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I.  Introduction 

 
Hausman (2003) discusses four sources of bias in the present calculation of the 

CPI.  The most often discussed substitution bias is a second order bias while the other 

three sources of bias are all first order in their effects: “new good bias”, “quality bias,” 

and “outlet substitution bias.”  A “pure price” index based approach of surveying prices to 

estimate a COLI cannot succeed in solving the three problems of first order bias. Neither 

the BLS nor the recent report C. Schultze and C. Mackie, eds., At What Price (AWP, 

2002), recognizes that to solve these problems, which have been long known, both 

quantity and price data are necessary. We discuss economic and econometric approaches 

to measuring the first order bias effects from outlet substitution bias.  We demonstrate the 

use of scanner data that permits implementation of techniques that allow the problem to 

be solved.  

Over the past decade, “non-traditional” shopping formats have captured significant 

share from “traditional grocery.”  P. Little (2004) describes the two categories of 

alternative retail outlets as “high-spend” outlets, which are low price, one-stop shopping 

destinations, and “low and medium-spend” stores which are mostly convenience stores 

that serve a “fill-in” role in between trips to the “high-spend” outlets  He includes 

supercenters (Wal-Mart, Kmart, Meijer, etc.), warehouse clubs (Sam’s Club, Costco and 

BJ’s), and mass merchants (Wal-Mart, Kmart, Target, etc.) as the primary outlets for 

these “high-spend” expenditures. 3 Using 2003 data, he estimates that these outlets have 

24.8% of food expenditures, with supercenters having 45.6% of the category.  Over the 

                                                 
1 Earlier draft presented at Index Number conference in Vancouver, June 2004.  We thank Jie Yang and Ketan Patel 
for outstanding research assistance.  Marshall Reinsdorf provided helpful comments.  Author contact: 
jhausman@mit.edu 
2 First draft: do not quote or cite without permission.  No views in this paper reflect the U.S. Department of 
Agriculture’s position on these issues. 
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past few years Wal-Mart has become the largest supermarket chain in the U.S.  Wal-Mart, 

excluding its Sam’s Club, now has supermarket- related revenues approximately 51% 

larger than the runner-up Kroger, and larger than Albertsons and Safeway, the third and 

fourth largest supermarket chains, combined.  Nationwide Wal-Mart has a 14% market 

share (in 2003), despite not being in a number of regional markets, and an 18% share 

when Sam’s Clubs are included. Within the “medium-low spend” category, Little 

estimates convenience stores that also sell gasoline as the fastest growing store type with 

85.5% of the 12.4% total share for the category. Little calculates that total traditional 

grocery outlets, including conventional supermarkets and superstores (a larger version of 

the conventional supermarket), have decreased to a 56.3% dollar share in 2003.  He also 

forecasts that in 5 years, the “high-spend category” will grow from 24.8% to 31%, with 

supercenters comprising 54.8% of the total while traditional grocery outlets decrease from 

56.3% to 48.3%.  Thus, he expects Wal-Mart to become increasingly important over the 

next few years, continuing the trend of change over the past decade. 

Wal-Mart began selling food in 1988 and in 2002 because the U.S. largest grocery 

chain.  Wal-Mart now is larger than Kroger, Albertsons, and Safeway, which are the next 

largest supermarket chains.  Significant consolidation has occurred in the supermarket 

industry, but Wal-Mart continues to grow at a significantly faster rate than these 

supermarket chains.  The majority of Wal-Mart’s grocery sales arise from its over 1400 

(as of April 2004) supercenters which are 180,000 square foot stores that are both 

discount stores and grocery stores, although it also has “Neighborhood Market” stores 

that are about the size (40,000 sq. feet) of an average supermarket.4  While most of the 

stores are in the South and Southwest, Wal-Mart is increasing moving into urban centers 

with openings expected in Los Angeles and Chicago, along with other urban centers.4  

Over the 10-year period from 1991-2001 margins increased in supermarkets as the 

price of food sold at supermarkets grew at approximately twice the rate of the PPI for 

                                                                                                                                                             
3 Sam’s Club is owned by Wal-Mart. 
4 Wal-Mart management has given guidance that it expects to open between 230-240 new supercenters in 2005 for 
an increase of about 16%.  See Dow Jones, “Factiva,” April 19, 2004.  Morgan Stanley reports that Wal-Mart is 
seeking 16%-17% growth in supermarket sales compared with 3% industry growth.  See M. Wiltamuth and R. 
Fariborz, “Food Retail,” June 2004.  Wal-Mart has grown at a 16% rate over the past three years.   
4 Wal-Mart has sometimes had difficulty in receiving planning approval for its stores.  Currently, Wal-Mart has 
either no presence or an extremely limited presence in New England, the New York metro area, California, and the 
Pacific Northwest.  However, its expansion into new areas has proceeded over the past few years. 
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food.  Over this period the PPI for finished food increased by 13.9% while the CPI for 

food at home increased by 27.7%. Various studies have demonstrated that food items at 

Wal-Mart are 8%-27% lower priced that at the large supermarket chains, even after 

discounts for loyalty card and other special are taken into account.5  After entry by Wal-

Mart conventional supermarkets typically decrease their prices (or do not increase them 

as much as in non-Wal-Mart markets) because of the increased competition. 

Remarkably, the large expansion and continuing expansion of Wal-Mart and other 

supercenter food outlets has almost no effect on the BLS calculation of the CPI for food.6  

The BLS employs a “linking procedure” that assumes “quality-adjusted” prices at Wal-

Mart are exactly equal to prices at conventional supermarkets.  Thus, when a Wal-Mart 

store replaces, say a Kroger, in the BLS sample of stores from which it collects prices, it 

links the lower Wal-Mart price to the higher Kroger price to remove any difference.  Even 

though packaged food items are physically identical at the two stores, the BLS procedure 

does not recognize any price difference between the stores.  This procedure is not based 

on any empirical study.  Rather, it is based on mere assumption.  The assumption is 

completely inconsistent with actual real world market outcomes where Wal-Mart has 

expanded very quickly in markets that it entered.  Thus, Wal-Mart and other supercenters 

are nowhere in the food CPI so that we find that the BLS does not know that Wal-Mart 

“exists” in terms of the estimation of a CPI.  We also believe that observed consumer 

behavior cannot be explained by the BLS assumption of a compensating “quality 

differential.”  We specify a theoretical model of consumer behavior that demonstrates this 

point below. 

 

II. Current BLS Procedure 

The BLS methodology updates its samples of stores from which it collects prices 

periodically.  It makes two adjustments.  First it updates the products in the market basket 

                                                 
5 A recent December 2003 study by UBS Investment Research found a price gap of 17.3% to 26.2%, “Price Gap 
Tightens, Competition Looks Hot Hot Hot.”  The previous year UBS found a price gap of 20.8% to 39.1%.  For 
example for a specified identical market basket UBS finds Wal-Mart supercenters to have an average price 19.1% 
less expensive in Tampa and 22.8% less expensive in Las Vegas.  In 2002, Salomon Smith Barney estimated the 
price gap to be between 5% and 25%.  See L. Cartwright, “Empty Baskets, September 12, 2002. 
6 When customers shift from conventional supermarkets to Wal-Mart no change occurs in the food CPI.  To the 
extent that prices at Wal-Mart decrease (or increase) at a different rate than conventional stores, the food CPI will 
take account of this change with a lagged effect over time. 
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that consumers purchase.  The BLS also updates the stores at which these purchases are 

made.  The BLS sometimes takes a very long time to incorporate new products in the 

market basket as in the case of cellular telephones, which were not included for 15 years 

after their introduction. Hausman (1999) demonstrates the significant bias from the delay 

in the introduction of cellular telephone.  Cage (1996) describes the current BLS 

procedure of the “Continuing Point-of-Purchase Survey” (CPOPS), which provides the 

BLS with a sampling frame of outlets visited by urban consumers.7  Approximately 20% 

of all sampling units participate in a given year..  In 1999 the BLS began collecting the 

CPOPs data using computer assisted telephone interviews (CATI The new procedure, 

known as TPOPS, allowed an updated list of commodities in all sample units in each 

year, rather than only a 20% rotation per year.   While the products can change, note that 

the expenditure shares across categories did not change with this procedure. The 

expenditure shares are only updated on a considerably less frequent basis since the 

CPOPs data does not collect expenditure data or quantity data.   

When the BLS collects data, it collects the name and address of the retail 

establishment reported by respondents and estimates of the total daily expenditure by 

POPS category.  The expenditure weights are not used to update the expenditure weights 

used in the weighted average of prices, rather they are used in the selection of outlets so 

that those outlets with larger expenditure weights receive a greater probability of 

selection.8  The use of CATI allows for between 20%-25% of the products and services to 

be re-sampled in every sampling unit each year. 

TPOPS outlet rotation allows a closer approach to actual consumer shopping 

patterns as they change.  As more households shop at Wal-Mart, the probability of a Wal-

Mart being included in a given market increases.  Item rotation also occurs as discussed 

above.  However, when an identical item is sampled at the new outlet, even if the product 

is physically identical to the item sampled in the old outlet, the BLS does not take account 

of the lower price.  Thus, if a 12 ounce box of Kellogg’s Rice Krispies is purchased at a 

Wal-Mart that is newly included to replace a Kroger that has been dropped; the BLS links 

                                                 
7 The following discussion follows Cage (1998) closely. 
8 Note that this procedure may introduce bias because higher priced outlets will have higher expenditure weights 
than lower priced outlets in many situations, mainly depending on the expenditure elasticity of the market basket 
chosen. 
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the new lower price to the old higher price so no price change occurs.  This linking 

procedure creates outlet substitution bias in the estimation of the CPI.  In the AWP (2002, 

p. 168) discussion of BLS procedures, it is claimed that consumer shopping comprises a 

package and that non-monetary benefits exactly balance out the effects of the lower price.  

This finding was based on absolutely no empirical evidence whatsoever.  The finding is 

also completely inconsistent with the real world market facts that expenditures at 

supercenters grow quickly when they become available.  Indeed, Wal-Mart is now the 

largest supermarket chain in the U.S. 

This “compensating service effect” explanation is also inconsistent with the 

“indirect price effect” that we estimate subsequently, where we find that as expenditure at 

superstores increases in a given market, the prices at traditional supermarkets decrease.  

For example, after two Wal-Mart supercenters opened in Houston, a nearby Kroger’s 

sales dropped 10%, the Kroger store reduced worker hours by 30%-40%, and it decreased 

its prices.9  Presumably this price decrease is caused by greater competition.  Thus, 

consumers demonstrate with their expenditure choice that they prefer lower priced 

outlets, and the higher priced supermarket must respond in a competitive manner.  The 

AWP description of the BLS assumption that markets are in equilibrium is inconsistent 

with the real world market data, which find that prices from traditional stores decrease 

from the increased competition. 

Thus, when a new set of stores are included in the BLS sample, the linking 

procedure eliminates all of the price differences.  Even though the box of Kellogs Rice 

Krispies is identical in all respects, the BLS assumes that the quality of the shopping 

experience completely explains the difference in price.  Thus, lower prices from increased 

expenditure at superstores have no effect on the CPI.  In all respects, the BLS assumes 

that Wal-Mart does not exist in constructing the CPI. 

Reinsdorf (1993) found that food and motor-fuel prices during a two-year overlap 

period led to new samples prices being lower by about 1.25% compared to the outgoing 

samples.  Since sample rotation occurs every 5 years, this finding would create a 0.25% 

bias per year.  However, Reinsdorf’s quantitative findings have not been totally accepted 

                                                 
9 P. Callahan and A. Zimmerman (2003) report on these effects.  The regional head of Kroger’s stated, “Wal-Mart 
made us look at ourselves and reinvent ourselves.” 
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because of concerns about product quality as well as differences in coverage.  The AWP 

(2002, p. 176) recommended that the BLS continue its current practice and disregard the 

effect of Wal-Mart and other supercenters on prices and price indices. 

 

 

III. A Utility-Consistent Economic Model of Shopping Destination 

The BLS assumes that an exact compensating “quality differential” exists between 

shopping at a supercenter store with its lower prices and a conventional supermarket.  

Service quality and other factors supposedly allow the BLS to assume that quality 

adjusted prices are exactly the same when the BLS links the prices.  However, this 

assumption is inconsistent with real world market behavior that finds when Wal-Mart 

opens a store in a new geographic market, it rapidly gains share while conventional 

supermarkets lose share.10  We believe that a better model than the implicit BLS model is 

to consider Wal-Mart supercenters as a new choice to consumers.  Some consumers find 

the choice to be superior while others continue to shop at conventional supermarkets.11  

Thus, the arrival of Wal-Mart in a given geographic market is similar to the introduction 

of a new good into the geographic market.  Hausman (1997, 2003) discusses how new 

products should be included in a correct cost of living index (COLI).  Here, rather than a 

completely new product, e.g. cellular telephones, an existing product is expanded into a 

new geographic market.  However, the effect on consumers is similar since they now 

have increased choice in their shopping trips. 

For our economic model we consider the conditional choice of consumers to shop 

at either a conventional supermarket or at a lower price, and perhaps lower service 

quality, supercenter.  For ease of exposition, we use a two-stage choice model in which at 

the lower stage the consumer considers his or her shopping behavior conditional on type 

of store.  The consumer calculates a price index for shopping at either type of store, takes 

                                                 
10 Supermarket chains sometimes exit a geographic market after Wal-Mart enters.  Albertsons exited the Houston 
market after Wal-Mart entry.  However, in our model we assume that consumers continue to have access to 
traditional supermarkets, even if a given chain exits the market. 
11 As we discussed above, these conventional supermarkets typically decrease price because of the increased 
competition from Wal-Mart.  If the BLS consistently applied its “quality adjustment” procedure it would ignore 
these price decreases at conventional supermarkets because presumably they arise from reduced service quality.  
However, the BLS fully incorporates these price decreases, demonstrating that its approach is based on no correct 
economic assumptions. 
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account of service and other quality differences, and then at the upper stage decides 

which type of store to shop at.12 We use the two-stage approach of Hausman (1985) and 

Hausman, Leonard and McFadden (1995), although neither of the models was designed 

precisely for the situation of shopping destination choice. 

We allow for consumers choice of shopping at either a conventional supermarket, 

j=1, or at a supercenter, j=2.  Conditional on choosing to shop at one of these two types of 

stores the consumer has a conditional expenditure function 
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where the indirect utility function v(p,y) is derived from the duality relationship with the 

expenditure function.  Using duality corresponding to any level of utility in equation (3.1) 

and any vector of prices, a price index exists that corresponds to the minimum 

expenditure required to achieve a given level of utility u .  Indeed, the utility consistent 

price index is the level of expenditure needed to achieve the utility level: 
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12 We assume that consumers do not divide their shopping trips between different types of stores, although this 
behavior could be incorporated into the model. 
13 As written, equation (3.1) assumes that both types of stores carry all goods.  To the extent that supermarkets carry 
a wider variety of products that supercenters, the prices for supercenters can be entered as virtual prices that set 
demand to zero.  See Hausman (1997) for an explanation of virtual prices. 
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An “average price” jp can then be calculated by dividing  by a quantity index jy jx  so 

that .jjj xpy = 14 

   We now move to the top level where the consumer decides whether to shop at the 

conventional supermarket or at the supercenter outlet.  We expect  because most 

prices in supermarkets exceed the prices in supercenters.  Consider the use of the 

binomial logit model for choice between traditional supermarkets and supercenters.15  The 

probability of choosing the traditional supermarket is: 
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where a log price index or other type of price index (e.g. a Stone price index) can also be 

used depending on the precise form of the underlying expenditure (utility) and demand 

functions in equation (3.1) and (3.2).16   

If we can assume that the overall units of a good are the same, e.g. Kellogg’s Rice 

Krispies, we can simplify so that the overall demand for good i becomes: 
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where the right hand side demands are the conditional demands from equation (3.2) and 

have common units.   Similarly, to calculate the unconditional price for the representative 

consumer we take overall expenditure on good i and divide by the quantity of equation 

(3.5): 
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14 Instead of the average price we can also divide expenditure by utility to get a “cost of utils” index. 
15 Because of only two choices, the independence of irrelevant alternative assumption does not create a problem 
here.  With more than two choices a nested logit or multinomial probit model could be used.  See Hausman et. al. 
(1995) for a derivation with the nested logit model. 
16 An exact aggregation approach when using a Gorman generalized polar form appears in Hausman et. al. (1995). 
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where  is expenditure on good i.  If choice j = 2 does not exist in a given geographic 

market, then the price index of equation (3.6) is just the traditional supermarket price so 

that  where are the virtual prices, which cause demand at 

supercenters to be zero.17  But when supercenters become available, consumers who 

choose to shop at supercenters do so to maximize their utility and the correct price index 

is an expenditure weighted average of the two prices.  This expenditure weighted 

approach to price averages is the procedure we use in the empirical work that follows.   

iΞ

1*21 ),,(ˆ pypppi = *2p

Thus, the exact cost of living index becomes   
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which gives the ratio of the required amount of income when supercenters are present in 

the market compared to the situation where supercenters are not present and prices are at 

the virtual level , which causes demand to be zero.  Equation (3.7) demonstrates how 

the new good approach applies to supercenters when the correct unit of observation is a 

geographic market, rather than a new product.  Taking the appropriate weighted averages 

of equation (3.7) leads to an expenditure share weighted approach. 

*2p

   Thus, we do not find support for the BLS assumption of an exact compensating 

quality differential when consumers can choose which type of outlet at which to shop.  

Some consumers continue to shop at traditional supermarkets when supercenters become 

available, while other consumers shift to shopping at supercenters.  In terms of the 

representative consumer we calculate the probability weights for each type of choice 

multiplied by the demand at each type of outlet and divide this weighted demand into 

expenditure to derive the price index.  As more supercenters become available in a given 

                                                 
17 To the extent that traditional supermarkets close because of increased supercenter competition, consumers have 
decreased choice, which could effect price index calculations.  However, in the model we assume that consumers 
still have the choice to shop at one or more traditional supermarkets, i.e. that not all supermarkets in a given 
geographic market close.  In this situation which is consistent with actual market outcomes, the effect on a 
theoretical price index would be extremely small.  Indeed, supermarkets that close typically have the smallest 
customer base, which further decreases the effect of store closings on a price index. 
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geographic market, more consumers choose to shop at supercenters and its expenditure 

weight increases.  We continuously update the expenditure weights to allow for this 

observed market determined change in shopping destination choices.  Consumers in their 

revealed preference choices determine the appropriate weights to be used in the price 

index.   

We find that Wal-Mart should exist in the estimation of a price index, contrary to 

the current BLS procedure.  However, note that as Hausman (2003) emphasized, to 

implement this approach both prices and quantities need to be available, which 

necessitates the use of scanner data.  The BLS approach, which only collects price data, 

cannot implement the correct price index approach.  Without quantity data, the BLS will 

always be required to make one or another arbitrary assumption regarding “service 

adjusted” quality levels.  Observation of actual consumer choice in terms of quantities 

purchased allows us to resolve the problem. 

 
 

IV. Data Description 

This study uses a customized subset of the ACNielsen Homescan scanner panel 

data for the four years 1998-2001.  The ACNielsen Homescan data is a consumer panel 

consisting of approximately 61,500 randomly selected households across the U.S. and 

includes purchase as well as demographic information for all households in the sample.  

Homescan households are randomly recruited to join the panel using sampling techniques 

to ensure household representation for demographic variables such as household income, 

family composition, education, and household location. Each household is equipped with 

an electronic home-scanning unit, and household members record every UPC-coded food 

purchase they make by scanning in the UPC of the food products that they buy from all 

retail outlets that sell food for home consumption.  

The panel is recruited on a permanent basis, subject to turnover from normal 

attrition or adjustments to demographic targets necessitated by Census revisions.18  The 

Homescan panel is considered by many in the food industry as the most reliable 

household based panel data due to its long-standing reputation in the marketplace and its 

utilization of hand-held technology that minimizes the recording burden for participants.  
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The ACNielsen Homescan consumer panel collects consumer shopping and purchase 

data from all outlet channels, including grocery, drug, mass and convenience stores.  The 

panel is geographically dispersed and is demographically balanced so the sample profile 

matches the US population as closely as possible.  The panel data is also projected to 

census estimates that are updated regularly to reflect population changes.   

Household panel data allows for observation of the ongoing purchase habits and 

practices of household and demographic groups.  Tracking and analyzing this 

information over time can reveal the dynamics of consumer behavior such as who is 

buying what products, what different products are purchased during a given shopping 

trip, and how often a product is purchased.  Panel data quantifies the composition of 

category or brand volume which can be used to measure the impact of store choice on the 

purchase level of product quantities and prices.  Data are collected after each panelist 

shopping trip.  Members of the panel record their purchases, capturing not only what is 

purchased, but also where the purchase was made, and whether the purchase was a 

promotional, sale, or coupon item.   

These data are useful in price analysis since we are able to observe actual 

purchase choices by consumers.  However, in terms of food purchase behavior, the key 

missing information is consumer purchases of food away from home (primarily 

restaurant meals) so one needs to assume that the unknown levels of food away from 

home purchases do not somehow bias the average prices paid by an individual household 

for their food at home purchases.  Once this assumption is made these data are useful for 

analysis of the impact of store choice on average prices paid for food at home items.  

Consumer panel information can be used to measure the average prices paid by a 

representative group of households over time.  This measurement of average price paid 

can be aggregated across households and/or across time to measure price change for 

different categories of products.  

Along with the description of each product, the price and quantity that was 

purchased is recorded on a daily basis.  National and regional level aggregates can be 

calculated using transaction data from households located in 50 local U.S. markets as 

well as households in non-metro/rural areas that are included in this data set. For 21 of 

                                                                                                                                                             
18 Households lost through attrition are replaced with others having similar key characteristics. 
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these 50 markets, a large enough number of panelists are included to enable comparisons 

across markets for all UPC-coded products. 19 

The Economic Research Service (ERS) of the USDA purchased a sub-sample of 

transaction level data from the Fresh Foods Homescan Panel20 comprised of households 

that not only recorded their UPC-coded transactions, but also recorded their random-

weight (non-UPC coded) food purchases over the year(s) that they participated in the 

panel.  This sub-sample was used for this study in order to be able measure the entire 

market basket of household purchases of food for at-home consumption21.  Of this group 

of 15,000 households per year, the sample was restricted to households that participated 

in the panel for at least 10 out of 12 months per year22.   

Standard demographic information is collected on an annual basis from each 

household and each household’s home market/city and census region is identified for 

stratification purposes (see below).  Each household is then assigned a projection factor 

(weight) based on its demographics in order to aggregate the data to be representative at 

the market, regional, and national level. 23  

These data were constructed based on a stratified random sample with households 

as the primary sampling unit. A stratified random sample is used to ensure that the 

                                                 
19 Albany, Atlanta, Baltimore, Birmingham, Boston, Buffalo-Rochester, Charlotte, Chicago, Cincinnati, Cleveland, 
Columbus, Dallas, Denver, Des Moines, Detroit, Grand Rapids, Hartford-New Haven, Houston, Indianapolis, 
Jacksonville, Kansas City, Little Rock, Los Angeles, Louisville, Memphis, Miami, Milwaukee, Minneapolis, 
Nashville, New Orleans-Mobile, New York, Oklahoma City-Tulsa, Omaha, Orlando, Philadelphia, Phoenix, 
Pittsburgh, Portland, Raleigh-Durham, Richmond, Sacramento, Salt Lake City, San Antonio, San Diego, San 
Francisco, Seattle, St. Louis, Syracuse, Tampa, Washington, D.C. 

 
20 The Fresh Foods Homescan Panel contained 12,000 households in 1998 and 1999 and was expanded to 15,000 
households in 2000 and 2001.  
21 If only UPC-coded products were used to measure food-at-home expenditures, many fruit, vegetable, meat, and 
poultry purchases would not be recorded in the data and food-at-home expenditure shares by store type would not 
accurately measure true household and market expenditure shares.  This is especially true in this situation when 
alternative channel stores sell less random weight items than conventional retailers.  Leaving out random weight 
items would then tend to overstate the shares of food expenditures of alternative retail outlets. 
 
22 In total, there were 9,501 unique households in the data with some subset participating each year creating a total 
of 28,996 household by year observations.  In 1998 there were 7,624 households, 7,124 households in 1999, 7,523 
households in 2000, and 8,216 households in 2001.  Some households participated in the panel for more than one 
year.  Of the 9,501 households in the data, 5,247 households participated for all four years, 1,877 households 
participated for three years, and 2,377 households were one year participants. 
 
23 Age, gender, education, occupation, of head(s) of household, number of household members, household income, 
household composition, race, and ethnicity. 
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sample of households matches Census-based demographic and geographic targets.  One 

function of the design is to allow description of 8 major markets for cross-market 

comparisons. 24 

The strata for 1998 and 1999 are based on six cities (ACNielsen major markets) 

Atlanta, Baltimore/Washington, Chicago, Los Angeles, New York, and San Antonio.  All 

other households fall into one of four census regions: East, Central, South, and West.   

 

1998-1999 

Stratum Description 

1  Atlanta 

2  Baltimore-Washington  

3  Chicago 

4  Los Angeles  

5  New York 

6  San Antonio 

For all other households- Census Regions are used as strata: 

7  East 

8  Central 

9  South 

10  West   

 

Nielsen augmented their stratification scheme in 2000, selecting 2 additional major 

markets. 

2000-2001 

Stratum Description 

1  Atlanta  

2  Baltimore-Washington 

3  Chicago  

4  Los Angeles 

                                                 
 
24 Atlanta, Baltimore/Washington, Chicago, Los Angeles, New York, Philadelphia, San Antonio, San Francisco. 
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5  New York City    

6  Philadelphia 

7  San Antonio   

8  San Francisco 

For all other households- Census Regions are used as strata: 

9  East 

10  Central 

11  South 

12  West 

 

There was no known or intentional clustering in the sample construction. The projection 

factor (weight) reflects the sample design and demographic distribution within the strata. 

  The information that is captured on a transaction level basis includes: date of 

purchase, store name and channel type identifier25, store department identifier26, item 

description, brand name, number of units purchased, price paid, 

promotions/sales/coupons used (if any).  For retail stores that ACNielsen tracks with their 

store-level scanner data27, prices are verified through store-level price and promotion 

checks.   

Warehouse shipment data are used to supplement scanner-generated data 

collected from households or provided to ACNielsen through their store-level scanner 

data. Warehouse shipment data is used to estimate the balance of sales moving through 

other food retailers. This information is Census data (i.e., non-projected, actual shipment 

data) supplied to ACNielsen by wholesale co-operators. 

Some question the quality of household panel data when they try to reconcile it 

with store-level scanner data.  There is the perception that the volumetric data from each 

source should be the same.  However, panel data and store data are not always equal 

because measurement methodologies differ.  Store-level data records millions of 

                                                 
25 Grocery, Drug, Mass Merchandiser, Supercenter, Club, Convenience, Other (including dollar stores, bakeries, 
military stores, online purchases, health food stores, and vending machines)  
26 Dry Grocery, Dairy, Frozen-Produce-Meat, Random Weight. 
27 The ACNielsen store-level sample is updated through both replacement of canceled or closed stores and 
Continuous Sample Improvement Program -- when the sample is changed intentionally to ensure that changes in the 
universe are reflected in the sample. 
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shopping transactions while panel data records a specific group of shoppers.  In addition, 

panel data only represents household-based purchases, so there are no small businesses or 

other institutional purchases included in the panel.  

Both types of information have their uses, and by combining the two, one can 

quantify the composition of volume, understand the reasons behind consumer behavior 

changes, and measure the impact of store choice on average prices.  Store-level scanning 

data may show that sales were down in a particular store for some group of products in a 

given time period.  Panel data provide insight into whether the lost volume is due to 

fewer buyers or if the existing buyers purchased less at the given store or chain of stores.  

Panel data also provide information on which competitors gained the lost expenditures of 

the store in question. 

 

V. Effects on Prices 

Our empirical approach first investigates the effect of supercenters, mass 

merchandisers, and club stores, (hereafter SMC) on prices paid by households.  Two 

effects are present.  The direct effect is that as more of these superstores operate in a 

given geographic market, the average prices paid by households will decrease.  Prices for 

food categories in superstores are typically 5%-48% less than prices for the same product 

in supermarkets and other conventional retail outlets.  Thus, as a high proportion of 

households buy their food at non-traditional retail outlets, the average price paid in a 

market will decrease. 

 

A.  Price Difference between Supermarkets and Superstores 

In Table 5.1 we calculate the ratios of average prices across different types of 

outlets for 20food categories.  Column 2 compares the prices for the food categories in 

traditional supermarkets compared to prices for these same categories in SMCs (non-

traditional stores). 
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Table 5.1: Ratio of Supermarket and Other Outlet Prices to Superstore Prices 

Product Supermarkets/SMC All Other/SMC 
Apples 1.546 1.531 
Apple Juice 1.585 1.596 
Bananas 1.384 1.368 
Bread 1.108 1.098 
Butter/Margarine 1.096 1.096 
Cereal 1.172 1.166 
Chicken Breast 1.408 1.411 
Coffee 1.373 1.383 
Cookies 1.223 1.214 
Eggs 1.312 1.305 
Ground Beef 1.372 1.367 
Ham 1.967 1.984 
Ice Cream 1.320 1.331 
Lettuce 2.117 2.107 
Milk 1.207 1.199 
Potatoes 1.412 1.402 
Soda 0.891 0.974 
Tomatoes 1.358 1.321 
Bottled Water 1.058 1.165 
Yogurt 1.413 1.411 
Average 1.300 1.306 

 

The largest difference in average price was for lettuce where SMC prices were about 

50% lower than traditional supermarkets over the 48 month period.  Bottled water was 

the lowest price difference with SMC prices about 5% less expensive.  Soda was the only 

item with a lower price in traditional supermarkets than in SMCs.  When we take an 

average across all of the food categories we find that SMCs have prices that are 27% 

lower than traditional supermarkets.  We find this difference to be quite large.28 

In column 3 of Table 5.1 we compare the price in all non-SMC outlets, including 

traditional supermarkets, to the price of these food categories in superstores.  We find the 

results to be quite similar with the main differences occurring in soda and bottled water.  

We find the same overall results that SMC stores offer significantly lower prices than 

other retail outlets.   

We do not find any indication that SMC stores change (increase) their prices at a 

greater or lower rate than traditional supermarkets and other retail outlets.  However, we 

cannot do the comparison of price changes in equilibrium because as the presence of 

                                                 
28 The estimated difference is in line with stock analyst reports who have previously sampled the difference in prices 
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SMC stores increases, traditional retail outlets, and most importantly traditional 

supermarkets, decrease their prices as a competitive response. 

 

B.  Direct and Indirect Effects on Prices from Superstores 

Another important effect exists from the expansion of SMC stores.  Their 

increasing presence also increases competition among traditional food retailers.  These 

supermarkets must decrease prices to remain competitive.  The well-publicized strike in 

the Los Angeles area in late 2003 through early 2004 when traditional supermarkets 

wanted to decrease health benefit for their employees demonstrates the effect that 

potential entry of supercenters can have on competition.  We call this SMC effect on 

traditional supermarkets the indirect price effect.  Both the direct and indirect price 

effects lead to lower average prices for households. 

To investigate both the direct and indirect effects on average prices, we do an 

econometric analysis using the ACNielsen Homescan data.  These data are particularly 

useful since they provide household data and allow for a stratified random sample of all 

households.  Importantly they provide both price and quantity data across all stores.  

Since Wal-Mart and some other large superstores no longer participate in the IRI or 

ACNielsen store level data collection, household data collection provide a source of price 

and quantity data that are not available elsewhere.29 

We analyze data at the market level using a fixed effects specification with 48 

monthly observations for each market during the period 1998-2001: 

 

48,134,1 ==+++= tiep itittiit εβδα    (5.1) 

 

where pit is the average log price paid for a given product, iα  is a fixed effect for a 

market, tδ  is a monthly fixed effect, eit is percentage expenditure for a given product in 

superstores, and β is thee elasticity coefficient that wee estimate.  We use market fixed 

                                                                                                                                                             
over a very few markets. 
29 Since the SMC stores continue to collect the data for internal use, we believe that if the BLS were to begin to use 
scanner data these large stores would likely allow use of their data under confidentiality restrictions.  However, the 
household data provide an adequate source of information for most uses. 
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effects rather than random effects because expenditure in SMC stores is unlikely to be 

uncorrelated with the stochastic disturbance, e.g. Hausman (1978).  In this situation a 

fixed effects estimator yields the efficient estimator.  However, we make two further 

econometric adjustments.  First, expenditure in superstores on a given product may well 

not be econometrically pre-determined.  Thus, we use instrumental variable estimation 

(2SLS) where as the instrument we use the overall proportion of food expenditure in 

SMC stores in a given market as the instrumental variable.  Also, we use an 

autoregressive model for the stochastic disturbance (AR1) to capture the time series 

aspect of the data and to achieve more efficient estimates.  However, least squares with 

robust standard errors leads to quite similar results. 

 For our econometric investigation of 20 food products we use 34 markets, each 

with over 12,000 food transactions per year.  The 34 markets are listed in Table 5.1: 

 

 

Table 5.1:  Markets Used in Econometric Analysis 

BOSTON  DENVER 
HARTFORD-NEW 
HAVEN 

CHICAGO  DETROIT PHOENIX 
HOUSTON  MIAMI SALT LAKE CITY 
INDIANAPOLIS  MILWAUKEE COLUMBUS 
KANSAS CITY  MINNEAPOLIS CHARLOTTE 
LOS ANGELES  PHILADELPHIA DES MOINES 
NEW YORK  PITTSBURGH GRAND RAPIDS 
SAN FRANCISCO  PORTLAND, OR OMAHA 
SEATTLE  ST. LOUIS SAN ANTONIO 
ATLANTA  TAMPA SYRACUSE 
CINCINNATI  BALTIMORE  

CLEVELAND  
BUFFALO-
ROCHESTER  

 

For each of these markets we standardized purchases on a physical unit measure and 

estimated the effect of increasing purchases in SMC stores.  Since we have fixed effects 

for each market, persistent cost and price differences should be take account of as well as 

seasonal effects given the presence of monthly fixed effects.  We give the econometric 

estimates for these 20  food categories across the 34 markets in Table 5.2: 
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Table 5.2: Average Price for Food Products across 34 Markets 

National Results  
AR(1) IV Results 
(Asymptotic Standard Errors) 

Product All Stores 
Apples -0.1036
 (0.2298)
Apple Juice -0.2769
 (0.3799)
Bananas -0.1545
 (0.1747)
Bread -0.0642
 (0.0898)
Butter/Margarine -0.8192
 (0.2445)
Cereal -0.1079
 (0.1275)
Chicken Breast -0.5597
 (0.4402)
Coffee -0.6548
 (0.4774)
Cookies -0.4850
 (0.1294)
Eggs -0.4324
 (0.0995)
Ground Beef -0.0679
 (0.1637)
Ham -1.3032
 (0.7580)
Ice Cream -0.3516
 (0.3053)
Lettuce -1.6194
 (1.0106)
Milk -0.2411
 (0.0748)
Potatoes -0.6406
 (0.2346)
Soda -0.3756
 (0.1489)
Tomatoes -0.8157
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 (0.4942)
Bottled Water -0.7231
 (0.9446)
Yogurt -0.1832
 (0.1635)

   

All of the estimated elasticity coefficients are negative as expected.  Thus as households 

spend increasing amounts of expenditure at SMCs, the average prices paid for food items 

decrease.  While the effects are estimated with varying amount of precision, overall the 

results are highly significantly different from zero.  No obvious pattern of coefficient size 

seems to exist: we find the largest effects for ham, lettuce, butter/margarine, tomatoes, 

potatoes, and coffee, which are a mix of branded and unbranded products.  Yet, we find 

relatively small effects for ground beef, apples and bananas, which are typically 

unbranded products, but we also find relatively small effects for cereal and yogurt, which 

typically are branded products.   Overall, we find a statistically negative effect on 

average prices as shopping in superstores increases.  Thus, we find the “direct effect” 

operates as household shift their expenditure from traditional supermarkets to lower 

priced superstore outlets. 

 In Graph 5.1 we depict the difference in average prices paid by households due to 

the spread of SMC stores over the period. During the sample period from January 1998 

to December 2001 the expenditure share of SMC stores increased from 10.9% to 16.9%, 

a 55.3% increase over the 48 months or 11.6% per year.  We take the econometric 

estimates from Table 5.2 and use them to estimate the decrease in average price for each 

food category.  We then average across food categories and plot the results in Graph 5.1, 

which demonstrates the increasing effect on average food prices as SMCs become more 

available and households increase their expenditures at these retail outlets.  We find that 

food prices are 3.0% lower than otherwise, or an effect of about 0.75% year. 
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Graph 5.1: National Difference in Prices due to SMC Stores
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We now consider two of the individual food products.  In Graph 5.2 we plot the effect of 

increased expenditure in superstores on the average price of butter/margarine. 

Graph 5.2: Butter/Margarine Difference
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The estimated coefficient for butter/margarine in Table 5.2 is quite large at –0.8192.  The 

estimated effect of the spread of superstores on the price of butter/margarine is –5.63% 

over the 48 month period.  The effect on the price of yogurt is presented  in Graph 5.3.  

The estimated coefficient for the price of yogurt is considerably smaller at –0.1832. 

 

Graph 5.3: Yogurt Price Difference 
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Thus, in Graph 5.3 the effect on the average price of yogurt over the 48 month period is –

1.1%.  From Graphs 5.2 and 5.3 we see that significantly different price effects exist for 

different food products due to the spread of SMCs and increased expenditure at those 

SMCs by households.  

 We now repeat the econometrics to test for the “indirect effect” of lower 

conventional supermarket prices because of increased competition from superstores.  In 

equation (5.1) we replace the left-hand variable pit, which is the average log price paid 

for a given product, with itp~ , which is the average price paid in supermarkets.  We give 

the results in Table 5.3: 
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Table 5.3: Average Price for Food Products in Supermarkets across 34 Markets 

National Results for Supermarkets 
AR(1) IV Results 
(Asymptotic Standard Errors) 

Product Supermarkets 
Apples -0.2307
 (0.2233)
Apple Juice -0.5385
 (0.5104)
Bananas -0.0437
 (0.1447)
Bread 0.0066
 (0.0890)
Butter/Margarine -0.6853
 (0.2089)
Cereal 0.0832
 (0.1538)
Chicken Breast -0.5812
 (0.5352)
Coffee -0.4763
 (0.6005)
Cookies -0.4366
 (0.1966)
Eggs -0.1915
 (0.0922)
Ground Beef -0.0303
 (0.1538)
Ham -2.1172
 (1.2448)
Ice Cream -0.3985
 (0.2895)
Lettuce -2.4217
 (1.5517)
Milk -0.1247
 (0.0887)
Potatoes -0.5092
 (0.2244)
Soda -0.2728
 (0.1513)
Tomatoes -0.6956
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 (0.4791)
Bottled Water -0.5950
 (0.8155)
Yogurt -0.0759
 (0.1833)

 

We estimate 18 of the 20 coefficients to be negative, with the only exceptions being 

bread and cereal, neither of which is statistically significant.30  As would be expected 

from economic theory, the effects of increased SMC expenditures are smaller for most of 

the products.   Thus, the “direct effect” on average prices paid by household arising from 

substitution to lower priced SMCs typically exceeds the “indirect effect” of decreased 

prices in supermarkets.  Nevertheless, we do find some quite large indirect effects as in 

lettuce, butter/margarine, coffee, ice cream, potatoes, tomatoes, and bottled water.  The 

spread of supercenters leads to lower prices both for households that shift their food 

shopping from supermarket to SMC stores but also for households who continue to shop 

at supermarkets because of lower prices caused by the increased competition from 

expanding food offerings at SMCs. 

 In terms of one of the questions we posed at the beginning of the paper, the spread 

of supercenters does significantly affect prices paid by households.  However, to 

correctly estimate the effect both quantities and prices must be utilized.  Holding prices 

fixed as households shift their expenditures to non-traditional retail outlets, we find the 

average prices they pay decrease.  However, prices also change because as households 

shift their purchasing behavior, the increased competition forces supermarkets to lower 

their prices.  Both of these effects, the direct effect and indirect effect, lead to lower 

average prices paid by households for food items. 

 

VI. Effect on Price Indices 

Since our scanner based data set includes observation on both quantity and price, 

we are able to construct a price index that takes account of both increased expenditure at 

SMC stores as well as the effects of substitution when consumers face lower prices.  

                                                 
30 We find very similar results if we group the remaining Nielsen categories with supermarket: drug stores, 
convenience, and “other”.  These other outlet categories have relatively low expenditure levels compared to 
traditional supermarkets. 
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Thus, we are to consider a source of first order bias in the CPI, outlet substitution bias, as 

well as the source of second order bias, substitution bias that occurs with the lower prices 

at the SMC outlets.   

Food expenditures at SMC outlets have increased over the years in question.  In 

January 1998, in our sample of 34 markets, we find an expenditure share of 0.1090.  At 

the end of the sample, 48 months later, in December 2001 we find an expenditure share 

of 0.1693.  Thus, the expenditure increased by .0603 or by 55.3% over the 48 months or 

11.6% per year.  The share has continued to increase as new SMC food outlets have 

continued to open and as consumers have increasingly shopped at these outlets.   

We estimate the effect of this increased expenditure in lower priced SMC outlets 

on the 20 food categories we considered above and an overall food price index.  We 

consider three indices in Table 6.1: (1) Continuous update: a continuously updated, 

Divisia-style, price index where aggregates food expenditure shares across outlets from 

the current month are used to construct a share weighted average price for each food 

category.  Note that since we have scanner data we can update both the food expenditure 

shares (quantity data) and the price data each month.  This continuous updating allows us 

to control for both outlet substitution bias, a first order bias in the CPI, and substitution 

bias, a second order bias in the CPI. (2) BLS Constant Weights: we keep the expenditure 

shares constant over the 48 months.  We use current prices each month, but we take a 

weighted average using the expenditure weights as of January 1998. Thus, both outlet 

substitution bias and price substitution bias are present in the calculated index. (3) BLS 

with updated yearly expenditure weights: In January of each year we rotate stores and 

link the prices to the preceding December.  We are assuming here that the BLS TPOPS 

procedure leads to a correctly reweighted sample each year, but that price linking 

removes the lower price effect of the shift by consumers to increasing expenditures at 

SMCs (4) Biennial Update which is closest to the current BLS procedure. We now 

update the expenditure weights across stores based on the previous December.  We 

continue to use the BLS linking procedure.  Thus, we continue to have outlet substitution 

bias but we have reduced price substitution bias because of the yearly updates.  While we 

cannot tell exactly which method BLS used, we believe method (4) is the closest to 

current BLS procedures. 
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Table 6.1: Price Index Calculations for food Expenditure: 1998-2001 

Product 
Continuous 

Update 
Constant 
Weights 

Yearly 
Update 

Biennial 
Update 

Apples 1.016 1.028 1.032 1.032 
Apple Juice 0.939 0.961 0.955 0.960 
Bananas 0.710 0.720 0.717 0.725 
Bread 1.104 1.106 1.104 1.111 
Butter/Margarine 1.162 1.168 1.172 1.169 
Cereal 1.043 1.054 1.051 1.056 
Chicken Breast 1.731 1.765 1.768 1.762 
Coffee 0.897 0.909 0.915 0.926 
Cookies 1.148 1.156 1.157 1.157 
Eggs 0.893 0.905 0.903 0.909 
Ground Beef 1.368 1.392 1.392 1.388 
Ham 0.755 0.774 0.791 0.799 
Ice Cream 1.092 1.112 1.110 1.108 
Lettuce 1.016 1.059 1.056 1.045 
Milk 1.083 1.091 1.091 1.095 
Potatoes 1.355 1.373 1.381 1.378 
Soda 1.084 1.074 1.081 1.077 
Tomatoes 1.569 1.581 1.582 1.599 
Bottled Water 1.160 1.162 1.174 1.182 
Yogurt 1.102 1.120 1.115 1.119 

     
Average difference/year  0.0032 0.0036 0.0042 

 

In Table 6.1 we see that Method (1), the Continuous Update procedure, almost 

always leads to lower price increases or greater price decreases for all food products over 

the 48 month period.  For example, apples have a price increase estimated at 1.6%.  

Method (2) calculates an increase of 2.8%.   The difference is 0.12 percentage points or a 

difference of 15.0% per year.  Method (3), which allows for yearly updated expenditure 

weights, calculates an increase of 3.2% per year, 0.16 percentage points more than 

Method (1), or a difference of 18.9% per year.  Lastly, Method (4), which uses biennial 

updates to the weights, again calculates an increase of 3.2% per year or a difference of 

18.9% per year.  To our initial surprise, while Method (1) finds the lowest price increase 

as expected, Method (2) often estimates a lower price increase than Method (3) or 

Method (4).  However, we now recognize this outcome as the result of the BLS linking 
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procedure that eliminates the effect of the lower prices when customers switch outlets.  

Method (2) captures the “indirect effect” of lower prices when the presence of 

supercenters increases, but Methods (3) and (4) eliminate part of this indirect effect 

because they update the expenditure weights. Thus, the outcome of a more continual 

updating of expenditure weights leads to a perverse result because of the “linking out” of 

lower prices in SMCs. 

When we take average yearly changes across all food categories we find the 

estimated difference between Method (1) and Method (2) to be 0.32% a year.  This 

estimate is the same order of magnitude, but somewhat higher than Reinsdorf’s (1993) 

estimate.  In terms of the BLS CPI-U for food at home which averaged 2.29% over this 

period, the 0.32% per year difference is 14.0%. Thus, we estimate that the Method (2) 

has an upward bias of approximately 14.0% because of its linking procedure, which 

eliminates the effect of households shifting their expenditure to lower price supercenter 

outlets such as Wal-Mart. 

We next compare Method (1) to Method (3), which allows for updated 

expenditure weights each year.  Here we find an estimated difference between Method 

(1) and Method (3) of increase of about 0.36% per year.  We find an upward bias in the 

Method (3) measure of food at home to be upward biased by 15.7%.  If we compare 

Method (4), the biennial update method, we find the estimated average difference to be 

0.42% per year.  In terms of Method (4), which is probably most similar to the 

calculation of the BLS CPI-U for food at home, the 0.42% per year difference is 18.3%. 

The years 1998-2001 were generally a period of low inflation, but we still find significant 

difference in estimates of the food price indices dues to shift towards lower price outlets.  

We find an upward bias in the range of 14.0% to 18.3% in the estimate of the CPI for 

food at home because of the use of the BLS linking procedure.  Thus, updating the 

expenditure weights significantly reduces the bias in the estimated price index 

 In Graph 6.1 we plot the Method (1) price index where January 1998 is set equal 

to 1.0.  Over the entire period we estimate a price increase of 12.1% or 2.5% per year. 
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Graph 6.1: National Price Index: 20 Food Categories
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While this estimate is for  just the 20 food products we have investigated to date, we note 

that the BLS CPI-U food at home index increased by 9.48% over the same period or 

2.29% per year.  The estimates are quite comparable, but the CPI-U index is over a much 

wider range of food products than the index we have computed.  We intend to widen the 

range of food categories we for which estimate the effects of shifts to lower price outlets 

in future versions of this paper. 

 

 

VII. Conclusion  

 Over the past 15 years the largest development in food retailing has been the start 

of Wal-Mart supercenters that compete most closely with traditional supermarkets.  Wal-

Mart has expanded greatly, mostly in the South and Southwest, and become the largest 

supermarket chain in the U.S.  Wal-Mart is now expanding into additional geographic 

markets in California and the upper Midwest, so its effects will become even more 
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important.31   Wal-Mart offers identical food items at an average price about 15%-25% 

lower than traditional supermarkets.  Wal-Mart’s entry into a new geographic market 

creates a direct price effect by offering a lower price option to consumers and an indirect 

price effect by causing traditional supermarkets to lower their prices because of the 

increased competition. 

 The BLS procedure currently does not take account of the lower price option that 

Wal-Mart offers when it enters and expands in a given geographic market.  The BLS only 

captures the indirect price effect.  Instead, the BLS “links out” Wal-Mart’s lower prices 

by assuming that an exact “compensating service quality differential” exists that exactly 

counteracts Wal-Mart’s lower prices.  If this assumption were correct, we would not see 

the rapid gain in market share by Wal-Mart after its entry into a market.   

 We find that a more appropriate approach to the analysis is to let the choice to 

shop at Wal-Mart be considered as a “new good” to consumers when Wal-Mart enters a 

geographic market.  Some consumers continue to shop at traditional supermarkets while 

other consumers choose to shop at Wal-Mart.  For the representative consumer we take a 

utility-consistent probability weighted average of the choice of shopping destination.32   

This approach leads to a continuously updated expenditure weighted average price 

calculation, which we apply to food data in 34 markets over a 48 month period.  

However, this approach requires quantity data as well as price data, so the BLS would 

need to begin to use scanner data to implement our approach.  Currently the BLS collects 

only price data, but does not collect quantity (or expenditure) data that it incorporates 

into the CPI except at lengthy intervals. 

We find a significant difference between our approach and the BLS approach, 

even for the relatively low food inflation period of 1998-2001 that we study in this paper.  

Our estimates are that the BLS CPI-U food at home inflation is too high by about 0.32  to 

0.42 percentage points, which leads to an upward bias in the estimated inflation rate of 

about 15% per year.  We intend to expand our approach to more food categories in 

further research, but we find that the BLS should take account of Wal-Mart and other 

non-traditional retail outlets, rather than making believe that Wal-Mart does not exist.

                                                 
31 Wal-Mart has announced plans to open 40 supercenters in California in the next 3-5 years, Wiltamuth op. cit. 
32 The BLS approach assumes that consumers are not made better off by an expanded choice set, contrary to almost 
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