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Chernozhukov et al. (2016) provide a
generic double/de-biased machine learning
(ML) approach for obtaining valid infer-
ential statements about focal parameters,
using Neyman-orthogonal scores and cross-
fitting, in settings where nuisance parame-
ters are estimated using ML methods. In
this note, we illustrate the application of
this method in the context of estimating av-
erage treatment effects (ATE) and average
treatment effects on the treated (ATTE) us-
ing observational data. Empirical illustra-
tions and code are available as supplemen-
tary material to this paper, and more gen-
eral discussion and references to the exist-
ing literature are available in Chernozhukov
et al. (2016).

I. Scores for Average Treatment
Effects

We consider estimation of ATE and
ATTE under the unconfoundedness as-
sumption of Rosenbaum and Rubin (1983).
We consider the case where treatment ef-
fects are fully heterogeneous and the treat-
ment variable, D, is binary, D ∈ {0, 1}. We
let Y denote the outcome variable of inter-
est and Z denote a set of control variables.

∗ Chernozhukov: Massachusetts Institute of Tech-
nology, 50 Memorial Drive, Cambridge, MA 02142
(email: vchern@mit.edu); Chetverikov: University of

California Los Angeles, 315 Portola Plaza, Los An-

geles, CA 90095 (email: chetverikov@econ.ucla.edu).
Demirer: Massachusetts Institute of Technology,

50 Memorial Drive, Cambridge, MA 02142 (email:
demirer@mit.edu); Duflo: Massachusetts Institute of
Technology, 50 Memorial Drive, Cambridge, MA 02142

(email: duflo@mit.edu); Hansen: University of Chicago,

5807 S. Woodlawn Ave., Chicago, IL 60637 (email:
chansen1@chicagobooth.edu); Newey: Massachusetts

Institute of Technology, 50 Memorial Drive, Cambridge,
MA 02142 (email: wnewey@mit.edu). This material
is based upon work supported by the National Science

Foundation under Grant No. 1558636.

We then model random vector (Y,D,Z) as

Y = g0(D,Z) + ζ, E[ζ | Z,D] = 0,(1)

D = m0(Z) + ν, E[ν | Z] = 0.(2)

Since D is not additively separable, this
model allows for very general heterogene-
ity in treatment effects. Common target
parameters θ0 in this model are the ATE,

θ0 = E[g0(1, Z)− g0(0, Z)],

and the ATTE,

θ0 = E[g0(1, Z)− g0(0, Z)|D = 1].

The confounding factors Z affect the
treatment variable D via the propensity
score, m0(Z) := E[D|Z], and the outcome
variable via the function g0(D,Z). Both
of these functions are unknown and poten-
tially complicated, and we consider estimat-
ing these functions via the use of ML meth-
ods.

We proceed to set up moment condi-
tions with scores that obey a type of or-
thogonality with respect to nuisance func-
tions. Specifically, we make use of scores
ψ(W, θ, η) that satisfy the identification
condition

Eψ(W, θ0, η0) = 0,(3)

and the Neyman orthogonality condition

∂ηEψ(W, θ0, η)
∣∣∣
η=η0

= 0(4)

whereW = (Y,D,Z), θ0 is the parameter of
interest, and η denotes nuisance functions
with population value η0.

Using moment conditions that satisfy (4)
to construct estimators and inference proce-
dures that are robust to small mistakes in
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nuisance parameters has a long history in
statistics, e.g. Neyman (1959). Using mo-
ment conditions that satisfy (4) is also cru-
cial to developing valid inference procedures
for θ0 after using ML methods to produce
estimators η̂ as discussed, e.g., in Cher-
nozhukov, Hansen and Spindler (2015). In
practice, estimation of θ0 will be based on
the empirical analog of (3) with η0 replaced
by η̂0, and the Neyman orthogonality con-
dition (4) ensures sufficient insensitivity to
this replacement that high-quality inference
for θ0 may be obtained. The second critical
ingredient, that enables the use of wide ar-
ray of modern ML estimators is data split-
ting, as discussed in the next section.

Neyman-orthogonal scores are readily
available for both the ATE and ATTE
– they turn out to be the doubly ro-
bust/efficient scores of Robins and Rot-
nitzky (1995) and Hahn (1998). For esti-
mating the ATE, we employ

(5)

ψ(W, θ, η) := g(1, Z)− g(0, Z)

+D(Y−g(1,Z))

m(Z)
− (1−D)(Y−g(0,Z))

1−m(Z)

−θ, with

with

η(Z) := (g(0, Z), g(1, Z),m(Z))′,

η0(Z) := (g0(0, Z), g0(1, Z),m0(Z))′,

where η(Z) is the nuisance parameter with
true value denoted by η0(Z) consisting of P -
square integrable functions, for P defined in
Assumption II.1, mapping the support of Z
to R×R×(ε, 1−ε) where ε > 0 is a constant.
For estimation of ATTE, we use the score

(6)
ψ(W, θ, η) := D(Y−g(0,Z))

m

−m(Z)(1−D)(Y−g(0,Z))

(1−m(Z))m
− θD

m
,

with

η(Z) := (g(0, Z), g(1, Z),m(Z),m)′,

η0(Z) := (g0(0, Z), g0(1, Z),m0(Z),E[D])′,

where again η(Z) is the nuisance parameter
with true value denoted by η0(Z) consist-
ing of three P -square integrable functions,
for P defined in Assumption II.1, mapping
the support of Z to R × R × (ε, 1 − ε) and

a constant m ∈ (ε, 1 − ε). The respec-
tive scores for ATE and ATTE obey the
identification condition (3) and the Ney-
man orthogonality property (4). Note that
all semi-parametrically efficient scores share
the orthogonality property (4). Moreover,
the use of efficient scores could be further
refined using the targeted maximum likeli-
hood approach of van der Laan and Rubin
(2006) in many contexts.

II. Algorithm and Result

We describe the estimator of θ0 using ran-
dom sample (Wi)

N
i=1. The algorithm makes

use of a form of sample splitting, which we
call cross-fitting. It builds on the ideas e.g.
in Angrist and Krueger (1995). The use
of sample-splitting is a crucial ingredient
to the approach that helps avoid overfit-
ting which can easily result from the ap-
plication of complex, flexible methods such
as boosted linear and tree models, random
forests, and various ensemble and hybrid
ML methods.

Algorithm: Estimation by K-fold
Cross-Fitting

Step 1. Let K be a fixed integer. Form
a K-fold random partition of {1, ..., N} by
dividing it into equal parts (Ik)

K
k=1 each of

size n := N/K, assuming that N is a mul-
tiple of K. For each partition Ik, let Ick
denote all observation indices that are not
included in partition Ik.

Step 2. Construct K estimators

θ̌0(Ik, I
c
k), k = 1, ...,K,

that employ the machine learning estima-
tors

η̂0(I
c
k) =

(
ĝ0(0, Z; Ick), ĝ0(1, Z; Ick),

m̂0(Z; Ick),
1

N − n
∑
i∈Ic

k

Di

)′
,

of the nuisance parameters

η0(Z) = (g0(0, Z), g0(1, Z),m0(Z),E[D])′,

and where each estimator θ̌0(Ik, I
c
k) is de-
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fined as the root θ of

1

n

∑
i∈Ik

ψ(W, θ, η̂0(I
c
k)) = 0,

for the score ψ defined in (5) for the ATE
and in (6) for the ATTE.

Step 3. Average the K estimators to
obtain the final estimator:

θ̃0 =
1

K

K∑
k=1

θ̌0(Ik, I
c
k).(7)

An approximate standard error for this es-
timator is σ̂/

√
N , where

σ̂2 =
1

N

N∑
i=1

ψ̂2
i ,

ψ̂i := ψ(Wi, θ̃0, η̂0(I
c
k(i))), and k(i) := {k ∈

{1, ...,K} : i ∈ Ik}. An approximate (1 −
α)× 100% confidence interval is

CIn := [θ̃0 ± Φ−1(1− α/2)σ̂/
√
N ].

We now state a formal result that pro-
vides the asymptotic properties of θ̃0. Let
(δn)∞n=1 and (∆n)∞n=1 be sequences of pos-
itive constants approaching 0. Let c, ε, C
and q > 4 be fixed positive constants, and
let K be a fixed integer.

ASSUMPTION II.1: Let P be the set of
probability distributions P for (Y,D,Z)
such that (i) equations (1)-(2) hold, with
D ∈ {0, 1}, (ii) the following conditions on
moments hold for all N and d ∈ {0, 1}:
‖g(d, Z)‖P,q ≤ C, ‖Y ‖P,q ≤ C, P (ε ≤
m0(Z) ≤ 1 − ε) = 1, and ‖ζ2‖P,2 ≥ c,
and (ii) the ML estimators of the nuisance
parameters based upon a random subset Ick
of {1, ..., N} of size N − n, obey the con-
dition for all N ≥ 2K and d ∈ {0, 1}:
‖ĝ0(d, Z; Ick) − g0(d, Z)‖P,2 · ‖m̂0(Z; Ick) −
m0(Z)‖P,2 ≤ δnn

−1/2, ‖ĝ0(d, Z; Ick) −
g0(d, Z)‖P,2 +‖m̂0(Z; Ick)−m0(Z)‖P,2 ≤ δn,
and P (ε ≤ m̂0(Z; Ick) ≤ 1 − ε) = 1, with
probability no less than 1−∆n.

The assumption on the rate of estimating
the nuisance parameters is a non-primitive
condition. These rates of convergence are

available for most often used ML methods
and are case-specific, so we do not restate
conditions that are needed to reach these
rates. The conditions are not the tightest
possible but are chosen for simplicity.

THEOREM II.1: (1) Suppose that the
ATE, θ0 = E[g0(1, Z) − g0(0, Z)], is the
target parameter and we use the estima-
tor θ̃0 and other notations defined above.
(2) Alternatively, suppose that the ATTE,
θ0 = E[g0(1, Z) − g0(0, Z) | D = 1], is the
target parameter and we use the estimator
θ̃0 and other notations above. Consider the
set P of data generating defined in Assump-
tion II.1. Then, uniformly in P ∈ P, the
estimator θ̃0 concentrates around θ0 with
the rate 1/

√
N and is approximately unbi-

ased and normally distributed:

σ−1
√
N(θ̃0 − θ0) N(0, 1),

σ2 = E[ψ2(W, θ0, η0(Z))],

and the result continues to hold if σ2 is re-
placed by σ̂2. Moreover, confidence regions
based upon θ̃0 have uniform asymptotic va-
lidity:

sup
P∈P
|P (θ0 ∈ CIn)− (1− α)| → 0.

The scores ψ are the efficient scores, so both
estimators are asymptotically efficient, in
the sense of reaching the semi-parametric
efficiency bound of Hahn (1998).

The proof, given in the online appendix,
relies on the application of Chebyshev in-
equality and the central limit theorem.

III. Accounting for Uncertainty Due to
Sample-Splitting

The method outlined in this note relies
on subsampling to form auxiliary samples
for estimating nuisance functions and main
samples for estimating the parameter of in-
terest. The specific sample partition has
no impact on estimation results asymptot-
ically but may be important in finite sam-
ples. Specifically, the dependence of the es-
timator on the particular split creates an
additional source of variation. Incorporat-
ing a measure of this additional source of
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variation into estimated standard errors of
parameters of interest may be important for
quantifying the true uncertainty of the pa-
rameter estimates.

Hence we suggest making a slight mod-
ification to the asymptotically valid esti-
mation procedure detailed in Section II.
Specifically, we propose repeating the main
estimation procedure S times, for a large
number S, repartitioning the data in each
replication s = 1, ..., S. Within each par-
tition, we then obtain an estimate of the
parameter of interest, θ̃s0. Rather than re-
port point estimates and interval estimates
based on a single replication, we may then
report estimates that incorporate informa-
tion from the distribution of the individ-
ual estimates obtained from the S different
data partitions.

For point estimation, two natural quanti-
ties that could be reported are the sample
average and the sample median of the es-
timates obtained across the S replications,
θ̃Mean
0 and θ̃Median

0 . Both of these reduce the
sensitivity of the estimate for θ0 to partic-
ular splits. θ̃Mean

0 could be strongly affected
by any extreme point estimates obtained
in the different random partitions of the
data, and θ̃Median

0 is obviously much more
robust. We note that asymptotically the
specific random partition is irrelevant, and
θ̃Mean
0 and θ̃Median

0 should be close to each
other.

To quantify and incorporate the variation
introduced by sample splitting, one might
also compute standard errors that add an
element to capture the spread of the esti-
mates obtained across the S different sets
of partitions. For θ̃Mean

0 , we propose adding
an element that captures the spread of the
estimated θ̃s0 around θ̃Mean

0 . Specifically, we
suggest

σ̂Mean =

√√√√ 1

S

S∑
s=1

(
σ̂2
s + (θ̃s0 −

1

S

S∑
j=1

θ̃j0)
2

)
,

where σ̂s is defined as in Section II. The sec-
ond term in this formula takes into account
the variation due to sample splitting which
is added to a usual estimate of sampling
uncertainty. Using this estimated standard

error obviously results in more conserva-
tive inference than relying on the σ̂s alone.
We adopt a similar formulation for θ̃Median

0 .
Specifically, we propose a median deviation
defined as

σ̂Median = median
{√

σ̂2
i + (θ̂i − θ̂Median)2

}S
i=1
.

This standard error is more robust to out-
liers than σ̂Mean.
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