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Abstract

We investigate estimation and inference in difference in difference econometric models

used in the analysis of treatment effects. When the innovations in such models display

serial correlation, commonly used ordinary least squares (OLS) procedures are inefficient

and may lead to tests with incorrect size. Implementation of feasible generalized least

squares (FGLS) procedures is often hindered by too few observations in the cross section

to allow for unrestricted estimation of the weight matrix without leading to tests with

similar size distortions as conventional OLS based procedures. We analyze the small sample

properties of FGLS based tests with a higher order Edgeworth expansion that allows us

to construct a size corrected version of the test. We also address the question of optimal

temporal aggregation as a method to reduce the dimension of the weight matrix. We apply

our procedure to data on regulation of mobile telephone service prices. We find that a size

corrected FGLS based test outperforms tests based on OLS.
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1. Introduction

We investigate estimation and inference in difference in difference (DID) econometric models.

DID models have become a widely used method to investigate changes in policy variable, which

often arise from changes in legislation. An example would arise when a group of states passes

new legislation that mandates firms to provide a change in benefit levels to their employees. A

DID model allows estimation of the effect, if any, on an outcome variable such as wages. The

typical approach is to use panel data on the 50 U.S. states for a time period of say 5 or more years

to estimate a fixed effects model with fixed effects for both states and for time. A given state

that adopts the legislation acts as its own “control” in the pre-legislation period while states

that do not adopt the legislation act as “control observations” in the post-legislation period.

The most straightforward situation occurs when all states that adopt the legislation do so in the

same year. Assuming that state characteristics do not change over the period, the difference of

the before and after period for the adopting states minus the difference of the before and after

period for the non-adopting state yields the DID estimator. When states adopt the legislation

in different periods or state characteristics change over time, a fixed effects estimator typically

replaces the more straightforward DID approach, but the underlying logic remains similar.

However, this approach does not yield the best estimator in terms of efficiency or the

most precise inference. Both the DID approach and the fixed effects approach do not utilize

all of the time series variation in the data if the variance of the stochastic disturbances is not

spherical. Consider the panel data model

(1.1) yit = Titγ + z0itθ + αi + εit; i = 1, ..., N ; t = 1, ..., T

where Tit measures a policy variable or is a dummy variable for a change in policy or regulation,

the parameter θ includes the time fixed effects, the αi are the state fixed effects and εit is

orthogonal to the right hand side variable, independent across i but possibly correlated with εis

for all s, t = 1, ...T. We do not assume stationarity or any parametric form of dependence for

εit. The cross-sectional sample size N is not necessarily large enough for first order asymptotic

approximates to yield reliable results, T is “small”, and Σ is unconstrained. Least squares (OLS)
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on Equation (1.1) yields unbiased estimates, but the estimate of the variance of the estimated

parameters must be adjusted for accurate inference to take account of the non-diagonality of

Σ, as Bertrand et. al. (2002) have recently emphasized. Otherwise, as Moulton (1986) pointed

out, the unadjusted OLS standard errors often have a substantial downward bias.

However, the more efficient estimator of equation (1) would be generalized least squares

(GLS) if Σ were known. Indeed, GLS is the Gauss-Markov estimator and would lead to optimal

inference, e.g. uniformly most powerful tests, on the effect of the legislation. In the usual

situation when Σ is unknown and needs to be estimated, the usual estimator would be “feasible”

GLS (FGLS) where a consistent estimate Σ̂ replaces Σ in the GLS formula. Indeed, if the

estimate of Σ is unrestricted, FGLS is unbiased along with OLS and GLS. However, very few

empirical examples of DID appearing in the literature use FGLS1. Instead, OLS is the estimator

of choice.

FGLS on equation (1) is easy to implement. We estimate Σ̂ from either an OLS

estimator of Equation (1.1) using an approach that we develop to eliminate the bias from

fixed effects estimators or we first difference the data to eliminate the state effects and pro-

ceed with the differenced model. If N were large enough, we would use the usual result that

p lim
h√

N
³
δ̂GLS − δ̂FGLS

´i
= 0 where δ = (θ, γ) so long as plim Σ̂ = Σ. However, in many

applications of DID, N is unlikely to be large enough in relation to the number of time periods

T to permit the first order asymptotic approximation to be sufficiently accurate to provide ac-

curate inference. For example, if T = 10, the number of unknown elements in Σ is 55 compared

to a sample size of 500. Thus, in this paper we use a second order Edgeworth approximation

approach of Rothenberg (1988) that accounts of the uncertainty in estimating Σ̂. We adjust the

test statistics, which affects both the size and power of the tests. Otherwise, often the actual size

of the test may considerably exceed the nominal size of the test because the usual test statistics

assume that the FGLS estimator is close enough to the GLS estimator so that no adjustment

for the estimation of Σ̂ arises.
1Bertrand et. al. (2002) in their survey of the literature find only one paper out of nearly 100 papers that

uses this approach where Σ is unrestricted.
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Once we consider the effects of uncertainty in the estimate of Σ̂, the question arises of

whether a trade-off exists between some amount of averaging across time to reduce the dimension

of the variance-covariance matrix needed for FGLS estimation to improve estimator efficiency.

Since the number of unknown parameters in an unrestricted Σ increases at rate T 2, aggregation

to reduce the dimension of Σ can lead to a significant decrease in the number of unknown

parameters. The prior literature has emphasized this idea, e.g. Moulton (1986), with the DID

approach of using OLS on the two before and after periods the most extreme possible approach.

In this paper for a given design matrix [Tit, zit] and an unrestricted estimate Σ̂, we solve for the

optimal degree of aggregation using the Edgeworth expansions of Rothenberg (1988). For a given

size of test calculated to second order, we choose the degree of aggregation that maximizes the

power of the test statistic again calculated to second order. We demonstrate that for a commonly

occurring situation where once the treatment begins in a state it continues thereafter, that small

sample benefit from time aggregation can arise. We next consider the situation where the initial

treatment date is the same for all states that pass the legislation. Again we find that the size of

the test is affected by estimation of Σ, but we find that the higher order power is not affected.

Thus, the theoretically optimal solution is not to undertake temporal aggregation. We also

demonstrate that in this special situation, size corrected tests based on OLS estimation do not

lead to a recommendation of temporal aggregation, in contrast to the previous literature.

In our analysis we focus on Wald tests of the hypothesis H0 : γ = 0. Rothenberg (1984b)

shows that for hypotheses only involving one dimensional parameters LR, LM and Wald tests

have the same power up to order o (N−1) after correcting for size distortions. This result means

that all three tests are affected in similar ways by the problem of estimating Σ. The focus on

the Wald test is further motivated by the fact that it is the most commonly used test in practice

and that the invariance properties of the LR test play a lesser role in the context of the linear

restrictions we are focusing on here.

We then consider some Monte Carlo evidence on the performance of our approach and

the second order Edgeworth approximations. We consider a situation with positive serial corre-

lation across time for states, which is the usual situation found in applied research. So far in our
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empirical research, we have considered the single treatment date situation. For estimation with

N=50 and T equal to (5,10, 15, 20) we find that size corrected FGLS, FGLS-SC, in levels does

almost as well as GLS with known Σ. We also find that FGLS-SC has significantly more power

than does OLS with a robustly estimated covariance matrix, robust OLS, when serial correlation

in the level data is high. Thus FGLS appears to be the better estimator even with additional

parameter uncertainty created by the estimated Σ̂. We also consider two other versions of FGLS

for 3 periods (before, change period, and after) and the “traditional” 2 period (before and after)

DID approach. We find that both of these alternative approaches involving time aggregated

have significantly reduced power compared to FGLS-SC. Thus, we do not recommend their use.

We next consider a first difference specification that also eliminates the fixed effects but

can also lead to a reduced effect of the positive serial correlation. We now find that FGLS-SC

does almost as well as GLS. For low and moderate amounts of serial correlation FGLS does

significantly better than robust OLS. However, for a high degree of serial correlation robust

OLS on first differences does as well (or even somewhat better) than FGLS. We then consider

3 period and 2 period time aggregation estimators2. We find that all size distortions have been

eliminated in FGLS-SC. We also find that the 3 period version of FGLS outperforms the 2

period version by a large amount. Indeed, the 3 period aggregation FGLS-SC estimator seems

to do the best of all the feasible estimators considered with correct size and maximum power.

These results suggest to use full sample FGLS-SC whenever serial correlation is high in levels.

If the regressions are run in first differences the 3 period version of FGLS-SC seems to perform

best. An argument for running the specification in levels can be made in cases where adjustment

to the new policy takes more than one time period. In this case, the first difference specification

will underestimate the total effect of the policy relative to the level specification.

In a final section we provide an application of our method to a data set for mobile telephone

service prices. We exploit a 1994 FCC ruling that required all states to abolish price regulation of

the mobile telephone industry. This ruling provides a natural experiment to test the hypothesis

2Since the data have been initially transformed to first differences, these estimators differ from the earlier

fixed effects estimatiors on 2 or 3 periods.
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that regulation led to higher service charges for mobile telephone services prior to 1994 in

the states that had such price regulation in place. When we run robust OLS on the entire

sample the t-statistic for a significant difference between pre and post regulatory regimes comes

in insignificantly. We compare this result with full sample FGLS using the higher order size

correction. The test statistic now indicates a significant treatment effect. Moreover, the point

estimate of the FGLS regression is almost identical to the estimated price effect of regulation in

an earlier cross-sectional study by Hausman (1995).

2. Tests based on OLS and GLS

2.1. Level Specification

In this section we turn to the original model formulated in levels. The analysis is complicated

by the presence of fixed effects, which amongst other things complicate estimation of the weight

matrix. We consider

yit = Titγ + z0itθ + αi + εit

where we define Ỹt = [y1,t, ..., yn,t]
0, Ỹ =

h
Ỹ 0
1 , ..., Ỹ

0
T

i0
, Z̃t = [z1t, ..., znt]

0 and Z̃ =
h
Z̃ 01, ..., Z̃

0
T

i0
.

The vector Υ̃ is defined as Υ̃t = [T1t, ..., Tnt]
0 , Υ̃ =

h
Υ̃0
1, ..., Υ̃

0
T

i0
and we let α = [α1, ..., αn]

0 .

We assume that γ is a scalar to simplify the subsequent arguments. Then we can write Ỹ =

Υ̃γ+Z̃θ+(1T ⊗ In)α+ ε̃ where Eε̃ = 0 and Var(ε̃) = Σ̃⊗In ≡ Ω̃. Also define Vit = [Tit, Z 0it] with

regressor matrix V = [V 0
1 , ..., V

0
n]
0 where Vi = [Vi1, ..., ViT ] .We impose the following condition on

the fixed effects.

Condition 1. Conditional on Z̃ and Υ̃, the fixed effects αi are distributed normally with

E [αi|Vi] = Vimα and E [αi|Vi] = σ2α where mα is a vector of constants and αi are indepen-

dent across i and independent of ηit.

Remark 1. This assumption corresponds to the specification of Mundlak (1978).

Due to the presence of fixed effects and the associated incidental parameter problem it is

not possible to construct unbiased estimates of the weight matrix directly. Bias corrections
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may be available in some cases but they usually do not completely remove the bias and they

typically depend on a stationarity assumption, which may not be accurate. This is particularly

the case when a policy change occurs which is the typical situation in difference in difference

regressions. Here we propose an alternative weight matrix estimator for the level case that is an

unbiased estimate of a certain transformation of the weight matrix3. Unlike more well-known

bias corrected estimators our estimator does not require the serial correlation in εit to be of

a particular parametric form, nor does it require the process εit to be stationary. Absence of

stationarity may lead to extremely poor performance of the usual bias corrected estimators and

a stationarity assumption is inconsistent with our assumption of an unrestricted Σ.

The idea behind our estimator is to fit a misspecified OLS regression where the fixed effects

are not estimated for each time period separately. The residuals from this regression are then

used to compute temporal covariances. Due to the omitted fixed effects the covariances will all

have the same constant in expectation. The final step consists of projecting out the common

constant. Define the projection matrices MV and M1T projecting onto the orthogonal comple-

ment of V and 1T respectively. We obtain residuals η̂t =MV Ỹt and estimate the element σt,s of

Σ̃ as

σ̂t,s =
Ỹ 0
tMV Ỹs
tr(MV )

.

We now form the T × T matrix S̃ consisting of the elements σ̂t,s. We then form the estimate Σ̂

of Σ̃ as

(2.1) Σ̂ =M1T S̃M1T .

It is shown in the appendix, that EΣ̂ = M1T Σ̃M1T . Note that Σ̂ is of rank T − 1 due to a loss
of degrees of freedom resulting from the estimation of the fixed effects. A full rank matrix can

be obtained by deleting the column and row from Σ̂ which amounts to only using time periods

2, ..., T. For this purpose define the T − 1× T matrix B obtained from deleting the first row of

IT . Estimation of (3.1) can be achieved by applying the transformation

(BM1T ⊗ In) Ỹ =
PT

t=1 (BM1T at ⊗ Zt) θ + (BM1T ⊗ In) Υ̃γ + (BM1T ⊗ In) ε̃

3A similar procedure was proposed by Kiefer (1980) but he did not establish unbiasedness.
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to remove the fixed effects. The transformed innovations (BM1T ⊗ In) ε̃ have variance covariance

matrix Ω̃ = BM1T Σ̃M1TB
0 ⊗ In such that GLS can be implemented by using the estimator Σ̂4.

For the time being the autocorrelation structure of Σ̃T is assumed unrestricted. Thus, OLS,

GLS and FGLS are all unbiased estimators.

Estimation of the parameter γ can be done using OLS or GLS. If the dimension of T is

relatively large compared to the dimension of n, it has been argued in the literature that averages

across time can be used to reduce the dimensionality of the variance-covariance matrix needed

for GLS estimation and for hypothesis testing in both the OLS and GLS case. In order to

formalize this idea we define the T × r selector matrix C such that C 0C = Ir.

We define Y = (C 0BM1T ⊗ In) Ỹ . In the simplest case where r = 1 and C 0 = [1, ..., 1] /T

it follows that Y = [T−1
P

t y1,t, ..., T
−1P

t yn,t]
0
. Similarly we define Υ = (C 0BM1T ⊗ In) Υ̃,

Z = (C 0BM1T ⊗ In) Z̃ and ε = (C 0BM1T ⊗ In) ε̃. Note that Eε = 0 and Eεε0 = Ω = Σ ⊗ In

where Σ = C 0BM1T Σ̃M1TB
0C.

The model now can be written as Y = Υγ + Zθ + ε. If Σ were known, two tests for the

hypothesis H0 : γ = γ0 could be considered. Let Ωz = Ω−1 − Ω−1Z(Z 0Ω−1Z)−1Z 0Ω−1 and

MZ = InT − Z(Z 0Z)−1Z 0. In Rothenberg’s (1988) terminology we define the test

T̄1 =
(Υ0ΩzΥ)

−1Υ0ΩzY − γ0

(Υ0ΩzΥ)
−1/2

based on GLS estimation for γ which is the Gauss Markov (BLUE) estimator and the test

T̄2 =
(Υ0MzΥ)

−1Υ0MzY − γ0¡
(Υ0MzΥ)

−1Υ0MzΩMzΥ (Υ0MzΥ)
−1¢1/2

which is based on the OLS estimate for γ and on robust standard errors. Under the additional

assumption of Gaussian errors or under standard first order asymptotics where n → ∞ it can

be shown that the power of both tests depends on

b1 =
γ − γ0

(Υ0ΩzΥ)
−1/2

4This approach to an unbiased estimate of Σ avoids the "Hurwicz bias" discussed in the literature because

only covariances, not regression coefficients, are estimated.
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and

b2 =
γ − γ0¡

(Υ0MzΥ)
−1Υ0MzΩMzΥ (Υ0MzΥ)

−1¢1/2 .
From standard arguments it follows that b1 ≥ b2 so that the power of the test based on GLS

exceeds the power of the test based on OLS. It also follows that for Υ = (C 0
r ⊗ In) Υ̃ and Cr a

T × r matrix with r ≤ T and Ωzr a corresponding matrix defined as before but based on Cr we

have

Υ̃0ΩzT Υ̃−Υ0ΩzrΥ ≥ 0

where ≥ stands for ’positive definite’ such that from a first order asymptotic point of view it is

never optimal to average the observations. This result is an application of the Gauss-Markov

Theorem when Ω is known. For first order asymptotics, because of the block diagonality of the

information matrix for γ̂ and Ω̂, Ω is treated as known in the expansions.

We now turn to the analysis of tests where Ω is replaced with the estimator Ω̂ where Ω̂ =

C 0BM1T Σ̂M1TB
0C ⊗ In with Σ̂ defined as in (2.1).

Additional regularity conditions needed to formally justify the expansions of Rothenberg

(1988) used in the development of our results are stated next.

Condition 2. All asymptotic arguments are for T fixed and n→∞. Assume that ε̃ is jointly

normal with ε̃ ∼ N(0, Σ̃ ⊗ In). Let X = [Z,Υ] be a nT × k matrix. Assume that X is fixed

with full column rank k. Assume that Ω is of full rank. Let β̂ =
³
X 0Ω̂−1X

´−1
X 0Ω̂−1Y and

β̄ = (X 0Ω−1X)−1X 0Ω−1Y. For any vector c ∈ Rk with kck = 1 we assume that there exist

random variables ζ1,n and ζ2,n such that
√
nc0
³
β̂ − β̄

´
= ζ1,n/

√
n + ζ2,n/n

3/2 where ζ1,n has

bounded moments as n→∞ and P
£¯̄
ζ2,n

¯̄
> (logn)q

¤
= o (n−1) for some q.

Remark 2. The regressorsX are assumed to be fixed. Alternatively, we can regard the analysis

as being conditional on a particular draw of regressors.

Remark 3. Note that by a Taylor expansion the term ζ1,n is a polynomial function of ε̃ and

thus has bounded moments of any order. Again by the Taylor Theorem, the remainder term

ζ2,n is also a polynomial in ε̃ as long as Σ has full rank in a neighborhood of Σ.
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In the Appendix we obtain an expression for VΣ = Var(vecC 0BM1T Σ̂M1TB
0C). Let the

Krr be the r2 × r2 commutation matrix of Magnus and Neudecker (1978) defined as Krr =Pr
i,j=1 eie

0
j⊗eje0i where ei is the i-th unit vector of dimension r. Note that VΣ is singular because

of repeated elements in Σ. It then follows that

VΩ = (Ir ⊗Knr ⊗ In)
¡
VΣ ⊗ vec In (vec In)0

¢
(Ir ⊗K 0

nr ⊗ In)

with

VΣ = (IT +KTT ) (Σ⊗ Σ)

and Σ = C 0BM1T Σ̃M1TB
0C.We use the Edgeworth expansions of Rothenberg (1988) to obtain

more precise statements about the finite sample behavior of the test statistics. For this purpose,

let Ω̂z = Ω̂−1 − Ω̂−1Z(Z 0Ω̂−1Z)−1Z 0Ω̂−1 and write

T1 =

³
Υ0Ω̂zΥ

´−1
Υ0Ω̂zY − γ0³

Υ0Ω̂zΥ
´−1/2 =

T̄1 + n−1/2R

(1 + n−1/2S)1/2

with

S =
√
n

³
Υ0Ω̂zΥ

´−1
− (Υ0ΩzΥ)

−1

(Υ0ΩzΥ)
−1

and

R =
√
n

³
Υ0Ω̂zΥ

´−1
Υ0Ω̂zY − (Υ0ΩzΥ)

−1Υ0ΩzY

(Υ0ΩzΥ)
−1/2 .

We use a stochastic expansion of the variables S and R to obtain an Edgeworth expansion for

the test statistic. Define h = ΩzΥ (Υ
0ΩzΥ)

−1 and H = Ωz − ΩzΥ (Υ
0ΩzΥ)

−1Υ0Ωz. Then

(2.2) S =
(h0 ⊗ h0)
h0Ωh

√
n vec

³
Ω̂− Ω

´
−√n

tr
h
vec(Ω− Ω̂) vec(Ω− Ω̂)0 (H ⊗ hh0)

i
h0Ωh

+ op(n
−1/2)

and

(2.3) R =
(ε0H ⊗ h0)

(h0Ωh)1/2
√
n vec

³
Ω− Ω̂

´
+ op(1)
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where the derivation of (2.2) and (2.3) is reported in the Appendix. The distribution of S and

R can be approximated by a distribution where ER = 0, cov(R,S) = O(n−1),

ES = −n−1/2 trVΩ (H ⊗ hh0)
h0Ωh

+O(n−1)

var (S) =
trVΩ (hh

0 ⊗ hh0)

(h0Ωh)2

and

var (R) =
trVΩ (H ⊗ hh0)

h0Ωh
.

Based on these approximations the test based on GLS estimates for γ and given explicitly as

T1 =

³
Υ0Ω̂zΥ

´−1
Υ0Ω̂zY − γ0³

Υ0Ω̂zΥ
´−1/2

then has a formal order n−1 Edgeworth approximation

Pr(T1 ≤ t) ' Φ

·
t

µ
1− A1 (t)

2n

¶
− b1

µ
1− B1 (t)

2n

¶¸
for arbitrary nonrandom t where Φ (.) the standard normal CDF. The functions A1 (t) and B1 (t)

are defined as

A1 (t) =
1

4

¡
1 + t2

¢ trVΩ (hh0 ⊗ hh0)

(h0Ωh)2
+ 2

trVΩ (H ⊗ hh0)
h0Ωh

and

B1 (t) =
1

4
t2
trVΩ (hh

0 ⊗ hh0)

(h0Ωh)2
+
trVΩ (H ⊗ hh0)

h0Ωh
.

These results make explicit use of the fact that the weight matrix Ω is estimated without bias.

Additional bias terms would need to be included in A1 (t) if biased estimators were used.

Next consider the test

T2 =
(Υ0MzΥ)

−1Υ0MzY − γ0³
(Υ0MzΥ)

−1Υ0MzΩ̂ηMzΥ (Υ0MzΥ)
−1
´1/2

where Ω̂ is the same unbiased estimator of Ω as used for T1.
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For the test T2 define x =
√
nMzΥ (Υ

0MzΥ)
−1 where the t-th n× 1 block of x is denoted as

xt. In the Appendix we show that the Edgeworth approximation of order n−1 of T2 is given by

Pr (T2 ≤ t) = Φ

·
t

µ
1− A2 (t,Ω)

2n

¶
− b2

µ
1− B2 (t,Ω, b2)

2n

¶¸
where

A2 (t,Ω) =
1

4

¡
1 + t2

¢ trVΩ (xx0 ⊗ xx0)

(x0Ωx)2

and

B2 (t,Ω, b2) =
1

4
t2
trVΩ (xx

0 ⊗ xx0)

(x0Ωx)2
.

The most important application of these expansions lies in the construction of a size corrected

test based on the GLS estimator. Based on Rothenberg (1988) one can proceed as follows. A

size corrected test is achieved by rejecting H0 : γ = γ0 if

T1 > tc

where

tc = tα

µ
1 +

A1 (tα)

2n

¶
where tα is the critical value satisfying Φ (tα) = 1 − α. In principle similar size corrected

tests could be achieved for OLS. Our analysis in the next section of a special case of particular

interest reveals however, that OLS seems to be far less sensitive to the dimension of the unknown

covariance matrix Σ and Monte Carlo evidence indicates that tests based on robust OLS have

approximately correct size without the correction.

In general the constant A1 (tα) needs to be replaced with an estimate. As Rothenberg

(1988) points out this is usually without consequences. This argument remains valid under our

asymptotic approximation where n→∞ while T is kept fixed. Computation of A1 (tα) requires

us to evaluate trVΩ (hh0 ⊗ hh0) and trVΩ (H ⊗ hh0) . Because the dimensions of VΩ (hh0 ⊗ hh0)

and VΩ (H ⊗ hh0) can be very large it is more convenient for computational purposes to use the

expression

trVΩ (hh
0 ⊗ hh0) =

Pn
i,j=1

¡
h0
¡
Σ⊗ bib

0
j

¢
h
¢2

(2.4)

+
Pr

l,m=1

Pn
i,j=1

¡
h0
¡
ele

0
mΣ⊗ bib

0
j

¢
h
¢ ¡

h0
¡
eme

0
lΣ⊗ bib

0
j

¢
h
¢
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where bi is the i-th unit vector of length n. Moreover one can write

trVΩ (H ⊗ hh0) =
Pn

i,j=1 tr
£¡
Σ⊗ bib

0
j

¢
H
¤ ¡
h0
¡
Σ⊗ bib

0
j

¢
h
¢

(2.5)

+
Pr

l,m=1

Pn
i,j=1 tr

¡¡
ele

0
mΣ⊗ bib

0
j

¢
H
¢ ¡

h0
¡
eme

0
lΣ⊗ bib

0
j

¢
h
¢
.

A derivation of these formulas is contained in the Appendix. Furthermore, the analysis in

Section 3 considers a case where A1 (tα) takes a particularly simple form that does not depend

on VΩ and thus no estimation is required.

2.2. First Difference Specification

An alternative to the level specification is a transformation to first differences. This approach is

often advocated to remove fixed effects. One caveat of applying a first difference transformation

is that it may lead to tests with poor power when a policy takes more than one period to take

its full effect. Despite these potential problems we turn to models formulated in first differences

and show that the previous results essentially remain valid without change. We thus consider

the model

∆yit = ∆z0itθ +∆Titγ +∆εit

where ∆yit is formulated in first differences to remove fixed effects and the k − 1 dimensional
exogenous regressor ∆zit contains time effects as well as other covariates.

We stack the observations as∆Ỹ = [∆y1,2, ...,∆yn,2, ...,∆y1T , ...,∆ynT ]
0, Υ̃∆

t = [∆T1t, ...,∆Tnt]
0 ,

Υ̃∆ =
h
Υ̃∆0
2 , ..., Υ̃∆0

T

i0
, Z̃∆

t = [∆z1t, ...,∆znt]
0 and Z̃∆ =

h
Z̃∆0
2 , ..., Z̃∆0

T

i0
with ∆ε̃ being the corre-

sponding vector of error terms. The model then can be written as

(2.6) ∆Ỹ = Z̃∆θ + Υ̃∆γ +∆ε̃

with E∆ε̃ = 0 and E∆ε̃∆ε̃0 = Σ̃∆,T ⊗ In ≡ Ω̃∆. If we define the T − 1× T matrix

B∆ =


−1 1

−1 1
. . . . . .

−1 1


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then (2.6) can be obtained from the level specification by noting that ∆Ỹ =
¡
B∆ ⊗ In

¢
Ỹ ,

Z̃∆ =
¡
B∆ ⊗ In

¢
Z̃, Υ̃∆ =

¡
B∆ ⊗ In

¢
Υ̃ and ∆ε̃ =

¡
B∆ ⊗ In

¢
ε̃. It thus follows that Ω̃∆ =

B∆Σ̃B∆0⊗ In. Moreover, because B∆1T = 0 it also follows that EB∆S̃B∆ = B∆Σ̃B∆0. In other

words we continue to use the same estimator S̃ for the covariance matrix but apply the operator

B∆ when the model is specified in first differences.

As before we can then consider the transformed model

∆Y = Z∆θ +Υ∆γ +∆ε

with ∆Y = (C 0 ⊗ In)∆Ỹ , Υ∆ = (C 0 ⊗ In) Υ̃
∆, Z∆ = (C 0 ⊗ In) Z̃

∆ and ∆ε = (C 0 ⊗ In)∆ε̃

such that Ω∆ = E∆ε∆ε0 = Σ∆ ⊗ In with Σ∆ = C 0Σ̃∆,TC. We impose the following additional

restriction on C.

Condition 3. For all C such that C 0C = Ir it follows that
£
Z∆
t ,Υ

∆
t

¤
has full column rank.

Remark 4. A sufficient condition for the last part is that
h
Z̃∆
t , Υ̃

∆
t

i
has full column rank and

that Z̃∆
t , Υ̃

∆
t are stationary. Condition 3 is violated in at least one case of interest that we treat

separately in Section 3.

Because the estimator of the covariance matrix remains unbiased under the first differ-

ence transformation the expansions developed for the level case remain valid except for no-

tational adjustments. As before we therefore define h∆ = ΩzΥ
∆
¡
Υ∆0ΩzΥ

∆
¢−1

and H∆ =

Ωz − ΩzΥ
∆
¡
Υ∆0ΩzΥ

∆
¢−1

Υ∆0Ωz. Using these results we conclude from Rothenberg (1988) and

our previous analysis for the level case that

Pr(T1 ≤ t) ' Φ

·
t

µ
1− A1 (t)

2n

¶
− b1

µ
1− B1 (t)

2n

¶¸
where

A1 (t) =
1

4

¡
1 + t2

¢ trVΩ∆
(h∆h

0
∆ ⊗ h∆h

0
∆)

(h0∆Ω∆h∆)
2 + 2

trVΩ∆
(H∆ ⊗ h∆h

0
∆)

h0∆Ω∆h∆

and

B1 (t) =
1

4
t2
trVΩ∆

(h∆h
0
∆ ⊗ h∆h

0
∆)

(h0∆Ωh∆)
2 +

trVΩ∆
(H∆ ⊗ h∆h

0
∆)

h0∆Ωh∆
.
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For the robust OLS based test define x∆ =
√
nMz∆Υ

∆
¡
Υ∆0Mz∆Υ

∆
¢−1

and the t-th n × 1
block of x∆ is denoted as x∆t. Then the Edgeworth approximation for T2 is given by

Pr (T2 ≤ t) = Φ

·
t

µ
1− A2 (t,Ω)

2n

¶
− b2

µ
1− B2 (t,Ω, b2)

2n

¶¸
where

(2.7) A2 (t,Ω) =
1

4

¡
1 + t2

¢ trVΩ (x∆x0∆ ⊗ x∆x
0
∆)

(x0∆Ωx∆)
2

and

(2.8) B2 (t,Ω, b2) =
1

4
t2
trVΩ (x∆x

0
∆ ⊗ x∆x

0
∆)

(x0∆Ωx∆)
2 .

Size corrected tests can be constructed in the same way as before.

3. A Special Case: Same Treatment Date for all States for Which

Treatment Occurs

This case implies additional structure for the regression equation that can be exploited to sim-

plify the test and size corrections. We assume that if treatment occurs in state i it is at a fixed

time τ which is known to the investigator. We assume a simplified version of the model

(3.1) yit = αi + βt + Titγ + εit

where αi are individual specific fixed effects, βt is a time effect common to all states but changing

over time and Tit is the treatment indicator where Tit = 0 for t < τ and all i and Tit takes values

in {0, 1} .We also assume that once treatment takes effect in state i and at time τ it remains in
effect. Formally, this means that Tiτ = 1 implies that Tit = 1 and Tiτ = 0 implies Tit = 0 for all

t > τ . The innovations εit, when stacked as ε̃ = [ε11, ..., εn,1, ..., ε1,T , ..., εn,T ]
0, satisfy Eε̃ = 0 and

Eε̃ε̃0 = Σ̃⊗In.We again assume that there are observable variables Vi such that E [αi|Vi] = Vimα

and Var [αi|Vi] = σ2α. For simplicity we assume that Vi only contains Ti,1, ..., Ti,T and a constant.

We thus consider the transformed model

(BM1T ⊗ In) Ỹ =
PT

t=1 (BM1T at,T ⊗ 1n)βt + (BM1T ⊗ In) Υ̃γ + (BM1T ⊗ In) ε̃

15



and for the transformed model we let Y = (C 0BM1T ⊗ In) Ỹ , Z = (C 0BM1TB
0C ⊗ 1n) ,Υ =

(C 0BM1T ⊗ In) Υ̃, ε = (C 0BM1T ⊗ In) ε̃ and β a r × 1 vector. The transformed model then
takes the form

Y = (Ir ⊗ 1n)β +Υγ + ε.

The properties of the tests T1 and T2 are again determined by the functions A1, B1, A2 and B2.

We derive these functions in the Appendix. For the test T1 we find

A1 (t) =
1

2

¡
1 + t2

¢
+ 2 (r − 1)

and

B1(t) =
1

2
t2 + r − 1

which turn out to be the same as for the first difference version of the test. Using the result for

B1 it now follows that the power of the test can be approximated by

(3.2)
γ − γ0

(σττ
Pn

i=1 x̄
2
iτ)
−1/2

µ
1− 1

4n
t2 − r − 1

2n

¶
where

σττ = ξ0τM1TB
0CΣ−1C 0BM1T ξ

0
τ

and ξτ =
PT

t=τ at,T . Note that Σ = C 0BM1T Σ̃M1TB
0C.

We can exploit the simple structure of (3.2) to analyze the question of optimal aggregation.

In our framework this amounts to choosing C optimally to maximize (3.2). The expression for

approximate power shows that there is a first order effect on power determined by the efficiency

of the estimator as captured by σττ . Estimation error of the elements in the optimal weight

matrix affects power to order n−1 through the term (r − 1) /2n. An algorithm for maximizing

(3.2) thus consists in choosing C optimally for r fixed and then choosing the overall optimal

r ∈ (1, ..., T − 1) . Thus, for any given r, C is chosen such that

C∗r = argmax
C s.t. C0C=Ir

σττ = argmax
C

ξ0τM1TB
0CΣ−1C 0BM1T ξ

0
τ .

Note that Σ̃1/2M1TB
0CΣ−1C 0BM1T Σ̃

1/2 is a projection matrix. For r = 1 it thus follows that

σττη is maximized by minimizing
°°°Σ̃−1/2ξτ − Σ̃1/2M1TB

0C
°°° or equivalently °°°ξτ − Σ̃M1TB

0C
°°° .
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This is achieved for C∗1 = (BM1T Σ̃M1TB
0)−1BM1T ξτ . Since the projection residual is equal to

zero it follows that σττ cannot be increased further by choosing any r > 1. Hence the overall

optimum of 3.2 is given by r∗ = 1 and C∗ = (BM1T Σ̃M1TB
0)−1BM1T ξτ . Also note that σ

ττ

is invariant under transformations C‡ = COr for any orthogonal matrix Or. Solutions to the

maximization problem are therefore unique subject to C 0C = Ir only.

This result shows that in general optimal aggregation is infeasible. The optimal matrix C

depends on the unknown covariance matrix Σ̃.

A special case occurs when Σ̃ = IT . As it turns out this case is of particular interest for the

discussion regarding difference in difference regressions. Firstly, note that for this case OLS and

GLS are equivalent. However, an investigator may not be willing to assume that Σ̃ is known

and instead still estimate Σ̃ in an unrestricted way and use a size corrected test based on GLS.

Calculations of C∗ for this case then reveal that C∗ = −[10τ ,00T−1−τ ]0 which implies that

C∗0BM1T =

·
− τ

T
10τ ,

T − τ

T
10T−τ

¸
.

In other words, optimal aggregation leads to the ’classical’ difference in difference estimator

where pre and post treatment periods are averaged and the difference between them is tested

for a significant effect. A consequence of our analysis is then that this procedure is not optimal

in terms of power when Σ̃ is not the identity matrix.

This result helps explain some findings in our Monte Carlo experiments where time aggrega-

tion methods to correct size distortions lead to a significant loss in power when serial correlation

in ε is high but have little effect on power when serial correlation is low. Because of the large

power loss when Σ̃ 6= IT the ’classical’ difference in difference approach thus can only be recom-

mended if it is known on a priori grounds that Σ̃ = IT holds.

For the test T2 we find that

A2 (t) =
1

2

¡
1 + t2

¢
and

B2(t) =
1

2
t2
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It thus turns out that robust OLS is unaffected by the choice of dimension r as far as the second

order terms are concerned.

We now turn to the first difference specification of (3.1)

∆yit = βt − βt−1 +∆Titγ +∆εit.

Note that ∆Tit = 0 except for t = τ . The regressor matrix Ũ for this particular case takes on

the form

Ũ =


1n 0 0

. . . Υ̃∆
τ

0 1n 0


where Υ̃∆

τ = [∆T1τ , ...,∆Tnτ ]
0 and 1n is a vector of ones with length n. Using the notation

at,T for the t-th unit vector of length T − 1 we can define Z∆ =
PT

t=2

¡
C 0at,Ta0t,TC ⊗ 1n

¢
=

Ir ⊗ 1n, Y ∆ =
PT

t=2

³
C 0at,T ⊗ Ỹ ∆

t

´
and Υ∆ =

³
C 0aτ,T ⊗ Υ̃∆

τ

´
. Also let σt,s = a0t,TCΣ

−1C 0as,T ,

σt,s = a0t,TCΣC
0as,T and At,s = a0t,TCC

0as,T with corresponding expressions for σ̂t,s and σ̂t,s by

replacing Σ by Σ̂. Then,

γGLS =
³
σττ Υ̃∆0

τ M1nΥ̃
∆
τ

´−1 ³PT
t=2 σ

τtΥ̃∆0
τ M1nỸ

∆
t

´
with M1n = In − 1n10n

n
. Conditional on Xτ , the variance of γGLS then is

³
σττΥ̃∆0

τ M1nΥ̃
∆
τ

´−1
.

The OLS estimator for this case is

γOLS =
³
AττΥ̃

∆0
τ M1nΥ̃

∆
τ

´−1P
tAτtΥ̃

∆0
τ M1nỸ

∆
t

with conditional variance equal to σττA−2ττ
³
Υ̃∆0
τ M1nΥ̃

∆
τ

´−1
. Based on these results the tests T1

and T2 specialize to

T1,∆ =

³
σ̂ττΥ̃∆0

τ M1nΥ̃
∆
τ

´−1 ³P
t σ̂

τtΥ̃∆0
τ M1nỸ

∆
t

´
− γ0³

σ̂ττΥ̃∆0
τ M1nΥ̃

∆
τ

´−1/2
and

T2,∆ =

³
Aττ Υ̃

∆0
τ M1nΥ̃

∆
τ

´−1P
tAτtΥ̃

∆0
τ M1nỸ

∆
t − γ0

σ̂1/2ττ

³
A2ττ Υ̃

∆0
τ M1nΥ̃

∆
τ

´−1/2 .
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It follows from arguments contained in the Appendix that

A1 (t) =
1

2

¡
1 + t2

¢
+ 2(r − 1)

and

B1 (t) =
1

2
t2 + (r − 1).

These results hold both unconditionally and conditionally in X. They show how higher order

power is affected by the design matrix C through the dimension of C and that higher order size

is expected to deteriorate with more time periods as measured by the parameter r. Power up to

order n−1 then depends on

(3.3)
γ − γ0

(σττ
Pn

i=1 x̄
2
iτ)
−1/2

µ
1− 1

4n
t2 − r − 1

2n

¶

with σττ = a0τ,TC(C
0Σ̃C)−1C 0aτ,T . For r = 1 the optimalC∗1 is found byminimizing

°°°Σ̃−1/2aτ,T − Σ̃1/2C
°°°

which leads to C∗1 = Σ̃−1aτ,T . Since the residual from this projection is identical to zero it follows

that σττ can not be further increased by increasing r. The overall optimum of 3.3 is then found

by choosing r∗ = 1 and C∗1 = Σ̃−1aτ,T . It should be noted that the optimal choice of C∗1 is the

same as the infeasible GLS estimator. Since C∗1 depends on unknown parameters implementing

this approach leads back to feasible GLS on the full sample with all time periods. In other

words, as we have seen for the level case before, temporal aggregation is only recommended

under special circumstances where Σ̃ is known a priori.

For the test T2 we show in the Appendix that

A2 (t,Ω) =
1

2

¡
1 + t2

¢
and

B2 (t,Ω, b2) =
1

2
t2.

The power of the OLS based test is therefore again independent of the temporal aggregation as

far as second order terms are concerned. Moreover, size is not affected by the number of time

periods which suggest that temporal aggregation is not justified for the robust OLS based tests
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as far as achieving correct size is concerned. The power function can be approximated by

γ − γ0

σ
1/2
ττ (A2ττ

Pn
i=1 x̄

2
iτ)
−1/2

µ
1− 1

8n
t2
¶

which is dominated by the power curve of the GLS based test. Size corrections can again be

based on A2 (t,Ω) .

4. Monte Carlo

We first consider some Monte Carlo evidence on the performance of our approach and the second

order Edgeworth approximations. We consider a situation with positive serial correlation across

time for states, which is the usual situation found in applied research. So far in our empirical

research, we have considered the single treatment date situation. Our Monte Carlo design uses

N=50 and T = (5,10, 15, 20) and the first order serial correlation, ρ = [0, 0.4, 0.8, 0.9].

In order to asses the different procedures numerically we now make more specific assumptions

about the generating process. We assume that

εit = ρεit−1 + uit

εi0˜N

µ
0,

1

1− ρ2

¶

where uit˜N(0, 1) is iid both across i and t.We assume that αi˜N (0, 1) , βt˜N (0, 1) and generate

(4.1) yit = αi + βt + Titγ + εit

where the treatment Tit is drawn in a two stage process. First we draw treated states i with

probability p. Then we draw a common treatment time τ randomly from [T/4] , ..., T − [T/4]
where [a] is the largest integer smaller than a. Then Tit = 1 if t ≥ τ and i is a selected state

and Tit = 0 otherwise. We generate 500 random samples for parameter values γ = [0, .1, .6, 1]

and ρ = [0, 0.4, 0.8, 0.9] . Note that αi and βt are drawn before we generate the 500 Monte Carlo

samples, ie. they are fixed parameters for all the Monte Carlo samples.
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In Tables 1a-1d we find that size corrected FGLS, FGLS-SC, in levels does almost as well as

GLS with Σ known in terms of power. However, for T = 20 we find that the size correction based

on the second order Edgeworth expansion does not completely solve the size distortion problem

when serial correlation is very high. For ρ = .9 the actual size is 0.088 when the nominal size is

0.05. While this amounts to a small size distortion, overall the performance of the size correction

is remarkable even when T = 20. For the T = 20 case the number of unknown elements of Σ̂

is 210 which is over 20% as large as the total number of observations. Apparently, such a large

number of unknown parameters causes a slight inaccuracy of the Edgeworth approximation

when ρ is close to one. When T = 10 so that the number of unknown elements of Σ̂ is 55 which

is 11% as large as the total number of observations, the size correction is very accurate for all

values of ρ we consider. We also find that FGLS-SC has significantly more power than does

OLS with a robustly estimated covariance matrix, which we call robust OLS5. For example, in

the situation of ρ = 0.9 in Table 1d, FGLS-SC often has almost 2 times more power than robust

OLS for the cases of T = 10 or 15. Thus FGLS appears to be the better estimator even with

additional parameter uncertainty created by the estimated Σ̂. In summary, we do recommend

FGLS-SC even for “large Σ̂” because the remaining size distortion is negligible.

However, also note that in Table 1d that non-robust OLS on the entire sample has an actual

size level that exceeds 0.25 for when T = 10, 15, and 20 although the nominal size level is only

0.05. Thus, as the previous literature found, OLS cannot be used without a correction to the

estimated variance matrix of the estimates or severe size distortions may result6.

We also consider two other versions of FGLS for 3 periods (before, change period, and after)

and the “traditional” 2 periods (before and after) DID approach. We find that both of these

alternative approaches involving time aggregation have significantly reduced power compared

to FGLS-SC. We find that the power of FGLS-SC on the full sample is often 50%-100% higher

than the 2 or 3 period time aggregated version. Thus, we do not recommend their use. The

traditional DID approach loses too much power to solve the problem of a consistent estimate of

5Robust OLS is the estimator studied by Bertrand et. al. (2002).
6Significant size distortion for OLS also occur when ρ = 0.4 although they are not as severe.
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the variance of the estimated parameters.

We next consider in Tables 2a-2d a first difference specification that also eliminates the

fixed effects but can also lead to a reduced effect of the positive serial correlation. Note that

because of the way we estimate the covariance matrix for both the level and the first difference

specification the two are numerically identical for the full sample specification. This is because

BM1T and B∆ map into the same T − 1 dimensional subspace and on that subspace the tests
are invariant to orthogonal rotations.

We thus only consider 3 period and 2 period time aggregation estimators7. The middle

period of the 3 period specification of time aggregation has the first difference of the single time

period when the treatment occurs. The treatment effect parameter appears only in this period

because first difference eliminates it in all other periods. However, the before and after periods

still lead to an efficiency improvement in FGLS estimation because of the correlation of the

stochastic disturbances. We find that all size distortions have been eliminated in FGLS-SC. We

also find that FGLS does approximately as well as non-size corrected GLS, because the size

corrections are now quite small.

We also find that the 3 period version of FGLS outperforms the 2 period version by a large

amount. Indeed, the 3 period aggregation FGLS-SC estimator seems to do the best of all the

feasible GLS estimators considered with correct size and maximum power. Nevertheless, a word

of caution with regard to the first difference transformation is in place. If the effect on the

treatment group occurs only with a time lag after the policy change then the 3 period version of

the first difference specification is not expected to have as much power and the level specification

is likely to be preferred in terms of power. Considering that FGLS-SC performs well for the

level specification in terms of power and size we tend to recommend its use over the three period

first difference specification.

Recently Hansen (2004) proposed an alternative solution to the size problem of GLS based

hypothesis tests. He proposes to fit a parametric model, in his case an AR(p) model, to the

7Since the data have been initially transformed to first differences, these estimators differ from the earlier

fixed effects estimators on 2 or 3 periods.
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serial correlation process of εit.With these parametric estimates an estimate of Σ̃ is constructed.

Since the work of Nickell (1981) it is well known that parametric estimates of serial correlation

are inconsistent in the presence of individual specific fixed effects. In order to implement a

parametric estimator of Σ̃ a bias correction of the parameter estimates is therefore needed.

Based on Hahn and Kuersteiner’s (2002) method of bias correction Hansen (2004) uses a formula

of Nickell (1981) to correct for bias. We replicate this procedure by computing the residuals

ε̂ = Mx̃Ỹ where Mx̃ is the projection onto the orthogonal space spanned by X̃ =
h
Z̃, Υ̃

i
. We

then fit a panel AR(1) model to ε̂it = ρε̂it−1+ η̂it. Since ε̂it is already demeaned from Mx̃Ỹ this

panel AR(1) estimator is essentially the within estimator of the model yit = αi+ ρyit−1+ z0itθ−
ρz0it−1θ+ηit where ηit is iid if εit is an AR(1) process. Once we obtain an estimate ρ̂ we subtract

the estimated bias and form an estimate Σ̃ρ̂ of Σ̃ based on the assumption that εit indeed follows

an AR(1) process. We then construct Σ̂ = C 0BM1T Σ̃ρ̂M1TB
0C or Σ̂ = C 0B∆Σ̃ρ̂B

∆0C depending

on whether the model is estimated in first differences or in levels. Note that we estimate ρ̂

on the full sample even if r = 2 or 3 because it was shown by Hahn and Kuersteiner (2002)

that the performance of the bias correction improves with larger T. For the first difference

formulation of the model we could also estimate the serial correlation coefficient using a GMM

procedure. Because first differencing induces an endogeneity bias, GMM tends to be heavily

biased especially when serial correlation is large. For a discussion of these problems see Hahn,

Hausman and Kuersteiner (2000) and Hahn and Kuersteiner (2002). For these reasons we do

not consider GMM estimators here.

A potential problem of the parametric estimator for Σ̃ lies in its stationarity and functional

form assumption. If the parametric model is misspecified the resulting GLS estimator is inef-

ficient and the estimated standard errors generally are incorrect. In Monte Carlo simulations

not reported here we found that if εi0 is not drawn from its stationary distribution, the perfor-

mance of the parametric covariance matrix estimator can be quite poor. It also suffers from the

disadvantage that for small T the parametric estimator tends to be more biased and thus has

inferior small sample behavior even when the model is stationary.

Monte Carlo designs where only the initial observation is not drawn from the stationary
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distribution tend to be quite artificial and have the disadvantage that the form of the non-

stationarity mostly affects observations at the beginning of the sample. In order to have a

more realistic design we estimate a simple treatment model for the dataset on cellular telephone

service prices analyzed in more detail in Section 5. We estimate the variance covariance matrix

of the residuals from that model. Denote the estimated variance covariance matrix by Ω̂. The

sample size is T = 11.We then draw εi˜N(0, Ω̂) for εi = (εi1, ..., εi,11)
0 . The variables αi, βt and

the treatment indicators Tit are generated as before where now the treatment time τ is fixed

at τ = 8 to coincide with the change in regulation of the actual sample. The outcome variable

yit is then defined as in 4.1 where we again vary the size of the treatment effect measured by

γ = [0, .1, .6, 1]. Results for 500 Monte Carlo replications on samples of size n = 50 and T = 11

are reported in Table 3. It is striking that under the more realistic correlation patterns for

the residuals which are not well approximated by an AR(1) or for that matter any stationary

parametric time series model, the parametric estimator (GLS-AR) performs quite poorly with

size distortions in the range of 20%. This contrasts with the unrestricted covariance matrix

estimator used in GLS with a size correction. This procedure continues to have approximately

correct size as it did previously in stationary designs. Thus, imposing a stationary AR(p)

specification in a non-stationary situation may not solve the problem of obtaining the correct

size of tests, which is the most important problem for applied research of policy evaluation.

5. Effect of Regulation on Cellular Telephone Service Prices

In the U.S. for the first 12 years of operation, 1983-1995, cellular telephone operated as

a duopoly. However, the two facilities-based carriers were required to sell cellular airtime to

resellers who also sold cellular service to consumers. In the U.S. each of 51 state regulatory

commissions decided on whether to regulate cellular prices or to use market outcomes.8 In an

interesting natural experiment 26 states regulated cellular prices, while the other 25 did not. In

Table 5.1 we list monthly service prices in 1994 for the least expensive plan for average usage of

8In the U.S. the District of Columbia acts as the 51st state.
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Table 5.1: Average Cellular Prices in the Top 10 MSAs: 1994

160 minutes of use (80% peak)

MSA No. MSA Monthly Price Regulated

1. New York $110.77 Yes

2. Los Angeles 99.99 Yes

3. Chicago 58.82

4. Philadelphia 80.98

5. Detroit 66.76

6. Dallas 59.78

7. Boston 82.16 Yes

8. Washington 76.89

9. San Francisco 99.47 Yes

10. Houston 80.33

160 minutes per month (80% peak)9 for up to a 1-year contract in the 10 largest MSAs, which

are the metropolitan areas where cellular licenses were granted.10

The fact that price regulation goes along with higher monthly service prices is evident

from Table 5.1. Every regulated price in Table 5.1 is greater than every unregulated price in

Table 5.1. The average price of regulated MSAs is $98.10 while the average price of unregulated

MSAs is $70.59, which is a difference of $27.51 per month or 39%.

Table 5.1 demonstrates that price regulation of cellular telephone was associated with

higher prices for consumers in the U.S. However, other factors such as higher costs in the reg-

ulated states could be the reason for the higher prices. Hausman (1995) used a cross-section

approach to quantify the higher prices that consumers pay in regulated states. He specified a

model of cellular prices in the top 30 MSAs where the right had side variable included MSA pop-

9This usage, 160 minutes per month, was the approximate average usage of cellular customers in 1994.
10While in most other countries national cellular licenses were granted, the US has followed the framework of

granting licenses on a significant disaggregated geographical level.
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ulation, average commuting time, average MSA income, and an index of constructions costs.11

These top 30 MSAs contain about 41% of the entire U.S. population and about 60% of cellular

subscribers in 1994. Hausman treated price regulation as a jointly endogenous variable and

used instrumental variables in estimation.12 The estimated coefficient of the price regulation

variable is 0.149, which means that regulated states had cellular prices that are 15% higher,

holding other economic factors equal. The coefficient is estimated very precisely (standard error

= 0.052) and the finding is highly statistically significant (t statistic = 2.87). Thus, states that

regulate had significantly higher cellular prices in large MSAs.

To explore this issue further Hausman also collected data from cellular companies for

the years 1989-93 and run a similar regression. Over this time period price regulation led to a

higher price of 14.2% which is again estimated quite precisely (standard error = .029) and is

very statistically significant (t statistic = 4.9). Thus, the results of the effect of price regulation

are very similar for the period 1989-93 and for the single year 1994. However, these estimates

could be objected to (and were objected to by defenders of price regulation) on the grounds that

unmeasured variables led to higher prices in the regulatory states. Since the regulatory status

of the states did not change over time, this possible objection was untestable.

However, a “natural experiment” occurred that allowed a further test of the regulatory

hypothesis. In 1993 U.S. Congress instructed the Federal Communications Commission (FCC)

to deregulate cellular prices unless a given state that was regulating cellular prices could show

price regulation was “necessary”.13 Eight states petitioned the FCC to continue price regulation,

and the FCC turned them down in late 1994. One state appealed, but regulation completely

ended in 1995. Thus, Congress and the FCC provided a natural experiment that permitted

an analysis of how cellular prices changed in the regulated and unregulated states, after price

regulation was prohibited.

11See Hausman (1995)
12The instruments were state tax rates and whether the state regulated paging prices. By 1994 paging had

numerous competitors in each MSAs and no economic reason existed to regulate paging prices.
13In the U.S. a dual regulatory framework exists where the FCC, at the national level, and each state has

regulatory authority over telecommunications. However, each state regulatory body must implement FCC rules.
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A complicating factor arose because cellular prices decreased significantly in 1995-96 both

because of new PCS entry and because of deregulation.14 Thus, the econometric specification,

as in equation (1.1) has a fixed effect for each MSA, and a time effect for each year, which allows

for the effect of new entry. A single indicator variable allows for the effect of price regulation.

The econometric specification was estimated over 11 years of data with 7 years prior to the end

of price regulation and 4 years after the end of regulation. Given the 30 MSAs we have a total

of 330 observations.

First, we estimate the model by the traditional “differences in differences” OLS approach.

That is, we average across all observations for a given MSA during the regulatory period and also

average across observations for the post-regulatory period and compare the change in average

price for regulated MSAs to the non-regulated MSAs after price regulation ended. The point

estimate is 0.180, consistent with the earlier estimates that regulation led to higher prices for

consumers. However, the estimated t-statistic is 1.35, which is not significant at usual test levels.

When OLS is run on the complete sample so that T = 11, the estimated OLS t-statistic is 2.11,

which would indicate statistical significance. However, the estimated robust t-statistic that

allows for a non-diagonal covariance matrix is 1.65, which again indicates a lack of statistical

significance. Thus, if OLS is used on the complete sample the effect of non-independence across

periods can affect inference in important ways.

We now use FGLS on the entire sample. We allow for an unrestricted covariance matrix and

estimate it using an unbiased estimator. The GLS point estimate is 0.150, which is very close to

the 0.149 estimate from the original cross section specification from 1994 before price regulation

was prohibited. The conventional first-order GLS t-statistic that does not account for estimation

of the covariance matrix is 3.68. However, the second order approximation that accounts for

estimation of the covariance matrix, is 2.67, which yields a p-value of 0.996 indicating a highly

significant result. Thus, the “natural experiment” of the end of price regulation demonstrates the

effect of regulation on prices, and the result is less subject to criticism of omitted or unmeasured

14PCS is a “second generation” cellular technology. The FCC auctioned off additional spectrum, which per-

mitted entry of additional cellular service providers. Hausman (2002) discusses the new entry in greater detail.
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variables. Taking account of the estimated covariance matrix is also important and has an

important effect on the estimated precision of the estimator.

We next consider FGLS on the 2 period specification, where FGLS accounts for correlation

across periods rather than taking an unweighted average across periods as does the difference

in differences approach. The 2 period FGLS estimate is 0.140 with the estimated t-statistic of

1.72, which is greater than the difference in differences t-statistic but is still below convention

significant levels. We lastly consider FGLS on a 3 period specification, where the periods are

during price regulation, the year of the change, and the period follow regulation. The FGLS

point estimate is 0.160 with an estimated t-statistic of 1.94, slightly below conventional level

of statistical significance. Thus, in this application GLS on the entire sample appears to be

the best estimator. However, using different “cuts” of the data permit additional estimates,

which allow for specification tests following Hausman (1978). The specification tests do not

reject the orthogonality of the econometric specification, as expected given the rather close

point estimates using the three different approaches. The economic conclusion is that state

regulators, by attempting to protect cellular resellers from competition by the two facilities

based carriers, led to significantly higher prices to consumers.

6. Conclusions

We derive higher order expansions of the distribution of the t-statistic for the significance of

treatment variables in difference in difference regressions. When serial correlation in the errors

is present, standard OLS based inference leads to tests with distorted size. Robust OLS does

not suffer from this problem and is shown to be immune to a dimension problem when N, the

number of cross-sectional units, is small relative to the number of time periods. A more efficient

procedure is GLS. Our expansions show, that unlike robust OLS, feasible GLS does suffer from

a many parameter problem and exhibits severe small sample size distortions when N is not large

enough. Using our expansions we obtain a size correction for FGLS.

We find that size corrected FGLS, FGLS-SC, in levels does almost as well as GLS with known
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Σ. We also find that FGLS-SC has significantly more power than does OLS with a robustly

estimated covariance matrix, robust OLS, when serial correlation in the level data is high. Thus

FGLS appears to be the better estimator even with additional parameter uncertainty created

by the estimated Σ̂. We also consider two other versions of FGLS for 3 periods (before, change

period, and after) and the “traditional” 2 period (before and after) DID approach. We find that

both of these alternative approaches involving time aggregated have significantly reduced power

compared to FGLS-SC. Thus, we do not recommend their use.

The first difference specification also eliminates the fixed effects but can also lead to a

reduced effect of the positive serial correlation. We now find that FGLS-SC does almost as well

as GLS. We then consider 3 period and 2 period time aggregation estimators. We find that

all size distortions have been eliminated in FGLS-SC. We also find that the 3 period version

of FGLS outperforms the 2 period version by a large amount. Unlike in the case of the level

specification, the loss of power for the 3 period version of feasible GLS using first differenced

data is negligible.

These results suggest to use full sample FGLS-SC whenever serial correlation is high in levels.

If the regressions are run in first differences the 3 period version of FGLS-SC seems to perform

best. An argument for running the specification in levels can be made in cases where adjustment

to the new policy takes more than one time period. In this case, the first difference specification

will underestimate the total effect of the policy relative to the level specification.
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A. Appendix

A.1. Unbiased Weight Matrix Estimation

In this appendix we show that (2.1) is approximately unbiased. Let ε̂it be the residual from a regression of yit
onto Tis and all elements of Zis, s = 1, ..., T and define Vit = [Tit, Z

0
it] with regressor matrix V = [V 0

1 , ..., V
0
n]
0

where Vi = [Vi1, ..., ViT ] such that

ε̂it = εit − Vi (V
0V )−1 V 0εt + αi − Vi (V

0V )−1 V 0α

and we note that

E [ε̂it|V ] = 0.
Let yt = [y1t, ..., ynT ]

0 and yt = α + Z̃tθt + Υtγ + εt where α, θt, εt are defined in the obvious way. Now

consider

E [σ̂t,s|It,s] = E

·
y0tMV ys
tr(MV )

|V
¸
=

E [
Pn

i=1 ε̂itε̂is|V ]
tr(MV )

=
trMVE

£
(α+ εs) (α+ εt)

0 |V ¤MV

tr(MV )

=
trMVE [αα

0|V ]MV

tr(MV )
+ σ̃t,s

where

E [αα0|V ] = σ2αIn +E [α|V ]E [α0|V ] = σ2αIn + Vmαm
0
αV

0

by Condition (1) such that
trMVE [αα

0|V ]MV

tr(MV )
= σ2α.

It follows that E [σ̂t,s|V ] = σ2α + σ̃t,s such that

E
h
Ŝη|V

i
= Σ̃+ σ2α1T1

0
T

and thus

E
h
Σ̂|V

i
=M1T Σ̃M1T .

For the variance we consider

vecM1T Σ̂M1T = (M1T ⊗M1T ) vec Σ̂
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such that it is enough to look at

E [σ̂t,sσ̂q,r|V ]−E [σ̂t,s|V ]E [σ̂q,r|V ]

=
E
£
(α+ εt)

0
MV (α+ εs) (α+ εq)

0
MV (α+ εr) |V

¤
tr(MV )2

−E [σ̂t,s|V ]E [σ̂q,r|V ]

=
trMVE

£
(α+ εr) (α+ εt)

0 |V ¤MVE
£
(α+ εs) (α+ εq)

0 |V ¤MV

tr(MV )2

+
trMVE

£
(α+ εq) (α+ εt)

0 |V ¤MVE
£
(α+ εs) (α+ εr)

0 |V ¤MV

tr(MV )2

=

¡
σ2α + σ̃r,t

¢ ¡
σ2α + σ̃s,q

¢
tr(MV )

tr(MV )2
+

¡
σ2α + σ̃q,t

¢ ¡
σ2α + σ̃s,r

¢
tr(MV )

tr(MV )2

=

¡
σ2α + σ̃r,t

¢ ¡
σ2α + σ̃s,q

¢
n

+

¡
σ2α + σ̃q,t

¢ ¡
σ2α + σ̃s,r

¢
n

+ o(n−1).

It follows that

nE vec
³
Ŝ − Σ̃

´
vec

³
Ŝ − Σ̃

´0
= (IT +KTT )

³³
σ2α1T1

0
T + Σ̃

´
⊗
³
σ2α1T1

0
T + Σ̃

´´
+ o(1)

and

nE vec
³
Σ̂−M1T Σ̃M1T

´
vec

³
Σ̂−M1T Σ̃M1T

´0
= (M1T ⊗M1T ) (IT +KTT )

³³
σ2α1T1

0
T + Σ̃

´
⊗
³
σ2α1T1

0
T + Σ̃

´´
(M1T ⊗M1T ) + o(1)

= (M1T ⊗M1T ) (IT +KTT )
³
Σ̃M1T ⊗ Σ̃M1T

´
+ o(1)

= (IT +KTT )
³
M1T Σ̃M1T ⊗M1T Σ̃M1T

´
+ o(1)

where the last line follows from Magnus and Neudecker (1988, p.47). Note that similar results hold when M1T

is replaced by B∆. We then write

nE vec
³
C0BΣ̂B0C − Σ

´
vec

³
C0BΣ̂B0C − Σ

´0
= (IT +KTT ) (Σ⊗ Σ) + o(1)

and define VΣ = (IT +KTT ) (Σ⊗ Σ) . Using Magnus and Neudecker (1988, Theorem 10, p.47) we write

vecΩ = (Ir ⊗Knr ⊗ In) (vecΣ⊗ vec In)

such that the asymptotic variance VΩ of n1/2
³
vec

³
Ω̂− Ω

´´
is

VΩ = (Ir ⊗Knr ⊗ In)
¡
VΣ ⊗ vec In (vec In)0

¢
(IT ⊗K0

nr ⊗ In) .

B. Derivations of (2.2) and (2.3)

We start by verifying the assumptions of Rothenberg (1984a). This then implies that the expansions of Rothen-

berg (1988) are valid and the remainder of our work can be limited to finding explicit algebraic expressions of

the terms in the expansions. For this purpose consider the transformed model Y = Zθ+Υγ+ ε. Let X = [Z,Υ]

and β =
£
θ0, γ

¤0
. If ε̃ is jointly normal as in Condition (2) then ε ∼ N (0,Σ⊗ In) . Let M = IT ⊗MV such that
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ε̂ =MV ε̃. Then stack Ê = [ε̂1, ..., ε̂T ]
0 such that Σ̂ =M1T

ÊÊ0
tr(MV )

M1T . It follows that Ω̂ is a quadratic form of ε̃

and does not depend on β. Thus Assumption A of Rothenberg (1984a) is satisfied. Assumption B follows from

Condition (2) except that here we only require approximations of order o(n−1). Also note that Σ is linear in the

elements σt,s such that all higher order derivatives of Ω with respect to σt,s are zero. Thus, Assumptions 1-3 of

Rothenberg (1984a) follow easily from Condition (2). Finally, Assumption 4 of Rothenberg (1984a) is automat-

ically satisfied because Σ̂ is a quadratic form of Gaussian random variables and thus has bounded moments of

all orders.

We first note that

R =
√
n

³
Υ

0
Ω̂zΥ
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Consider the total derivative
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such that
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such that
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√
n
³
Ω− Ω̂

´
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by the delta method. In the same way,

d (Υ0ΩzΥ)
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Then
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−1
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In the Taylor expansion the term d2Ω = 0 because all the elements are linear functions of the parameters. We

thus have
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Note that E vec(Ω− Ω̂) = 0 and Var
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For R note that under normality all the third moments are zero such that ER = 0 and
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where remaining terms are zero due to normality. Since HΩH = H(I − Z(Z 0Ω−1Z)−1Z 0Ω−1) = H it follows

that

VarR =
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B.1. Derivation of (2.4) and (2.5)
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such that
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B.2. Derivation of Approximation to T2

Define M = IT ⊗MV , x̃ =
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nMz̃Υ̃
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The estimator for C0BM1T Σ̃M1TB
0C with typical element t, s denoted by σt,s can be written by defining the

t-th n×1 block of ε̂ as ε̂t and in the same way we define the n×1 vectors ṽt and ũt. Then stack Ê = [ε̂1, ..., ε̂T ]0 ,
Ψ̃ = [ṽ1, ..., ṽT ]

0 and Ũ = [ũ1, ..., ũT ]
0 such that

C0BΣ̂B0C = C0BM1T

ÊÊ0

tr (MV )
M1TB

0C

= C0BM1T

"
(Y)2 Ψ̃Ψ̃0

tr (MV )
+ Y

Ã
Ψ̃Ũ 0

tr (MV )
+

ŨΨ̃0

tr (MV )

!
+

ŨŨ 0

tr (MV )

#
M1TB

0C.

Now define the t-th row of the r× n matrix C 0BM1T Ψ̃ by v
0
t and correspondingly for the rows of C

0BM1T Ũ we

use the notation u0t.We also define x =
√
nMzΥ (Υ

0MzΥ)
−1 with t-th n× 1 block denoted by xt. Then, consider

T2 = T̄2/ (1 +W/
√
n)
1/2 with

W =
√
n
(Υ0MzΥ)

−1
Υ0Mz

³
Ω̂− Ω

´
MzΥ (Υ

0MzΥ)
−1

(Υ0MzΥ)
−1Υ0MzΩMzΥ (Υ0MzΥ)

−1 =
√
n
x0
³
Ω̂− Ω

´
x

x0Ωx

such that

W =
√
n

Pr
t,s x

0
txs

³
u0tus
trMV

− σt,s

´
Pr

t,s x
0
txsσt,s

+
√
n

Pr
t,s x

0
txs

v0tvs
trMVPr

t,s x
0
txsσt,s

Y2 +√nY
Pr

t,s x
0
txs

u0tvs
trMVPr

t,s x
0
txsσt,s

where, under normality assumptions, u is normally distributed and uncorrelated with Y. Note that x0txs = O(1)

and v0tvs = (x0Ωx)
−1Pr

p,q=1 σt,pσq,s trxpx
0
qMV = O(1) for all t, s. Next consider

Eũũ0 = M

µ
I − Ωx̃x̃

0

x̃0Ωx̃

¶
Ω

µ
I − Ωx̃x̃

0

x̃0Ωx̃

¶0
M

= MΩM − MΩx̃x̃0ΩM
x̃0Ωx̃
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where

MΩM =


σ̃11MV · · · σ̃1TMV

. . .
...

σ̃TTMV

 = Σ̃η ⊗MV

and

MΩx̃x̃0ΩM
x̃0Ωx̃

=
1

x̃0Ωx̃


MV

P
ij σ̃1iσ̃j1x̃ix̃

0
jMV · · · MV

P
ij σ̃1iσ̃jT x̃ix̃

0
jMV

. . .
...

MV

P
ij σ̃Tiσ̃jT x̃ix̃

0
jMV


such that

Eu0tus = tr σ̃tsMV − 1

x̃0Ωx̃

X
ij

σ̃tiσ̃js trMV x̃ix̃
0
j

= (trMV ) σ̃ts − 1

x̃0Ωx̃

X
ij

σ̃tiσ̃js trMV x̃ix̃
0
j .

By the same arguments as in Rothenberg (1988) it then follows that

√
nE

£
W |T̄2

¤
= −

Pr
t,s x

0
txs

P
ij σ̃tiσ̃js

trMV x̃ix̃
0
j

trMV³Pr
t,s x

0
txsσ̃t,s

´2 +

Pr
t,s x

0
txs

v0tvs
trMVPr

t,s x
0
txsσ̃t,s

Y2 +O(n−1/2)

and

var
¡
W |T̄2

¢
=
trVΩ (xx

0 ⊗ xx0)
(x0Ωx)2

.

Note that

trMV x̃ix̃
0
j = x̃0jMV x̃i =

µ
Υ̃i − Z̃i

³
Z̃0Z̃

´−1
Z0Υ̃

¶0
MV

µ
Υ̃j − Zj

³
Z̃0Z̃

´−1
Z0Υ̃

¶³
Υ̃0Mz̃Υ̃

´−2
with

MV Υ̃j = 0 and MV Zj = 0 for all j = 1, ..., T

such that trMV x̃ix̃
0
j = 0. Next, consider

ṽ =MΩ̃x̃/
p
x̃0Ω̃x̃ =

³
Σ̃⊗MV

´µ
Υ̃− Z

³
Z̃0Z̃

´−1
Z0Υ̃

¶
/
p
x̃0Ω̃x̃ = 0

by the same argument as before.

B.3. Derivations for Results in Section 3

B.3.1. Level Specification

The results follow from specializing the expressions for var (S) and var (R) to this case. First consider

Z0Ω−1Z = nΣ−1,

Ω−1Z
¡
Z0Ω−1Z

¢−1
Z0Ω−1 = Σ−1 ⊗ 1n1

0
n

n
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and

Ω−1z = Σ−1 ⊗M1n .

Next, we express Υ =
PT

t=τ C
0BM1T at,T ⊗ Υ̃∆τ . Then

n−1Υ0ΩzΥ = n−1X̃ 0
τM1nX̃τ

PT
t,s=τ

¡
a0t,TM1TB

0CΣ−1C0BM1T as,T
¢

since n−1Υ̃∆0τ M1nΥ̃
∆
τ

p→ Var∆Tiτ = p(1 − p). Also let ∆T = p (1− p)
PT

t,s=τ

¡
a0t,TM1TB

0CΣ−1C0BM1T as,T
¢
.

Then n−1Υ0ΩzΥ
p→ ∆T as n→∞.

Next let δx = n (Υ0ΩzΥ)
−1

, γ(t1) = Σ
−1C 0BM1T at1,T δxand Γ (t1, t2) = γ(t1)γ(t2)

0. Then

h = n−1δxΩzΥ = n−1δx
PT

t=1

³
Σ−1C 0BM1T at1,T ⊗M1nΥ̃

∆
τ

´
= n−1

PT
t=1

³
γ(t)⊗M1nΥ̃

∆
τ

´
.

Consider

n4 (hh0 ⊗ hh0) = δ4xΩzΥΥ
0Ωz ⊗ ΩzΥΥ0Ωz

=
PT

t1,...,t4=1

h
Γ(t1, t2)⊗M1T Υ̃

∆
τ Υ̃

∆0
τ M1T ⊗ Γ(t3, t4)⊗M 0

1nΥ̃
∆
τ Υ̃

∆0
τ M1n

i
=

PT
t1,...,t4=1

(Ir ⊗Knr ⊗ In)
h
Γ(t1, t2)⊗ Γ(t3, t4)⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n ⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
(Ir ⊗K0

nr ⊗ In)

such that

n4 trVΩη (hh
0 ⊗ hh0)

= tr
PT

t1,...,t4=τ
VΩη (Ir ⊗Knr ⊗ In)

h
Γ(t1, t2)⊗ Γ(t3, t4)⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n ⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
(Ir ⊗K0

nr ⊗ In)

=
PT

t1,...,t4=τ

h
γ(t2)

0Σγ(t1)⊗ γ(t4)
0Σγ(t3)⊗

³
Υ̃∆0τ M1n ⊗ Υ̃∆0τ M1n

´
vec In (vec In)

0 ³
M1nΥ̃

∆
τ ⊗M1nΥ̃

∆
τ

´i
+
PT

t1,...,t4=τ
[(γ(t2)

0 ⊗ γ(t4)
0)Krr (Σ⊗ Σ) (γ(t1)⊗ γ(t3))

⊗
³
Υ̃∆0τ M1n ⊗ Υ̃∆τ M1n

´
vec In (vec In)

0 ³
M1nΥ̃

∆
τ ⊗M1nΥ̃

∆
τ

´i
where

³
Υ̃∆0τ M1n ⊗ Υ̃∆0τ M1n

´
vec In (vec In)

0 ³
M1nΥ̃

∆
τ ⊗M1nΥ̃

∆
τ

´
=
³Pn

i=1

¡
∆Tiτ − T̄∆τ

¢2´2
and T̄∆τ = n−1

Pn
i=1∆Tiτ .

Therefore

n2 trVΩ (hh
0 ⊗ hh0)

=
³PT

t1,t2=τ
γ(t1)

0Σγ(t2)
´2

n−2
³Pn

i=1

¡
∆Tiτ − T̄∆τ

¢2´2
+
PT

t1,...,t4=τ
[(γ(t2)

0 ⊗ γ(t4)
0)Krr (Σ⊗ Σ) (γ(t1)⊗ γ(t3))]n

−2
³Pn

i=1

¡
∆Tiτ − T̄∆τ

¢2´2
p→ (p (1− p))

2
∆−4T

³PT
t1,t2=τ

a0t1,TM1TB
0CΣ−1C0BM1T at2,T

´2
+(p (1− p))2∆−4T

³PT
t1,t2=τ

a0t1,TM1TB
0CΣ−1C 0BM1T at2,T

´2
= 2∆−2T .

where the last equality follows from the fact that for two r×1 vectors a and b, Krr (a⊗ b) =
Pr

i,j=1

¡
eie

0
ja⊗ eje

0
ib
¢
=

(b⊗ a) . Also note that n−1h0Ωh = n−1δ−2x Υ0ΩΥ
p→ ∆−1T . It thus follows that

trVΩ (hh
0 ⊗ hh0)

(h0Ωh)2
p→ 2.
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For H = Ωz − ΩzΥ (Υ0ΩzΥ)−1Υ0Ωz use n (Hl − Ωz) = ∆−1T ΩzΥΥ0Ωz + op(1) such that we can replace H by

Ωz − n−1∆−1T ΩzΥΥ
0Ωz. Now

Ωz−n−1∆−1T ΩzΥΥ0Ωz = Σ−1⊗M1n −n−1∆−1T
PT

t1,t2=τ
Σ−1C0BM1T at1,Ta

0
t2,TM1TB

0CΣ−1⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

such that

n2
³
Ω−1 − n−1∆−1T,lΩη,zΥΥ

0Ωη,z
´
⊗ hlh

0
l

=
PT

t1,t2=τ

h
Σ−1η ⊗M1n ⊗ Γl(t1, t2)⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
−n−1∆−1T

PT
t1,...,t4=τ

h
Σ−1η C 0BM1T at1,Ta

0
t2,TM1TB

0CΣ−1η ⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n ⊗ Γl(t3, t4)⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
=

PT
t1,t2=τ

(Ir ⊗Knr ⊗ In)
h
Σ−1 ⊗ Γ(t1, t2)⊗M1n ⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
(Ir ⊗K0

nr ⊗ In)

−n−1∆−1T
PT

t1,...,t4=τ
(Ir ⊗Knr ⊗ In)

£
Σ−1C 0BM1T at1,Ta

0
t2,TM1TB

0CΣ−1 ⊗ Γ(t3, t4)
⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n ⊗M1nΥ̃

∆
τ Υ̃

∆0
τ M1n

i
(Ir ⊗K0

nr ⊗ In) .

It then follows that

n trVΩ (H ⊗ hh0)

= n−1
PT

t1,t2=1
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Σ−1/2 ⊗ γ(t2)

0 ⊗M1n ⊗ Υ̃∆0τ M1n

i £
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∆
τ

i
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T

p
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h
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i £
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¤
×
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∆
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∆
τ

i
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h
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0Σγ(t1)⊗
³
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´
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∆0
τ

´i
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h
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³
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´
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0 ³
M1nΥ̃

∆
τ ⊗M1nΥ̃

∆
τ

´i
where (vec In)

0 ³M1n ⊗M1nΥ̃
∆
τ

´
= Υ̃∆0τ M1n . From tr (A⊗B) = trA trB it follows that

n−1
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t1,t2=τ
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h
Ir ⊗ γ(t2)

0Σγ(t1)⊗M1nΥ̃
∆
τ Υ̃

∆0
τ M1n

i
= r

PT
t1,t2=τ

γ(t1)
0Σγ(t2)

Υ̃∆0τ M1nΥ̃
∆
τ

n

p→ r∆−1T

and

δ−2x n−2∆−1T
PT

t1,...,t4=τ
tr
h
γ(t2)

0Σγ(t1)⊗ γ(t4)
0Σγ(t3)⊗

³
Υ̃∆0τ M1n ⊗ Υ̃∆0τ M1n

´
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0 ³M1nΥ̃
∆
τ ⊗M1nΥ̃

∆
τ

´i
= δ−2x n−2∆−1T

³PT
t1,t2=τ

γ(t1)
0Σγ(t2)

´2 ³
Υ̃∆0τ M1nΥ̃

∆
τ

´2
.

p→ ∆−1T .

It thus follows that
trVΩ (H ⊗ hh0)

(h0Ωh)
p→ r − 1

which establishes the results for T1.
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For the test T2 note that in this case Vit = Tit, Vi = [(Vi1, ..., ViT ), 1] and V = [V 0
1 , ..., V

0
n]
0 . Define MV =

In − V (V 0V )−1V 0,M = Ir ⊗ MV , x =
√
n (Ir ⊗M1n)Υ (Υ

0 (Ir ⊗M1n)Υ)
−1 and v = MΩηx/

p
x0Ωηx = 0

because MVM1nΥ̃
∆
τ = 0 such that

n−1Υ0 (Ir ⊗M1n)Ω (Ir ⊗M1n)Υ = n−1Υ̃∆0τ M1nΥ̃
∆
τ

³PT
t1,t2=τ

a0t1,TM1TB
0CΣC0BM1T at2,T

´
p→ Dτ

where Dτ =
³PT

t1,t2=τ
a0t1,TM1TB

0CΣηC0BM1T at2,T

´
p(1− p) and

Υ0 (Ir ⊗M1n)Υ = n−1Υ̃∆0τ M1nΥ̃
∆
τ

³PT
t1,t2=τ

a0t1,TM1TB
0CC0BM1T at2,T

´
p→ D◦τ

such that x0Ωx
p→ Dτ/ (D

◦
τ )
2
. Then let

T̄2,η =
(Υ0MzΥ)

−1
Υ0MzY − γ0³

(Υ0MzΥ)
−1
Υ0MzΩηMzΥ (Υ0MzΥ)

−1´1/2
and set T̄2− b2 ≡ Y such that

ε̂ =Mε =
MΩx

x0Ωx
x0ε+M

µ
I − Ωxx

0

x0Ωx

¶
ε ≡ e.

Then, consider T2 = T̄2/ (1 +W/
√
n)
1/2 with

W =
√
n
Υ0Mz

³
Ω̂− Ω

´
MzΥ

Υ0MzΩMzΥ
.

Specializing previous arguments it then follows that

√
nE

£
W |T̄2

¤
= O(n−1/2)

and

var
¡
W |T̄2

¢
=

n−2 (Υ0Mz ⊗Υ0Mz)VΩ (MzΥ⊗MzΥ)

(Dτ )
2 +Op(n

−1/2)

= 2

³PT
t1,t2=τ

a0t1,TM1TB
0CΣηC0BM1T at2,T

´2 ³
n−1Υ̃∆0τ M1nΥ̃

∆
τ

´2
(Dτ )

2 +Op

³
n−1/2

´
= 2 +Op(n

−1/2).

B.3.2. First Difference Specification

We first simplify the expression for the GLS estimator

γGLS =
³
Υ0∆

³
Ω−1 − Ω−1Z∆

¡
Z0∆Ω

−1Z∆
¢−1

Z0∆Ω
−1
´
Υ∆

´−1 ³
Υ0∆

³
Ω−1 − Ω−1Z∆

¡
Z 0∆Ω

−1Z∆
¢−1

Z0∆Ω
−1
´
Y∆

´
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where

Ω−1Z∆
¡
Z0∆Ω

−1Z∆
¢−1

Z0∆Ω
−1 =

P
t1,t2

¡
Σ−1C0at,Ta0t,TC ⊗ 1n

¢ Σ
n

¡
C 0at,Ta0t,TCΣ

−1 ⊗ 10n
¢

= Σ−1 ⊗ 1n1
0
n

n
.

Also let σt,s = a0t,TCΣ
−1C 0as,T , σt,s = a0t,TCΣC

0as,T and At,s = a0t,TCC
0as,T with corresponding expressions

for σ̂t,s and σ̂t,s by replacing Σ by Σ̂. Then,

γGLS =
³
σττ Υ̃∆0τ M1nΥ̃

∆
τ

´−1 ³P
t σ

τtΥ̃∆0τ M1n Ỹt

´
with M1n = In − 1n1

0
n

n . For the variance of GLS we note that
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h³P

t σ
τtX̃ 0

τM1n ε̃t

´
|Xτ

i
=

P
t1t2

a0τ,TCΣ
−1C 0at1,Ta

0
t2,TCΣ

−1C 0aτ,T X̃ 0
τM1nEε̃t1 ε̃

0
t2M1nX̃τ

=
P

t1t2
a0τ,TCΣ

−1C 0at1,T Σ̃Ta
0
t2,TCΣ

−1C0aτ,T X̃ 0
τM1nX̃τ

= σττ X̃ 0
τM1nX̃τ .

Let x̄iτ = xiτ − µx and ȳit = yit − µyt. The infeasible tests can be written as

T̄1 =

¡
σττ

Pn
i=1 x̄

2
iτ

¢−1
(
P

t σ
τt
Pn

i=1 x̄iτ ȳit)− γ0

(σττ
Pn

i=1 x̄
2
iτ )
−1/2

and

T̄2 =

¡
Aττ

Pn
i=1 x̄

2
iτ

¢−1P
tAτt

Pn
i=1 x̄iτ ȳit − γ0

σ
1/2
ττ (A2ττ

Pn
i=1 x̄

2
iτ )
−1/2 .

As before one can write

T1 =
T̄1 − n−1/2Z¡
1 + n−1/2S

¢1/2
with

Z =
√
n

¡
σ̂ττ

Pn
i=1 x̄

2
iτ

¢−1 ¡P
t σ̂

τtPn
i=1 x̄iτ ȳit

¢− ¡σττPn
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2
iτ

¢−1
(
P

t σ
τt
Pn

i=1 x̄iτ ȳit)

(σττ
Pn

i=1 x̄
2
iτ )
−1/2 +Op(n

−1/2)

and

S =
√
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³
(σ̂ττ )

−1 − (σττ )−1
´ ¡Pn

i=1 x̄
2
iτ

¢−1
(σττ

Pn
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2
iτ )
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Define h̃ = Σ−1C 0aτ , H̃ = Σ−1 − h̃h̃0/σττ and note that

S =

 h̃⊗ h̃

σττ
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³
Σ̂− Σ

´
+

tr

µ
vec

³
Σ̂− Σ

´
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³
Σ̂− Σ

´0 ³
H̃ ⊗ h̃h̃0

´¶
σττ

+Op(n
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The last result follows from an expansion of (σττ )−1 . Taking total derivatives we find

d (σττ )
−1

= − (σττ )−2 dσττ

d2 (σττ )
−1

= 2 (σττ )
−3
(dσττ )

2 − (σττ )−2 d2σττ

dσττ = − ¡a0τ,TCΣ−1 ⊗ a0τ,TCΣ
−1¢ vec dΣ

d2σττ = 2 (vec dΣ)0
¡
Σ−1C0aτ,Ta0τ,TCΣ

−1 ⊗ Σ−1C0aτ,Ta0τ,TCΣ−1
¢
vec dΣ

− ¡a0τ,TCΣ−1 ⊗ a0τ,TCΣ
−1¢ vec d2Σ

Substituting dΣ = −
³
Σ− Σ̂

´
and d2Σ = 0 then leads to the expansion for S by use of the delta method.

By the same arguments as before it follows that
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³
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For the test T2 we see that
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If we denote by αt the t-th element of the vector C 0aτ,T then it can be seen that the same formulas as in (2.7) and
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such that
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The results obtained here by considering approximations to unconditional versions of formulas (2.4) and (2.5)
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Table 1a: Results for the Levels Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.046 0.064 0.05 0.052 0.056 0.048

0.1 0.056 0.082 0.072 0.07 0.082 0.07
0.6 0.612 0.692 0.574 0.596 0.64 0.6
1 0.964 0.978 0.948 0.95 0.974 0.95

0 0 10 0.036 0.074 0.048 0.05 0.048 0.044
0.1 0.07 0.134 0.072 0.076 0.074 0.078
0.6 0.788 0.876 0.844 0.85 0.866 0.854
1 0.994 0.998 0.996 0.998 0.998 0.998

0 0 15 0.058 0.152 0.048 0.042 0.04 0.038
0.1 0.096 0.226 0.09 0.088 0.096 0.086
0.6 0.874 0.936 0.934 0.938 0.95 0.942
1 1 1 1 1 1 1

0 0 20 0.058 0.204 0.04 0.046 0.048 0.046
0.1 0.118 0.24 0.11 0.106 0.114 0.114
0.6 0.954 0.994 0.988 0.996 0.998 0.996
1 1 1 1 1 1 1

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.042 0.064 0.05 0.032 0.056 0.048

0.1 0.064 0.078 0.072 0.046 0.082 0.07
0.6 0.626 0.68 0.574 0.504 0.64 0.6
1 0.966 0.98 0.948 0.92 0.974 0.95

0 0 10 0.036 0.046 0.042 0.01 0.048 0.052
0.1 0.07 0.086 0.078 0.024 0.074 0.08
0.6 0.836 0.87 0.826 0.682 0.866 0.822
1 0.996 0.996 1 0.982 0.998 1

0 0 15 0.038 0.048 0.05 0.016 0.04 0.056
0.1 0.084 0.1 0.078 0.024 0.096 0.08
0.6 0.922 0.938 0.872 0.768 0.95 0.892
1 1 1 1 0.998 1 1

0 0 20 0.022 0.04 0.048 0.008 0.048 0.056
0.1 0.1 0.122 0.098 0.03 0.114 0.096
0.6 0.994 0.996 0.936 0.824 0.998 0.946
1 1 1 1 1 1 1

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.046 0.05 0.05 0.056 0.048 0.048

0.1 0.066 0.072 0.072 0.076 0.07 0.07
0.6 0.564 0.574 0.574 0.586 0.6 0.6
1 0.944 0.948 0.948 0.946 0.95 0.95

0 0 10 0.044 0.048 0.048 0.052 0.044 0.044
0.1 0.068 0.072 0.072 0.076 0.078 0.078
0.6 0.828 0.844 0.844 0.85 0.854 0.854
1 0.996 0.996 0.996 0.996 0.998 0.998

0 0 15 0.044 0.048 0.048 0.05 0.038 0.038
0.1 0.08 0.09 0.09 0.094 0.086 0.086
0.6 0.93 0.934 0.934 0.94 0.942 0.942
1 1 1 1 1 1 1

0 0 20 0.03 0.04 0.04 0.046 0.046 0.046
0.1 0.104 0.11 0.11 0.126 0.114 0.114
0.6 0.988 0.988 0.988 0.992 0.996 0.996
1 1 1 1 1 1 1

GLS-SC is the feasible GLS estimator with the size correction of Section 3. GLS is the feasible GLS estimator without size correction.
ROLS is the standard OLS estimator with robust standard errors. The covariance matrix is computed in the same way as for GLS
OLS is the usual OLS estimator with the standard variance estimator. 



Table 1b: Results for the Levels Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.056 0.074 0.07 0.1 0.082 0.064

0.1 0.07 0.088 0.066 0.114 0.076 0.07
0.6 0.514 0.574 0.51 0.612 0.524 0.512
1 0.916 0.94 0.896 0.946 0.934 0.904

0 0.4 10 0.036 0.08 0.046 0.146 0.046 0.042
0.1 0.058 0.118 0.066 0.168 0.068 0.07
0.6 0.596 0.71 0.616 0.792 0.68 0.61
1 0.958 0.974 0.956 0.988 0.976 0.964

0 0.4 15 0.06 0.164 0.05 0.152 0.044 0.048
0.1 0.094 0.168 0.064 0.204 0.07 0.074
0.6 0.682 0.812 0.698 0.864 0.764 0.706
1 0.968 0.99 0.988 0.996 0.994 0.986

0 0.4 20 0.044 0.166 0.038 0.18 0.048 0.034
0.1 0.078 0.184 0.084 0.218 0.074 0.078
0.6 0.784 0.904 0.808 0.932 0.862 0.826
1 0.998 1 1 1 1 1

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.05 0.066 0.07 0.072 0.058 0.064

0.1 0.068 0.08 0.066 0.082 0.072 0.07
0.6 0.494 0.54 0.51 0.526 0.516 0.512
1 0.92 0.93 0.896 0.904 0.912 0.904

0 0.4 10 0.03 0.046 0.042 0.026 0.046 0.042
0.1 0.064 0.076 0.076 0.064 0.074 0.074
0.6 0.592 0.662 0.628 0.606 0.656 0.638
1 0.95 0.96 0.962 0.958 0.966 0.964

0 0.4 15 0.048 0.064 0.056 0.038 0.048 0.052
0.1 0.054 0.088 0.08 0.056 0.078 0.08
0.6 0.678 0.712 0.7 0.64 0.722 0.712
1 0.986 0.99 0.978 0.968 0.99 0.982

0 0.4 20 0.028 0.048 0.046 0.024 0.042 0.046
0.1 0.074 0.088 0.086 0.034 0.08 0.082
0.6 0.794 0.818 0.786 0.692 0.828 0.776
1 1 1 1 0.99 1 1

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.062 0.07 0.07 0.066 0.064 0.064

0.1 0.066 0.066 0.066 0.072 0.07 0.07
0.6 0.48 0.51 0.51 0.516 0.512 0.512
1 0.888 0.896 0.896 0.898 0.904 0.904

0 0.4 10 0.036 0.046 0.046 0.046 0.042 0.042
0.1 0.052 0.066 0.066 0.064 0.07 0.07
0.6 0.604 0.616 0.616 0.622 0.61 0.61
1 0.952 0.956 0.956 0.956 0.964 0.964

0 0.4 15 0.05 0.05 0.05 0.054 0.048 0.048
0.1 0.06 0.064 0.064 0.068 0.074 0.074
0.6 0.68 0.698 0.698 0.704 0.706 0.706
1 0.988 0.988 0.988 0.988 0.986 0.986

0 0.4 20 0.032 0.038 0.038 0.04 0.034 0.034
0.1 0.076 0.084 0.084 0.086 0.078 0.078
0.6 0.792 0.808 0.808 0.816 0.826 0.826
1 1 1 1 1 1 1



Table 1c: Results for the Levels Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.05 0.08 0.064 0.144 0.068 0.056

0.1 0.07 0.092 0.068 0.16 0.09 0.074
0.6 0.476 0.52 0.42 0.628 0.504 0.444
1 0.87 0.904 0.836 0.94 0.91 0.852

0 0.8 10 0.044 0.082 0.038 0.226 0.04 0.04
0.1 0.052 0.104 0.042 0.252 0.06 0.046
0.6 0.492 0.61 0.352 0.66 0.56 0.35
1 0.89 0.934 0.724 0.928 0.938 0.724

0 0.8 15 0.078 0.152 0.058 0.33 0.056 0.044
0.1 0.07 0.192 0.062 0.366 0.062 0.078
0.6 0.478 0.674 0.328 0.694 0.58 0.318
1 0.874 0.928 0.67 0.92 0.936 0.692

0 0.8 20 0.066 0.18 0.052 0.364 0.062 0.05
0.1 0.08 0.184 0.06 0.378 0.066 0.046
0.6 0.526 0.714 0.294 0.712 0.6 0.286
1 0.896 0.964 0.676 0.926 0.962 0.68

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.056 0.08 0.064 0.084 0.066 0.056

0.1 0.068 0.084 0.068 0.114 0.076 0.074
0.6 0.444 0.472 0.42 0.508 0.474 0.444
1 0.848 0.876 0.836 0.89 0.872 0.852

0 0.8 10 0.024 0.04 0.034 0.066 0.038 0.04
0.1 0.036 0.046 0.042 0.082 0.046 0.044
0.6 0.352 0.406 0.364 0.48 0.39 0.382
1 0.736 0.746 0.748 0.81 0.752 0.738

0 0.8 15 0.05 0.06 0.054 0.092 0.046 0.044
0.1 0.056 0.084 0.074 0.114 0.072 0.076
0.6 0.334 0.37 0.348 0.434 0.352 0.334
1 0.682 0.718 0.702 0.78 0.72 0.72

0 0.8 20 0.038 0.062 0.046 0.076 0.054 0.054
0.1 0.042 0.058 0.054 0.088 0.046 0.046
0.6 0.286 0.35 0.342 0.406 0.324 0.326
1 0.674 0.714 0.698 0.754 0.696 0.696

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.054 0.064 0.064 0.06 0.056 0.056

0.1 0.064 0.068 0.068 0.076 0.074 0.074
0.6 0.404 0.42 0.42 0.424 0.444 0.444
1 0.826 0.836 0.836 0.84 0.852 0.852

0 0.8 10 0.032 0.038 0.038 0.038 0.04 0.04
0.1 0.038 0.042 0.042 0.046 0.046 0.046
0.6 0.332 0.352 0.352 0.356 0.35 0.35
1 0.712 0.724 0.724 0.728 0.724 0.724

0 0.8 15 0.054 0.058 0.058 0.058 0.044 0.044
0.1 0.054 0.062 0.062 0.066 0.078 0.078
0.6 0.314 0.328 0.328 0.326 0.318 0.318
1 0.654 0.67 0.67 0.67 0.692 0.692

0 0.8 20 0.044 0.052 0.052 0.052 0.05 0.05
0.1 0.054 0.06 0.06 0.062 0.046 0.046
0.6 0.282 0.294 0.294 0.296 0.286 0.286
1 0.654 0.676 0.676 0.674 0.68 0.68



Table 1d: Results for the Levels Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.048 0.072 0.056 0.144 0.064 0.058

0.1 0.07 0.096 0.076 0.184 0.084 0.06
0.6 0.476 0.53 0.406 0.61 0.514 0.428
1 0.882 0.916 0.82 0.932 0.918 0.834

0 0.9 10 0.044 0.094 0.024 0.276 0.042 0.028
0.1 0.058 0.108 0.04 0.272 0.064 0.034
0.6 0.478 0.59 0.306 0.632 0.558 0.282
1 0.866 0.928 0.618 0.878 0.94 0.626

0 0.9 15 0.088 0.166 0.054 0.39 0.056 0.056
0.1 0.084 0.19 0.072 0.402 0.07 0.072
0.6 0.47 0.642 0.278 0.64 0.572 0.274
1 0.846 0.914 0.546 0.866 0.922 0.55

0 0.9 20 0.084 0.208 0.062 0.406 0.062 0.056
0.1 0.096 0.234 0.058 0.426 0.056 0.058
0.6 0.476 0.654 0.196 0.688 0.584 0.192
1 0.83 0.928 0.476 0.858 0.942 0.476

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.052 0.072 0.056 0.092 0.066 0.058

0.1 0.07 0.078 0.076 0.114 0.074 0.06
0.6 0.444 0.484 0.406 0.522 0.488 0.428
1 0.834 0.868 0.82 0.882 0.874 0.834

0 0.9 10 0.032 0.04 0.026 0.074 0.038 0.024
0.1 0.038 0.046 0.038 0.074 0.044 0.038
0.6 0.296 0.334 0.308 0.42 0.328 0.3
1 0.664 0.706 0.66 0.774 0.72 0.656

0 0.9 15 0.046 0.062 0.05 0.108 0.042 0.056
0.1 0.054 0.068 0.07 0.132 0.054 0.062
0.6 0.294 0.334 0.28 0.396 0.312 0.292
1 0.566 0.62 0.57 0.684 0.602 0.572

0 0.9 20 0.044 0.054 0.054 0.094 0.046 0.044
0.1 0.044 0.06 0.052 0.098 0.046 0.052
0.6 0.192 0.232 0.216 0.322 0.21 0.212
1 0.528 0.588 0.542 0.65 0.554 0.532

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.048 0.056 0.056 0.056 0.058 0.058

0.1 0.07 0.076 0.076 0.084 0.06 0.06
0.6 0.398 0.406 0.406 0.416 0.428 0.428
1 0.812 0.82 0.82 0.83 0.834 0.834

0 0.9 10 0.022 0.024 0.024 0.03 0.028 0.028
0.1 0.03 0.04 0.04 0.046 0.034 0.034
0.6 0.278 0.306 0.306 0.314 0.282 0.282
1 0.588 0.618 0.618 0.626 0.626 0.626

0 0.9 15 0.048 0.054 0.054 0.054 0.056 0.056
0.1 0.068 0.072 0.072 0.072 0.072 0.072
0.6 0.264 0.278 0.278 0.278 0.274 0.274
1 0.53 0.546 0.546 0.548 0.55 0.55

0 0.9 20 0.052 0.062 0.062 0.062 0.056 0.056
0.1 0.052 0.058 0.058 0.062 0.058 0.058
0.6 0.182 0.196 0.196 0.194 0.192 0.192
1 0.448 0.476 0.476 0.478 0.476 0.476



Table 2a: Results for the First Difference Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.046 0.064 0.066 0.064 0.062 0.056 0.06

0.1 0.056 0.082 0.086 0.074 0.08 0.082 0.074
0.6 0.612 0.692 0.666 0.346 0.358 0.64 0.348
1 0.964 0.978 0.978 0.696 0.692 0.974 0.694

0 0 10 0.036 0.074 0.046 0.048 0.05 0.048 0.05
0.1 0.07 0.134 0.074 0.068 0.064 0.074 0.06
0.6 0.788 0.876 0.868 0.326 0.34 0.866 0.33
1 0.994 0.998 0.998 0.692 0.69 0.998 0.694

0 0 15 0.058 0.152 0.044 0.054 0.058 0.04 0.058
0.1 0.096 0.226 0.096 0.058 0.07 0.096 0.068
0.6 0.874 0.936 0.948 0.34 0.33 0.95 0.328
1 1 1 1 0.704 0.718 1 0.712

0 0 20 0.058 0.204 0.048 0.046 0.04 0.048 0.034
0.1 0.118 0.24 0.11 0.048 0.062 0.114 0.056
0.6 0.954 0.994 0.998 0.33 0.318 0.998 0.312
1 1 1 1 0.726 0.714 1 0.708

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.052 0.064 0.054 0.064 0.126 0.058 0.06

0.1 0.064 0.078 0.058 0.074 0.132 0.064 0.074
0.6 0.548 0.586 0.292 0.346 0.448 0.57 0.348
1 0.92 0.95 0.646 0.696 0.764 0.95 0.694

0 0 10 0.038 0.046 0.042 0.048 0.208 0.05 0.05
0.1 0.062 0.072 0.048 0.068 0.236 0.07 0.06
0.6 0.522 0.548 0.306 0.326 0.564 0.56 0.33
1 0.91 0.924 0.67 0.692 0.872 0.922 0.694

0 0 15 0.05 0.06 0.054 0.054 0.222 0.066 0.058
0.1 0.054 0.074 0.066 0.058 0.24 0.074 0.068
0.6 0.544 0.606 0.312 0.34 0.626 0.576 0.328
1 0.912 0.938 0.69 0.704 0.898 0.934 0.712

0 0 20 0.036 0.04 0.034 0.046 0.248 0.042 0.034
0.1 0.046 0.06 0.052 0.048 0.266 0.058 0.056
0.6 0.53 0.574 0.306 0.33 0.658 0.586 0.312
1 0.956 0.958 0.696 0.726 0.92 0.97 0.708

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0 5 0.042 0.048 0.044 0.042 0.036 0.046 0.03

0.1 0.054 0.066 0.056 0.058 0.062 0.058 0.05
0.6 0.416 0.45 0.434 0.34 0.35 0.434 0.358
1 0.818 0.856 0.854 0.708 0.712 0.856 0.702

0 0 10 0.058 0.074 0.07 0.068 0.14 0.07 0.064
0.1 0.07 0.09 0.082 0.08 0.134 0.082 0.066
0.6 0.394 0.436 0.416 0.31 0.478 0.416 0.292
1 0.788 0.812 0.81 0.668 0.81 0.81 0.674

0 0 15 0.052 0.062 0.05 0.066 0.138 0.05 0.058
0.1 0.048 0.064 0.056 0.07 0.154 0.056 0.062
0.6 0.36 0.39 0.382 0.296 0.502 0.382 0.284
1 0.822 0.83 0.83 0.704 0.844 0.832 0.716

0 0 20 0.04 0.05 0.04 0.05 0.146 0.04 0.048
0.1 0.054 0.064 0.064 0.056 0.174 0.064 0.06
0.6 0.384 0.414 0.41 0.334 0.492 0.41 0.328
1 0.824 0.85 0.838 0.706 0.848 0.838 0.71

GLS-SC is the feasible GLS estimator with the size correction of Section 3. GLS is the feasible GLS estimator without size correction.
ROLS is the standard OLS estimator with robust standard errors. The covariance matrix is computed in the same way as for GLS
OLS is the usual OLS estimator with the standard variance estimator. 



Table 2b: Results for the First Difference Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.056 0.074 0.084 0.078 0.07 0.082 0.064

0.1 0.07 0.088 0.092 0.086 0.08 0.076 0.086
0.6 0.514 0.574 0.554 0.43 0.438 0.524 0.434
1 0.916 0.94 0.936 0.802 0.822 0.934 0.81

0 0.4 10 0.036 0.08 0.05 0.052 0.044 0.046 0.054
0.1 0.058 0.118 0.08 0.06 0.066 0.068 0.064
0.6 0.596 0.71 0.688 0.416 0.432 0.68 0.426
1 0.958 0.974 0.98 0.822 0.826 0.976 0.828

0 0.4 15 0.06 0.164 0.048 0.048 0.054 0.044 0.056
0.1 0.094 0.168 0.078 0.054 0.066 0.07 0.066
0.6 0.682 0.812 0.764 0.428 0.424 0.764 0.422
1 0.968 0.99 0.992 0.83 0.842 0.994 0.836

0 0.4 20 0.044 0.166 0.044 0.044 0.046 0.048 0.046
0.1 0.078 0.184 0.072 0.062 0.058 0.074 0.06
0.6 0.784 0.904 0.86 0.436 0.432 0.862 0.432
1 0.998 1 1 0.844 0.84 1 0.846

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.058 0.068 0.084 0.078 0.114 0.078 0.064

0.1 0.06 0.084 0.086 0.086 0.122 0.082 0.086
0.6 0.5 0.544 0.524 0.43 0.512 0.522 0.434
1 0.908 0.928 0.938 0.802 0.866 0.934 0.81

0 0.4 10 0.026 0.044 0.05 0.052 0.194 0.05 0.054
0.1 0.064 0.072 0.086 0.06 0.224 0.084 0.064
0.6 0.532 0.576 0.584 0.416 0.68 0.582 0.426
1 0.942 0.956 0.954 0.822 0.942 0.952 0.828

0 0.4 15 0.056 0.068 0.064 0.048 0.21 0.062 0.056
0.1 0.058 0.074 0.08 0.054 0.248 0.076 0.066
0.6 0.576 0.616 0.602 0.428 0.732 0.594 0.422
1 0.934 0.944 0.95 0.83 0.956 0.95 0.836

0 0.4 20 0.044 0.054 0.044 0.044 0.232 0.042 0.046
0.1 0.058 0.074 0.062 0.062 0.242 0.064 0.06
0.6 0.59 0.634 0.608 0.436 0.754 0.61 0.432
1 0.96 0.966 0.972 0.844 0.972 0.974 0.846

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.4 5 0.042 0.054 0.06 0.042 0.054 0.054 0.046

0.1 0.048 0.054 0.058 0.052 0.058 0.05 0.06
0.6 0.394 0.414 0.418 0.352 0.358 0.388 0.36
1 0.798 0.832 0.84 0.736 0.728 0.814 0.716

0 0.4 10 0.056 0.072 0.074 0.056 0.13 0.07 0.066
0.1 0.066 0.072 0.074 0.064 0.138 0.07 0.074
0.6 0.354 0.376 0.362 0.28 0.44 0.356 0.282
1 0.728 0.746 0.746 0.652 0.774 0.74 0.644

0 0.4 15 0.04 0.044 0.042 0.046 0.126 0.042 0.04
0.1 0.048 0.062 0.052 0.052 0.126 0.048 0.052
0.6 0.324 0.348 0.336 0.256 0.444 0.346 0.256
1 0.724 0.746 0.744 0.63 0.796 0.742 0.616

0 0.4 20 0.042 0.046 0.048 0.048 0.142 0.048 0.046
0.1 0.056 0.064 0.056 0.062 0.144 0.054 0.064
0.6 0.324 0.36 0.34 0.29 0.436 0.332 0.288
1 0.744 0.758 0.764 0.616 0.798 0.758 0.62



Table 2c: Results for the First Difference Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.05 0.08 0.086 0.068 0.068 0.068 0.068

0.1 0.07 0.092 0.094 0.084 0.092 0.09 0.086
0.6 0.476 0.52 0.518 0.502 0.506 0.504 0.5
1 0.87 0.904 0.914 0.886 0.898 0.91 0.9

0 0.8 10 0.044 0.082 0.046 0.05 0.05 0.04 0.056
0.1 0.052 0.104 0.064 0.072 0.072 0.06 0.066
0.6 0.492 0.61 0.58 0.526 0.538 0.56 0.548
1 0.89 0.934 0.948 0.916 0.918 0.938 0.918

0 0.8 15 0.078 0.152 0.06 0.048 0.05 0.056 0.054
0.1 0.07 0.192 0.072 0.052 0.07 0.062 0.07
0.6 0.478 0.674 0.584 0.542 0.54 0.58 0.534
1 0.874 0.928 0.936 0.902 0.914 0.936 0.91

0 0.8 20 0.066 0.18 0.062 0.044 0.034 0.062 0.034
0.1 0.08 0.184 0.072 0.06 0.066 0.066 0.068
0.6 0.526 0.714 0.608 0.552 0.548 0.6 0.542
1 0.896 0.964 0.958 0.922 0.93 0.962 0.928

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.054 0.066 0.082 0.068 0.1 0.066 0.068

0.1 0.074 0.092 0.096 0.084 0.122 0.09 0.086
0.6 0.474 0.514 0.52 0.502 0.568 0.508 0.5
1 0.888 0.904 0.912 0.886 0.926 0.91 0.9

0 0.8 10 0.034 0.05 0.044 0.05 0.158 0.042 0.056
0.1 0.05 0.066 0.066 0.072 0.198 0.06 0.066
0.6 0.508 0.56 0.56 0.526 0.734 0.558 0.548
1 0.914 0.926 0.94 0.916 0.966 0.938 0.918

0 0.8 15 0.062 0.07 0.058 0.048 0.204 0.05 0.054
0.1 0.056 0.078 0.076 0.052 0.218 0.074 0.07
0.6 0.524 0.578 0.572 0.542 0.774 0.576 0.534
1 0.9 0.918 0.92 0.902 0.968 0.924 0.91

0 0.8 20 0.038 0.05 0.04 0.044 0.22 0.042 0.034
0.1 0.058 0.062 0.056 0.06 0.248 0.054 0.068
0.6 0.546 0.592 0.602 0.552 0.794 0.6 0.542
1 0.936 0.954 0.956 0.922 0.988 0.956 0.928

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.8 5 0.054 0.056 0.074 0.048 0.064 0.06 0.054

0.1 0.052 0.064 0.098 0.056 0.07 0.072 0.074
0.6 0.33 0.364 0.386 0.344 0.35 0.342 0.338
1 0.708 0.728 0.768 0.71 0.722 0.738 0.726

0 0.8 10 0.04 0.048 0.064 0.046 0.1 0.052 0.046
0.1 0.05 0.06 0.064 0.058 0.104 0.054 0.058
0.6 0.25 0.278 0.32 0.27 0.384 0.286 0.264
1 0.552 0.586 0.62 0.538 0.694 0.596 0.548

0 0.8 15 0.038 0.056 0.054 0.052 0.106 0.044 0.046
0.1 0.056 0.058 0.066 0.05 0.128 0.048 0.046
0.6 0.242 0.254 0.256 0.212 0.342 0.24 0.21
1 0.5 0.56 0.578 0.478 0.676 0.546 0.474

0 0.8 20 0.034 0.042 0.046 0.036 0.102 0.038 0.04
0.1 0.054 0.058 0.06 0.044 0.112 0.054 0.044
0.6 0.188 0.206 0.23 0.206 0.318 0.226 0.2
1 0.47 0.494 0.518 0.428 0.572 0.51 0.432



Table 2d: Results for the First Difference Specification

Full Sample Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.048 0.072 0.068 0.064 0.064 0.064 0.062

0.1 0.07 0.096 0.1 0.09 0.094 0.084 0.094
0.6 0.476 0.53 0.524 0.5 0.52 0.514 0.522
1 0.882 0.916 0.904 0.898 0.908 0.918 0.918

0 0.9 10 0.044 0.094 0.04 0.044 0.044 0.042 0.048
0.1 0.058 0.108 0.06 0.068 0.07 0.064 0.068
0.6 0.478 0.59 0.554 0.538 0.564 0.558 0.564
1 0.866 0.928 0.944 0.914 0.928 0.94 0.928

0 0.9 15 0.088 0.166 0.062 0.042 0.046 0.056 0.042
0.1 0.084 0.19 0.068 0.064 0.076 0.07 0.078
0.6 0.47 0.642 0.582 0.54 0.556 0.572 0.554
1 0.846 0.914 0.926 0.9 0.92 0.922 0.92

0 0.9 20 0.084 0.208 0.062 0.04 0.044 0.062 0.044
0.1 0.096 0.234 0.056 0.064 0.052 0.056 0.06
0.6 0.476 0.654 0.572 0.534 0.562 0.584 0.562
1 0.83 0.928 0.948 0.922 0.94 0.942 0.938

3 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.052 0.068 0.074 0.064 0.096 0.064 0.062

0.1 0.074 0.092 0.096 0.09 0.124 0.084 0.094
0.6 0.48 0.526 0.522 0.5 0.584 0.514 0.522
1 0.886 0.918 0.898 0.898 0.944 0.918 0.918

0 0.9 10 0.034 0.052 0.038 0.044 0.158 0.042 0.048
0.1 0.044 0.062 0.054 0.068 0.178 0.064 0.068
0.6 0.504 0.562 0.546 0.538 0.74 0.554 0.564
1 0.906 0.924 0.938 0.914 0.974 0.94 0.928

0 0.9 15 0.056 0.07 0.054 0.042 0.196 0.054 0.042
0.1 0.06 0.072 0.076 0.064 0.226 0.072 0.078
0.6 0.524 0.57 0.566 0.54 0.782 0.57 0.554
1 0.886 0.9 0.914 0.9 0.974 0.916 0.92

0 0.9 20 0.032 0.042 0.058 0.04 0.216 0.056 0.044
0.1 0.042 0.058 0.052 0.064 0.244 0.058 0.06
0.6 0.514 0.558 0.572 0.534 0.812 0.578 0.562
1 0.918 0.932 0.95 0.922 0.99 0.95 0.938

2 Periods Estimated Covariance Known Covariance
GLS-SC GLS GLS-AR ROLS OLS GLS ROLS

gamma rho T
0 0.9 5 0.05 0.054 0.088 0.05 0.056 0.056 0.054

0.1 0.054 0.062 0.08 0.052 0.068 0.06 0.074
0.6 0.304 0.328 0.366 0.328 0.342 0.344 0.354
1 0.69 0.72 0.766 0.714 0.73 0.732 0.718

0 0.9 10 0.038 0.052 0.062 0.046 0.1 0.044 0.048
0.1 0.038 0.046 0.068 0.05 0.098 0.048 0.05
0.6 0.23 0.248 0.298 0.248 0.366 0.27 0.25
1 0.504 0.548 0.584 0.542 0.64 0.556 0.55

0 0.9 15 0.044 0.056 0.064 0.044 0.12 0.046 0.046
0.1 0.058 0.064 0.08 0.046 0.128 0.056 0.044
0.6 0.208 0.224 0.25 0.218 0.312 0.222 0.214
1 0.438 0.478 0.496 0.438 0.626 0.464 0.434

0 0.9 20 0.034 0.042 0.05 0.038 0.102 0.04 0.038
0.1 0.04 0.048 0.058 0.048 0.106 0.052 0.046
0.6 0.168 0.182 0.19 0.16 0.28 0.182 0.16
1 0.366 0.402 0.432 0.37 0.512 0.406 0.378



GLS-SC GLS-AR GLS-SC GLS-AR GLS-SC GLS-AR

gamma

0 0.056 0.222 0.048 0.21 0.048 0.196
0.1 0.054 0.272 0.052 0.21 0.044 0.23
0.6 0.372 0.718 0.404 0.686 0.396 0.706
1 0.798 0.952 0.81 0.936 0.812 0.944

0 0.056 0.22 0.044 0.206 0.048 0.23
0.1 0.054 0.268 0.056 0.222 0.048 0.248
0.6 0.372 0.716 0.286 0.436 0.238 0.468
1 0.798 0.95 0.62 0.696 0.48 0.708

GLS-SC is the feasible GLS estimator with the size correction of Section 3. GLS-AR is feasible GLS where the weight 
matrix is computed from a parametric AR-1 model and bias corrected as described in Section 4.
The sample size for the simulations in this table is T=11 and n=50

Level Specification

First Difference Specification

Table 3: Nonstationary Design with Empirical Variance Covariance Matrix

Full Sample 3 Periods 2 Periods


