger is approximately optimal when the public signal is very noisy. Studying such a model

in detail could lead to insights about the interaction of public monitoring and network monitoring.

Third, while grim trigger strategies are robust in terms of the higher-order information structure,

they are fragile in that one instance of shirking eventually leads to the complete breakdown of

cooperation. This is especially problematic in (realistic) cases where the cost of cooperation is

stochastic and is sometimes prohibitively high. Hence, extending the model to allow for stochastic

costs of cooperation is important for deriving yet more robust predictions about which strategies

best sustain cooperation, and also seems to be an interesting and challenging problem from a

theoretical perspective.

Finally, my analysis makes strong predictions about the effects of group size and structure on

the level of public good provision, and on how these differ depending on whether the public good

is pure or divisible and whether it is global or local. A natural next step would be to study these

predictions empirically, either experimentally (as in the literature surveyed by Ledyard (1997)) or

with detailed field data of the kind that is increasingly being collected by development economists

(e.g., Karlan et al, 2009; Banerjee et al, 2011).
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Appendix

Details of Section 3.1 Example. First, consider grim trigger strategies. As when higher-order

information is perfect, player i’s maximum cooperation in grim trigger strategies equals xi, where

(xi)
3
i=1 is the greatest vector satisfying

xi = (1− δ)
∞∑
t=0

δt
∑
j 6=i

Pr (j ∈ D (t, i))
√
xj for all i.

This may be rewritten as

x1 =
δ/2

1− δ/2
√
x2 + δ

(
δ/2

1− δ/2

)
√
x3

x2 = δ
√
x3

x3 = δ
√
x2.

Solving this system of equations with δ = 1/2 yields x1 = x2 = x3 = 0.25.

Next, consider the strategy profile from Section 3.1. To define xL2 , x
H
2 , x

L
3 , and x

H
3 , I first

define the former three numbers in terms of xH3 . Let
√
xL3 ≡

√
xH3 − 1

10 . This gap between xL3

and xH3 differentiates the resulting strategy profile from a grim trigger strategy profile. Next, I

want player 2 to be indifferent among actions 0, xL2 , and x
H
2 at every on-path history, which is the

case if

δ
√
xH3 − xH2 = δ

√
xL3 − xL2 = 0.

In order to satisfy this condition, let xH2 ≡ 1
2

√
xH3 and xL2 ≡ 1

2

(√
xH3 − 1

10

)
.

Given these definitions of xL2 , x
H
2 , and x

L
3 in terms of x

H
3 , I define x

H
3 to be the number that

makes player 3 indifferent between actions xH3 and 0 after he sees player 2 play xH2 in an odd-

numbered period t− 1; intuitively, this is the binding incentive constraint for player 3 because the

fact that player 2 plays xH2 in period t− 1 is a signal that he observed player 1 in period t− 2, in

which case he plays xH2 with probability 1 in period t and thus requires player 3 to play xH3 in period

t+ 1 in addition to t. To compute this number, note that player 1’s future play does not depend

on player 3’s action, so player 3 is indifferent between playing xH3 and 0 if and only if (1− δ)xH3
equals the difference in player 3’s continuation value following actions xH3 and 0, excluding player

1’s actions. Clearly, this continuation value equals 0 after action 0, as players 2 and 3 play 0 in

every period after player 3 plays 0. To compute this continuation value after action xH3 , note that

the probability that player 2 observed player 1’s action in period t − 2 conditional on his playing
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xH2 in period t− 1 equals 1/2
1/2+(1/2)(1/2) = 2/3. Therefore, player 3’s assessment of the probability

that player 2 plays xH2 in period t equals

2

3
(1) +

1

3

(
1

2

)
= 5/6.

In contrast, player 3’s assessment of the probability that player 2 plays xH2 in every period τ ≥ t+1

equals 1
2 (1) + 1

2

(
1
2

)
= 3/4. Hence, since player 3’s assessment of the probability that he himself

plays xH3 in period τ + 1 equals his assessment of the probability that player 2 plays xH2 in period

τ , for all τ , his continuation value after playing xH3 in t equals

δ

(
(1− δ)

(
5

6

(
−xH3

)
+

1

6

(
−xL3

))
+

3

4

(√
xH2 − δxH3

)
+

1

4

(√
xL2 − δxL3

))

=
1

2


1
2

(
−5

6x
H
3 − 1

6

(√
xH3 − 1

10

)2
)

+3
4

(√√
xH3 /2− 1

2x
H
3

)
+ 1

4

(√(√
xH3 − 1

10

)
/2− 1

2

(√
xH3 − 1

10

)2
)
 . (4)

Define xH3 to be the number such that
(
1− 1

2

)
xH3 equals (4). Computing this number yields

xH3 ≈ 0.25384, and thus xL3 ≈ 0.16307, xH2 ≈ 0.25191, and xL2 ≈ 0.20191.

It remains to show that this strategy profile is a PBE. The one-shot deviation principle applies,

by standard arguments. Player 2 is indifferent among actions 0, xL2 , and x
H
2 at every on-path

history, and clearly weakly prefers to play 0 at every off-path history, so he has no profitable

one-shot deviation (as any other deviation yields a lower stage-game payoff and a weakly lower

continuation payoff than does x2 = 0). It is also straightforward to verify that the fact that player

3 has no profitable deviation after seeing player 2 play xH2 in an odd-numbered period implies that

he has no profitable deviation at any history; in particular, all other one-shot incentive constraints

of player 3’s are slack. Finally, player 1’s most profitable deviation at any on-path history is

playing x1 = 0. If player 1 conforms in period t, for any t ≥ 1, her expected payoff equals

3

4

(√
xH2 +

√
xH3

)
+

1

4

(√
xL2 +

√
xL3

)
− 0.2505 ≈ 0.71709.

If player 1 deviates to x1 = 0 in an odd-numbered period, her expected payoff may be shown to

equal

(1− δ)
(

1

4

)((
1 +

δ

2

)(√
xH2 −

√
xL2

)
+

(
1 +

(
δ

2

)2
)(√

xH3 −
√
xL3

))

+
1− δ

1− δ/2

(
1

2

√
xH2 +

1

2

√
xL2 +

(
1 +

δ

2

)(
1

2

√
xH3 +

1

2

√
xL3

))
≈ 0.71676.
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If player 1 deviates to x1 = 0 in an even-numbered period t ≥ 2, her expected payoff is strictly

less than this; intuitively, this is because if player 1’s period-t deviation is unobserved, player 2

plays xH2 in period t + 1 with probability 3/4 if t is odd but plays xH2 with probability only 1/2

if t is even. In addition, it is clear that the difference between player 1’s expected payoff from

conforming and from deviating to x1 = 0 in period t = 0 is the same as the difference between her

expected payoff from conforming and from deviating to x1 = 0 in any other even-numbered period.

Therefore, player 1 does not have a profitable deviation at any on-path history. Finally, it can be

verified that deviating to x1 = 0.2505 is not profitable for player 1 at any off-path history, and it

is clear that no other off-path deviation is profitable.

Proof of Lemma 1. Let
(
Y P , πP

)
denote a perfect higher-order information structure. There

are three steps. Step 1 shows that there exists a (component-wise) greatest vector (x̂i)
n
i=1 satisfying

(1), and also makes the technical point (used in Step 2d) that there exists an upper bound X̄ ∈ R+

on any player’s expected action, conditional on any set of monitoring realizations, at any time in

any PBE. Step 2 shows that x̂i is an upper bound on player i’s maximum cooperation, x∗i
(
Y P , πP

)
.

Step 3 exhibits a PBE in grim trigger strategies, σ∗, such that (1− δ)
∑∞

t=0 δ
tE
[
σ∗i
(
hti
)]

= x̂i for

all i, which proves that x∗i
(
Y P , πP

)
= x̂i for all i.

Step 1a: There exists a number X̄ ∈ R+ such that for every σ ∈ ΣPBE

(
Y P , πP

)
, player i, time

t, and set of monitoring realizations up to time t, F , E
[
σi
(
hti
)
|F
]
≤ X̄ and

∑
j 6=i fi,j

(
X̄
)
−X̄ < 0.

Proof: Recall that (1− δ)
∑∞

τ=t δ
τ−t∑n

i=1 E
[
ui

((
σj

(
hτj

))n
j=1

)
|F
]
is well-defined for all sets

of monitoring realizations, F , by assumption. The assumptions that fj,i is concave for all j, i and

limxi→∞
(∑

j 6=i fj,i (xi)
)
− xi = −∞ for all i imply that there exists a number xFBi ∈ R+ that

maximizes
(∑

j 6=i fj,i (xi)
)
−xi. For every player i, let X̄ ′i ∈ R+ be the number such that the sum

of the players’continuation payoffs from period t onward equals 0 when player i plays X̄ ′i in period

t, every player j 6= i plays xFBj in period t, and every player j (including player i) plays xFBj in

every subsequent period; that is, X̄ ′i is defined by

(1− δ)

∑
j 6=i

fi,j
(
xFBj

)− X̄ ′i +
∑
j 6=i

 ∑
k/∈{i,j}

fj,k (x∗k)

+ fj,i
(
X̄ ′i
)
− xFBj


+ δ

∑
j∈N

∑
k 6=j

fj,k
(
xFBk

)− xFBj
 = 0.

Let X̄ ′ ≡ maxi∈N X̄
′
i. Note that (1− δ)

∑∞
τ=t δ

τ−t∑n
j=1 E

[
uj
(
(σk (hτk))nk=1

)
|F
]
< 0 whenever

E
[
σi
(
hti
)
|F
]
> X̄ ′ for some player i. Now if htj is a history with perfect higher-order information,
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then htj determines the monitoring realization up to time t, and thus whether F has occurred, so

(1− δ)
∑∞

τ=t δ
τ−tE

[
uj
(
(σk (hτk))nk=1

)
|F
]

= E
[
(1− δ)

∑∞
τ=t δ

τ−tE
[
uj
(
(σk (hτk))nk=1

)
|htj
]
|F
]
. There-

fore, if E
[
σi
(
hti
)
|F
]
> X̄ ′ then there exists a player j such that (1− δ)

∑∞
τ=t δ

τ−tE
[
uj
(
(σk (hτk))nk=1

)
|htj
]
<

0 with positive probability, conditional on F . But (1− δ)
∑∞

τ=t δ
τ−tE

[
uj
(
(σk (hτk))nk=1

)
|htj
]
≥ 0 at

any on-path history htj , because σ ∈ ΣPBE

(
Y P , πP

)
and 0 is each player’s minmax value. Hence,

E
[
σi
(
hti
)
|F
]
≤ X̄ ′ for every player i.

Finally, for every player i, the assumption that limx1→∞
(∑

j 6=i fi,j (x1)
)
− x1 < 0 (combined

with concavity of fi,j) implies there exists a number X̄i ∈ R+ such that
(∑

j 6=i fi,j (x1)
)
− x1 < 0

for all x1 ≥ X̄i. Taking X̄ ≡ max
{
X̄ ′,maxi∈N X̄i

}
completes the proof.

Step 1b: There exists a greatest vector (x̂i)
n
i=1 satisfying (1), and x̂i ≤ X̄ for all i.

Proof: Define the function φ : Rn+ → Rn+ by

φi

(
(xj)

n
j=1

)
≡ (1− δ)

∞∑
t=0

δt
∑
j 6=i

Pr (j ∈ D (t, i)) fi,j (xj) for all i.

The fixed points of φ are precisely those vectors satisfying (1). Observe that φ is isotone. In

addition,
(

(1− δ)
∑∞

t=0 δ
t∑

j 6=i Pr (j ∈ D (t, i)) fi,j
(
X̄
))
− X̄ ≤ 0 for every player i, which implies

that φ
((
X̄
)n
j=1

)
≤
(
X̄
)n
j=1
. Hence, the image of the set

[
0, X̄

]n under φ is contained in [0, X̄]n.
Therefore, Tarski’s fixed point theorem implies that φ has a greatest fixed point (x̂i)

n
i=1 in the set[

0, X̄
]n. Finally, if xi > X̄ for some player i, then there exists a player j (possibly equal to i) such

that
(

(1− δ)
∑∞

t=0 δ
t∑

k 6=j Pr (k ∈ D (t, j)) fj,k (xk)
)
−xj < 0. This implies that every fixed point

of φ must lie in the set
[
0, X̄

]n, and it follows that (x̂i)
n
i=1 is the greatest vector satisfying (1).

21

Step 2a: If σ ∈ ΣPBE

(
Y P , πP

)
, then for every player i and every on-path history hti,

(1− δ)
∞∑
τ=t

δτ−tE
[
σi (hτi ) |hti

]
≤ (1− δ)

∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i))E
[
fi,j
(
σj
(
hτj
))
|hti, j ∈ D (τ , t, i)

]
.

(5)

Proof: Fix strategy profile σ, player i, and on-path history hti. For any player j and history h
τ
j ,

let E
[
fi,j

(
σj

(
hτj

))
|hti, 0

]
be the expectation of fi,j

(
σj

(
hτj

))
conditional on each player k 6= i

following σk, player i following σi at every time τ < t, history hti being reached, and player i playing

21As an aside, note that the vector (x̂i)
N
i=1 (which by Theorem 1 equals (x∗i )

N
i=1) may be easily computed by

iterating φ on
(
X̄
)N
j=1
. Thus, computing the vector of robust maximum cooperation is like computing the greatest

equilibrium in a supermodular game (cf Milgrom and Roberts (1990)).
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xi = 0 at every time τ ≥ t. If σ ∈ ΣPBE

(
Y P , πP

)
, then player i’s expected payoff from conforming

to σ from hti onward is weakly greater than her expected payoff from playing xi = 0 at every time

τ ≥ t. That is,

(1− δ)
∞∑
τ=t

δτ−tE

∑
j 6=i

fi,j
(
σj
(
hτj
))− σi (hτi ) |hti

 ≥ (1− δ)
∞∑
τ=t

δτ−tE

∑
j 6=i

fi,j
(
σj
(
hτj
)) |hti, 0

 ,
or, equivalently,

(1− δ)
∞∑
τ=t

δτ−tE
[
σi (hτi ) |hti

]
≤ (1− δ)

∞∑
τ=t

δτ−t
∑
j 6=i

(
E
[
fi,j
(
σj
(
hτj
))
|hti
]
− E

[
fi,j
(
σj
(
hτj
))
|hti, 0

])
.

(6)

Observe that, conditional on the event j /∈ D (τ , t, i), the probability distribution over histories

hτj does not depend on player i’s actions following history h
t
i. Therefore,

E
[
fi,j
(
σj
(
hτj
))
|hti, j /∈ D (τ , t, i)

]
= E

[
fi,j
(
σj
(
hτj
))
|hti, 0, j /∈ D (τ , t, i)

]
.

Hence, the right-hand side of (6) equals

(1− δ)
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i))
(
E
[
fi,j
(
σj
(
hτj
))
|hti, j ∈ D (τ , t, i)

]
− E

[
fi,j
(
σj
(
hτj
))
|hti, 0, j ∈ D (τ , t, i)

])
,

which is not more than the right-hand side of (5). Therefore, the fact that (6) holds for all players

i and on-path histories hti implies that (5) holds for all players i and on-path histories h
t
i.

Step 2b: For every player i, define the random variable Xt
i by

Xt
i ≡ (1− δ)

∞∑
τ=t

δτ−tσi (hτi ) .

The right-hand side of (5) is not more than

∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])
.22 (7)

Proof: Fix a player j. To simplify notation, define the random variable Xt
i,j by Xt

i,j ≡

(1− δ)
∑∞

τ=t δ
τ−tfi,j

(
σj

(
hτj

))
; this notation is used only in this step of the proof. Note that

(1− δ)E
[
fi,j
(
σj
(
hτj
))
|hti, j ∈ D (τ , t, i)

]
= E

[
Xτ
i,j |hti, j ∈ D (τ , t, i)

]
−δE

[
Xτ+1
i,j |h

t
i, j ∈ D (τ , t, i)

]
.
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Therefore,

(1− δ)
∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i))E
[
fi,j
(
σj
(
hτj
))
|hti, j ∈ D (τ , t, i)

]
=

∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i))
(
E
[
Xτ
i,j |hti, j ∈ D (τ , t, i)

]
− δE

[
Xτ+1
i,j |h

t
i, j ∈ D (τ , t, i)

])

=
∞∑
τ=t

δτ−t

 Pr (j ∈ D (τ , t, i))E
[
Xτ
i,j |hti, j ∈ D (τ , t, i)

]
−Pr (j ∈ D (τ − 1, t, i))E

[
Xτ
i,j |hti, j ∈ D (τ − 1, t, i)

]


=

∞∑
τ=t

δτ−t


Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i))E

[
Xτ
i,j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
+ Pr (j ∈ D (τ − 1, t, i))E

[
Xτ
i,j |hti, j ∈ D (τ − 1, t, i)

]
−Pr (j ∈ D (τ − 1, t, i))E

[
Xτ
i,j |hti, j ∈ D (τ − 1, t, i)

]


=
∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i))E
[
Xτ
i,j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
=

∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i))E

[
(1− δ)

∞∑
s=τ

δs−τfi,j
(
σj
(
hsj
))
|hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

]

≤
∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j

(
E

[
(1− δ)

∞∑
s=τ

δs−τσj
(
hsj
)
|hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])

=
∞∑
τ=t

δτ−t Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])
.

where the second equality uses the fact that Pr (j ∈ D (t− 1, t, i)) = 0, the third equality uses the

fact that D (τ − 1, t, i) ⊆ D (τ , t, i), and the inequality uses concavity of fi,j and Jensen’s inequality.

Summing over j 6= i completes the proof.

Step 2c: If σ ∈ ΣPBE

(
Y P , πP

)
, then for every player i, time t, and subset of monitoring

realizations up to time t, F ,

E
[
Xt
i |F
]

≤
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |j ∈ D (τ , t, i) \D (τ − 1, t, i) , F

])

Proof: If σ ∈ ΣPBE

(
Y P , πP

)
, then (5) and Step 2b imply that, for every player i and every

on-path history hti,

E
[
Xt
i |hti

]
≤
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

])
.
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Thus, by concavity of fi,j , and Jensen’s inequality,

E
[
E
[
Xt
i |hti

]
|F
]

≤
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
|F
])
.

Finally, perfect higher-order information implies that hti (or h
t
j) determines the monitoring realiza-

tion up to time t (and thus whether the events j ∈ D (τ , t, i) \D (τ − 1, t, i) and F have occurred),

so

E
[
E
[
Xt
i |hti

]
|F
]

= E
[
Xt
i |F
]
,

and

E
[
E
[
Xτ
j |hti, j ∈ D (τ , t, i) \D (τ − 1, t, i)

]
|F
]

= E
[
Xτ
j |j ∈ D (τ , t, i) \D (τ − 1, t, i) , F

]
.

Step 2d: If σ ∈ ΣPBE

(
Y P , πP

)
, then E

[
X0
i

]
≤ x̂i. In addition, if σ ∈ ΣPBE

(
Y P , πP

)
and

E
[
X0
i

]
= x̂i for all i, then σi

(
hti
)

= x̂i for every player i and on-path history hti.

Proof: Define xmi recursively, for allm ∈ N, by letting x1
i ≡ X̄ and letting xm+1

i ≡ φi
((

xmj

)n
j=1

)
for all i. I first claim that E

[
Xt
i |F
]
≤ xmi for every player i, time t, subset of monitoring

realizations up to time t, F , and number m ∈ N. The proof is by induction on m. For

m = 1, the result follows because E [σi (hτi ) |F ] ≤ X̄ for all τ ≥ t, by Step 1a, and therefore

E
[
Xt
i |F
]

= (1− δ)
∑∞

τ=t δ
τ−tE [σi (hτi ) |F ] ≤ X̄. Suppose the result is proved for some m ∈ N.

Then

E
[
Xt
i |F
]

≤
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
E
[
Xτ
j |j ∈ D (τ , t, i) \D (τ − 1, t, i) , F

])
≤

∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ − 1, t, i)) fi,j
(
xmj
)

= (1− δ)
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i)) fi,j
(
xmj
)

= xm+1
i ,

where the first inequality follows by Step 2c and the second inequality follows by the inductive

hypothesis.
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Since φ is isotone, x̂i ≤ xmi for all m ∈ N, and in addition x̂i ≤ φi (limm→∞ xmi ). Also, φ is

continuous, which implies that φi (limm→∞ xmi ) = limm→∞ xmi . The fact that x̂ is the greatest

fixed point of φ thus implies that x̂ = limm→∞ xm. Therefore, the fact that E
[
Xt
i |F
]
≤ xmi for all

m ∈ N implies that E
[
Xt
i |F
]
≤ x̂i. Taking t = 0 and F = ∅ yields E

[
X0
i

]
≤ x̂i.

Step 3: Let σ∗ be the strategy profile given by σ∗i
(
hti
)

= x̂i if zi,j,τ ∈ {x̂j , ∅} for all zi,j,τ ∈ hti,

and σ∗i
(
hti
)

= 0 otherwise, for all i. Then σ∗ ∈ ΣPBE

(
Y P , πP

)
, and E

[
X0
i

]
= x̂i for all i.

Proof: It is immediate that E
[
X0
i

]
= x̂i for all i. To see that σ∗ ∈ ΣPBE

(
Y P , πP

)
, note that

the one-shot deviation principle applies, by standard arguments. I first show that no player has a

profitable one-shot deviation at any on-path history, and then show that no player has a profitable

one-shot deviation at any off-path history.

Fix a player i and an on-path history hti. If x̂i = 0, then it is clear that player i does not have a

profitable deviation at hti. So suppose that x̂i > 0. Player i’s continuation payoff if she conforms

to σ∗ equals
∑

j 6=i fi,j (x̂j)− x̂i. The most profitable deviation from σ∗ is playing xi = 0, as every

other deviation yields the same continuation payoff and a lower stage-game payoff. I claim that

player i’s continuation payoff (including period t) after such a deviation equals

(1− δ)
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j /∈ D (τ , t, i)) fi,j (x̂j) . (8)

Given this claim, the difference between player i’s payoff from conforming to σ∗ and from playing

her most profitable deviation equals

(1− δ)
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i)) fi,j (x̂j)− x̂i,

which equals 0 because the vector (x̂i)
n
i=1 satisfies (1). Therefore, to show that player i has no

profitable deviation, it suffi ces to prove that player i’s continuation payoff after playing xi = 0 at

on-path history hti equals (8).

If player i deviates from σ∗ at on-path history hti and j /∈ D (τ , t, i) for some player j and time τ ,

then σ∗j
(
hτj

)
= x̂j . Hence, the claim that player i’s continuation payoff equals (8) is equivalent to

the claim that σ∗j
(
hτj

)
= 0 whenever j ∈ D (τ , t, i) and Pr (j ∈ D (τ , t, i)) > 0. Thus, suppose that

player i plays xi = 0 at on-path history hti, that Pr (j ∈ D (τ , t, i)) > 0, and that the monitoring

realization up to time τ , Lτ , is such that j ∈ D (τ , t, i) given Lτ and Pr ((Ls)
τ
s=0 = Lτ ) > 0. I

claim that σ∗j
(
hτj

)
= 0 given Lτ . This claim is trivial if x̂j = 0, so assume that x̂j > 0. Proceed

by induction on τ : If τ = t + 1, then zj,i,t = 0 given Lτ , so the fact that 0 /∈ {x̂i, ∅} implies that
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σ∗j

(
hτj

)
= 0. Suppose that the claim holds for all τ ≤ τ0, and consider the case where τ = τ0 + 1.

Since j ∈ D (τ0 + 1, t, i), player j observes the action of some player k ∈ D (τ0, t, i) at time τ0

given Lτ , and the fact that Pr ((Ls)
τ
s=0 = Lτ ) > 0 implies that Pr (j ∈ D (τ0 + 1, τ0, k)) > 0.

Since x̂j > 0, the fact that Pr (j ∈ D (τ0 + 1, τ0, k)) > 0 implies that x̂k > 0, by the definition of

(x̂i)
n
i=1. Therefore, by the inductive hypothesis, σ

∗
k

(
hτ0j

)
= 0 given Lτ , and 0 /∈ {x̂k, ∅}. Hence,

σ∗j

(
hτj

)
= 0, completing the proof of the claim.

It remains only to show that no player has a profitable deviation at any off-path history. Intu-

itively, given that each player i is indifferent between playing xi = x̂i and xi = 0 at every on-path

history hti, this follows from Ellison’s (1994) observation that a player’s incentive to cooperate in a

grim trigger strategy profile is reduced after a shirking by another player. Formally, for any subset

of players S ⊆ N , define D (τ , t, S) by

D (τ , t, S) = ∅ if τ < t

D (t, t, S) = S

D (τ + 1, t, S) = {j : zj,k,τ = xk,τ for some k ∈ D (τ , t, S)} if τ ≥ t;

note that this generalizes the definition of D (τ , t, i). Fix a player i and an off-path history hti. If

player i has a profitable deviation from σ∗ at hti, it must be playing xi = x̂i, as all other actions

yield the same continuation payoff as xi = 0 and a strictly lower stage game payoff. By a similar

argument to that in the previous two paragraphs, if D̃ (t) is set of players such that zi,j,τ /∈ {x̂j , ∅}

for some zi,j,τ ∈ hti, then the difference between player i’s payoff from conforming to σ∗ and her

payoff from deviating to xi = x̂i (and subsequently following σ∗) equals

x̂i −
∞∑
τ=t

δτ−t
∑
j 6=i

Pr
(
j ∈ D

(
τ , t, D̃ (t)

)
\
(
D
(
τ , t, D̃ (t) \ {i}

)
∪D (τ , t+ 1, i)

))
fi,j (x̂j)

= x̂i −
∞∑
τ=t

δτ−t
∑
j 6=i

Pr
(
j ∈ D (τ , t, i) \

(
D (τ , t+ 1, i) ∪ D̃ (t)

))
fi,j (x̂j)

≥ x̂i −
∞∑
τ=t

δτ−t
∑
j 6=i

Pr (j ∈ D (τ , t, i) \D (τ , t+ 1, i)) fi,j (x̂j)

= x̂i −
∞∑
τ=t

δτ−t
∑
j 6=i

(Pr (j ∈ D (τ , t, i))− Pr (j ∈ D (τ , t+ 1, i))) fi,j (x̂j)

= x̂i −
1

1− δ x̂i +
δ

1− δ x̂i = 0,

where the last equality follows because
∑∞

τ=t δ
τ−t∑

j 6=i Pr (j ∈ D (τ , t, i)) fi,j (x̂j) = x̂i/ (1− δ) and∑∞
τ=t δ

τ−t∑
j 6=i Pr (j ∈ D (τ , t+ 1, i)) fi,j (x̂j) = δx̂i/ (1− δ). Hence, player i does not have a
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profitable deviation at history hti for any set D̃ (t), and therefore player i does not have a profitable

deviation at history hti for any belief about the vector of private histories
(
htj

)n
j=1
.

Proof of Theorem 1. Let σ∗ be as in Lemma 1. The proof of Step 3 of the proof of Lemma 1

applies as written to any higher-order information structure. Therefore, σ∗ ∈ ΣPBE (Y, π) for any

(Y, π). Since E
[
X0
i

]
= x̂i for all i, it follows by the definition of x∗i that x

∗
i ≥ x̂i for all i. On the

other hand, Step 2d of the proof of Lemma 1 implies that x∗i
(
Y P , πP

)
≤ x̂i for all i, and therefore

x∗i ≤ x̂i for all i. Hence, x∗i = x̂i for all i, and it follows that σ∗ robustly sustains each player’s

maximum robust cooperation.

Proof of Corollary 1. By Theorem 1, it suffi ces to show that x̂i = x̂j for all i, j ∈ N . Let

xmi be defined as in Step 2d of the proof of Lemma 1. I claim that xmi = xmj for all i, j ∈ N and

m ∈ N. The proof is by induction. For m = 1, x1
i = x1

j = X̄. Suppose the result is proved for

some m ∈ N; that is, that there exists xm ∈ N such that xmk = xm for all k ∈ N . Then

xm+1
i = (1− δ)

∞∑
t=0

δt
∑
k 6=i

Pr (k ∈ D (t, i))αi,kf (xmk ) (by parallel benefit functions)

= (1− δ)
∞∑
t=0

δt
∑
k 6=i

Pr (k ∈ D (t, i))αi,kf (xm)

= (1− δ)
∞∑
t=0

δt
∑
k 6=j

Pr (k ∈ D (t, j))αj,kf (xm) (by equal monitoring)

= (1− δ)
∞∑
t=0

δt
∑
k 6=j

Pr (k ∈ D (t, j))αj,kf (xmk )

= xm+1
j ,

proving the claim. Finally, x̂i = limm→∞ xmi = limm→∞ xmj = x̂j .

Proof of Theorem 3. Let gtk (k′) ≡ Pr (#D (t) = k′|#D (0) = k), let Gtk be the corresponding

distribution function, and let Egtk [k′] ≡
∑n

k′=0 k
′gtk (k′). By Theorem 2, it suffi ces to show that∑∞

t=0 δ
tEg̃t1 [k′] >

∑∞
t=0 δ

tEgt1 [k′].

I claim that G̃tk strictly second-order stochastically dominates G
t
k for all t ≥ 1 and k ∈

{1, . . . , n− 1}, which is equivalent to
∑k′

s=0 G̃
t
k (s) <

∑k′

s=0G
t
k (s) for all t ≥ 1 and k′ ∈ {k, . . . , n− 1}.23

The proof is by induction on t. The t = 1 case is the assumption that G̃k strictly second-order

23Note that this claim implies that
∑∞
t=0 δ

tEg̃t1 [k′] ≥
∑∞
t=0 δ

tEgt1 [k′], but not necessarily that
∑∞
t=0 δ

tEg̃t1 [k′] >∑∞
t=0 δ

tEgt1 [k′], which is what needs to be shown.
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stochastically dominates Gk. Assume the result is proved for t− 1. Then

k′∑
s=0

G̃tk (s) =
k′∑
s=0

s∑
r=0

g̃t−1
k (r) G̃r (s)

=

k′∑
r=0

g̃t−1
k (r)

k′∑
s=r

G̃r (s)

=
k′∑
r=0

g̃t−1
k (r)

k′∑
s=0

G̃r (s)

<

k′∑
r=0

g̃t−1
k (r)

k′∑
s=0

Gr (s)

<
k′∑
r=0

gt−1
k (r)

k′∑
s=0

Gr (s)

=

k′∑
s=0

Gtk (s) ,

where the first line follows because G̃tk (s) =
∑s

r=0 g̃
t−1
k (r) G̃r (s), the second line reverses the

order of sums, the third line follows because G̃r (s) = 0 if s < r, the fourth line follows because

G̃r (s) strictly second-order stochastically dominates Gr (s) for all r ∈ {1, . . . , k′}, the fifth line

follows because G̃t−1
k (r) strictly second-order stochastically dominates Gt−1

k (r) (by the inductive

hypothesis) and
∑k′

s=0Gr (s) is decreasing and strictly convex in r for r ∈ {0, . . . , k′} (because

Gr (s) is decreasing and strictly convex in r for r = {0, . . . , s} and s ∈ {0, . . . , n}, so the sum of

such functions is decreasing and strictly convex in r for r = {0, . . . , k′}), and the sixth line follows

from undoing the rearrangement of the first two lines for Gtk (s) rather than G̃tk (s). This proves

the claim.

Trivially, Eg̃01 [k′] = Eg01 [k′] = 1, and Eg̃11 [k′] ≥ Eg11 [k′] because G̃k second-order stochastically

dominates Gk. I now show that that Eg̃t1 [k′] > Egt1 [k′] for all t ≥ 2. This follows because

Eg̃tk
[
k′
]

=

k′∑
s=0

g̃t−1
1 (s)Eg̃1s

[
k′
]

≥
k′∑
s=0

g̃t−1
1 (s)Eg1s

[
k′
]

>
k′∑
s=0

gt−1
1 (s)Eg1s

[
k′
]

= Egtk
[
k′
]
,

where the first line follows by the law of iterated expectation, the second line follows because
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G̃t−1
s (k′) second-order stochastically dominates Gt−1

s (k′) if t ≥ 2 (by the claim), the third line

follows because Eg1s [k′] is increasing and strictly concave in s for s ∈ {0, . . . , n} (since Gk (k′) is

decreasing and strictly convex in k for k ∈ {0, . . . , k′} and k′ ∈ {0, . . . , n}) and G̃t−1
1 (s) strictly

second-order stochastically dominates Gt−1
1 (s) (by the claim), and the fourth line follows from

undoing the rearrangement of the first line. Summing over t completes the proof.

Proof of Lemma 2. If such a surjection exists for all t ∈ N, taking t = 0 implies that player i is

more central than player j.

For the converse, I first claim that if player i is s-more central than player j, then player i is

s − 1-more central than player j. The proof is by induction on s. If i is 2-more central than j,

then for all t ∈ N there exists a surjection ψ : {k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t}, and

therefore # {k ∈ N : d (i, k) ≤ t} ≥ # {k ∈ N : d (j, k) ≤ t}, so i is 1-more central than j. Suppose

that if i′ is s − 1-more central than j′ then i′ is s − 2-more central than j′, for all i′, j′ ∈ N ,

and suppose that i is s-more central than j. Then for all t ∈ N there exists a surjection ψ :

{k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t} such that, for all k with d (j, k) ≤ t, there exists a

k′ ∈ ψ−1 (k) such that k′ is s − 1-more central than k. By hypothesis, this implies that k′ is

s−2-more central than k, which, by the definition of s−1-more central, implies that i is s−1-more

central than j. This establishes the claim.

The claim shows that, for any players i and k, the set of players k′ such that d (i, k′) ≤ t and

k′ is s-more central than k is weakly decreasing in s (in the set-inclusion sense). Since the sets

{k ∈ N : d (i, k) ≤ t} and {k ∈ N : d (j, k) ≤ t} are finite, this implies that there exists s̄ ∈ N such

that, for all k with d (j, k) ≤ t, the set of players k′ such that d (i, k′) ≤ t and k′ is s-more central

than k is the same for all s ≥ s̄. Hence, if player i is more central than player j, there exists a

surjection ψ : {k ∈ N : d (i, k) ≤ t} → {k ∈ N : d (j, k) ≤ t} such that, for all k with d (j, k) ≤ t,

there exists a player k′ ∈ ψ−1 (k) such that k′ is s-more central than k for all s ≥ s̄. By the claim,

k′ is also s̄ −m-more central than k for all m, so k′ is s-more central than k for all s ∈ N and is

therefore more central than k.
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