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Abstract

We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral
hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial
regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods
based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statisti-
cally test these alternative dynamic models with financial/information constraints. Our methods can use both
cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate
the models using data on Thai households running small businesses from two separate samples. We find that
in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using
data on consumption, business assets, investment, and income. Family and other networks help consumption
smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism de-
sign financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best
combined business and consumption data. We perform numerous robustness checks in both the Thai data and
in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and
data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation
results is also featured.
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1 Introduction

We compute, estimate, and contrast the consumption and investment behavior of risk averse households running

small non-farm and farm businesses under alternative dynamic financial and information environments, including

exogenously incomplete markets settings (autarky, savings only, non-contingent debt subject to natural borrowing

limit) and endogenously constrained settings (moral hazard, limited commitment), both relative to full insurance.

We analyze in what circumstances these financial/information regimes can be distinguished in consumption and

income data, in investment and income data or in both, jointly. More generally, we propose and apply methods

for structural estimation of dynamic mechanism design models. We use the estimates to statistically test the

alternative models against each other with both actual data on Thai rural and also urban households and data

simulated from the models themselves. We conduct numerous robustness checks, including using alternative

model selection criteria and using data not used in the estimation in order to compare predictions at the estimated

parameters and to uncover data features that drive our results. We also provide an example of how our estimation

method and results could be used to evaluate policy counterfactuals within the model.

With few exceptions the existing literature maintains a dichotomy, also embedded in the national accounts:

households are consumers and suppliers of market inputs, whereas firms produce and hire labor and other factors.

This gives rise, on the one hand, to a large literature which studies household consumption smoothing. On the

other hand, the consumer-firm dichotomy gives rise to an equally large literature on investment in which, mostly,

firms are modeled as risk neutral maximizers of expected discounted profits or dividends to owners. Here we set

aside for the moment the issues of heterogeneity in technologies and firm growth and focus on a benchmark with

financial constraints, thinking of households as firms generating investment and consumption data, as they clearly

are in the data we analyze.

The literature that is closest to our paper, and complementary with what we are doing, features risk averse

households as firms but largelyassumesthat certain markets or contracts are missing.1 Our methods might indicate

how to build upon these papers, possibly with alternative assumptions on the financial underpinnings. Indeed, this

begs the question of how good an approximation are the various assumptions on the financial markets environment,

different across the different papers. That is, what would be a reasonable assumption for the financial regime if

that part too were taken to the data? Which models of financial constraints fit the data best and should be used in

future, possibly policy-informing, work and which are rejected and can be set aside? The latter, though seemingly

a more limited objective, is important to emphasize, as it can be useful to narrow down the set of alternatives that

remain on the table without falling into the trap that we must definitely pick one model.

Relative to most of the literature, the methods we develop and use in this paper offer several advantages.

First, we solve and estimate fully dynamic models of incomplete markets – this is computationally challenging

but captures the complete, within-period and cross-period, implications of financial constraints on consumption,

investment, and production. Second, our empirical methods can handle any number or type of financial regimes

with different frictions. We do not need to make specific functional form or other assumptions to nest those various

1For example, Cagetti and De Nardi (2006) follow Aiyagari (1994) in their study of inequality and assume that labor income is
stochastic and uninsurable, while Angeletos and Calvet (2006) and Covas (2006) in their work on buffer stock motives and macro savings
rates feature uninsured entrepreneurial risk. In the asset pricing vein, Heaton and Lucas (2000) model entrepreneurial investment as a
portfolio choice problem, assuming exogenously incomplete markets in the tradition of Geanakoplos and Polemarchakis (1986) or Zame
(1993).
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regimes – the Vuong model comparison test we use does not require this. Third, by using maximum likelihood,

as opposed to reduced-form techniques or estimation methods based on Euler equations, we are in principle able

to estimate a larger set of structural parameters than, for example, those that appear in investment or consump-

tion Euler equations and also a wider set of models. More generally, the MLE approach allows us to capture

more dimensions of the joint distribution of data variables (consumption, income, investment, capital), both in the

cross-section or over time, as opposed to only specific dimensions such as consumption-income comovement or

cash flow/investment correlations. Fourth, on the technical side, compared to alternative approaches based on first

order conditions, our linear programming solution technique allows us to deal in a straightforward yet extremely

general way with non-convexities and non-global optimization issues common in endogenously incomplete mar-

kets settings. We do not need to assume that the first order approach is valid or limit ourselves to situations where

it is, assume any single-crossing properties, or adopt simplifying adjacency constraints. Combining linear pro-

gramming with maximum likelihood estimation allows for a natural direct mapping between the model solutions,

already in probabilistic form, and likelihoods which may be unavailable using other solution or estimation meth-

ods. Our approach is also generally applicable to other dynamic discrete choice decision problems by first writing

them as linear programs and then mapping the solutions into likelihoods.

In this paper we focus on whether and in what circumstances it is possible to distinguish financial regimes,

depending on the data used. To that end we also perform tests in which we have full control, that is we know what

the financial regime really is by using simulated data from the model. Our paper is thus both a conceptual and

methodological contribution. We show how all the financial regimes can be formulated as linear programming

problems, often of large dimension, and how likelihood functions, naturally in the space of probabilities/lotteries,

can be estimated. We allow for measurement error, the need to estimate the underlying distribution of unobserved

state variables, and the use of data from transitions, before households reach steady state.

We apply our methods to a featured emerging market economy – Thailand – to make the point that what we

offer is a feasible, practical approach to real data when the researcher aims to provide insights on the source and

nature of financial constraints. We chose Thailand for two main reasons. First, our data source (the Townsend

Thai surveys) includes panel data on both consumption and investment and this is rare. We can thus see if the

combination of consumption and investment data really helps make a difference. Second, we also learn about

potential next steps in modeling financial regimes. We know in particular, from other work with these data, that

consumption smoothing is quite good, that is, it is sometimes difficult to reject full insurance, in the sense that the

coefficient on idiosyncratic income, if significant, is small (Chiappori et al., 2013). We also know that investment

is sensitive to income, especially for the poor but, on the other hand, this is to some extent overcome by family

networks (Samphantharak and Townsend, 2010). Finally, there is a seeming divergence between high rate-of-

return households, who seem constrained in scale, and low rate-of-return households, who seemingly should be

doing something else with their funds. In short, intermediation is imperfect but varies depending on the dimension

chosen.

While we keep these data features in mind, we remain ex-ante neutral in what we expect to find in terms

of the best-fitting theoretical model. Hence, we test the full range of regimes, from autarky to full information,

against the data. We are interested in how these same data look when viewed jointly though the lens of each

of the alternative financial regimes we model. We also want to be assured that our methods, which feature
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grid approximations, measurement error, estimation of unobserved distribution of utility promises and transition

dynamics, are as a practical matter applicable to actual data. This is our primary intent, to offer an operational

methodology for estimating and comparing across different dynamic models of financial regimes that can be taken

to data from various sources. We focus on the Thai application, first, but also use Monte Carlo simulations and a

variety of robustness checks, including with data or metrics not used in the estimation.

We find that by and large out methods work with the Thai data. In terms of the regime that fits the rural

data best, we echo previous work which finds that investment is not smooth and can be sensitive to cash flow

fluctuations and that capital stocks are very persistent. Indeed, we find that investment and income data alone are

most consistent with the saving only and borrowing and lending regimes, with statistical ties depending on the

specification, and this is true as well with the combined consumption and investment data. We also echo previous

work which finds that, with income and consumption data alone, full risk sharing is rejected, but not by much,

and indeed the moral hazard regime is consistent with these data though sometimes statistically tied with limited

commitment or savings only, depending on the specification. We find some evidence that family networks move

households more decisively toward less constrained regimes.

In the urban data, we find that the best-fitting financial/information regime is less constraining overall. There

is still persistence in the capital stock, though less than in the rural data so, with production data alone, the saving

only regime again fits best. But the consumption data is even smoother against income than in the rural sample

and the moral hazard and even full insurance regimes fit well, with fewer ties with the more constrained regimes.

Overall in the urban data, with combined production and consumption data, moral hazard provides the best fit,

unlike in the rural sample. The autarky regime is rejected in virtually all estimation runs with both the rural and

urban data.

We are also keen to distinguish across the financial/information regimes themselves, and not their auxiliary

assumptions. So in a major robustness check we establish that imposing a parametric production function with

estimated parameters does not drive our conclusions. Our primary specification uses unstructured histograms for

input/output data, as our computational methods allow arbitrary functional forms. We also perform a range of

additional runs with the Thai data that confirm the robustness of our baseline results — imposing risk neutrality,

fixing the size of measurement error across regimes, allowing for quadratic adjustment costs in investment, run-

ning on data purged from household or year fixed effects, different grid sizes, different distributional assumptions

on the unobservable state variable, and alternative assets and income definitions.

In another important robustness check, we perform Monte Carlo estimations with data simulated from the

model. In these runs we know what the financial regime really is, and what the true parameter values really

are, but we run our estimation the same way as in the Thai data, as if we did not have this information. We

find that our ability to distinguish between the regimes naturally depends on both the type of data used and

the amount of measurement error. With low measurement error, we are able to distinguish between almost all

regime pairs and recover the true regime. As expected, however, higher measurement error in the simulated data

reduces the power of the model comparison test – some counterfactual regimes cannot be distinguished from

the data-generating baseline and from each other. For example, using investment, assets and income data, we

cannot distinguish between the regimes (with the exception of autarky) when moral hazard generated the data.

Using joint data on consumption, investment, business assets, and income, however, does markedly improve
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the ability to distinguish across the regimes, including with high measurement error in the simulated data. We

also incorporate intertemporal data from the model, which we also find to significantly improve our ability to

distinguish the regimes relative to when using cross-sections of the same data variables. We also show that the

results with simulated data are robust to various modifications — different sizes of measurement error, different

grid and sample sizes, and using data-generating parameters identical to the ones estimated from the Thai data.

We also do runs allowing for heterogeneity in productivity, risk aversion and interest rates but then ignoring this

in the estimation so that the model is mis-specified. Our results remain robust.

Finally, we look back at some key features of our data and at how the alternative models do in fitting these

features and in predicting moments and time paths not used in the estimation. We display the persistence of

capital in the data and in the best-fitting financial/information regimes. This helps clarify why the savings-only

regime does best when there is substantial persistence (lack of adjustment) as in the rural, and to a less extent the

urban, data. We also display the rate of return on assets as a function of assets. Again, the more limited financial

regimes (saving only) do best in being consistent with the negative observed relationship in the rural data, i.e.,

low-asset households have relatively high rates of return and households with higher assets, low rates. The urban

data share some features with data simulated from a less constrained regime (moral hazard). We also simulate the

time paths of the best-fitting financial regime at the estimated parameters. The means of consumption, business

assets, and income fit the Thai data quite well. The standard deviations of these variables also fit, though there is

more heterogeneity in the actual than simulated data (removing extreme outliers helps). We also simulate the path

for savings in the model and compare, favorably, to financial net worth monthly data which was not utilized in the

ML estimation.

In a further robustness check on our likelihood approach and its auxiliary assumptions, a mean squared error

metric based on selected moments of the data picks out the savings regime as best fitting in the rural data, which

is consistent with our MLE results. The urban data show substantially more smoothing and the ad hoc moments

criterion picks out a less constrained regime. We also go beyond the MLE and Vuong tests by running GMM

tests based on Euler equations with our data. The Ligon (1998) GMM test using consumption data alone or with

business assets or income as instruments shows evidence in favor of either the savings/borrowing or moral hazard

regimes, depending on the exact sample or instruments used, in other words, mixed results as in our MLE using

consumption and income data alone. The Bond and Meghir (1994) investment sensitivity to cash flow GMM test

rejects the null of no financial constraints, as we do in the MLE, but their method is unable to distinguish across

the alternative constrained regimes.

Further comparisons to the literature

On the household side, our paper relates to a large literature which studies consumption smoothing.2 On the

firm side, there is equally large literature on investment.3 There are also papers attempting to explain stylized

facts on firm growth, with higher mean growth and variance in growth for small firms, e.g. Cooley and Quadrini

2There is voluminous work estimating the permanent income model, the full risk sharing model, buffer stock models (Zeldes, 1989;
Deaton and Laroque, 1996) and, lately, models with private information (Phelan 1994; Ligon, 1998) or limited commitment (Ligon,
Thomas and Worrall, 2002) among many others.

3For example, there is the adjustment costs approach of Abel and Blanchard (1983) and Bond and Meghir (1994) among many others.
In industrial organization, Hopenhayn (1992) and Ericson and Pakes (1995) model entry and exit of firms with Cobb-Douglas or CES
production technologies where investment augments capital with a lag and output produced from capital, labor and other factors is subject
to factor-neutral technology shocks.
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(2001), among others. Albuquerque and Hopenhayn (2004) and Clementi and Hopenhayn (2006) introduce either

private information or limited commitment but maintain risk neutrality.4

In terms of distinguishing across alternative financial constraints, here we set out to see how far we can get,

going a bit deeper than most existing literature. For example, the adjustment costs investment literature may

be picking up constraints implied by financing and not adjustment costs per se. The ‘pecking order’ investment

literature (Myers and Majuf, 1984) simply assumes that internally generated funds are least expensive, followed

by debt, and finally equity, discussing wedges and distortions. Berger and Udell (2002) also have a long discussion

in this spirit, on small vs. large firm finance. They point out that small firms seem to be informationally opaque yet

receive funds from family, friends, angels, or venture capitalists, leaving open the nature of the overall financial

regime. Bitler et al. (2005) argue likewise that agency considerations play important role. The empirical work

of Fazzari, Hubbard and Petersen (1988) picks up systematic distortions for small firms but, again, the nature of

the credit market imperfection is not modeled, leading to criticisms of their interpretation of cash flow sensitivity

tests (Kaplan and Zingales, 2000).5

In estimating both exogenously incomplete and endogenous information constrained regimes there are few

other similar efforts to which this paper relates. Ligon (1998) uses GMM based on regular vs. inverse Euler equa-

tions on Indian villages consumption data to distinguish between a moral hazard model and the permanent income

hypothesis assuming CRRA preferences. A similar approach is used in Kocherlakota and Pistaferri (2009) to test

between asset pricing implications of a private information model and a standard exogenously incomplete markets

model in repeated cross-sections of consumption data from the USA, UK and Italy. Both papers find evidence

in favor of the private information model. Meh and Quadrini (2006) compare numerically a bond economy to

an economy with unobserved diversion of capital while Attanasio and Pavoni (2011) estimate and compare the

extent of consumption smoothing in the permanent income model to that in a moral hazard model with hidden

savings (see also Karaivanov, 2012). Krueger and Perri (2011) use data on income, consumption and wealth from

Italy (1987-2008) and from the PSID (2004-2006) to compare and contrast the permanent income hypothesis vs.

a model of precautionary savings with borrowing constraints and conclude the former explains the dynamics of

their data better. Broer (2011) uses a simulated method of moments to estimate stationary joint distributions of

consumption, wealth and income in a limited commitment vs. a permanent-income model with US data and finds

evidence in favor of the permanent income model, including in a setting with production. Ai and Yang (2007)

study an environment with private information and limited commitment. Schmid (2008) is also an effort to esti-

mate a dynamic model of financial constraints but by using regressions on model data, not maximum likelihood

as here. Dubois et al. (2008) estimate semi-parametrically a dynamic model with limited commitment to explain

the patterns of income and consumption growth in Pakistani villages nesting complete markets and the case where

only informal agreements are available. Kinnan (2011) tests inverse Euler equations and other implications of

moral hazard, limited commitment, and unobserved output financial regimes.

4Some applied general equilibrium models feature both consumption and investment in the same context, e.g., Rossi-Hansberg and
Wright (2007), but there the complete markets hypothesis justifies within the model a separation of the decisions of households from the
decisions of firms. Alem and Townsend (2013) provide an explicit derivation of full risk sharing with equilibrium stochastic discount
factors, rationalizing the apparent risk neutrality of households as firms making investment decisions.

5Under the null of complete markets there should be no significant cash flow variable in investment decisions, but the criticism is that
when the null is rejected, one cannot infer the degree of financial markets imperfection from the magnitude of the cash flow coefficient.
One needs to explicitly model the financial regime in order to make an inference, which is what we test here.
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Our methods follow logically from Paulson, Townsend and Karaivanov (2006) where we model, estimate, and

test whether moral hazard or limited liability is the predominant financial obstacle explaining the observed positive

monotonic relationship between initial wealth and subsequent entry into business. Buera and Shin (2013) extend

this to endogenous savings decisions in a model with limited borrowing but do not test the micro underpinnings

of the assumed regime. Here, we abstract from occupational choice and focus much more on the dynamics as

well as include more financial regimes. We naturally analyze the advantages of using the combination of data

on consumption and the smoothing of income shocks with data on the smoothing of investment from cash flow

fluctuations, in effect filling the gap created by the dichotomy in the literature.

2 Theory

2.1 Environment

Consider an economy of infinitely-lived agents heterogeneous in their initial endowments (assets),k0 of a single

good that can be used for both consumption and investment. Agents are risk averse and have time-separable

preferences defined over consumption,c, and labor effort,z represented byU(c; z) whereU1 > 0; U2 < 0. They

discount future utility using discount factor� 2 (0; 1). We assume thatc andz belong to the finite discrete sets

(grids)C andZ respectively. The agents have access to a stochastic output technology,P (qjz; k) : Q�Z�K !
[0; 1] which gives the probability of obtaining output/income,q from effort level,z and capital level,k.6 The

setsQ andK are also finite and discrete – this could be a technological or computational assumption. Capital,

k depreciates at rate� 2 (0; 1). Depending on the intended application, the lowest capital level (k = 0) could

be interpreted as a ‘worker’ occupation (similar to Paulson et al., 2006) or as firm exit but we do not impose a

particular interpretation in this paper.

Agents can contract with a financial intermediary and enter into saving, debt, or insurance arrangements. We

characterize the optimal dynamic financial contracts between the agents and the intermediary in different financial

markets ‘regimes’ distinguished by alternative assumptions regarding information, enforcement/commitment and

credit access. In all financial regimes we study, capitalk and outputq are assumed observable and verifiable.

However, effort,z may be unobservable to third parties, resulting in a moral hazard problem.7

The financial intermediary is risk neutral and has access to an outside credit market with exogenously given

and constant over time opportunity cost of fundsR.8 The intermediary is assumed to be able to fully commit to

6We can incorporate heterogeneity in productivity/ability across agents by adding a scaling factor in the production function, as we do
in a robustness run in Section 6.2. Note also thatq, as defined, can be interpreted as income net of payments for any hired inputs other
thanz andk:

7In the working paper version (Karaivanov and Townsend, 2013) we also formulate, compute and perform several estimation runs
with a model of hidden output (q is unobservable) and a model of moral hazard and unobserved investment (the capital stockk and
effort z are unobservable resulting in a joint moral hazard and adverse selection problem). These regimes have heavier computational
requirements than the six featured here, which prevented us from treating them symmetrically in the empirical part. We did find the
exogenously incomplete borrowing and saving regimes dominating in the rural data. In the urban data, the hidden output regime fit best in
a specification with the parametric production function. Both findings are thus consistent with our main results – exogenously incomplete
markets in the rural data and mechanism design financial regimes in the urban data. A more complete summary of these results and the
associated mechanism design problems is also available as an online appendix to the current paper at www.sfu.ca/˜akaraiva.

8The assumption of risk neutrality is not essential since there are no aggregate shocks and we can think of the intermediary contracting
with a continuum of agents. We perform robustness runs varying the returnR, including taking different values at different dates (see
Section 6.1) and a run with simulated data varyingR in different asset quartiles in the population (see Section 6.2).
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the ex-ante (constrained-) optimal contract with agent(s) at any initial state while we consider the possibility of

limited commitment by the agents.

Using the linear programming approach of Prescott and Townsend (1984); Phelan and Townsend (1991)

and Paulson et al. (2006), we model financial contracts as probability distributions (lotteries) over assigned or

implemented allocations of consumption, output, effort, and investment (see below for details). There are two

possible interpretations. First, one can think of the intermediary as a principal contracting with a single agent/firm

at a time, in which case financial contracts specify mixed strategies over allocations. Alternatively, one can think

of the principal contracting with a continuum of agents, so that the optimal contract specifies the fraction of agents

of given type or at given state that receive a particular deterministic allocation. It is further assumed that there are

no technological links between the agents, the agents cannot collude, and there are no aggregate shocks.9

2.2 Financial and information regimes

We write down the dynamic linear programming problems determining the (constrained) optimal contract in many

alternative financial and information regimes which can be classified into two groups. The first group are regimes

with exogenously incomplete markets:autarky (A), saving only (S), andborrowing and lending (B). To save space

we often use the abbreviated names supplied in the brackets. In these regimes the feasible financial contracts take

a specific, exogenously given form (no access to financial markets, a deposit/storage contract, or a non-contingent

debt contract, respectively).

In the second group of financial regimes we study, optimal contracts are endogenously determined as solutions

to dynamic mechanism-design problems subject to information and incentive constraints. In the main part of this

paper we look at two such endogenously incomplete markets regimes –moral hazard (MH),in which agents’

effort is unobserved but capital and investment are observed, andlimited commitment (LC)in which there are no

information frictions but agents can renege on the contract after observing the output realization.10 All incomplete-

markets regimes are compared thefull information (FI)benchmark (the ‘complete markets’ or ‘first best’ regime).

In Section 5.3 we also consider versions of all regimes in which capital changes are subject to quadratic adjustment

costs.

2.2.1 Exogenously incomplete markets

Autarky

We say that agents are in (financial) ‘autarky’ if they have no access to financial intermediation – neither

borrowing nor saving. They can however choose how much output to invest in capital to be used in production

vs. how much to consume. The timeline is as follows. The agent starts the current period with business assets

(capital)k 2 K which he puts into production. At this time he also supplies his effortz 2 Z: At the end of the

period outputq 2 Q is realized, the agent decides on the next period capital levelk0 2 K (we allow downward or

9While conceptually we could allow for aggregate shocks by introducing another state variable in our dynamic linear programs and
still be able to solve them using our method, this would increase computational time beyond what is currently feasible at the estimation
stage. We perform robustness estimation runs with data with removed year fixed effects to allow for possible common shocks and find
almost identical results to the baseline results (see Section 6.1).

10Again, see footnote 7. The proofs that the optimal contracting problems can be written in recursive form and that the revelation
principle applies follow from Phelan and Townsend (1991) and Doepke and Townsend (2006) and hence are omitted.
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upward capital adjustments), and consumesc � (1 � �)k + q � k0. Clearly,k is the single state variable in the

recursive formulation of the agent’s problem which is relatively simple and can be solved by standard dynamic

programming techniques. However, to be consistent with the solution method that we use for the mechanism-

design financial regimes where non-linear techniques may be inapplicable due to non-convexities introduced by

the incentive and truth-telling constraints (more on this below), we formulate the agent’s problem in autarky (and

all others) as a dynamic linear programming problem in the joint probabilities (lotteries) over all possible choice

variables allocations(q; z; k0) 2 Q� Z �K given statek,

v(k) = max
�(q;z;k0jk)

X
q;z;k0

�(q; z; k0jk)[U((1� �)k + q � k0; z) + �v(k0)] (1)

The maximization of the agent’s value function,v(k) in (1) is subject to a set of constraints on the choice variables,

�.11 First,8k 2 K the joint probabilities�(q; z; k0jk) have to be consistent with the technologically-determined

probability distribution of output,P (qjz; k):X
k0

�(�q; �z; k0jk) = P (�qj�z; k)
X
q;k0

�(q; �z; k0jk) for all (�q; �z) 2 Q� Z (2)

Second, given that the�(:)’s are probabilities, they must satisfy�(q; z; k0jk) � 0 (non-negativity)8(q; z; k0) 2
Q� Z �K, and ‘adding-up’, X

q;z;k0

�(q; z; k0jk) = 1 (3)

The policy variables�(q; z; k0jk) that solve the above maximization problem determine the agent’s optimal effort

and output-contingent investment in autarky for eachk.

Saving only / Borrowing

In this setting we assume that the agent is able to either only save, i.e., accumulate and run down a buffer

stock, in what we call thesaving only (S)regime; or borrow and save through a competitive financial intermediary

– which we call theborrowing (B) regime. The agent thus can save or borrow in a risk-free asset to smooth

his consumption or investment in Bewley-Aiyagari manner, in addition to what he could do via production and

capital alone under autarky. Specifically, if the agent borrows (saves) an amountb, then next period he has to

repay (collect)Rb, independent of the state of the world. Involuntary default is ruled out by assuming that the

principal refuses to lend to a borrower who is at risk of not being able to repay in any state (computationally, we

assign a high utility penalty in such states). By shutting down all contingencies in debt contracts we aim for better

differentiation from the mechanism design regimes.

Debt/savingsb is assumed to take values on the finite gridB. By convention, a negative value ofb represents

savings, i.e., in the S regime the upper bound of the gridB is zero, while in the B regime the upper bound is

positive. The lower bound of the grid forb in both cases is a finite negative number. The autarky regime can

be subsumed by settingB = f0g. This financial regime is essentially a version of the standard Bewley model

11In (1) and later on in the paperK under the summation sign refers to summing overk0 and notk and similarly forw0 and the setW
below.
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with borrowing constraints defined by the gridB and an endogenous income process defined by the production

functionP (qjk; z).
The timeline is as follows: the agent starts the current period with capitalk and savings/debtb and uses his

capital in production together with effortz: At the end of the period, outputq is realized, the agent repays/receives

Rb, and borrows or savesb0 2 B: He also puts aside (invests in) next period’s capital,k0 and consumesc �
(1� �)k + q + b0 �Rb� k0: The two ‘assets’k andb are assumed freely convertible into one another.

The problem of an agent with current capital stockk and debt/savings levelb in the S or B regime can be

written recursively as:

v(k; b) = max
�(q;z;k0;b0jk;b)

X
q;z;k0;b0

�(q; z; k0; b0jk; b)[U((1� �)k + q + b0 �Rb� k0; z) + �v(k0; b0)] (4)

subject to the technological consistency and adding-up constraints analogous to (2) and (3), and subject to

�(q; z; k0; b0jk; b) � 0 for all (q; z; k0; b0) 2 Q� Z �K �B:

2.2.2 Mechanism Design Regimes

Full information

With full information (FI) the principal fully observes and can contract upon agent’s effort and investment –

there are no private information or other frictions. We write the corresponding dynamic principal-agent problem

as an extension of Phelan and Townsend (1991) with capital accumulation. As is standard in such settings (e.g.,

see Spear and Srivastava, 1987), to obtain a recursive formulation we use an additional state variable –promised

utility, w which belongs to the discrete set,W . The optimal full-information contract for an agent with current

promised utilityw and capitalk consists of the effort and capital levelsz; k0 2 Z � K, next period’s promised

utility w0 2 W , and transfers� belonging to the discrete setT . A positive value of� denotes a transfer from the

principal to the agent. The timing of events is the same as in Section 2.2.1, with the addition that transfers occur

after output is observed.

Following Phelan and Townsend (1991), the set of promised utilitiesW has a lower bound,wmin which

corresponds to assigning forever the lowest possible consumption,cmin (obtained from the lowest� 2 T and the

highestk0 2 K) and the highest possible effort,zmax 2 Z. The set’s upper bound,wmax in turn corresponds to

promising the highest possible consumption,cmax and the lowest possible effort forever:

wFImin =
U(cmin;zmax)

1�� andwFImax =
U(cmax;zmin)

1�� (5)

The principal’s value function,V (k;w) when contracting with an agent at state(k;w) maximizes expected

output net of transfers plus the discounted value of future outputs less transfers. We write the mechanism design

problem solved by the optimal contract as a linear program in the joint probabilities,�(� ; q; z; k0; w0jk;w) over

all possible allocations(� ; q; z; k0; w0):

V (k;w) = max
f�(�;q;z;k0;w0jk;w)g

X
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w)[q � � + (1=R)V (k0; w0)] (6)
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The maximization in (6) is subject to the ‘technological consistency’ and ‘adding-up’ constraints:X
�;k0;w0

�(� ; �q; �z; k0; w0jk;w) = P (�qj�z; k)
X

�;q;k0;w0

�(� ; q; �z; k0; w0jk;w) for all (�q; �z) 2 Q� Z; (7)

X
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w) = 1, (8)

as well as non-negativity:�(� ; q; z; k0; w0jk;w) � 0 for all (� ; q; z; k0; w0) 2 T �Q� Z �K �W .

The optimal FI contract must also satisfy an additional,promise keepingconstraint which reflects the princi-

pal’s commitment ability and ensures that the agent’s present-value expected utility equals his promised utility,

w: X
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w)[U(� + (1� �)k � k0; z) + �w0] = w (9)

By varying the initial promisew we can trace the whole Pareto frontier for the principal and the agent. The

optimal FI contract is the probabilities��(� ; q; z; k0; w0jk;w) that maximize (6) subject to (7), (8) and (9).

The full information contract implies full insurance, so consumption is smoothed completely against output,q

(conditioned on effortz if utility is non-separable). It also implies that expected marginal products of capital ought

to be equated to the outside interest rate implicit inR, adjusting for disutility of labor effort which the planner

would take that into account in determining how much capitalk to assign to a project. The intermediary/bank

(planner) has access to outside borrowing and lending at the rateR, but internally, within its set of customers it

can in effect have them ‘borrow’ and ‘save’ among each other, i.e., take some output away from one agent who

might otherwise have put money into his project and give that to another agent with high marginal product. A lot

of this nets out so only the residual is financed with (or lent to) the outside market. In contrast, the B/S regime

shuts down such within-group transfers and trades and instead each agent is dealing with the market directly.

Moral hazard

In the moral hazard (MH) regime the principal can still observe and control the agent’s capital and investment

(k andk0), but he can no longer observe or verify the agent’s effort,z. This results in a moral hazard problem. The

statek here can be interpreted as endogenous collateral. The timing is the same as in the FI regime. However, the

optimal MH contract�(� ; q; z; k0; w0jk;w) must satisfy an incentive-compatibility constraint (ICC), in addition

to (7)-(9).12 The ICC states that, given the agent’s state(k;w) and recommended effort level�z; capitalk0; and

transfer� ; the agent must not be able to achieve higher expected utility by deviating to any alternative effort level

ẑ. That is,8(�z; ẑ) 2 Z � Z we must have,X
�;q;k0;w0

�(� ; q; �z; k0; w0jk;w)[U(� + (1� �)k � k0; �z) + �w0] �

�
X

�;q;k0;w0

�(� ; q; �z; k0; w0jk;w)P (qjẑ; k)
P (qj�z; k) [U(� + (1� �)k � k

0; ẑ) + �w0] (10)

12For more details on the ICC derivation in the linear programming framework, see Prescott and Townsend (1984). The key term is the
‘likelihood ratio’, P (qjẑ;k)

P (qj�z;k) which reflects the fact that by deviating the agent changes the probability distribution of output.
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Apart from the additional ICC constraint (10), the MH regime differs from the FI regime in the set of feasible

promised utilities,W . In particular, the lowest possible promise under moral hazard is no longer the valuewFImin
from (5). Indeed, if the agent is assigned minimum consumption forever, he would not supply effort above the

minimum possible. Thus, the feasible range of promised utilities,W for the MH regime is bounded by:

wMH
min =

U(cmin; zmin)
1�� andwMH

max =
U(cmax; zmin)

1�� (11)

The principal cannot promise a slightly higher consumption in exchange for much higher effort such that agent’s

utility falls belowwMH
min since this is not incentive compatible. If the agent does not follow the principal’s recom-

mendations but deviates tozmin the worst punishment he can receive iscmin forever.

The constrained-optimal contract in the moral hazard regime,�MH(� ; q; z; k0; w0jk;w) solves the linear pro-

gram defined by (6)–(10). The contract features partial insurance and intertemporal tie-ins, i.e., it is not a repetition

of the optimal one-period contract (Townsend, 1982).

Limited commitment

The third setting with endogenously incomplete financial markets we study assumes away private information

but focuses on another friction often discussed in the consumption smoothing and investment literatures (e.g.,

Thomas and Worrall, 1994; Ligon et al., 2000 among others) –limited commitment(LC). As in those papers,

by ‘limited commitment’ we mean that the agent may potentially renege on the contract after observing his

output realization knowing the transfer� he is supposed to give to others through the intermediary. Another

possible interpretation of this, particularly relevant for developing economies, is a contract enforcement problem.

The maximum penalty for a reneging agent is permanent exclusion from future credit/risk-sharing – i.e., our

assumption is the agent goes to autarky forever.

Using the same approach as with the other financial regimes, we write the optimal contracting problem under

limited commitment as a recursive linear programming problem. The state variables are capital,k 2 K and

promised utility,w 2W . In this model regime the set (here, a closed interval onR) of feasible promised utilities,

W is an endogenous object to be iterated over during the dynamic program solution (Abreu, Pearce and Stacchetti,

1990). We initialize the lower bound ofW , wLCmin as equal to the autarky value atkmin (see Section 2.2.1) and set

the initial upper bound towLCmax = w
FI
max. A similar solution approach, including allowing for randomization over

allocations, is used in Ligon et al. (2000).

Given the agent’s current state(k;w) the problem of the intermediary is

V (k;w) = max
�(�;q;z;k0;w0jk;w)

X
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w)[q � � + (1=R)V (k0; w0)]

subject to the promise-keeping constraintX
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w)[U(� + (1� �)k � k0; z) + �w0] = w,

subject to the limited-commitment constraints which ensure that reneging does not occur in equilibrium, respect-
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ing our timing that effortz is decided before outputq is realized,13

X
�;k0;w0

�(�;�q;�z;k0;w0jk;w)P
~�;~k0; ~w0 �(~�;�q;�z;

~k0; ~w0jk;w)

�
U(� + (1� �)k � k0; �z) + �w0

�
� 
(k; �q; �z) for all (�q; �z) 2 Q� Z (12)

and subject to non-negativity�(� ; q; z; k0; w0jk;w) � 0, technological consistency and adding-up,X
�;k0;w0

�(� ; �q; �z; k0; w0jk;w) = P (�qj�z; k)
X

�;q;k0;w0

�(� ; q; �z; k0; w0jk;w) for all (�q; �z) 2 Q� Z;

X
�;q;z;k0;w0

�(� ; q; z; k0; w0jk;w) = 1,

In constraint (12),
(k; q; z) denotes the present utility value of the agent going to autarky forever with his output

at handq and capitalk, defined as:


(k; q; z) � max
k02K

U(q + (1� �)k � k0; z) + �v(k0)

wherev(:) is the autarky regime value function defined in Section 2.2.1.

3 Computation

3.1 Solution Methods

We solve the dynamic programs for all financial regimes numerically. Specifically, we use the linear programming

(LP) methods developed by Prescott and Townsend (1984) and applied in Phelan and Townsend (1991) and Paul-

son et al. (2006) where, as shown in the previous section, the dynamic problems are written in terms of probability

distributions (‘lotteries’). An alternative to the LP method in the literature is the ‘first order approach’ (Rogerson,

1985) whereby the incentive constraints are replaced by their first order conditions.14 The public finance litera-

ture in the tradition of Mirrlees has adopted these latter methods to provide elegant characterizations of solutions

to tax and insurance problems, or used ex-post verification to show that simplified, less constrained problems

can be solved without loss of generality (Abraham and Pavoni, 2008; Farhi and Werning, 2012; Golosov et al.,

2006; Golosov and Tsyvinski, 2007; Ai and Yang, 2007). A problem with that approach arises from possible

non-convexities induced by the incentive or commitment constraints.15 Here, by way of contrast we operate in

extremely general environments, following Fernandes and Phelan (2000) and Doepke and Townsend (2006). Our

linear programming approach can be applied foranypreference and technology specifications since, by construc-

tion, it convexifies the problem by allowing any possible randomization (lotteries) over the solution variables.

The only potential downside is that the LP method may suffer from a ‘curse of dimensionality’ due to its use of

13The terms �(�;�q;�z;k0;w0jk;w)P
~�;~k0; ~w0 �(~�;�q;�z;

~k0; ~w0jk;w) correspond to the respective probabilitiesconditional on�q; �z having been realized.
14The first order approach requires imposing monotonicity and/or convexity assumptions on the technology (Rogerson 1985; Jewitt,

1988) or, alternatively, as in Abraham and Pavoni (2008), employing a numerical verification procedure to check its validity for the
particular problem at hand.

15We found such non-convexities in some of our solutions for the mechanism design regimes and hence we cannot use the first order
approach. See also Kocherlakota (2004).
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discrete grids for all variables. However, as shown above, by judicious formulation of the linear programs, this

deficiency can be substantially reduced.

To speed up computation, we solve the dynamic programs for each regime using policy function iteration

(e.g., see Judd, 1998). That is, we start with an initial guess for the value function, obtain the optimal policy

function and compute the new value function that would occur if the computed policy function were used forever.

We iterate on this procedure until convergence. At each iteration step, that is for each interim value function

iterate, we solve a linear program in the policy variables� for each possible value of the state variables.16 In the

limited commitment regime, LC (see Section 2), the promised utilities set is endogenously determined and has to

be iterated and solved for together with the value function during the solution process, due to the commitment or

truth-telling constraints, which makes the LC regime computationally harder than the MH or FI regimes.

3.2 Functional Forms and Grids

Below are the functional forms we adopt in the empirical analysis. They are chosen and demonstrated below to be

flexible enough to generate significant and statistically distinguishable differences across the financial regimes. As

argued earlier, we can handle in principle any preferences and technology, including with non-convexities but, of

course, in practice we are limited by computational concerns (estimation time sharply increases with the number

of estimated parameters). We also verify robustness by using different parameterizations and model specifications

(see Section 6).

Agent preferences are of the CES form:17

U(c; z) =
c1��

1� � � z
�

The production function,P (qjz; k) : Z �K ! Q represents the probability of obtaining output level,q 2 Q �
fq1; q2; ::q#Qg; from effort z 2 Z and capitalk 2 K. In our baseline runs with Thai data we fitP (qjz; k) non-

parametrically using a histogram function from a subset of households in the rural sample for which we have labor

time data.18 In robustness runs (with both the rural and urban data) we also use a parametric form forP (qjz; k)
with parameters we estimate which encompasses production technologies ranging from perfect substitutes to

Cobb-Douglas to Leontief forms (see Section 6.1 below for details).

To get an idea of the computational complexity of the dynamic contracting problems we solve, Table 1 shows

the number of variables, constraints, and linear programs that need to be solved at each iteration for each regime

for the grids we use in the empirical implementation. The number of linear programs is closely related to the grid

size of the state variables while the total number of variables and constraints depends on the product of all grid

dimensions. The biggest computational difficulties arise from increasing#K or#Z as this causes an exponential

16The coefficient matrices of the objective function and the constraints are created in Matlab while all linear programs are solved using
the commercial LP solver CPLEX version 8.1. The computations were performed on a dual-core, 2.2 Ghz, 2GB RAM machine.

17Our linear programming solution methodology does not require separable preferences. However, assuming separability is standard
in the dynamic contracts literature so we adopt it for comparison purposes. We perform a robustness run with a more general preference
form with an additional parameter in Section 6.1.

18Specifically, we map output,q, assets,k and time worked,z data onto the model grids and setP (qjz; k) equal to the fraction of
observations in each(q; k; z) grid cell. For the baseline runs with urban data, for data availability reasons we used the same data onz but
the actual urban sample values forq andk:
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increase in the number of variables and/or constraints. This is why we keep these dimensions relatively low,

whereas using larger#T (or, equivalently#C) is relatively ‘cheap’ computationally.

The grids that we use in the estimation runs reflect the relative magnitudes and ranges of the variables in the

Thai data or simulated data. In our baseline estimation runs we use a five-point capital gridK with grid points

corresponding to the 10th, 30th, 50th, 70th and 90th percentiles in the data. The same applies for the output grid

Q. The baseline grid for promised utility,W consists of five uniformly-spaced points over the respective bounds

for the MH, FI or LC regimes. Table 2 displays the grids we use in the estimation runs with Thai rural data.

Further specific details on how all grids are determined are given in Section 5.2. We can use (and do robustness

runs with) finer grids but the associated computational time cost is extremely high at the estimation stage because

of the need to compute the linear programs and iterate at each parameter vector during the estimation. This is why

we keep dimensions relatively low at present.

4 Empirical Method

In this section we describe our estimation strategy. We estimate via maximum likelihood each of the alternative

dynamic models of financial constraints developed in Section 2. Our basic empirical method is as follows. We

write down a likelihood function that measures the goodness-of-fit between the data and each of the alternative

model regimes. We then use the maximized likelihood value for each model (at the MLE estimates for the

parameters) and perform a formal statistical test (Vuong, 1989) about whether we can statistically distinguish

between each pair of models relative to the data. We thus approach the data as if agnostic about which theoretical

model fits them best and let the data themselves determine this. The results of the Vuong test, a sort of ‘horse race’

among competing models, inform us which theory(ies) fits the data best and also which theories can be rejected

in view of the observed data.

This is a structural estimation and model comparison paper, and so naturally this poses the question of dis-

tinguishing between testing or rejecting the imposed model structure (functional and parametric forms) versus

testing the actual relationships between the features we are interested in (the financial and information regimes).

In all structural MLE runs these two dimensions are tested jointly by construction. We try to deal with this issue in

several ways. First, in the robustness Section 6 we explore some alternative functional forms or parameterizations

and perform the empirical analysis for different data samples and variable definitions. Runs with data simulated

from the model are also performed to test the validity of our estimation method. Second, in section 7 we sup-

plement the maximum likelihood and Vuong test results with additional graphs, tables and alternative criteria of

fit to better illustrate and provide further supporting evidence for the robustness of the main results. Finally, we

use flexible and standard functional forms for preferences and the unobservable states distribution which are held

constant across the alternative regimes, that is, any differences in likelihood are due to the nature of financial

constraints imposed by the model, not due to differences in functional forms.

The financial regimes we study have implications for both the transitional dynamics and long-run distributions

of variables such as consumption, assets, investment, etc. Given our application to Thailand – an emerging, rapidly

developing economy, we take the view that the actual data is more likely to correspond to a transition than to a
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steady state.19 Thus, estimating initial conditions (captured by the initial state variables distribution) is important

for us, as well as fitting the subsequent trajectories using intertemporal data. In addition, our simulations show

slow dynamics for the model variables in the mechanism design regimes and, theoretically, some regimes can

theoretically have degenerate long-run distributions (e.g., ‘immiseration’ in the moral hazard model). These are

further reasons to focus on transitions instead of steady states in the estimation. We explain the details below.

4.1 Maximum likelihood estimation

Suppose we have panel datafx̂jtgn; T
j=1;t=1 wherej = 1; :::n denotes sample units andt denotes time (in our

application sample units are households observed over seven years). The data are assumed i.i.d. across households,

j. In this paper we use various subsets of data collected from rural and urban Thai households running small

businesses on their productive assets, consumption and income,fk̂jt; ĉjt; q̂jtg wheret = 0; :::; 6 correspond to the

years 1999-2005. We also construct investment data as{̂jt � k̂jt+1 � (1� �)k̂jt for t = 0; :::; 5. See Section 5.1

for more details.

For each householdj, call ŷj the vector of variables used in the MLE. In the various runs we do this vector

can consist of different cross-sectional variables (e.g.,t = 0 consumption and income; that iŝyj = (ĉj0; q̂j0) or

t = 6 consumption, income, investment and capital; that isŷj = (ĉj6; q̂j6; {̂j6; k̂j6)) or can consist of variables

from different time periods (e.g., consumption and income att = 0 andt = 1; that isŷj = (ĉj0; q̂j0; ĉj1; q̂j1)).

The dataŷ may contain measurement error. Assume the measurement error is additive and distributed

N(0; (
me�(x))
2) where�(x) denotes the range of the gridX for variablex, i.e.,�(x) � xmax � xmin where

x is any of the variables used in the estimation (e.g., consumption). The reasoning is that for computational time

reasons we want to be as parsimonious with parameters as possible in the likelihood routine while still allowing

the measurement error variance to be commensurate with the different variables’ ranges. In principle, more com-

plex versions of measurement error can be introduced at the cost of computing time. The parameter
me will be

estimated in the MLE.

Call s1 the vector of observable state variables ands2 the vector of unobservable state variables. We have

s1 = k for all models whiles2 = w or s2 = b or s2 absent, depending on the financial regime. In the estimation

runs that follow there are two cases depending on whether or not the set of variables,y used in the estimation

includess10 – the initial values of the observed state. Cally1 � yns10, i.e., all variables iny which are nots10. For

example, in the runs withy = (c0; q0) data in Sections 5 and 6 below, we havey = y1 sincek0 = s10 is not among

the variablesy, while in the runs withy = (k0; i0; q0) data we havey 6= y1 sincek0 = s10 is among the variables

y used in the estimation (see below for more discussion on this).

1. Model solutions and joint probabilities

For each possible values of the state variables,s1 ands2 over the gridsS1 andS2 in a given model regime

(e.g.,k;w – the capital stock and promised utility for the MH, FI or LC models) and given structural parameters�s

in the preferences and technology functions, the model solution obtained from the respective linear program (see

Section 2) is a discrete joint probability distribution,�(:js1; s2). For example, the MH model solution consists of

the joint probabilities�(� ; q; z; k0; w0jk;w). Using the LP solution�(:js1; s2), we can easily obtain, essentially

19We do a robustness estimation run in Section 6.2 with simulated data drawn after running the model a large number of periods,
approximating a steady state.
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by summing over the different variables and probabilities (see Appendix A for more details), the theoretical joint

probability distribution in modelm over any set of variablesy1 used in the MLE – for instance,y1 could bet = 0

consumption and income(c0; q0). Call this probability distributiongm(y1js1; s2;�s).
2. Initialization of observable and unobservable state variables

Let h(s10; s
2
0;�

d) denote the initial discrete joint distribution of the state variables over their corresponding

grids, the parameters of which,�d will be estimated in the MLE. To initialize the observed state variables1

(capitalk in all models) we take the actual datafk̂jgnj=1 for the initial period used in the estimation and discretize

it over the gridK via histogram function. Call the resulting discrete probability distributionh(s10) – the marginal

distribution ofs10.
20 The initial values of the unobservable states20 (b orw, depending on the regime) are treated as

a source of unobserved heterogeneity. Their distribution and possible dependence ons10 are parametrized by�d.

In our baseline estimation runs with the Thai data in Section 5 we assume that the initial distributions of the state

variabless1 ands2 are independent.21 We relax this assumption in robustness runs (see Section 6.1 and Table

9), where we allow the initial unobserved states20 (e.g., initial promised utility) to be correlated with the initial

distribution ofs10 (initial assets) via an additional estimated parameter. Note that we do not assume that the states

s1 ands2 are independent beyond the initial period – they evolve endogenously with the model dynamics.

3. The likelihood

To form the likelihood of modelm with observations from variablesy (e.g., consumption and income), de-

note byhm(y1; s10js20;�s) the joint density of all observables conditional on all unobservables. Then, ‘integrate’

over the initial distribution of the unobservable state, i.e., form
P
s20

hm(y1; s10js20;�s)h(s20;�d) whereh(s20;�
d) is

the marginal distribution ofs20. In our baseline specification with independent initial statess10 ands20, we have

h(s20;�
d) = 
(s20; �

d) and the summation overs20 is done using a histogram function over the gridS2 (e.g.,W in

the MH model). Naturally, since the only state in autarky (k) is observable, this step is not performed when we

estimate the A model. We have

P
s20

hm(y1; s10js20;�s)h(s20;�d) =
P
s20

gm(y1js10; s20;�s)h(s10js20)h(s20;�d) = (13)

=
P
s20

gm(y1js10; s20;�s)h(s10; s20;�d) � fm(y1; s10;�s; �d)

Above, fm(y1; s10;�
s; �d) is the joint distribution ofy1 and s10 in modelm given parameters�s; �d. For in-

stance, this could be the theoretical joint distribution of c,q,i, and k in the MH model for initial state distribution

h(s10; s
2
0;�

d) over the gridK �W . In the runs in whichs10 is not among the variablesy used in the MLE (e.g.,

the runs with c,q data), we further ‘integrate out’ the initial distribution of the observable state to obtain the joint

20In constructing the discrete initial distributionh(s10) (or h(s10; s
2
0) in general) we allow for the possibility that thêk data contain

measurement error, with the same additive Normal specification parametrized by
me assumed above. We use essentially the method
described in (15) below to compute the probability mass at each grid point. This step is done upfront since we need the discretized
distributionh(s10; s

2
0) to obtain using the LP solution the joint distribution of the variablesy1 used in the MLE (seefm andFm below).

21Specifically, in these runs we assume that the unobserved statew in the MH, FI, LC models is distributed
(s20; �
d) = N(�w; 


2
w)

and the unobserved stateb in the B and S models is distributed
(s20; �
d) = N(�b; 


2
b). Thus, in the independence case we have

h(s10; s
2
0;�

d) = h(s10)
(s
2
0; �

d). Assuming Normality of the initialb orw distributions is not essential for our method and more general
distributional assumptions can be incorporated at the computational cost of additional estimated parameters. We perform a robustness run
with a Gaussian mixture distribution in Section 6.1.
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distribution in modelm of the variablesy,

fm(y;�s; �d) =
P
s10

P
s20

gm(y1js10; s20;�s)h(s10; s20;�d) (14)

We also allow for measurement error in the variables iny1. Let� (:j�; �) denote the pdf ofN
�
�; �2

�
. Given

the assumed measurement error distribution, the likelihood of observing dataŷ1j (for instancêcj ; q̂j), relative to

any grid pointy1r 2 Y 1, for anyr = 1; :::;#Y 1 is:

LY
l=1

�
�
ŷ1;lj jy

1;l
r ; �

l(
me)
�

(15)

wherel = 1; :::; L indexes the different elements ofy1 or ŷ1 (e.g.,L = 2 for y1 = (c; q)) and where�l(
me) =


me�(y
l) is the measurement error standard deviation for each variable, as explained earlier.

Focus on the casey = y1; the casey = (y1; s10) is handled analogously but the algebra is more cumber-

some since for eachj we need to condition on itss10 value in the gridS1. Expression (15) implies that the

likelihood of observing data vector̂yj (consisting ofL data variables indexed byl) for modelm, at parameters

� � (�s; �d; 
me) and initial states distributionh(s10; s
2
0;�

d) is

Fm (ŷj ;�) �
#YX
r=1

fm(yr;�
s; �d)

LY
l=1

�
�
ŷlj jylr; �l(
me)

�
(16)

wherefm(yr;�s; �d) is the value of (14) atyr, i.e., the probability mass which modelm puts on grid pointr,

and where we assume that measurement errors in all variables are independent from each other. We basically

sum over all grid points, appropriately weighted byfm, the likelihoods in (15). For example, for cross-sectional

consumption and income datâyj = (ŷ1j ; ŷ
2
j ) = (ĉj ; q̂j), we have

Fm (ĉj ; q̂j ;�) =
X
r

fm((c; q)r;�
s; �d)�

�
ĉj jcr; �1(
me)

�
�
�
q̂j jqr; �2(
me)

�
wherer goes over all elements of the joint gridC � Q, r = 1; :::;#C#Q and wherel = 1 in (16) refers to

consumptionc andl = 2 refers to incomeq.

Multiplying (16) over the sample units (households) and taking logs, the normalized byn log-likelihood of

datafŷjgnj=1 in modelm with initial state distributionh(s10; s
2
0;�

d) at parameters� is,

�mn (�) �
1

n

nX
j=1

lnFm (ŷj ;�) : (17)

The maximization of the log-likelihood (17) over� is performed by an optimization algorithm robust to local

maxima.22 Standard errors are computed using bootstrapping, repeatedly drawing with replacement from the

data.
22We first perform an extensive grid search over the parameter space to rule out local extrema and then use non-gradient based opti-

mization routines (Matlab’s functionpatternsearch) to maximize the likelihood.
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4.2 Testing and model selection

We follow Vuong (1989) to construct and compute an asymptotic test statistic that we use to distinguish across

the alternative models using simulated or actual data. The Vuong test does not require that either of the compared

models be correctly specified. The null hypothesis of the Vuong test, is that the two models are asymptotically

equivalent relative to the true data generating process – that is, cannot be statistically distinguished from each

other based on their ‘distance’ from the data in KLIC sense. The Vuong test-statistic is normally distributed under

the null hypothesis. If the null is rejected (i.e., the Vuong Z-statistic is large enough in absolute value), we say

that the higher likelihood model is ‘closer to the data’ (in KLIC sense) than the other.

More formally, suppose the values of the estimation criterion being minimized, i.e., minus the log-likelihood,

for two competing models are given byL1n(�̂
1
) andL2n(�̂

2
) wheren is the sample size and̂�

1
and �̂

2
are the

parameter estimates for the two models.23 The test allows us to rank the likelihoods with the data of all studied

models pairwise, although this ranking is not necessarily transitive (model A may be preferred to model B, which

may be preferred to model C, but A and C can be tied). Define the difference in lack-of fit statistic:

Tn = n
�1=2�

1
n(�̂

1
)� �2n(�̂

2
)

�̂n

where�̂n is a consistent estimate of the asymptotic variance,�n of the log of the likelihood ratio,�1n(�̂
1
) �

�2n(�̂
2
).24 Under regularity conditions (see Vuong, 1989, pp. 309-13 for details), if the compared models are

strictly non-nested, the test-statisticTn is distributedN(0; 1) under the null hypothesis.

5 Application to Thai Data

5.1 Data

In this section we apply our estimation method to actual household-level data from a developing country. We use

the Townsend Thai Data, both the rural Monthly Survey and the annual Urban Survey (Townsend, Paulson and

Lee, 1997). Constrained by space and computation time, we report primarily on the rural data, but where possible

compare and contrast results with the urban data.

The Monthly Survey data were gathered from 16 villages in four provinces, two in the relatively wealthy and

industrializing Central region near Bangkok, Chacheongsao and Lopburi, and two in the relatively poor, semi-arid

Northeast, Buriram and Srisaket. That survey began in August 1998 with a comprehensive baseline questionnaire

on an extensive set of topics, followed by interviews every month. Initially consumption data were gathered

weekly, then bi-weekly. All variables were added up to produce annual numbers. The data we use here begins in

January 1999 so that technique and questionnaire adjustments were essentially done. We use a balanced panel of

23For the functional forms and parameter space we use in the estimation, the models we study are statistically non-nested. Formally,
following Vuong (1989), if two models are represented by the parametric families of conditional distributionsF = fFY jZ(:; :j�1) : �1 2
Rd�1 g andG = fGY jZ(:; :j�2) : �2 2 Rd�2 g wherefYi; Zigni=1 is i.i.d. data, they are non-nested ifF \ G = ?. The Vuong test can
be also used for overlapping models, i.e., neither strictly nested nor non-nested, in which case a two-step procedure is used (see Vuong,
1989, p. 321).

24We use for̂�n the sample analogue of the variance of the LR statistic (see Vuong, 1989, p. 314).
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531 rural households who run small businesses observed for seven consecutive years, 1999 to 2005.

Consumption expenditures,c include owner-produced consumption (rice, fish, etc.). Income,q is measured

on accrual basis (see Samphantharak and Townsend, 2010) though at an annual frequency this is close to cash flow

from operations. Business assets,k include business and farm equipment, but exclude livestock and household

assets such as durable goods. We do perform a robustness check with respect to the asset definition — see Section

6.1. Assets other than land are depreciated. All data are in nominal terms but inflation was low over this period.

The variables are not converted to per-capita terms, i.e., household size is not brought into consideration (though

we do a robustness check below). We construct a measure of investment using the assets in two consecutive years

as:it � kt+1 � (1� �)kt for each household.

The monthly data measure transfers and borrowing/lending among households within a village, and so we are

able to construct measures of financial networks. Gifts and especially loans are large when they occur, averaging

9% and 60% of household consumption, respectively. From an initial Census we also have the location of parents,

siblings, adult children, and parents’ siblings of each surveyed household and his/her spouse, and so we can

construct an indicator of family-connected households in each village.

From the Urban Survey which began later, in November 2005, we use a balanced panel of 475 households

observed each year in the period 2005 to 2009 from the same four provinces as in the rural data plus two more,

Phrae province in the North of Thailand and Satun province in the South. We use the same variables – consumption

expenditure, business assets and income as in the rural data though in this case the variables are annual to begin

with, so the recall period is different. Note there is an overlap in years for 2005, and we do use that year for

comparable estimation results with the rural and urban data.

Table 3 displays summary statistics of these data in thousands Thai baht for both the rural and urban samples

(the average exchange rate in the 1999-05 period was 1 USD = 41 Baht). All magnitudes are higher in the

urban sample because those households are richer on average. Business assets,k and investment,i are very

unequally distributed as reflected in the high standard deviations and ratio between mean and median. There are

many observations with zero of close to zero assets and few with quite large assets. More detail is reported in

Samphantharak and Townsend (2010, ch. 7) for the monthly data.

Figure 1 plots, for both the urban and rural data, deviations from the sample year averages for income, con-

sumption, and investment. As in Townsend (1994), the figure visualizes the relative degree of consumption and

investment smoothing relative to income fluctuations. We see that there is significant degree of consumption

smoothing in the data, but it is not perfect as the full insurance hypothesis would imply (if all households were

identical, the right hand panel should be flat at zero). Investment should not move with cash flow fluctuations

either, controlling for productivity, but should move with investment opportunities. This is more so in the urban

data.

Figure 2 plots the relationships between consumption level changes and asset level changes each relative to

income level changes, as in Krueger and Perri (2011). We sort the data into twenty bins by average income change

over the seven years (using quantiles) and report the average consumption and assets change corresponding to each

bin (each marker corresponds to a bin). The comovement between consumption changes and income changes,

�c and�q in the figure can be viewed as a measure of the degree of consumption smoothing in the data. For the

rural data, the top left panel shows a positive relationship between consumption and income changes (correlation
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of 0.11) but the slope of the consumption change line is smaller than that found in Krueger and Perri for Italian

non-durable consumption data indicating more consumption smoothing. This pattern is stronger, i.e., the line is

flatter in the urban data (bottom left panel). The top right panel shows that changes in business assets in the rural

data are positively correlated with changes in contemporaneous income although this general pattern does not

hold at the two extremes of very high or very low income level changes (possibly due to measurement error or

large outliers). The comovement between assets and income changes is stronger in the urban data (bottom right

panel).

5.2 Structural estimation results

We convert all data from Thai currency into ‘model units’ by dividing all currency values by the 90-th percentile of

the assets distribution in the sample (this is 179,172 Thai baht for the rural sample). The normalized asset values

are used to define a five-point assets grid,25K corresponding to the 10th, 30th, 50th, 70th and 90th percentiles in

the data (e.g., for the rural sample we haveK = f0; :02; :08; :33; 1g). The unequal spacing reflects the skewness

of the asset distribution in the data. Similarly, from normalized incomeq we define a five-point grid corresponding

to the 10th, 30th, 50th, 70th and 90th income percentiles (for the rural sampleQ = f:04; :17; :36; :75; 1:75g). The

grids for assets,k and income,q endogenously imply an upper bound of:82model units for the borrowing/savings

B grid in the B regime – higher values ofb would result in default. The consumption grid used to compute the

moral hazard, full information and limited commitment models consists of thirty-one equally-spaced points on

the interval[:001; :9] model units which covers the range of consumption expenditure in the data. In the other

regimes (B, S and A) consumption is a residual variable, not independently chosen but obtained from thek andb

grids. The promised utility grid,W in the MH, FI and LC models consists of five uniformly-spaced points over

the endogenously determined intervals derived in Section 2.2. Table 2 describes all grids used in the baseline

estimation runs.

We use the algorithm described in Section 3 to estimate each model. We obtain estimates of the structural

parameters,� (risk aversion) and� (effort curvature); the distributional parameters,�w and
w (respectively,

�b; 
b for B or S); and the measurement error size parameter,
me. The discount factor�, the risk-free rate,R

and the depreciation rate,� are fixed at� = :95, R = 1:05 and� = :05. We also perform robustness runs with

alternative values forR and�. For robustness purposes we perform the runs with cross-sectional (c,q) or (k,i,q) or

(c,q,i,k) data using the first or the final available year of the sample.26 In the cross-sectional runs for yeart (e.g.,

2004) we act as if the data starts in 2004, i.e., the initialk distributionh(s10) discussed in Section 4.1, is formed

using the 2004k data. We also perform runs in which we initialize the models with 1999k data, run them for a

number of periods and estimate with later periods’ data (see below).

Parameter estimates and bootstrap standard errors are displayed in Section 5.2.1 and Table 4, reported for the

1999 rural data runs only to save space. We then turn to the model comparisons in Section 5.2.2 and Table 5.

25We use a standard histogram function based on distance to the closest grid point (Matlab’s commandhist ).
26Remember that we needk data from periodst andt + 1 to construct investmenti in periodt. Thus, when we say below that we use

“1999 (k,i,q) data”, this means we takek andq from 1999 and, to obtaini in 1999, we also usek from 1999 and 2000. Similarly, when
we say we use “2004 (k,i,q) data” we need the value ofk from 2005 to construct the 2004 value ofi: For the runs with (c,q) data we use
consumption and income data from 1999 or 2005 (the main results do not change using 2004 data).
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5.2.1 Parameter estimates

Table 4 reports the parameter estimates for each model and its maximized likelihood (in the last column) using

the 1999 Thai rural data. The best-fitting model is marked with an asterisk in the first column. We first discuss

its estimates. We find that the saving only (S) regime is the best-fitting (achieves the highest likelihood) with

(k,i,q) or (c,q,i,k) data. The moral hazard (MH) model achieves highest likelihood with the (c,q) data and is

statistically tied with the FI and LC models. The estimates for the S regime show that the estimate for
me –

the relative measurement error size parameter is relatively small (in the range 0.09-0.13 depending on the data

used, with small bootstrap standard errors). This corresponds to measurement error with standard deviation of 9

to 13% of the variables’ range. The same applies for the estimate of
me for the MH model with c,q data. The

estimates for the risk aversion parameter� for the best fitting regime indicate relatively high degree of curvature in

consumption for S (5.7 with (k,i,q) and (c,q,i,k) data) and 1.03 for MH with (c,q) data. The parameter�, which can

be interpreted as capturing the extent to which households dislike variability in effort, is estimated to be relatively

high (9.2) when using (k,i,q) data alone, but lower (0.11 for S and 1.6 for MH) when including consumption

data, in the respective (c,q,i,k) and (c,q) data runs. Since effortz takes values on(0; 1), values for� close to

zero imply relatively high effort disutility,z� over the whole effort range, while high values of� imply low effort

disutility at low z levels increasing sharply at high effort levels. This parameter is sometimes not very precisely

estimated (relatively large bootstrap standard errors). The final two parameters reported in Table 4,�w=b and
w=b
determine the mean and standard deviation of the initial distribution of unobserved heterogeneity in the models

captured by the state variables promised utility,w (for the MH, FI and LC models) or debt/savings,b (for the B

and S models). Their estimates are reported relative to these variables’ grid ranges, e.g.,�w = :79 estimated for

the best-fitting MH regime with (c,q) data means that the initial promised utility distribution is estimated to have

a mean ofwmin + :79(wmax � wmin). Similarly, 
w refers to the estimate of the standard deviation of the initial

distribution ofw, again relative to its grid range (e.g.,
w = :05means a standard deviation of:05(wmax �wmin)
around the mean�w). The estimates of�b for the S regime are high and in a very narrow range (.96-.99) for all

data subsets which means putting the mean of the unobserved initial savings distribution close to zero savings (the

upper limit of theB grid). The standard deviation parameter
b is estimated relatively small for the S model, in

the range .01-.08 depending on the data used, with standard errors in the .01-.04 range.

More generally, Table 4 shows that the estimates differ across the regimes as the MLE optimization adjusts

the parameters for each model to attain best fit with the Thai data. The estimates for the measurement error

size, 
me across all regimes and data types are in a relatively narrow range 0.09-0.18. This corresponds to

measurement error with standard deviation of 9 to 18% of the variables’ grid ranges. The bootstrap standard

errors on this parameter are low. The highest-likelihood model in each sub-section of Table 4 accommodates the

smallest measurement error size. In contrast, the regimes which obtain the lowest likelihoods generally feature

high estimated level of measurement error (e.g., the MH, FI, LC regimes with (k,i,q) data have estimates for
me

larger than 0.16 vs. 0.089 for S). The likely explanation is that to compensate for the bad fit the MLE routine is

raising the level of measurement error. The estimates for the risk-aversion parameter� vary in the range .03 to 5.7

depending on the model and data used. The MH, LC and FI regimes seem to require less risk-aversion to fit the

data (� below 1.04) while the B and S models produce estimates above 2.9 (with one exception, B with (c,q,i,k)

data). A possible reason is that the mechanism design models need to impose less curvature in consumption to

22



explain the data – higher curvature would lead to excessive smoothing in these models relative to the data. There

is substantial variation in the estimates for the effort-curvature parameter� across the six regimes. For example,

with the (c,q,i,k) data, they range from 0.11 for saving only to 9.2 for autarky. Table 4 also shows that, in order

to fit the data, the B and S regimes estimate the parameter of the unobserved debt/savings distribution,�b in the

range 0.84 to 0.99 which implies putting the mean initialb close to the borrowing limitbmax in the B model or

to zero savings in the S model. In contrast the range of the estimates for�w is wider (between .01 for LC with

c,q,i,k data and .79 for MH and FI with c,q data). The variance parameter,
b=w is estimated to be relatively low,

below .08 of thew or b grid ranges, with the FI, (c,q) data case the sole exception.

5.2.2 Model comparisons – Vuong test results

Business assets, investment and income data

We first explore the implications of the different models on the production side alone by using the joint

distribution of assets, investment and income, (k,i,q) in the data. When estimated from (k,i,q) 1999 cross-sectional

data (see footnote 25), the regimes rank in decreasing order of likelihood as: S, B, A, LC, MH, FI (Table 4, last

column). The saving only (S) model wins all its bilateral model comparisons at the 1% significance level in the

1999 data (Table 5, row 1.1) while the B and S regimes are tied for best fit in the 2004 data (row 1.2). The MH,

LC, FI and A regimes obtain the worst likelihoods and are rejected at the 1% significance level in all comparisons

with the best fitting regime(s).

Consumption and income data

We next test whether we can distinguish between the regimes based solely on the degree of consumption

smoothing they imply relative to the data using the (c,q) joint cross-sectional distribution (Table 5, section 2). The

Thai consumption and income data alone seem to be unable to pin down precisely the best fitting regime — we

have a tie between MH, FI and LC with the 1999 data and between S, LC and MH with the 2004 data.

Business assets, investment, consumption and income data

We also evaluate the gains from using combined data on assets, investment, income, and consumption as

opposed to using the (k,i,q) or the (c,q) data on their own. This captures both the consumption and production

side of the household/enterprise problem as shaped by the postulated financial constraints (section 3 of Table

5). Theoretically, the classical separation between consumption and production/investment decisions fails with

incomplete markets, and so empirically, joint data on the consumption and investment side of the model should

be helpful to distinguish the regimes better. Adding the consumption data to the set of variables, we observe an

improvement in our ability to distinguish the regimes relative to using (k,i,q) data or especially the (c,q) data alone

and we are able to pin down S as the single winner in both the 1999 and 2004 samples.

Dynamics

We next use the panel structure of the data to estimate and test across the alternative regimes targeting differ-

ences in the variables’ dynamics across the models. Our empirical method, based as it is on repeatedly computing

discrete joint distributions of model variables during the estimation, is heavy on computer time and memory when

we use several years of data at a time. For example, if we wanted to use three periods of (k,i,q) data in the estima-

tion, we would have a discretized joint distributionfm in (14) of dimension (total number of mutually exclusive
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probability cells) equal to(#K)3(#I)3(#Q)3 (this equals almost two million with our baseline grids).27 For

these reasons we only use (c,q) data from two periods in the runs reported below. We did, however, manage to run

our MLE with three-period long consumption time series data using the baseline grids (see below). We also did

a robustness run with a five-year time series of consumption data, 1999-03, but needed to use coarser grids (see

Table 9).

Restricting ourselves to using two years of (c,q) data at a time (see rows 4.1 and 4.2 in Table 5), the regimes’

likelihood ordering is consistent with results discussed above. The ability to distinguish across the regimes with

the 1999/00 (c,q) panel data is better than in the single 1999 (c,q) cross-section but worsens with the gap between

years included in the panel – three regimes, B, MH and S are statistically tied when the 1999/05 (c,q) panel is

used. In rows 4.3 and 4.4 of Table 5 we perform a run using three consecutive years (1999-01 and 2003-05) of

consumption data alone, as in a time series. The result, MH best-fitting (tied with FI in 4.3), is consistent with the

runs with (c,q) data in rows 2.1-2.2.

In addition, we did runs (Table 5, rows 4.5-4.7) where we used the 1999 distribution ofk to initialize the

models but 2004-05 data in the MLE. That is, each model was run for six (seven in the case of c,q data) periods

and its predictions for the joint distributions of (k,i,q), (c,q) or (c,q,i,k) at the final period were matched with actual

data from the corresponding year of the panel. Once again, the evidence points to the exogenously incomplete

market regimes fitting best (B, followed by S) when using the production-side (k,i,q) and the joint (c,q,i,k) data,

while we are unable to distinguish those two regimes from FI and MH with the (c,q) data alone. We discuss further

the models’ ability to match the dynamics of the data in the robustness Section 6.

Rural networks

In Table 6 we also perform runs with sub-samples of the Thai rural data with various definitions of networks

between households. We first focus on a set of households (n = 391) who are related by blood or marriage (section

1 of Table 6). Compared to the whole sample results and likelihoods in Table 5, with consumption and income

cross-sectional data alone, this networked sub-sample allows us to narrow down the best fitting regime as moral

hazard (tied with FI). Evidently, family networks help in consumption smoothing as in Chiappori et al. (2013).

LC is, however, the best-fitting regime in the (c,q) sub-sample of unrelated households (tied with MH, but note

the small number of observations). In contrast, including the production side, the results with 1999 (k,i,q) and

(c,q,i,k) data still indicate that the S regime remains best-fitting in all stratifications, as in the whole sample. This

is also true in the sub-sample of households not related by blood or marriage (line 1.5).

A re-estimation with another data sub-sample of 357 households related via observed personal loans or gifts

(see Kinnan and Townsend, 2012 for details) and the 1999 (c,q) data puts the FI regime on top in terms of

likelihood (row 2.1 in Table 6), tied with MH and LC, compared to less information for those not in networks

– S has highest likelihood (but tied with many other models, possibly due to the small number of observations).

Again this effect is not present when using the production-side data in the same sub-samples — S wins, as in the

whole sample.

27In terms of memory requirements, with our baseline grids, computing the MLE with three periods of (k,i,q) data would in-
volve manipulating repeatedly vectors and matrices (some for eachk;w) with size (#K)3(#I)3(#Q)3=1,953,125, as opposed to
(#C)2(#Q)2=24,025, when using two periods of (c,q) data (a factor of 81) and size(#C)(#Q)=155 when using (c,q) cross-sections.
In terms of computer time, the baseline MLE runs with the slowest to run LC regime and two periods of (c,q) data or with three periods of
c data require 10-15% more time than those with (c,q) cross-sections but the run with five periods of c data (Table 9, row 5.13) required
50-60% more time.
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Urban data

We also ran our estimation routines on the more recent panel data from the Thai Urban Surveys on households

in urban areas. Results are displayed in Table 7. Now the moral hazard (MH) regime is identified as the best-fitting

using the complete data on consumption, income, investment and assets (c,q,i,k) from both 2005 and 2008 (see

Table 7, section 1).

In fact, the moral hazard regime appears as winning in all sections of Table 7 with one exception – when using

data on the production side alone – the (k,i,q) specification (Table 7, section 3), where we recover the saving only

(S) regime, the same as in the rural data. Again the results with joint production and consumption data (c,q,i,k)

are more decisive and an endogenously incomplete (MH) rather than exogenously incomplete regime is chosen.

Urban households seem to be doing better than the rural in terms of smoothing consumption and investment. We

come back to this in Section 7.

6 Robustness

6.1 Additional estimation runs with Thai data

In this section we report on a large number of additional estimation runs we did to check the robustness of the

baseline results and shed more light onto the regime likelihood patterns with consumption vs. investment vs. joint

data. Here we restrict most of our robustness checks to the rural data.

Using parametric production function

We redo the baseline estimation runs from Table 5 using an alternative, parametric production function. The

advantage of doing this is that we can take into account the endogeneity in production decisions determined jointly

with the financial regime. The disadvantage is that we are jointly testing the financial regime with the assumed

parametric form. We assume the following parametric form forP (qjz; k),

P (q = q1jz; k) = 1� (�k� + (1� �)z�)1=� (18)

P (q = qijz; k) =
1

#Q� 1 (�k
� + (1� �)z�)1=� for i = 2; ::;#Q

whereq1 is the lowest output level. The probability of obtaining each output level is bounded away from zero or

one by setting it equal to 0.01 if it is lower and 0.99 if higher. We estimate� but fix � = 1=2 for computational

time reasons. This functional form encompasses a range of production technologies. (� = 1 – perfect substitutes

technology;� ! 0 – Cobb-Douglas; and� ! �1 – Leontief). Note thatP (qjz; k) determines expected, not

actual output and so the CES parameter� here is not comparable to values from the macro literature.28

Table 8 reports the results from the Vuong test model comparisons with this production function specification.

Using the production side of household operations, (k,i,q) data from either 1999 or 2004 (Table 8, rows 1.1 and

1.2) reveals the saving only (S) regime (tied with B in one run) as best fitting, consistent with the baseline runs

(Table 5, section 1). Using the consumption side, (c,q) data (rows 1.3-1.4) the B regime comes on top but in 1.3 is

tied with S and MH which was the best fitting regime in Table 5. The combined consumption, income, investment

28In an earlier version of the paper we also did runs with a version of this production function with an extra parameter that allowed
differential probability for output levels different from the lowest. This did not affect the results in terms of best-fitting regime.

25



and assets data runs (Table 8, rows 1.5-1.6) show as best-fitting (tied with B in one run) the S regime, the dominant

regime in the corresponding part of Table 5. The results with two-year panels of (c,q) data (Table 8, rows 1.7-1.8)

are similar to those in Table 5, with many tied regimes.

We also perform the same exercise with the parametric production function with the urban data (Table 8,

section 2). As with the rural data, the results are once again similar to the corresponding baseline runs (in Table 7

for the urban data) although there are more ties and the LC regime is doing better when using consumption data.

The moral hazard regime ties for best-fitting with FI and LC using the urban 2005 (c,q,i,k) data; MH, LC and FI

are also tied when only the (c,q) data is used. The S regime still fits best with the urban (k,i,q) data although now

tied with autarky. The bottom line is that most, if not all the results are similar to the baseline, and so we conclude

that assumptions about the production function are not driving the regime comparisons.

Robustness runs – risk neutrality, fixed measurement error, adjustment costs, fixed effects, etc.

We perform a number of robustness check with several variations of our baseline specification. The results

are displayed in Table 9. Unless stated otherwise Table 9 uses 1999 data. First, a re-estimation imposing risk

neutrality, i.e., fixing� = 0 instead of estimating� (Table 9, section 1) produces similar results to the baseline

runs allowing for risk aversion. One difference, however, is that the saving only regime shows as sole winner

with the 1999 (c,q) data (row 1.1). Apparently, not allowing for risk aversion worsens the fit of the endogenously

incomplete regimes which came on top with (c,q) data in Table 5. Otherwise, with the production side data,

imposing risk neutrality yields the borrowing or saving only regimes as best fitting, as in the baseline.

Re-estimating with fixed size of measurement error (in these runs we set the standard deviation parameter
me

to .1) naturally reduces the regimes’ likelihood values, especially for autarky, but preserves the MH model’s best

fit (tied with FI and LC) with the Thai data on consumption and income (see Table 9, section 2). The saving only

(S) regime emerges as the single best-fitting regime with (k,i,q) and (c,q,i,k) data, exactly as in the 1999 baseline

runs.

In Section 3 of Table 9 we allow quadratic adjustment costs in investment. The bottom line here is that the

introduction of adjustment costs does blur the distinction across the financial regimes, especially, endogenous

versus exogenously incomplete markets regimes, or can pick out a different regime entirely. The full information

regime with adjustment costs corresponds to the standard adjustment costs model in the literature (Bond and

Meghir, 1994 among many others) though we are allowing risk aversion. It appears as best-fitting in a tie with S

using the joint production and consumption data (line 3.3). Production data alone (k,i,q) actually has S tied with

autarky, A (line 3.2). The moral hazard and limited commitment regimes are tied with the borrowing regime with

adjustment costs as fitting the consumption-income data best (line 3.1), though B was dominated when adjustment

costs were not included, as in Table 5. It is true that the likelihoods of some regimes improve but there are more

parameters. We do not come away convinced that adjustment costs offer a better underlying specification than the

baseline. An exception, dealing with the persistence of capital, is discussed below.

In section 4 of table 9 we perform a series of estimation runs with the data from which we removed year or

year and household fixed effects and replaced them with average values. The issue here is that there might be

more heterogeneity in the raw data than what the models are designed to accommodate.

Removing only year fixed effects (Table 9, lines 4.1-4.3) can be thought of as ‘purging’ the data from aggregate

shocks. Our baseline results remain robust. Using the 1999 (c,q,i,k) rural data reassuringly produces almost
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identical results in all bilateral comparisons as the corresponding baseline run with the raw data (compare line

4.1 in Table 9 with line 3.1 in Table 5), with the S regime coming on top. The run with 2004 (c,q,i,k) data with

removed time fixed effects results in a tie between B and S for best fit which is again consistent with the baseline

(Table 5, line 3.2). The run with 2005 (c,q,i,k) urban data with removed year fixed effects (line 4.3) yields MH as

the best-fitting regime, exactly as in the corresponding baseline run in Table 7, line 1.1.

Removing both year and household fixed effects (Table 9, row 4.4) reveals S as the best-fitting regime with

the (k,i,q) data, also as in the baseline. The MH regime has the highest likelihood with the 1999 consumption and

income data from which year and household fixed effects have been removed (line 4.5), which is again consistent

with the corresponding baseline run in Table 5 where MH was tied for best fit with LC and FI. The run with (c,q,i,k)

data where LC and MH are revealed as best-fitting (row 4.6 in Table 9) is the only one that does not reproduce the

baseline result where S is best-fitting (row 3.1 in Table 5). Naturally, removing time and household fixed effects

from the Thai data and replacing them with averages produces a ‘smoother’ dataset so perhaps the better fit of

the LC and MH models is not surprising (this applies also to row 4.7 with the parametric production function).

We do not use this specification as the baseline since the fixed effects may, at least partially, be endogenous to the

financial regime in the data which we are trying to uncover. We come back to this question in the estimation runs

with simulated data from one of the models (Section 6.2 below). In some of these runs we deliberately generate

simulated data with heterogeneity in risk aversion, in productivity, or in interest rates and estimate the models as if

this heterogeneity did not exist. In another run we took out the time and household-level heterogeneity the model

is generating endogenously and the results echo what we find above.

In section 5 of Table 9 we perform thirteen additional robustness runs. We first check robustness with respect

to our baseline assumption of independent initial states. Specifically, the runs in Table 9, rows 5.1-5.3 allow for

correlation between the initial distributions ofk andw or k andb used to initialize the respective model regimes.

This introduces an extra estimated parameter slowing down computation considerably. The results from these

three runs confirm that our respective baseline results remain robust. In the runs with 1999 (c,q,i,k) and (k,i,q)

data the S regime is best fitting, just like in the baseline (see Table 5, rows 3.1 and 1.1). In the run with (c,q) data

the three mechanism designs (MH, FI and LC) are statistically tied for best fit, as in the baseline (compare with

Table 5, row 2.1).

Next, we check robustness with respect to our definitions of assets and income in the Thai data (Table 9,

row 5.4). That is, we re-estimate using the 1999 (c,q,i,k) data including all household assets and livestock in

the definition ofk. The sample size drops to297 but the best fitting regime (S) from the baseline, Table 5, row

3.1 does not change (now tied with A, possibly due to the smaller sample size). In row 5.5 we check robustness

with respect to the income definition by excluding labor income from the value ofq for all 531 households. The

baseline results remain robust. Re-estimating fixing the lender risk-free rate toR=1.1 instead of the baseline value

1.05 in the baseline or the depreciation rate� = :1 instead of .05 in the baseline (Table 9, rows 5.6 and 5.8) does

not affect our findings either – the S regime is still best-fitting although in these runs we cannot discern it from the

B regime. To address possible change in the rateR over time we also did a run (Table 9, row 5.7) with the 2004

(c,q,i,k) data and R=1.025, that is, a net interest rate equal to half of the baseline value. When viewed together

with the runs using R=1.05 (Table 5, line 3.1 with 1999 c,q,i,k data) or using R=1.1 (run 5.6 above, also with 1999

c,q,i,k data), this lower value of R can be thought of proxying the gradual fall in interest rates in Thailand over the
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period 1999-04. Our results remain robust.

Re-estimation using either grids coarser than the baseline (3 points) or denser than the baseline (10 points)

produces similar results (see rows 5.9 and 5.10). The next robustness check (row 5.11) introduces an additional

estimated preference parameter,� – in this run we use the functional formU(c; z) = c1��

1�� � �z
�. The result

is identical to the baseline – the S regime is best-fitting. We also do a run (row 5.12) where we assume that the

initial distribution of the unobservable state (w or b) is a mixture of two Normals, instead of our univariate Normal

baseline. This introduces extra parameters to be estimated in the MLE and slows down computation considerably,

which is why we were not able to use it as baseline. The best-fitting regime remains saving only. Finally, in Table

9, row 5.13 we use a five-year long time series of consumption data alone but, for computational reasons, we had

to reduce the dimensionality of theC grid from 31 to 11 points. The best-fitting regime, MH is consistent with

our findings from the baseline run with a three-year consumption time series (Table 5, row 4.3).

We also did MLE runs with 2000 and 2002 data and with data stratified by region, by bank access and by ‘net

wealth’ (the latter constructed from household accounts as in Samphantharak and Townsend, 2010). We are not

reporting details since we did not find systematic patterns or differences with the baseline.

6.2 MLE with simulated data

Because of the analytical complexity of the dynamic models we study, it is not possible to provide identification

proofs while keeping the setting general. To show that our procedure works we use a numerical verification

algorithm consisting of the following steps: Step 1 – take a baseline model; Step 2 – generate simulated data

from the baseline model at a baseline vector of parameters,�base; Step 3 – estimate the baseline model with the

data from Step 2 using our method from Section 4, with grids determined by the simulated data percentiles and

the same maximization routine, to obtain ML estimates,�̂
base

; Step 4 – check whether the estimates from Step

3 are close to the baseline�base within the standard error bands and whether the Vuong test recovers the actual

data-generating regime. In short, we use data simulated from the model itself to check that our estimation method

performs as it should.

While we have done our best to argue robustness, this section is purely intended as a validation exercise of our

empirical method and further support for our results with the Thai data, not a proof of identification. Nonetheless,

this section is important since we fully control the data used in the estimation. This enables us to test the robustness

of our method to features that we do not currently model such various forms of heterogeneity (in risk aversion,

productivity, or interest rates) or sensitivity to the grids.

6.2.1 Baseline results

We adopt as baseline model the moral hazard regime (MH) and simulate from it a panel dataset withn = 1000

andT = 7, which we then use to estimate and test across all regimes, including MH. Details on how the data are

simulated are in Appendix B. All runs in this section use the parametric production function specification, (18)

from Section 6.1. The reported results are representative of many more runs that we did, including with alternative

parameterizations and functional forms. We discuss some of these runs in Section 6.2.3 though obviously we are

limited by space in what we can report. We use two specifications differing in the size of measurement error added

to simulated data – “low measurement error”, with
baseme = :1 (i.e., measurement error with standard deviation
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equal to 10% of the variables grid ranges) and a “high measurement error” specification, with
baseme = :2. Table

10 reports parameter estimates for the low measurement error specification, while Table 11 reports the Vuong test

results.

Business assets, investment and income

Using data on assets, investment and income (k,i,q) Table 10 shows that, when estimating the data-generating

MH regime, the baseline parameter values used to simulate the data (in italics) for
me; � and� are recovered

relatively well but the estimates for�, �w and
w inclusive of bootstrap standard errors are off.29 The estimates

in Table 10 differ across the regimes but in general are quite close between FI and MH, allowing for standard

errors. The A regime requires much higher measurement error (.3) to approach the data compared to the baseline

value (.1). The FI and MH regimes achieve the highest likelihoods, followed by LC, S, B, and finally autarky. The

Vuong tests (Table 11, section 1) show that in the low measurement error specification we are unable to distinguish

between the data-generating MH regime and FI but we can reject the rest at the 1% significance level. We also

distinguish at the 1% level within all pairs of counterfactual regimes. That is, even if the researcher incorrectly

believed that the data were, for example, generated from the FI regime, he/she can still distinguish it from the LC,

B, S or A regimes. In contrast, with high measurement error the distinction between the regimes is blurred and

the Vuong test cannot discern statistically between MH and all regimes but autarky. In all cases, including those

with high measurement error, the non-autarky regimes are distinguished at the 1% level from autarky.

Consumption and income

We next estimate using the simulated data on consumption and income (c,q). The maximized likelihood

values (see Table 10) are ordered MH, LC, FI, S, B and A from highest to lowest. We recover the data-generating

parameters better than with the (k,i,q) data (compare the MH estimates with the values in italics in Table 10).

In contrast, the estimates for the exogenously incomplete regimes in many instances differ significantly from

the parameters at which we ran the model. With low measurement error, the data-generating MH regime is

distinguished at 1% significance level from all alternatives (Table 11, section 2), though ties appear between some

counterfactual pairs (FI and LC, FI and S, LC and S). With high measurement error we are, however, unable to

recover MH as best-fitting (LC is). The autarky regime is statistically distinguished from all others, including in

the high measurement error specification.

Business assets, consumption, investment, and income

The estimates with the (c,q,i,k) simulated data are reported in Table 10, section 3. The data-generating regime

(MH) is best-fitting and its estimates are close to the baseline values reported in italics – compare with the (k,i,q)

case in particular, especially the estimates for�, �w=b; 
w=b. All parameters are relatively precisely estimated

for the MH regime, with small bootstrap standard errors relative to the point estimates. The regimes’ likelihood

order is MH, LC, FI, B, S, A. The incorrect regimes require higher measurement error to fit the data compared

to the .1 baseline. Table 11, section 3 shows that our ability to distinguish the data-generating MH regime from

all alternatives is excellent (at the 1% level) with low measurement error in the simulated data, but MH is tied

with LC for best-fitting with high measurement error. These results, compared to those using (c,q) or (k,i,q) data

demonstrate that using joint data on consumption and production yields an improvement, especially with high

29How well we recover the baseline parameters at which the model is computed should be judged taking into account that two non-trivial
sources of noise are added to the theoretical solution when we simulate data from the model – the random draws from the LP probabilities
� and sizeable measurement error (10% or 20% of the range for each variable.
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measurement error. The ability to distinguish between counterfactual regimes also improves significantly relative

to when using (c,q) or (k,i,q) data alone – the total number of ties falls from 7 or 4 to two.

Dynamics

We use simulated data on the joint distribution of consumption and income (c,q) in two different periods,

t = 0 and1 (rows 4.1 and 4.2 in Table 11) ort = 0 and50 (row 4.3) as in a two-year panel. Compared to

Table 11, section 2 which uses a single (c,q) cross-section, section 4 of Table 11 demonstrates that using multi-

period data improves our ability to distinguish the regimes (both the MH and counterfactual) – the number of ties

diminishes and MH is always recovered as best-fitting (in one case with high measurement error, tied with LC).

The improvement in our ability to discern the regimes is comparable to when (c,q,i,k) data was used (compare

with rows 3.1-3.2). In row 4.4 we first run the MH model for 1,000 periods to approximate a steady state and then

estimate using simulated (c,q) data from the 1,000th period. In this run MH comes up first in likelihood but is

statistically tied with LC and FI.

We also report on additional runs with the simulated data which explore sensitivity to the grids, sample size,

and measurement error size in Appendix C.

6.2.2 Allowing for heterogeneity

Heterogeneity in productivity

We test the robustness of the baseline results with simulated data by allowing for productivity differences

across households (Table 11, row 5.1). In contrast, remember that in the baseline runs initial heterogeneity across

agents exists only in their assets,k; debt/savings,b, or promised utility,w. Specifically, to capture productivity

heterogeneity we draw ten values from a uniform distribution on [0.75,1.25] and compute the MH regime multi-

plying the income gridQ by each of these ten productivity ‘factors’. We draw and pool simulated data from these

ten runs, ending up with (c,q,i,k) data that corresponds to a mixture of households with different productivities.

We then estimate all six regimes as if those differences in productivity did not exist (that is, as if we mistakenly

treat the data as generated without such differences, like we do in our runs with actual data in Section 5). The re-

sults show that allowing for this additional source of unobserved heterogeneity and thus, mis-specification, in the

model does not affect the robustness of the baseline findings. Significantly, we still recover MH as best-fitting and

it is still distinguished at the 1% level from all alternatives. Compared to the homogeneous productivity baseline

(Table 11, row 3.1) there is only one difference – a tie between the counterfactual regimes FI and B. The parameter

estimates are also quite close to the baseline in Table 10; for the MH regime with productivity heterogeneity we

obtain
me=.103,�=.5,� =2.36,�=.26,�w=.51 and
w=.34.

Heterogeneity in risk aversion

We also test robustness to heterogeneity in preferences in the data by simulating data from the MH regime at

three different values for the risk aversion parameter,� = 0:62; 0:78 and1:4 holding the rest of the parameters at

their baseline values. The� values are taken from the actual range of risk aversion values estimated in Chiappori et

al. (2013). Similarly to the robustness run with productivity differences above, a mixed sample of sizen = 1000

is generated from the simulations. We then run our MLE routine with these data as if all sample units shared

the same risk aversion parameter. We find that our baseline results (compare Table 11, row 5.2 with row 3.1) are

not sensitive to allowing for this type of preference heterogeneity – we recover the data-generating MH regime

30



as best-fitting and we are able to distinguish it from all alternatives at the 1% confidence level. The parameter

estimates for the MH regime (with the exception of�) are very close to their baseline values:
me=.098,�=.70,

�=9.9,�=.21,�w=.49 and
w= .35. Note that the� estimate is in the intermediate range used to generate the data.

Heterogeneity in interest rates

In Table 11, row 5.3 we test the robustness of our method to heterogeneity in interest rates in the data. As in

the previous two runs exploring heterogeneous samples, we first simulate the MH regime at four different values

for the financial intermediary interest rate parameter,R taken from another study using a different part of the

Thai data (Cunha, Townsend and Wang, 2012), namelyR = 1.038, 1.026, 1.016 and 1.009. These four values

correspond roughly to the interest rates faced by the quartiles of households ordered by increasing assets. The rest

of the model parameters are held at their baseline values. We create a heterogeneous sample of sizen = 1000

applying the respectiveR value to the households in our sample falling within the corresponding asset quartiles.

We then run our MLE routine on the heterogeneous but pooled data using the same fixed interest rate set equal

to the average of the four values above – i.e., assuming counterfactually that the data came from a homogeneous

sample. Once again, as in the runs with heterogeneity in productivity or risk aversion, we are able to recover

the data-generating MH regime as best-fitting and distinguish it from all alternatives at the 1% significance level.

The MH MLE parameter estimates (except that for�) are close to the data-generating values:
me=.11,�=.47,

� =2.97,�=-2.64,�w=.499 and
w=.24.

7 Inside the MLE ‘Black Box’

7.1 Comparing actual and simulated data

In this section we use simulated data from the model at the MLE parameter estimates to assess the dimensions in

which the alternative models of financial and information constraints fail or succeed in matching the Thai data.

The purpose of this section is to give a better idea why the omnibus MLE approach picks one regime in favor of

another in terms of likelihood with the data, as well as to evaluate the fit of the highest-likelihood regime with

data outside of the sub-sample we use to estimate.

Thai vs. simulated data – assets’ persistence

The different financial regimes impose endogenous constraints on the ability of agents to adjust assets or, in

other words, endogenize the degree of persistence of assets/capitalk. For example, the FI regime stipulates that

an agent, facing no financial constraints, could immediately adjust to the first-best capital levelkfb, no matter

what his initialk is. Such adjustment is subject to incentive compatibility constraints in the MH regime, to self-

enforcement constraints in the LC regime, and subject to even more stringent borrowing constraints (e.g., zero

borrowing under savings only and autarky) in the exogenously incomplete markets regimes. A salient feature of

the Thai rural data is that investment events are infrequent (Samphantharak and Townsend, 2010). Likewise, as

is evident from Table 3, capital is very persistent — the median yearly investmenti, computed from the data as

it = kt+1�(1��)kt, is close to zero (20 Baht). This persistence in assets favors the S (and sometimes B) regimes

overall. It may also be the reason why in our robustness runs with quadratic adjustment costs the likelihood of the

FI regime improves with (c,q,i,k) data (see Table 9, row 3.3), though this is not the case with (k,i,q) data in row

3.2.
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Figure 3 helps visualize these observations. We plot the fractions of all possiblekt to kt+1 transitions between

any pair of points in the assets gridK for the whole panel. Remember the grid points inK correspond to the 10th,

30th, 50th, 70th and 90th percentiles of assets in the data. We see that in the Thai Monthly (rural) data (the top

left panel) basically all transitions are on the main diagonal, i.e. no movement at all, or the diagonals immediately

next to it which indicates very high persistence in assets. In contrast, in the urban data (the top right panel) there

is still persistence (the main diagonal) but also many more households transitioning across capital levels each

year. The bottom two panels of Figure 3 plot the same transition fractions but for the simulated data at the MLE

estimates with the rural data for the S and MH regimes from our baseline runs. We see that the S regime manages

to come the closest to the rural data in terms of the diagonal pattern, although not perfectly. The moral hazard

(MH) model in contrast predicts too many off-diagonal transitions, unlike what we see in the rural data, but closer

to what the urban data looks like. We view this as supportive, independent evidence for our baseline results with

rural data (Table 5; where S wins) and urban data (Table 7; where MH wins with (c,q,i,k) data and comes much

closer in likelihood to S with (k,i,q) data compared to rural).

Thai vs. simulated data – time paths

Figure 4 explores how well the highest-likelihood regime matches the paths of the mean and standard deviation

(in model units) of consumption,c, business assets,k and income,q over the entire panel 1999-2005, that is using

far more data than in any MLE estimation run. To match the data time span, we use the MLE estimates from

row 4.5 in Table 5 where we used the initial 1999k distribution and the 2004 (c,q,i,k) data. Figure 4 shows that

the best-fitting regime in this run (B) tracks extremely well the time paths of the means of all three variables,c; k

andq over the complete sample period. In terms of standard deviations, the model traces relatively well that for

consumption but understates the variance of output in the Thai data and, even more significantly, the variance of

assets after the initial period. The reason is the very skewedk andq distributions in the data, with few extremely

large observations that are lumped on the highest grid point of theK andQ grids. When we plot the standard

deviations excluding observations with average assets above the 90th percentile in the data (there are 54 such

observations, or 10% of the sample) – see the right panels of Figure 4, the dashed lines – the standard deviations

of k andq in the model come within 0.1 model units of those in the data.

Thai vs. simulated data – alternative measure of fit

We use the MLE estimates with 1999 (c,q,i,k) data to simulate data from each model, as explained in Section

6.2. We then compute a set of 22 summary statistics or ‘moments’ (mean, median, standard deviation, skewness

for each of the four variablesc; k; i; q plus the six bilateral correlations between them) for each of the regimes

and the same statistics (in model units) for the Thai data panel years used in the MLE estimation (here, 1999

data forc; q andk and 1999 and 2000k data used to compute investmenti). Our MLE criterion is not fitting

these moments per se. Nevertheless, as a robustness check that the auxiliary assumptions of our MLE are not

explaining the results, we compute an ad hoc goodness-of-fit measure between actual and simulated data as

Dm =
P#s
j=1

(sdataj �smj )2

jsdataJ j wheresmj , j = 1; :::; 22 denotes each of the computed moments in modelm and

sdataj is the corresponding value in the 1999 Thai data. The following Table 12 (in the text) reports the value of

the measureDm for each of the six models (smaller values indicate better fit):

Table 12 – Thai vs. simulated data – mean-squared criterion
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model,m = MH FI B S A LC

criterion value (rural data),Dm = 321.1 395.4 38.5 20.8 28.1 520.1

criterion value (urban data),Dm = 36.8 32.0 36.4 35.3 35.4 38.0

We see that the S regime achieves the lowestDm measure (best fit) while the LC regime has the highest

measure (worst fit). This is consistent with the baseline results with (c,q,i,k) data from Table 4 using the MLE

criterion. We also do the same robustness exercise with the urban data (Table 12, third row). In contrast to the

rural data, we found that a less constrained regime (full information, FI) attains the lowest criterion value (32)

followed by the other regimes all bunched in the 35-38 range.

Thai vs. simulated data – financial net worth

Figure 5 compares the implications of the best-fitting regime with 1999 (c,q,i,k) data (the S regime, see row

3.1 in Table 5) for the time path of savings in the model and the data. Remember, in our baseline estimation runs

we assumed that initial savings are distributed normally with mean and variance that we estimate, but we did not

use actual savings data to maintain symmetry with the MH, FI, LC regimes. Figure 5 compares the median and

standard deviation of savings, as computed from the S model with a measure of ‘financial net worth’ from the

data (see Pawasutipaisit and Townsend, 2011).30 To plot the figure, and since the data is very skewed again, we

exclude ‘outliers’ with more than three model units of savings or one model unit of debt (remember, one model

unit equals the 90th percentile of business assets in the data). Figure 5 shows that the model is able to match the

out-of-sample financial net worth data relatively well.31

Thai vs. simulated data – return on assets

Figure 6 plots realized gross ‘return on assets’ (ROA), defined as income per unit of productive assets,q
k in the

Thai data, rural and urban, and compares it with the corresponding simulated values from the S and MH models

computed at the MLE estimates from 1999 (c,q,i,k) data (Table 4, section 3). We compute the gross ROA for each

year in the panel and plot the average for each household over all years against the household’s average business

assets holdings over that time period. We see that, for the rural data, the S model which we found best-fitting in

the MLE (Table 5, row 3.1) fits the general pattern (convex and downward-sloping) better than the MH model

which exhibits a lot of bunching in the relatively lowk, low ROA range. The urban data appear to share visual

features with both the MH and S panels – bunching at lowk and the hyperbola shape.

7.2 Euler equations GMM estimation

In this section we report results from two robustness estimation runs that use a GMM approach based on Euler

equations. These results supplement our MLE results by using a different method to assess the fit of the alternative

models of dynamic financial constraints with the Thai data.

30We did not use these data to initialize theb distribution in the estimation routine for two reasons: (i) we want to keep the B and S
regimes on even ground with the MH, LC and FI regimes where the state variablew distribution is unknown and (ii) these data only
became available recently, after the baseline MLE runs were completed.

31We also plotted (not included in the paper to save space) the initial savings distribution in the S regime at the MLE parameters vs.
in the financial net worth data. Both the actual and estimated distributions have most of the mass around zero savings and a long left tail
towards large savings.
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7.2.1 Consumption Euler equations

Following Ligon (1998) we test a moral hazard vs. a ‘permanent income’ (borrowing and lending in a risk-

free asset) models based on their implications for the path of consumption over time. The permanent income

hypothesis (PIH) implies the Euler equation,

u0(cit) = �REt(u
0(cit+1))

which we estimate using our consumption panel data,fcitg; i = 1; :::N; t = 1; ::T: Supposeu is CRRA, with

coefficient
 > 0, that is,u(c) = c1�


1�
 andu0(c) = c�
 . Let also�R = 1. Denoting�i;t �
ci;t+1
ci;t

for i = 1; ::N

andt = 1; ::T � 1 andh(�i;t; b) � �bi;t� 1 whereb = �
 (minus the coefficient of relative risk aversion) we have

the moment conditions,

Eth(�i;t; b) = 0

On the other hand, as shown in Rogerson (1985) among others, the corresponding ‘inverse’ Euler equation for

the repeated moral hazard model is,
1

u0(cit)
=

1

�R
Et(

1

u0(cit+1)
)

With CRRA utility and�R = 1, the above equation can be written as:

Eth(�i;t; b) = 0 (19)

where nowb = 
 (the coefficient of relative risk aversion). As proposed by Ligon (1998), conditions (19) can

be used in a GMM (following his paper we actually use as moment restriction the unconditional expectation

E(h(�i;t; b)) = 0) to: (i) estimate the parameterb and (ii) use the sign of the estimate ofb from step (i) to infer

which model (PIH vs. private information) holds in the data. Essentially, assuming households are risk-averse, a

positive estimate forb would indicate that the private information model is consistent with the data, while if the

b estimate is negative, the PIH model is consistent with the data. A version of (19),E(h(�i;t; b):�i;t) = 0 using

variables�i;t that are in the information set of householdi at timet as instruments is also estimated (see Ligon,

1998 for details).

We ran the GMM estimation described above on our rural and urban samples. The GMM results are somewhat

sensitive to the choice of sample years or instruments. In the rural data, we obtain a negative estimate forb when

using all available consumption data (from 1999 to 2005), including in the specifications with different sets of

instruments such as pre-determined income and assets data (see Table 13, lines 1-5).32 This is consistent with

PIH-type models (non-contingent debt or savings), such as our B and S regimes, which are tied for best-fit in

several MLE runs with (c,q) data (see Table 5, lines 2.2, 4.1 and 4.2). However, we also ran the GMM using

only the consumption data from 1999 to 2001 (see Table 13, lines 6 and 7). The result (a positiveb estimate) is

consistent with the private information model (compare with Table 5, row 4.3). The runs with instruments also

yield positive estimates (not reported in the table).

In the urban sample, the GMM test results also vary. The run without instruments producesb=-0.23 which is

32The run in line 5 uses separate moment conditions for eacht = 1; ::T � 1.
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evidence in favor of the PIH but when we use pre-determined income alone and income and assets as instruments,

we obtainb=8.53 andb=4.73 respectively which is suggestive of moral hazard. The run from Table 13, line 4 (with

three instruments) produced a singular matrix so we cannot reportb. The bottom line: it is hard to distinguish the

regimes, whether via the Euler equation GMM or our structural MLE methods, when restricting attention to the

consumption data (jointly with income and/or instruments).

7.2.2 Investment Euler equations

We follow Bond and Meghir (1994) and Bond et al. (2003) to test a model with quadratic adjustment costs and no

financial constraints vs. the alternative of financial constraints. Specifically, we estimate the following equation,

obtained from the model’s Euler equation, using GMM methods proposed by Arellano and Bond (1991),�
i

k

�
jt

= �1

�
i

k

�
jt�1

+ �2

�
i

k

�2
jt�1

+ �3

� q
k

�
jt�1

+ dt + �j + "jt

wherej denotes household,t is time, andi; k; q are respectively investment, capital and income (cash flow). Bond

et al. (2003) show that under the null of no financial constraint we must have�1 � 1; �2 � �1 and�3 < 0. The

focus in this literature (not without controversy, e.g. see Kaplan and Zingales, 2000) has been on the cash flow

coefficient�3. A positive�3 estimate suggesting that investment,i is ‘sensitive’ to fluctuations in cash flow,q has

been interpreted as indicating the presence of financial constraints.

Table 14 contains the results from the above estimation using the Stata functionxtabond2and the rural sample.

We obtain an estimate for�3 which is positive and statistically insignificant from zero instead of negative. Both

estimates of the coefficients�1 and�2 also do not satisfy the theoretical restrictions�1 � 1 and�2 � �1 under

the null. This indicates that the data reject the null of no financial constraints. Compared to our MLE results with

(k,i,q) data allowing for adjustment costs (Table 9, line 3.2), where S and A with adjustment costs are tied for best

fit, we reach a similar conclusion which we view as further supporting evidence for the MLE findings in favor of

the exogenously incomplete financial regimes when using the investment, income and assets data. Unfortunately

the shorter panel length does not allow us to use this method on the urban sample.

7.2.3 Euler equations – summary

In sum, both the GMM and MLE methods have their advantages and disadvantages. The advantage of the GMM

approach is its simplicity and, aside from the CRRA assumption in the Ligon (1998) case or sign restrictions on

the parameters in the Bond et al. (2003) case, not requiring additional structure.33 Advantages of our MLEnVuong

test approach include: (i) being able to estimate more parameters that the coefficient of risk aversion.; (ii) being

able to distinguish among more financial regimes; and (iii) being able to use more data variables than those

appearing in the Euler equations (e.g., consumption alone in Ligon,1998). Naturally, these advantages need to be

weighed against the need for fully specified dynamic programs and much heavier computational requirements.

33Some limitations to estimating parameters from consumption Euler equations are discussed in Carroll (2001).
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7.3 Policy evaluation in the model – an example

In this section we present a simple stylized example of how the structural estimation and model comparison results

can be potentially used as ingredients in ‘policy experiments’ within the context of the model. Here we would like

to emphasize not so much the particular policy exercise we perform but instead the welfare implications of having

or not having uncovered the best-fitting model of financial constraints among the many possible alternatives.

Specifically, here is what we do. Suppose the model economy is at our baseline value for the risk-free gross

interest rateR (=1.05). Take the saving only (S), borrowing and lending (B), moral hazard (MH) and full informa-

tion (FI) models at their corresponding MLE parameter estimates with the 1999 (c,q,i,k) data (Table 5). Holding

all other parameters fixed, we reduce the gross risk-free interest rate parameterR to 1.025, as if a ‘subsidization’

of interest rates or simply a change in domestic or international rates. We then re-compute the four chosen models

at the new, lowerR.

The top-row panels of Figure 7 plot the welfare gains or losses from the interest rate reduction, expressed

as fractions of first-period consumption, for each value of assetsk and savingsb in the S and B models at their

respective MLE estimates. For the B model we do not plot the welfare gains for positive values ofb (being in

debt) to be able to compare directly with the S regime where being in debt is not possible.34 Looking at the figure,

savers (those withb < 0 in both the S and B models) naturally lose from the reduction inR with their loses

ranging from 0 to 40% in terms oft = 1 consumption, depending on the currentk andb. The rightmost panel

shows the relative difference, however, a complicated, non-monotone picture of gains and losses from +15% to

-10%. For the MH and FI models, computed at their respective MLE estimates, (the bottom-row panels of Figure

7), we plot the corresponding welfare gains or losses in terms of business assetsk holding fixed present-value

profit levels for the principal,V (k;w) (see Section 2.2.2) at their level from before the policy change. Evaluating

at fixed profit level is needed since, unlike in the S and B models, if we were to evaluate welfare at fixed value

for the state variablew we would be unable to identify the welfare effect of the policy on households since by

construction the agent’s discounted utility in the optimal contract must equalw either before or after the policy.

Higher values of initial profitsV correspond to lower initial present value utility for agents. We see a complex

picture of winners and losers, especially in the moral hazard regime and in the difference between MH and FI.

The main take-away from Figure 7 is that evaluating who benefits and who loses from a given policy depends

critically on knowing which financial or information regime is likely true in the data. If we took one specific

regime as given (that is, if we assumed financial constraints take a particular form, as much of the literature) and

used MLE to estimate it and evaluate a policy counterfactual we would come with a certain policy recommenda-

tion. However, the assumed regime might have been incorrect – another regime may fit the data better which, as

Figure 7 illustrates, could have very different predictions on who wins or loses and how much from the policy.

8 Conclusions

We formulate and solve numerically a wide range of models of dynamic financial constraints with exogenous or

endogenous contract structure that allow for moral hazard, limited commitment and unobservable output, capital

34The gains for borrowers, especially those initially near the natural borrowing limit (the upper bound of the gridB, i.e., maximum
possible initial debt) are very high – up to 9 times first-period consumption.
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and investment. We develop methods based on mechanism design theory and linear programming and use them

to structurally estimate, compare and statistically test between the different financial regimes. Our methods can

handle unobserved heterogeneity, grid approximations, transitional dynamics, and reasonable measurement error.

The compared regimes differ significantly with respect to their implications for investment and consumption

smoothing in the cross-section and over time. Combined consumption and investment data were found particularly

useful in pinning down the financial regime.

We have established that our methods work on actual data from Thailand. We echo previous work which finds

that full risk sharing is rejected, but not by much, and indeed find that the moral hazard regime is not inconsistent

with the rural income and consumption data, where limited commitment also does well, and with the joint business

and consumption data in our urban sample. We also recover more sophisticated contract theoretic regimes (moral

hazard constrained credit, tied with full information) if we restrict attention to family or gift/loan networks data,

confirming related work by Chiappori et al. (2013) and Kinnan and Townsend (2012).

In terms of investment, we confirm previous work which finds that investment is not smooth and may be sen-

sitive to cash flow and, indeed, find that more constrained regimes such as saving only and borrowing and lending

characterize best the investment and income data (both rural and urban), as well as the combined consumption,

income and investment data in the rural sample. The reasons for these findings are most likely the infrequent

nature of investment in the Thai data, especially in the rural sample and the relatively large size of investment

compared to capital when investment takes place. On the other hand, the financial regimes we study postulate

endogenous constraints on the ability of firms to adjust assets, including the degree of persistence. The feature

of the Thai data that capital is persistent thus favors the S (or B) regimes in which assets adjustment is subject

to more stringent constraints than in MH, LC or FI. Evidently we have learned something from our approach,

beginning to distinguish, in a sense, capital adjustment costs from financial constraints.

Our results here can be put in perspective relative to our previous findings in Paulson, Townsend and Karaivanov

(2006) where we estimated a one-period model of occupational choice between starting a business and subsistence

farming as a function of ex-ante wealth. We found moral hazard rather than limited liability to be the predominant

source of financial constraints for rural Thai entrepreneurs, but we did not test the borrowing and saving only

regimes we study here. In contrast, in the current paper we not only introduce full-blown dynamic mechanism

design models but also significantly extend our previous work and estimate using cross-sections, time-series, or

panels of consumption, investment, assets and income, separately and jointly. Karaivanov (2012) finds that, in a

one-shot occupational choice setting similar to that of Paulson et al., one cannot distinguish statistically between

a model of moral hazard vs. a model of borrowing with default but rejects a model of saving only. The good fit of

the moral hazard regime is similar to what we find here in our results using consumption and income data alone.

As discussed earlier, the saving only regime seems to fit better the production side of our data (e.g., the persistence

in assets over time or the inability to smooth investment when income fluctuates). These features, for which a

dynamic model is necessary, are not directly tested in the essentially static settings of Paulson et al. (2006) and

Karaivanov (2012) where the focus is instead on the one-off decision of becoming an entrepreneur. The reason

for the differences in the results, therefore, are both the different data on which we fit, which here using the joint

distribution of consumption and investment data variables together, is much richer than the binary occupational

choice data from our previous work, and the fact that here we estimate models of fully dynamic constraints on
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consumption and investment smoothing versus a one-time constraint on business start-ups.

One important finding from the robustness runs with simulated data from one of the models is that using

consumption and investment data jointly we can readily distinguish exogenously incomplete financial regimes

from endogenously incomplete ones, where the latter are solutions to mechanism design problems with private

information or limited commitment. As the literature we surveyed in the introduction typically takes one route

or the other, we believe this ability to distinguish would prove helpful in future research and the applications of

others. We are also able to distinguish within these regime groups, though this depends on measurement error, the

available data variables, or whether or not we have more than a single cross-section of data.

Of course, we do not claim that we cover all possible models of financial constraints, only six common

prototypes. Natural extensions would include a model with unobserved productivity (adverse selection), allowing

for distinctions across different technologies (fish, shrimp, livestock, business, etc.) or allowing for aggregate

shocks (shrimp disease, rainfall, etc.). We would also like to return to the issue of entrepreneurial talent, as in our

earlier work (Paulson et al., 2006) and allow for heterogeneity in project returns. Related work (Pawasutipaisit

and Townsend, 2011) shows that ROA varies considerably across households and is persistent. On the other

hand, such data summaries have trouble finding consistent patterns with respect to finance, suggesting the data be

viewed through the lens of revised models.

We are still somewhat limited on the computational side, though we are encouraged with recent advances we

have made. In an on-going collaboration with computer scientists, we have been exploring the use of parallel

processing to speed up our codes and allow denser grids. What we have done thus far is, for want of better

terminology, brute force. There would be further gains from more streamlined codes and more efficient search,

e.g., where to refine the grids, when to use non-linear or mixed methods, the use of nested pseudo-likelihood

methods, and so on. On the econometrics side, recent developments by Kristensen and Salanie (2010) can be used

to improve accuracy in the maximum likelihood computation.

We have our eyes on other economies as well, in part because we see more entry and exit from business

in other countries, and in part because we can have larger sample size. Unfortunately, we do not typically find

both consumption and investment data, which is why we chose the Thai data to begin with. Work in progress

(Karaivanov, Ruano, Saurina and Townsend, 2012) with data from Spain shows evidence that the number of non-

financial firms’ bank relationships matters for whether they exhibit excess cash flow sensitivity of investment. We

use the computational and estimation methods developed here to evaluate which of four financial regimes (autarky,

non-contingent debt, moral hazard and complete markets) best characterizes the nature of financial constraints

for unbanked, single-banked and multiple-banked firms. Our methods allow in principle for transitions across

financial regimes, which is another extension we plan.
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9 Appendices

9.1 Appendix A – Computing joint distributions of model variables

Our linear programming solution method allows us to easily map to likelihoods and take to data the implications of
the different model regimes through the policy functions, the probabilities��(:) that solve the dynamic programs
in section 2. We first construct the state transition matrix for each regime. Denote bys 2 S the current state –k
in autarky,(k; b) in S/B, or(k;w) in the MH/FI/LC regimes. The transition probability of going from any current
states to any next-period states0 is computed from the optimal policy��(), integrating out all non-state variables.
For example, for the MH regime we have:

Prob(k0; w0jk;w) =
X
c;q;z

��(c; q; z; k0; w0jk;w)
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where we have replaced the transfer� by consumptionc (the problem is mathematically equivalent). Putting
these transition probabilities together for alls 2 S yields the state transition matrixM of dimension#S �#S,
(for example, for MH#S = #K � #W ), with elementsmij ; i; j = 1; :::;#S corresponding to the transition
probabilities of going from statesi to statesj in S.

The matrixM completely characterizes the dynamics of the model. For example, we can useM to compute
the cross-sectional distribution over states at any timet, Ht(s) � (h1t ; ::; h

#S
t ), starting from an arbitrary given

initial state distribution,H0(s) as:
Ht(s) = (M

0)tH0(s) (20)

In our empirical application we takeH0(s) from the data. In practice some elements of the states may be
unobservable to the researcher, e.g. here, the state variablew in the MH, LC and FI regimes. We assume that the
unobserved state is drawn from some known distribution, the parameters of which we estimate.

We use the state probability distribution (20) in conjunction with the policy functions��(:) to compute cross-
sectional probability distributionsFt(x) for any vector of model variablesx (which could includek; k0; z; � ; q; c;
etc.), at any time period. For example, in the MH regime, the time-t joint cross-sectional distribution of consump-
tion over the gridC with elementscl; l = 1; ::;#C and incomeq over the gridQ with elementsqh; h = 1; ::;#Q
is:

Ft(cl; qh) � Probt(c = cl; q = qhjH0) =
X

j=1::#S

hjt
X
z;k0;w0

��t (c = cl; q = qh; z; k
0; w0jsj)

We also use the time-t distribution over statesHt(s) and the transition matrixM to compute the transition proba-
bilities,Pt(x; x0) for any model variablex, at any time period,t. The transition and the cross-sectional probabili-
ties are then easily combined to construct joint probability distributions encompassing several periods at a time as
in a panel.

9.2 Appendix B – Simulating data from the model

To simulate data from the moral hazard (MH) regime we fixed the parameter values as follows: risk aversion,
� = :5; effort curvature,� = 2 and the production function parameter� = 0 (corresponding to Cobb-Douglas
form). These parameters are representative, chosen from a large set of runs we did and generate well-behaved
interior solutions for the baseline grids chosen (we use a five-pointk grid on[0; 1]; five-pointq grid on the interval
[.05,1.75]). The rest of the parameters are the same as discussed in Section 5.2.

We simulate data from the MH model at the baseline parameters,�base and grids described above. We take an
initial distribution over the states(k;w) which has an equal number of data points for each grid point in the capital
gridK and is normally distributed inw; i.e.,w � N(�w; 
2w) for eachk 2 K. In the Thai data applications we
use the actual initial discretized distribution of assets in the data for the marginal distribution overk.35 We set the
mean�w to be equal to the average value in the promise grid,wmax+wmin

2 , at the baseline parameters; the standart
deviation is set to 0.35 of thew grid span. We next compute the data-generating regime (MH) at the baseline
parameters,�base given the drawn initial distribution over states(k;w) as described above and use the LP solution
�� to generate, via a Monte Carlo procedure (with fixed random numbers across regimes) draw ‘data’ onc; q; k
andi to use in the estimation.

Consistent with the runs with actual data, the simulatuon allows for additive normally distributed measure-
ment error in all variables. We perform all estimation runs and tests in this section for two measurement error
specifications: ‘low measurement error’, where we set the parameter~
me governing the size of measurement error
relative to a variable’s range equal to0:1, and ‘high measurement error’, with~
me = 0:2 of the grid range.

35We also perform a robustness run with a mixture of two normals distribution forb orw – see Table 9, row 5.12. Our methods allow
any other possible distributional forms at the cost of additional parameters to be estimated and slower computation.
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9.3 Appendix C – Additional runs with simulated data

Table 11, section 6 contains results from several additional robustness runs using simulated (c,q,i,k) data from
the MH regime with the low measurement error specification, unless stated otherwise. Rows 6.1 and 6.2 study
the effect of varying the sample size,n. We find that reducingn from 1,000 to 200 produces more ties between
counterfactual regimes (compare row 6.1 with row 3.1) but the data-generating MH regime is still distinguished
at 1% confidence level. Increasing the sample size of simulated data to 5,000 achieves virtually the same results
to the n=1,000 baseline (compare rows 6.2 and 3.1). Row 6.3 of Table 11 checks the sensitivity of the results to
grid dimensionality. Reducing the size of all grids to three points does not affect the Vuong statistics and baseline
results in any significant way which is reassuring. In row 6.4 we instead used denser grids forK andW (10
points) to generate the simulated data but then estimated with the baseline five-point grids obtained from data
percentiles as explained previously. Our results are again not sensitive to the grid sizes.

In yet another run (row 6.5) we generate the simulated data without adding measurement error but we then
allow for measurement error in the MLE routine when estimating afterwards as per our usual MLE routine. The
Vuong test statistics show that, as in row 3.1, the data-generating MH model is distinguished at the 1% confidence
level from the rest. In the next run (row 6.6) we use the MLE estimates from the rural (c,q,i,k) data from Table
4 as data-generating parameters instead of the baseline parameters from Table 10 used in the above runs. The
data-generating regime MH is recovered as best-fitting, tied with LC. The last run (row 6.7) uses simulated data
from the S regime at the 1999 (c,q,i,k) MLE parameters from which we remove household and period fixed effects
as discussed in Section 6.1 and Table 9, section 4. We recover S as best fitting (we also did a run without removing
the fixed effects with the same result).
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Figure 1: Thai Data — Income, Consumption and Investment Comovement
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Figure 2: Thai Data — Income, Consumption and Assets Changes
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Note: Each panel plots the relationships between consumption level changes or business asset level changes each relative to income level changes. We
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Figure 3: Thai vs. Simulated Data; Business Assets Transition Matrix
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Figure 4: Thai vs. Simulated Data — Time Paths
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Figure 5: Thai vs. Simulated Data — Savings
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Figure 6: Thai vs. Simulated Data — Return on Assets
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Note: Each circle represents a household. The rural MLE estimates are from the run with (c,q,i,k) data in

Table 4 and Table 5, line 3.1. The urban MLE estimates are from the run in Table 7, line 1.1.



Figure 7: Policy Experiment — Reduction in the Gross Interest Rate R from 1.05 to 1.025
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Number of: linear programs solved variables constraints

Model: per iteration per linear program per linear program

Autarky (A) 5 75 16

Saving / Borrowing (S, B) 25 375 16

Full information (FI) 25 11,625 17

Moral hazard (MH) 25 11,625 23

Limited commitment (LC) 25 11,625 32

Variable Grid size (# points)

income/cash flow, Q 5

business assets, K 5

effort, Z 3

savings/debt, B 5 (6 for B regime)

transfers/consumption, C 31

promised utility, W 5

Table 1 - Problem Dimensionality

Grid bounds and spacing

Note: The numbers in this table are based on the following grid sizes used in the estimation: #Q=5, #K=5, #Z=3, #B=5, #T=#C=31; #W=5

Table 2 - Baseline Variable Grids Used in the Estimation

MH/FI/LC: uniform on [.001, 0.9]; B/S/A - endogenous

regime-dependent bounds, uniformly-spaced values

[.04,1.75], from data percentiles

[0, 1], from data percentiles

[.01, 1], uniform

S: uniform on [-2, 0], B: uniform on [-2, .82] including 0



Rural data, 1999-2005 Urban data, 2005-2009

Consumption expenditure, c

mean 64.172 148.330

standard deviation 53.284 131.710

median 47.868 115.171

Income, q

mean 128.705 635.166

standard deviation 240.630 1170.400

median 65.016 361.000

Business assets, k

mean 80.298 228.583

standard deviation 312.008 505.352

median 13.688 57.000

Investment, i

mean 6.249 17.980

standard deviation 57.622 496.034

median 0.020 1.713

Table 3 - Thai data Summary Statistics

Notes: 1. Sample size in the rural data is 531 households observed over seven consecutive years (1999-2005); 2. Sample size in 

the urban data is 475 households observed over five consecutive years (2005-2009); 3. All summary statistics in the Table are 

computed from the pooled data. Units are '000s Thai baht.



Model γme σ θ µw/b
1

γw/b LL Value
2

Moral hazard - MH 0.1632 0.0465 1.3202 0.4761 0.0574 -3.1081

(0.0125) (0.0000) (0.0000) (0.0139) (0.0005)

Full information - FI 0.1625 0.0323 1.1928 0.4749 0.0591 -3.1100

(0.0132) (0.0060) (0.0770) (0.0351) (0.0138)

Limited commitment - LC 0.1606 0.4390 1.2039 0.7010 0.0609 -3.0994

(0.0115) (0.0001) (0.0053) (0.0456) (0.0432)

Borrowing and lending - B 0.0950 4.2990 0.1091 0.8883 0.0065 -2.5992

(0.0059) (0.0880) (0.0000) (0.0269) (0.0153)

Saving only - S * 0.0894 5.7202 9.2400 0.9569 0.0101 -2.5266

(0.0068) (0.0000) (0.0000) (0.0087) (0.0075)

Autarky - A 0.1203 3.1809 9.2000 n.a. n.a. -2.7475

(0.0046) (0.6454) (0.0000) n.a. n.a.

Model γme σ θ µw/b γw/b LL Value

Moral hazard - MH * 0.1240 1.0260 1.6057 0.7933 0.0480 -0.8869

(0.0086) (0.0046) (0.0584) (0.0053) (0.0007)

Full information - FI * 0.1242 0.9345 1.9407 0.7938 0.0464 -0.9008

(0.0082) (0.0002) (0.0000) (0.0055) (0.0000)

Limited commitment - LC * 0.1337 1.0358 7.7343 0.0188 0.0672 -0.9116

(0.0109) (0.0076) (0.5142) (0.0070) (0.0000)

Borrowing and lending - B 0.1346 4.3322 1.8706 0.8397 0.0311 -1.0558

(0.0130) (0.0197) (0.0000) (0.0045) (0.0004)

Saving only - S 0.1354 2.9590 0.0947 0.9944 0.0516 -1.0033

(0.0074) (0.0343) (0.8556) (0.0133) (0.0180)

Autarky - A 0.1769 1.2000 1.2000 n.a. n.a. -1.1797

(0.0087) (0.0000) (4.2164) n.a. n.a.

Model γme σ θ µw/b γw/b LL Value

Moral hazard - MH 0.1581 0.0342 0.9366 0.3599 0.0156 -2.8182

(0.0073) (0.0000) (0.0000) (0.0013) (0.0010)

Full information - FI 0.1434 0.1435 1.0509 0.5608 0.1244 -2.8119

(0.0083) (0.0018) (0.0009) (0.0112) (0.0105)

Limited commitment - LC 0.1626 0.8035 1.0179 0.0142 0.0630 -2.8178

(0.0075) (0.0102) (0.0147) (0.0074) (0.0003)

Borrowing and lending - B 0.1397 1.0831 8.1879 0.9571 0.0398 -2.5582

(0.0071) (0.1102) (0.2536) (0.0359) (0.0267)

Saving only - S * 0.1245 5.6697 0.1114 0.9839 0.0823 -2.3825

(0.0077) (0.0225) (0.0744) (0.0248) (0.0432)

Autarky - A 0.1394 1.6922 9.2000 n.a. n.a. -2.6296

(0.0050) (0.3157) (0.0000) n.a. n.a.

Notes: 1. µw/b and γw/b (the mean and standard deviation of the w or b initial distribution) are reported relative to the variables' grid 

range. 2. Log-likelihood values are normalized by dividing by the sample size n; higher values imply better fit. 3. Bootstrap standard 

errors are in parentheses below each parameter estimate.; * denotes the best fitting regime (including ties)

Business assets, investment and income, (k,i,q) data

Consumption and income, (c,q) data

Business assets, consumption, investment, and income, (c,q,i,k) data

Table 4 - Parameter Estimates using 1999-00 Thai Rural Data
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2.1 (c,q) data, in network, n=357 tie tie MH*** MH* MH*** tie FI*** FI** FI*** LC*** tie LC*** S*** B*** S*** FI,MH,LC

2.2 (k,i,q) data, in network tie tie B*** S*** A*** tie B*** S*** A*** B*** S*** A*** S** B** S*** S

2.3 (c,q,i,k) data, in network tie MH*** B*** S*** A** FI*** B*** S*** A** B*** S*** A*** S*** tie S** S

2.4 (c,q) data, not in network, n=174 tie tie tie tie MH** LC* tie tie FI* tie tie LC** tie B** S*** S,LC,MH,FI,B

2.5 (c,q,i,k) data, not in network tie tie B*** S*** tie tie B*** S*** tie B*** S*** tie S** B* S*** S

Table 5 - Model Comparisons1 using Thai Rural Data - Baseline Vuong Test Results

Table 6 - Model Comparisons
1
 using Thai Rural Data - Networks

Notes: 1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the better fitting model abbreviation is displayed; †. k data from 2000 is also used to construct 1999 investment i; k data from 2005 is also used to 

construct 2004 investment, i
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1. Using (c,q,i,k) data

1.1. year: 2005
†

MH*** MH*** MH*** MH*** MH*** LC*** B*** S*** FI* tie S*** LC*** S*** B*** S*** MH

1.2. year: 2008
†

MH*** MH*** MH*** MH*** MH*** LC*** B*** S*** tie LC** tie LC*** S*** B*** S*** MH

2. Using (c,q) data

2.1. year: 2005 tie MH** MH*** MH*** MH*** tie FI*** FI** FI*** LC*** LC** LC*** S*** B*** S*** MH,FI

2.2. year: 2009 MH* MH*** tie MH* MH*** FI*** tie tie FI*** B*** S*** LC*** tie B*** S*** MH,B

3. Using (k,i,q) data

3.1. year: 2005
†

tie MH* tie S*** tie tie tie S*** tie tie S*** tie S*** tie S** S

3.2. year: 2008
†

FI* tie B*** S*** A*** FI* B*** S*** tie B*** S*** A** tie tie S* S,B

4. Two-year panel

4.1. (c,q) data, years: 2005 and 06 tie MH*** MH*** tie MH*** FI*** FI*** tie FI*** tie S*** LC** S*** B** S*** S,MH,FI

4.2. (c,q) data, years: 2005 and 09 MH*** MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** B*** S*** tie S*** B*** S*** MH
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1. Rural data

1.1 (k,i,q), year: 1999
†

FI** LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** tie B*** S*** S,B

1.2 (k,i,q), year: 2004
†

MH*** MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** S*** tie S** S

1.3 (c,q), year: 1999 MH*** MH*** tie tie MH*** FI*** B*** S*** FI* B*** S*** tie tie B*** S*** B,S,MH

1.4 (c,q), year: 2005 MH** MH** B*** S*** tie tie B*** S*** A** B*** S*** A*** B** B** tie B

1.5 (c,q,i,k), year: 1999
†

tie LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** tie tie B*** S*** B,S

1.6 (c,q,i,k), year: 2004
†

MH*** LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** S* B** S*** S

1.7 (c,q) panel, years: 1999 and 2000 MH*** tie tie S** MH*** LC*** B*** S*** FI*** B* S*** LC*** tie B*** S*** S,B

1.8 (c,q) panel, years: 1999 and 2005 MH* tie tie tie MH*** LC** tie tie FI*** tie tie LC*** tie B*** S*** LC,B,MH,S

2. Urban data

2.1 (c,q,i,k), year: 2005
†

tie tie MH** MH*** MH*** tie FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** FI,MH,LC

2.2 (c,q), year: 2005 tie tie MH*** MH*** MH*** tie FI*** FI* FI*** LC*** tie LC*** S*** B*** S*** MH,FI,LC

2.3 (k,i,q), year: 2005
†

tie LC** tie S** tie LC** tie S*** tie tie S** tie S*** tie tie S,A

Table 8 - Model Comparisons
1
 using parametric production function

Table 7 - Model Comparisons
1
 using Thai Urban Data - Vuong Test Results

Notes: 1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the better fitting model abbreviation is displayed; †. Business assets k data from year t+1 is also used to construct year t investment i
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1. Risk neutrality

1.1 (c,q) data MH*** LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** S*** B** S*** S

1.2 (k,i,q) data tie tie B*** S*** A*** tie B*** S*** A*** B*** S*** A*** B*** B*** A*** B

1.3 (c,q,i,k) data MH*** tie B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** S** tie S*** S

2. Fixed measurement error variance

2.1 (c,q) data tie tie MH*** MH*** MH*** tie FI*** FI*** FI*** LC*** LC** LC*** S*** B*** S*** MH,FI,LC

2.2 (k,i,q) data tie MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** S*** B*** S*** S

2.3 (c,q,i,k) data FI*** tie B*** S*** A*** FI*** B*** S*** A* B*** S*** A*** S*** tie S*** S

3. Investment adjustment costs

3.1. (c,q) data MH** tie tie MH* MH*** tie tie tie FI*** tie tie LC*** B* B*** S*** MH,B,LC

3.2 (k,i,q) data tie LC** B*** S*** A*** LC** B*** S*** A*** B*** S*** A*** S* A* tie S,A

3.3 (c,q,i,k) data tie MH*** tie S** MH** FI*** tie tie FI*** B*** S*** A*** S** B*** S*** S,FI

4. Removed fixed effects

4.1 year fixed effects, 1999 cqik
†

tie tie B*** S*** A*** tie B*** S*** A*** B*** S*** A* S* tie S* S

4.2 year fixed effects, 2004 cqik
†

MH*** MH*** B*** S*** A** LC** B*** S*** A*** B*** S*** A*** tie B*** S*** B,S

4.3 year fixed effects, cqik urban MH*** MH*** MH*** MH*** MH*** LC*** B*** S*** tie LC*** LC*** LC*** B*** B*** S*** MH

4.4 year+hh fixed effects, kiq tie tie B* S*** A*** tie B* S*** A*** B* S*** A*** S*** A*** S* S

4.5 year+hh fixed effects, cq MH* MH*** MH*** MH*** MH*** tie FI*** FI** FI*** LC*** LC*** LC*** S*** B*** S*** MH

4.6 year+hh fixed effects, cqik MH*** tie MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** S*** B*** S*** LC,MH

4.7 year+hh fixed effects, param. prod. fn FI** LC*** tie tie MH*** LC*** tie tie FI*** LC*** LC*** LC*** tie B*** S*** LC

5. Other robustness runs (with 1999
†
 c,q,i,k data unless otherwise indicated)

5.1 correlated initial states, 1999 cqik FI** LC** B*** S*** A** tie B** S*** tie B*** S*** tie S*** tie S*** S

5.2 correlated initial states, 1999 cq tie tie MH** MH*** MH*** tie FI*** FI*** FI*** LC*** LC*** LC*** S** B*** S*** FI,MH,LC

5.3 correlated initial states, 1999 kiq FI*** MH*** B*** S*** A* FI*** B*** S*** A* B*** S*** A*** S** B*** S*** S

5.4 alternative assets definition tie MH*** MH** S*** tie FI*** FI** S*** tie B*** S*** A*** S*** A*** tie S,A

5.5 alternative income definition MH*** MH*** tie S* tie FI*** B** S*** A*** B*** S*** A*** S*** tie S*** S

5.6 alternative interest rate, R=1.1 tie tie B*** S*** A* tie B*** S*** A* B*** S*** A** tie B*** S*** S,B

5.7 interest rate R=1.025; 2004 cqik
†

MH*** LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** tie B* S** S,B

5.8 alternative depreciation rate, δ=.1 FI*** LC*** B*** S*** A*** FI* B*** S*** A** B*** S*** A*** tie B* S*** S,B

5.9 coarser grids MH*** MH*** B*** S*** A*** FI*** B*** S*** A*** B*** S*** A*** B** B*** S*** B

5.10 denser grids MH*** LC*** B*** S*** A*** LC*** B*** S*** A*** B*** S*** A*** tie B*** S*** B,S

5.11 more general effort disutility form FI*** tie B*** S*** A* tie B*** S*** tie B*** S*** tie S*** B*** S*** S

5.12 mixture of normals b,w distributions MH*** MH*** B*** S*** tie FI*** B*** S*** A* B*** S*** A*** S*** tie S*** S

5.13 1999-03 c time series (coarse grid) MH* MH*** MH** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** S** B*** S*** MH

Table 9 - Model Comparisons
1
 using Thai Data - Robustness Runs. Vuong test results

1. *** = 1%,  ** = 5%,  * = 10% Vuong (1989) test two-sided significance level. Listed is the better fitting model or "tie" if the models are tied. Sample size is n=531; data are for 1999 unless noted otherwise. † k 

data from 2000 is also used to construct 1999 investment i; k data from 2005 is also used to construct 2004 investment, i



Model γme σ θ ρ µw/b
1

γw/b LL Value
2

Moral hazard - MH * 0.0935 0.6557 0.1000 0.2212 0.8289 0.0778 -1.0695

(0.0019) (0.0144) (0.0001) (0.0079) (0.0008) (0.0029)

Full information - FI * 0.0937 0.5495 0.1000 0.2720 0.8111 0.1078 -1.0692

(0.0019) (0.0648) (0.0011) (0.0291) (0.0081) (0.0105)

Limited commitment - LC 0.0929 0.0000 1.9202 2.3012 0.2000 0.2371 -1.1015

(0.0020) (0.0032) (0.0311) (0.1623) (0.0002) (0.0266)

Borrowing & Lending - B 0.1011 1.0940 1.0811 -1.5783 0.0096 0.9995 -1.1821

(0.0021) (0.0782) (0.1352) (2.6279) (0.0003) (0.0683)

Saving only - S 0.0972 0.5000 1.2043 -1.8369 0.5184 0.1697 -1.1407

(0.0025) (0.0000) (0.0000) (0.0000) (0.0104) (0.0076)

Autarky - A 0.2927 0.0000 2.0000 2.2117 n.a. n.a. -2.5390

(0.0046) (0.1431) (0.5000) (1.4179) n.a. n.a.

baseline parameters 0.1000 0.5000 2.0000 0.0000 0.5000 0.3500

Model γme σ θ ρ µw/b γw/b LL Value

Moral hazard - MH * 0.1041 0.4851 2.7887 -0.2338 0.4780 0.2867 -0.1462

(0.0022) (0.0188) (0.0742) (0.6062) (0.0098) (0.0117)

Full information - FI 0.1102 0.4462 0.0934 -1.2892 0.5056 0.2644 -0.1784

(0.0027) (0.0000) (0.0001) (11.694) (0.0108) (0.0180)

Limited commitment - LC 0.1097 0.4990 1.5704 1.5944 0.1287 0.6126 -0.1710

(0.0022) (0.0072) (0.1311) (0.0493) (0.0352) (0.0685)

Borrowing & Lending - B 0.1160 0.6007 0.1544 -1.5090 0.5202 0.3489 -0.2182

(0.0023) (0.0000) (0.0043) (0.0170) (0.0178) (0.0312)

Saving only - S 0.1077 0.0000 1.9849 3.0075 0.4204 0.4527 -0.1842

(0.0020) (0.0000) (0.4816) (0.0445) (0.0278) (0.0272)

Autarky - A 0.1868 0.0276 0.9828 0.2036 n.a. n.a. -0.7443

(0.0122) (0.0124) (0.0004) (0.0271) n.a. n.a.

baseline parameters 0.1000 0.5000 2.0000 0.0000 0.5000 0.3500

Model γme σ θ ρ µw/b γw/b LL Value

Moral hazard - MH * 0.0952 0.5426 2.1951 0.2267 0.5005 0.3464 -0.8952

(0.0020) (0.0079) (0.0889) (0.0162) (0.0119) (0.0097)

Full information - FI 0.1358 0.5436 0.0967 -6.4718 0.5567 0.2862 -1.4184

(0.0029) (0.0167) (0.0021) (1.3883) (0.0127) (0.0082)

Limited commitment - LC 0.1267 1.6114 1.1028 -8.8824 0.2549 0.5510 -1.2773

(0.0022) (0.0004) (0.0114) (0.1380) (0.0165) (0.0154)

Borrowing & Lending - B 0.1339 1.2000 7.7164 -3.0189 0.4048 0.3238 -1.5624

(0.0036) (0.2416) (0.0000) (20.484) (0.0135) (0.0134)

Saving only - S 0.1678 0.0000 0.0727 -1.1738 0.3818 0.2771 -1.7803

(0.0040) (0.0000) (0.0004) (0.0028) (0.0212) (0.0230)

Autarky - A 0.3302 1.2000 0.1000 0.4681 n.a. n.a. -3.0631

(0.0042) (0.3634) (0.2738) (0.6550) n.a. n.a.

baseline parameters 0.1000 0.5000 2.0000 0.0000 0.5000 0.3500

Notes: 1. µw/b and γw/b (the mean and standard deviation of the w or b initial distribution) are reported relative to the variables' grid range; 2. Log-

likelihood values are normalized by dividing by the sample size n; higher values imply better fit. 3. Bootstrap standard errors are in parentheses 

below each parameter estimate. * denotes the best fitting regime (including tied); All runs use data with sample size n=1000 generated from the MH 

model at the baseline parameters

Assets, investment and income, (k,i,q) data

Consumption and income, (c,q) data

Assets, consumption, investment, and income, (c,q,i,k) data

Table 10 - Parameter Estimates using Simulated Data from the Moral Hazard (MH) Model
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1. Using (k,i,q) data

1.1 low measurement error tie MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** S** B*** S*** FI,MH

1.2 high measurement error tie tie tie tie MH*** FI*** B** tie FI*** B*** tie LC*** tie B*** S*** all but A

2. Using (c,q) data

2.1 low measurement error MH*** MH** MH*** MH*** MH*** tie FI** tie FI*** LC*** tie LC*** S** B*** S*** MH

2.2 high measurement error FI*** LC*** B* MH* MH*** LC*** tie FI*** FI*** LC*** LC*** LC*** B*** B*** S*** LC

3. Using (c,q,i,k) data

3.1 low measurement error MH*** MH*** MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

3.2 high measurement error tie tie MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** LC,MH

4. Dynamics

4.1 t=0,1 (c,q) panel, low meas. error MH*** MH*** MH*** MH*** MH*** FI** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

4.2 t=0,1 (c,q) panel, high meas. error tie tie MH*** MH*** MH*** LC** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** LC,MH

4.3 t=0,50 (c,q) panel, low meas. error MH*** MH*** MH*** MH*** MH*** FI*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

4.4 t=1,000 (c,q) data, low meas. error tie tie MH* MH*** MH*** FI* tie FI** FI*** tie tie LC*** B*** B*** S*** MH,FI,LC

5. Runs with heterogeneity in the simulated data

5.1 heterogeneous productivity MH*** MH*** MH*** MH*** MH*** LC*** tie FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

5.2 heterogeneous risk aversion MH*** MH*** MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

5.3 heterogeneous interest rates MH*** MH*** MH*** MH*** MH*** LC*** tie FI*** FI*** LC** LC*** LC*** B*** B*** S*** MH

6. Robustness runs with simulated data
2

6.1 sample size n = 200 MH*** MH** MH*** MH*** MH*** LC*** tie FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

6.2 sample size n = 5000 MH*** MH*** MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

6.3 coarser grids MH*** MH*** MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B*** B*** S*** MH

6.4 denser grids used to simulate data MH*** MH*** MH*** MH*** MH*** LC*** FI*** FI*** FI*** LC*** LC*** LC*** B** B*** S*** MH

6.5 no measurement error in simul. data MH*** MH*** MH*** MH*** MH*** FI*** FI** FI*** FI*** B*** S*** LC*** B*** B*** S*** MH

6.6 data simulated at MLE estimates MH*** tie MH*** MH*** MH*** LC*** tie tie FI*** LC*** LC*** LC*** tie B*** S*** LC,MH

6.7 sim. data from S, removed fixed effects MH*** tie B*** S*** tie LC*** B*** S*** A*** B*** S*** tie S*** B*** S*** S

Table 11 - Model Comparisons using Simulated Data
1
 -

 
Vuong Test Results

1. *** = 1%,  ** = 5%,  * = 10% two-sided significance level, the better fitting model regime's abbreviation is displayed. Data-generating model is MH and sample size is n = 1000 unless stated otherwise.; 2. these 

runs use (c,q,i,k) data simulated from the MH model and low measurement error (γme = .1) unless stated otherwise



Instruments b std. error J-test p-value

1. none -0.336* 0.044 -0.423 -0.249 n.a.

2. income -0.333* 0.044 -0.418 -0.248 0.251

3. income, assets -0.340* 0.043 -0.424 -0.257 0.248

4. income, assets, average consumption -0.332* 0.041 -0.413 -0.252 0.312

Other specifications

5. t=1,..,T-1 moment conditions -0.356* 0.030 -0.415 -0.296 0.000

6. 1999-01 data only 0.062 0.113 -0.159 0.283 n.a.

7. 1999-01 data, t=1,..,T-1 moment conditions 0.037* 0.008 0.021 0.054 0.000

Dynamic panel data estimation, one-step difference GMM using lags of 2 or more as instruments

Group variable: household Number of observations: 1552

Time variable : year Number of groups: 388

Number of instruments = 24 Observations per group: 4

dependent variable = it / kt

Coef Robust st. err. z P > |z|

it-1 / kt-1 0.3233 0.0595 5.43 0.000 0.2066 0.4399

(it-1 / kt-1)
2

-0.0965 0.2778 -0.35 0.728 -0.6410 0.4479

qt-1 / kt-1 0.0002 0.0003 0.77 0.440 -0.0003 0.0008

year dummies included

Arellano-Bond test for AR(1) in first differences: z =  -1.87  Pr > z =  0.061

Arellano-Bond test for AR(2) in first differences: z =  -0.48  Pr > z =  0.628

Arellano-Bond test for AR(3) in first differences: z =   1.25  Pr > z =  0.211

Hansen test of overid. restrictions: chi2(17)   =  22.29  Prob > chi2 =  0.174

Note: observations with yearly assets (k) less than 400 Baht were excluded.

[ 95% conf. interval ]

Table 13: Consumption Euler equation GMM test as in Ligon (1998), rural sample

Table 14: Investment Euler equation GMM test as in Bond and Meghir (1994), rural sample

[ 95% conf. interval ]

Notes: 1. b is the estimate of the risk aversion coefficient; assuming households are risk-averse, a negative b suggests the correct model is B 

(standard EE); a positive b suggests MH (inverse EE); 2. the estimates are obtained using continuous updating GMM (Hansen, Heaton and 

Yaron, 1996).


