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Abstract

This paper studies the price-setting problem of a monopoly that in each time period

has the option of failing to deliver its good after receiving payment. The monopoly may

be induced to deliver the good if consumers expect that the monopoly will not deliver

in the future if it does not deliver today. If the good is non-durable and consumers

are anonymous, the monopoly�s optimal strategy is to set price equal to the static

monopoly price each period if the discount factor is high enough, and otherwise to set

the lowest price at which it can credibly promise to deliver the good. If the good is

durable, we derive an intuitive lower bound on the monopoly�s optimal pro�t for any

discount factor and show that it converges to the optimal static monopoly pro�t as the

discount factor converges to one, in contrast to the Coase conjecture. We also show

that rationing the good is never optimal for the monopoly if there is an e¢ cient resale

market and that the best equilibrium in which the monopoly always delivers involves

a strictly decreasing price path that asymptotes to a level strictly above the ratio of

the monopoly�s marginal cost to the discount factor.
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1 Introduction

The possibility of trade is often threatened by the possibility of opportunism. For example, a

consumer who purchases a good from an online retailer must trust that the good will actually

be delivered� as taking legal action in the case of nondelivery would be very costly� and

must also believe that the retailer is not about to cut its price dramatically. Fortunately, long

term incentives can mitigate the risk of opportunistic behavior: in the above example, the

retailer may both deliver the good and keep prices high in order to preserve its standing with

its consumers, even if it has no fear of the legal consequences of nondelivery. In particular,

either failing to deliver the good or cutting prices may lead consumers to believe that the

�rm will not deliver the good in the future, as either of these actions could be interpreted

as an indication that the �rm is trying to maximize its short run pro�ts and then quit the

market.1 This reasoning suggests that a seller who is tempted to fail to deliver her product

may still do quite well if the future is su¢ ciently important. This paper studies this idea

in the context of both non-durable and durable goods monopoly, focusing primarily on the

more involved durable goods case.

The above intuition contrasts starkly with the Coase conjecture (Coase, 1972) that a

patient durable-goods seller that cannot commit to future prices earns little pro�t. As

we will see, the Coase conjecture relies on the assumption that the seller is committed to

delivering the good at her quoted price. In particular, the Coasian temptation to cut

prices is absent when a price cut leads to a continuation equilibrium in which no consumers

make purchases (expecting nondelivery) and the seller never delivers (expecting no future

purchases).2 Thus, even if the seller cannot commit to a price path she can still earn high

pro�ts if she is not committed to delivering the good, either.3 This suggests that the Coase

1An alternative story, which we discuss below, is that the retailer is contractually obligated to deliver

something but that the quality of the good it delivers is unveri�able. In this case, it is natural to think

that a price cut may suggest to consumers that the retailer intends to deliver a low quality good. For an

example of an online market in which lower-priced goods seem to be of extremely low quality, see Ellison

and Ellison (2009).
2Of course, the seller now has an incentive to fail to deliver the good, so the result that the seller can

earn high pro�ts is not trivial.
3This reasoning is similar to Bernheim and Whinston�s (1998) point that if some aspects of behavior are
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conjecture may not apply to any institutional setting: If the seller can legally commit herself

to both a price path and delivery of the good, she should do so. If she can legally commit

herself to delivery, but not to a price path, she should not.4 ;5

Throughout, we consider an in�nitely-repeated interaction between a monopoly seller

and a continuum of buyers, where in every period the seller �rst sets a price, consumers then

choose whether or not to pay, and �nally the seller chooses whether or not to deliver the

good to each consumer. All actions are perfectly observable. If the good is non-durable

and consumers are anonymous, we completely characterize the optimal perfect Bayesian

equilibrium of this game for the seller: if the seller is su¢ ciently patient, she sets the static

monopoly price each period and delivers the good to all consumers who purchase, while if

she is less patient she charges a higher price in order to reduce the quantity demanded and

thereby reduce her temptation to fail to deliver.6

When the good is durable, the structure of any equilibrium in which the seller delivers

the good is complicated: sales must continue forever, since the seller would never deliver the

good to the last consumer, and the price path must fall slowly enough that consumers do

not always wait for lower prices but quickly enough that sales do not occur so rapidly that

the seller gives in to her temptation to fail to deliver. Indeed, with a general distribution

of consumer valuations, it is very di¢ cult to construct any equilibria in which the seller

always delivers the good.7 We therefore take an indirect approach to analyzing this model

noncontractible it is often optimal to fail to contract on other aspects as well.
4This is a slight oversimpli�cation as there will be many equilibria in our model, not all of which yield

high pro�ts. For example, if consumers believe that the monopoly will never deliver the good unless it

legally commits itself to do so, then of course so commiting is the right move. On the other hand, the

dynamic contracting literature often uses pro�t maximization as an equilibrium re�nement and it does not

seem more unreasonable than usual to do so here.
5In some environments, the seller may be "automatically" commited to delivering the good, for example

if nondelivery is viewed by courts as breaching an "implicit" contract. To address this issue, in Section

7 we show that our results extend to a setting where in each period the seller has an exogenous chance of

being unable to deliver the good. We feel that in such a setting the issue that nondelivery may be viewed

as breaching an implicit contract does not arise, since nondelivery always occurs occasionally.
6The �rst part of this statement also holds when consumers are non-anonymous, in contrast with the

results of Hart and Tirole (1988). See the discussion following Proposition 1.
7As discussed below, it is much easier to construct equilibria in which the seller sometimes fails to deliver

3



by �rst considering an auxiliary model where the seller has the ability to set a maximum

sales quantity each period in addition to the price, thereby rationing the good. Our main

result in this model with rationing, which we see as being of some independent interest, is

that using rationing is never optimal for the seller. We then show that the seller�s optimal

pro�t in the original model must exceed her pro�t in any equilibrium involving rationing.

This observation allows us to derive a lower bound on the seller�s pro�t in the original

model� where constructing equilibria is very di¢ cult� by constructing simple equilibria in

the model with rationing. In particular, we construct equilibria in which price is constant

over time but quantity sold every period is restricted via rationing. These quantity restric-

tions lead to positive residual demand, which gives the seller a reason to deliver the good.

We show that a patient seller can approximate her static optimal pro�t level by setting

price equal to the static monopoly price every period and selling to those consumers who

are willing to buy at this price at a constant rate. Furthermore, for any discount factor �,

the seller�s optimal pro�t is at least as high as the static monopoly pro�t of a seller with

cost of delivering the good equal to c=�, where c is the cost of delivering the good in the

dynamic model, as this is precisely the pro�t level that can be attained by setting price

equal to the static monopoly price of a seller with cost c=� and then selling (at cost c) at

the fastest rate at which the seller is willing to deliver in the dynamic model. We also

use the relationship between our model and the model with rationing to show that the best

equilibria for the seller in which she delivers the good to all consumers who purchase involve

a strictly declining price path that asymptotes to a price no lower than c=�.

We proceed as follows: Section 2 relates this paper to the literatures on the Coase

conjecture, strategic rationing, and relational contracting. Section 3 introduces our general

model of both durable and non-durable goods monopoly with relational incentives. Section 4

analyzes the model in the simpler case of a non-durable goods monopoly. It is included both

for completeness and because of connections between it and the subsequent analysis of the

durable goods model. Section 5 introduces the model with a durable goods monopoly, as well

as the model with rationing, and studies the connection between the two, ultimately showing

that the best equilibrium without on-path non-delivery for the seller in the model without

the good, but these equilibria may be unappealing for other reasons.
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rationing yields pro�t at least as high as that in any equilibrium without on-path non-delivery

in the model with rationing. Building o¤ this insight, Section 6 presents our main results

on the durable goods model: pro�ts are bounded from below by those of a static monopoly

with cost c=�, and the best equilibrium price path along which the seller always delivers

strictly declines over time and asymptotes to at least c=�. Section 7 extends our analysis to

a setting in which the seller is sometimes (exogenously) unable to deliver the good, where

our assumption that the seller has the option of nondelivery seems particularly appropriate.

Section 8 concludes and discusses some applications and empirical predictions of our model.

Several proofs are deferred to Appendix A, and Appendix B discusses equilibria in which

the seller does not always deliver the good along the equilibrium path.

2 Relation to the Literature

As indicated above, our results stand in stark contrast with the Coase conjecture (Coase,

1972), which was formalized and explored by Stokey (1982), Bulow (1982), Fudenberg,

Levine, and Tirole (1985), and Gul, Sonnenschein, and Wilson (1986).8 ;9 Our model would

coincide with the standard "no-commitment" durable goods monopoly model if the seller,

8Some of the many in�uential papers in the subesequent literature, in addition to those discussed in

the text, are Ausubel and Deneckere (1987) and Gul (1987) on durable goods oligopoly; Sobel (1991) on

the entry of new consumers; Bagnoli, Salant, and Swierzbinski (1989) on �nite populations; Bond and

Samuelson (1987), Karp (1996), and Deneckere and Liang (2008) on depreciation; Kahn (1986) and McAfee

and Wiseman (2008) on capacity constraints; Olsen (1992) on learning by doing in production; Cabral,

Salant, and Woroch (1999) and Mason (2000) on network externalities; Dudine, Hendel, and Lizzeri (2006)

on storable goods; Deneckere and Liang (2006) and Hörner and Vieille (2009) on interdependent values;

Biehl (2001) on changing consumer valuations; and Board (2008) on time-varying demand. There is also

a large literature on durable goods monopoly with bilateral o¤ers, the early part of which is surveyed in

Section 10.4 of Fudenberg and Tirole (1991).
9In traditional Coase conjecture papers, like Fudenberg, Levine, and Tirole (1985); Gul, Sonnenschein,

and Wilson (1986); and Ausubel and Deneckere (1989), the model may be interpreted as a monopoly selling

to either a continuum of consumers with a known distribution of valuations or to a single consumer with

unknown valuation. In the current paper, only the �rst interpretation is applicable, as in the single-buyer

case the monopoly would never delivery the good after the buyer purchased, so there would be no equilibrium

in which trade occurs.
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while still lacking commitment power over prices, was committed to delivering the good to

all consumers who purchase. In this sense, our model has "less commitment" than this

standard "no-commitment" case, though of course the reason the seller does better in our

model is not that it has less commitment power but rather that committing to delivering the

good to all consumers who purchase may not be wise, as after making such a commitment

the seller is tempted to cut prices.

The literature on the Coase conjecture draws a sharp distinction between the "gap case"

in which the lowest consumer valuation is strictly greater than the seller�s marginal cost

and the alternative "no-gap case." In the gap case, Fudenberg, Levine, and Tirole (1985)

and Gul, Sonnenschein, and Wilson (1986) show that there is generically a unique perfect

Bayesian equilibrium, which is Markovian and satis�es the Coase conjecture. In the no-gap

case, a seminal paper by Ausubel and Deneckere (1989) constructs non-Markovian equilibria

that yield static monopoly pro�ts as the discount factor approaches one. The reason for

the di¤erence between the cases is that in the gap case the seller is always tempted to cut

prices to the lowest consumer valuation, which allows the problem to be solved by backward

induction, while in the no-gap case the possibility that price may fall to marginal cost very

quickly if the seller deviates from a prescribed price path allows the seller to maintain high

prices in equilibrium. This distinction between the gap and no-gap cases does not arise in

our model, since in our model the o¤-path expectation that prevents the seller from cutting

prices is that the seller will not deliver the good, not that the seller will rapidly cut prices.

Our analysis of durable goods monopoly does more than showing that the possibility of

non-delivery allows Ausubel and Deneckere-style equilibria to be constructed in the gap

case, however: as indicated above, we also provide a natural lower bound on seller payo¤s

for a �xed discount factor � and prove that, for any �, the best equilibrium for the seller

in which there is no non-delivery has declining prices converging to a price no lower than

c=�. Results for �xed � and characterizations of optimal equilibria are rare in the durable-

goods monopoly literature. For example, for � bounded away from one, none of the early

papers on the Coase conjecture cited above contain results about optimal seller pro�ts or

the asymptotic behavior of the optimal price path.

Because our approach relies on comparing our model to an auxiliary model in which the
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seller is able to ration the good, our paper connects to the literature on strategic rationing.

One lesson from this literature is that rationing in the absence of an e¢ cient resale market,

i.e., when the highest-valuation consumers do not always receive the good when there is

a shortage, can help the seller both when it can commit to a price path (Van Cayseele,

1991) and when it cannot (Denicolò and Garella, 1999). Both Van Cayseele and Denicolò

and Garella consider short �nite horizons and state that rationing in the presence of an

e¢ cient resale market is never optimal. As part of our analysis of the durable-goods model,

we show that this result holds in an in�nite-horizon setting.10 Our focus is very di¤erent

from that of Van Cayseele and Denicolò and Garella, as they are interested primarily in cases

where allowing rationing can increase pro�ts, while we are interested precisely in cases where

allowing rationing cannot increase pro�ts, so that we can use the model with rationing to

derive results about the model without rationing.

Finally, our paper is related to the literature on relational contracting, particularly that

part of the relational contracting literature that studies durable goods with hidden quality,

which originated with the famous papers of Klein and Le­ er (1981) and Shapiro (1982,

1983).11 While traditional models of durable goods monopoly can be thought of as "re-

lational" in that they study the e¤ect of dynamic incentives on a seller�s decision to cut

prices, we go further and assume that dynamic incentives also govern the seller�s decision

to deliver the good. Thus, the di¤erence between our model and the existing literature on

dynamic seller is that we move a decision� delivery� from formal to relational enforcement.

Also, the equilibria we construct induce cooperation through the Nash threat of breaking o¤

trade, as in many relational contracting models (e.g., Bull, 1987; Levin, 2003). Indeed, a

key di¤erence between our model and traditional models of dynamic monopoly is that our

model admits a Nash equilibrium in which the seller receives her minmax value.

10The relevant result (Proposition 4) assumes that the seller has the option of failing to deliver the good,

but the proof shows that the result continues to hold when the seller does not have this option.
11For an up-to-date survey of this rapidly expanding literature, see Malcomson (2009). For a recent

contribution with some similarities to the current paper, see Masten and Kosová (2009).
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3 Model

Throughout, we consider a seller who can provide a good at marginal cost c > 0 facing a

continuum of consumers of mass 1 with valuations (per period in the case of non-durables, net

present value in the case of durables) v � F (v) with bounded support [v; �v] with v � 0, �v > c,

and F continuously di¤erentiable with strictly positive density f . There is a continuum of

consumers with each valuation in [v; �v], so that if a random fraction x of consumers receive

the good in some period then that fraction x of consumers with every valuation receive the

good. We do not make any assumptions as to whether v is greater than or less than c, i.e.,

as to whether we are in the gap or no-gap case. Let pm be the static monopoly price of a

seller facing consumers with valuations v � F (v) and marginal cost c.

The traditional "no-commitment" model of dynamic monopoly is the following in�nitely

repeated game:

1. At time t 2 f0; 1; : : :g, the seller chooses a menu of price-delivery probability pairs

f(pt;n; xt;n)gn.

2. Every consumer either selects a price-delivery probability pair (pt;n; xt;n) 2 f(pt;n; xt;n)gn
or rejects. Consumers who select (pt;n; xt;n) pay pt;n and receive the good with prob-

ability xt;n. The seller gets payo¤ pt;n � c from each consumer who pays pt;n and

receives the good, and gets pt;n from each consumer who pays pt;n and does not receive

the good. A consumer with valuation v who pays pt;n gets payo¤ v�pt;n if she receives

the good and gets payo¤�pt;n if she does not receive the good.

3. Repeat 1-2, discounting by (common) discount factor �.

In our model, the seller has the option of nondelivery. The game becomes:

1. At time t 2 f0; 1; : : :g, the seller chooses a menu of prices fpt;ngn.

2. Every consumer either selects a price pt;n 2 fpt;ngn or rejects. Consumers who select

pt;n pay pt;n. Let Qt;n be the mass of consumers who pay pt;n.
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3. For each pt;n, the seller chooses what fraction xt;n 2 [0; 1] of those Qt;n consumers

who pay pt;n receive the good. Each consumer who pays pt;n receives the good with

probability xt;n. Payo¤s are as above.

4. Repeat 1-3, discounting by �.

We assume that players use strategies that depend on consumers�decisions at time t only

through Qt;n. This entails assuming that the seller does not condition her strategy on play

by measure 0 sets of consumers, as is standard in the durable goods monopoly literature,

as well as that consumers are anonymous.12 In particular, the seller cannot discriminate

among consumers on the basis of their past play in either her pricing or delivery decisions.

Crucially, we assume that all decisions of the seller are publicly observed. Formally, let

the history ht at the start of period t be

(fp0;ng ; fQ0;ng ; fx0;ng ; : : : ; fpt�1;ng ; fQt�1;ng ; fxt�1;ng) .

Each of the seller�s (pure) strategies is a pair of maps from histories ht to fpt;ng, where

pt;n 2 [0;1) for all t; n, and from histories (ht; fpt;ng ; fQt;ng) to xt;n 2 [0; 1] for all Qt;n; while

a consumer�s (pure) strategy is a map from histories (ht; fpt;ng) to ffpt;ng ; ;g, corresponding

to accepting a price pt;n or rejecting. Note that, for any strategy pro�le, changing the

strategy of a single consumer does not a¤ect the probability distribution over histories ht for

any t; that is, a deviation by a single consumer does not a¤ect the path of play.

Throughout, our solution concept is pure strategy Perfect Bayesian Equilibrium, which

we simply abbreviate as PBE. Of course, the assumption that the seller uses a pure strategy

does not imply that she chooses xt;n 2 f0; 1g, but rather than she does not randomize over

di¤erent choices of fpt;ng or fxt;ng. We have not explored whether mixed strategy equilibria

can di¤er substantially from pure strategy equilibria; however, our main results that the

seller can earn high pro�ts in equilibrium can only be strengthened by considering mixed

strategy equilibria.

We observe immediately that in either the non-durable or durable goods version of our

model there is a Nash equilibrium in which consumers reject all price o¤ers and the seller sets

12See the discussion following Proposition 1 for more on this point.
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xt;n = 0 for all t; n. The threat of reversion to this equilibrium following any deviation may

induce the seller to conform to a prescribed price path as well as to deliver the good to those

consumers who purchase. No such Nash equilibrium exists in the traditional no-commitment

model.

We make frequent use of the following de�nition:

De�nition 1 A PBE is optimal if there is no other PBE that yields strictly higher payo¤

for the seller.

Finally, we brie�y note an alternative interpretation of our model in terms of product

quality. Suppose that the seller is (for whatever reason) contractually obligated to deliver at

least a low-quality good (at cost normalized to zero) to any consumer who purchases and is

able to deliver a high-quality good at additional cost c, and that quality is noncontractable.

If every consumer has valuation zero for the low-quality good, our model is unchanged, with

"low-quality delivery" substituted for "nondelivery." This interpretation depends on every

consumer�s having valuation zero for the low-quality good, and thus may be most attractive

when quality is extremely di¢ cult to verify. For example, the good may be a complicated,

high-tech upgrade of an existing piece of hardware or software, which has no value at all for

consumers if it is not superior to the original product, and outside observers are unable to

verify whether the "upgrade" is in fact better than the original.13

4 Non-Durable Goods Monopoly

In this section, each consumer demands one unit of the good each period, and v is a con-

sumer�s per-period valuation. We also assume, for this section only, that v� 1�F (v)
f(v)

is weakly

13Our results do not apply if consumers have positive valuations for the low-quality good, since in this

case the model need not have a Nash equilibrium that yields zero pro�t. However, two recent papers

illustrate interesting phenomena that may occur in such settings. Inderst (2008) shows that a durable goods

monopoly that sells low- and high-quality goods may serve the entire market in the �rst period, selling the

low-quality good to low-valuation consumers as a means of committing itself not to subsequently o¤er the

high-quality good at a lower price. Hahn (2006) shows that this logic may provide an incentive for a durable

goods monopoly to introduce a damaged version of its good and argues that this often has negative welfare

consequences.
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increasing, so that in the static monopoly allocation every consumer with positive virtual

surplus receives the good.14

Our main result in this section is that, in the optimal equilibrium,15 the seller sets the

(single) price equal to the static monopoly price if she is su¢ ciently patient, and otherwise

sets the lowest price at which she is willing to deliver the good. The intuition is that

the seller�s incentive to fail to deliver the good is increasing in quantity; so if the seller is

impatient she must restrict quantity in order to credibly commit to delivery; and the most

pro�table way to do this is to increase price. In particular, the seller sets p = max fpm; c=�g

every period. To see why c=� is the lowest price at which the seller is willing to deliver the

good, let D (p) � 1 � F (p) be demand at price p, and note that in every period the seller

gains cD (p) from failing to deliver and gains �
1�� (p� c)D (p) from delivering. The latter is

weakly greater than the former if and only if p � c=�. The idea of the proof is to �rst note

that the seller can in e¤ect commit to any price path, since deviations in price-setting may

lead consumers to believe that the seller will not deliver the good and thus lead to zero sales;

next observe that the best dynamic sales mechanism for the seller is stationary, as increasing

one period�s pro�ts also relaxes the seller�s incentive compatibility (willingness to deliver)

constraints from earlier periods; and �nally use standard static mechanism techniques to

characterize the optimal stationary mechanism that is incentive compatible for the seller.

The proof is deferred to Appendix A.

Proposition 1 If �v � c
�
, the equilibrium path of the optimal PBE of the non-durable goods

model is given by pt;n = max
�
pm; c

�

	
for all t; n, buyers accept if and only if v � pt;n, and

the seller delivers the good with probability 1 to all buyers who accept each period. That is,

the seller o¤ers only a posted price p in every period, p = pm if � � c
pm
, and p = c

�
> pm

if � < c
pm
. If �v < c

�
, there is no PBE in which the seller ever delivers the good or receives

positive payments.

Recall that we have assumed that buyers are anonymous. Nonetheless, it is not hard

to construct equilibria that yield static monopoly pro�ts even if buyers are non-anonymous,

14This assumption is for technical convenience only.
15The proof of Proposition 1 shows existence and uniqueness of an optimal equilibrium.
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provided that � � c=pm. For example, let the seller set p = pm in every period and deliver

the good if and only if she has both always delivered the good to all consumers who have

purchased and set p = pm in the past, and let each consumer purchase the good every period

if and only if her valuation exceeds pm and the seller has always delivered the good to all

consumers who have purchased and has always set p = pm. In every period, the seller gains

cD (pm) from failing to deliver and gains �
1�� (p

m � c)D (pm) from delivering, so the seller will

deliver if � � c=pm. This result di¤ers dramatically from the classic analysis of non-durable

goods monopoly with non-anonymous consumers provided by Hart and Tirole (1988). Hart

and Tirole show that, in a �nite-horizon model with non-durable goods and non-anonymous

consumers, equilibrium is governed by the ratchet e¤ect: in every PBE, if v > c, then pt = v

for all but the last few periods. Technically, the di¤erence between our result and theirs

comes from the fact that the stage game in our model has a bad Nash equilibrium ("reject

any o¤er, never deliver"), which can be used as an o¤-equilibrium threat to prevent the seller

from using information revealed early on against high-valuation buyers.16 The key economic

point is that the usual repeated game tradeo¤between a short term gain from cheating and a

long term gain from cooperation on the part of the seller is absent in the Hart-Tirole model:

in their model, the seller is free to "cheat" by raising the price she charges to buyers that

reveal themselves to have high valuations, but buyers cannot credibly retaliate by refusing

to buy at the higher price. In our model, the option of the seller to fail to deliver the good

lets the buyer credibly punish the seller for raising the price, allowing the seller to "commit"

to keeping the price constant. On the other hand, we must now keep track of the seller�s

incentive to deliver the good. If � � c=pm, this incentive constraint is slack, so the seller

can attain her full-commitment optimum.

16The in�nite-horizon version of the Hart-Tirole model has equilibria that yield seller pro�ts above v � c,

though how much above v � c has to our knowledge not been studied in the literature. Thus, it is possible

that some of the di¤erence in results is due to the di¤erence in time horizons.
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5 Durable Goods Monopoly and Rationing

5.1 Preliminaries

For the remainder of the paper, each consumer demands only one unit of the (durable) good,

and v is a consumer�s net present value of receiving the good. In the traditional model of

this situation (see Section 3), Fudenberg, Levine, and Tirole (1985) and Gul, Sonnenschein,

and Wilson (1986) show that the Coase conjecture applies if the lowest valuation v is greater

than c: for generic parameters there is a unique PBE, and as � goes to 1 the seller�s pro�t

goes to v � c and the price drops to v very quickly.

Our main result implies that the Coase conjecture does not apply to this model when the

seller has the option of nondelivery (see Section 3), which we call the "relational contracting

model," or �. Much of our analysis focuses on a particular class of PBE, which we call "full-

delivery PBE." A full-delivery PBE is a PBE in which the seller sets xt;n = 1 for all n at all

histories on the equilibrium path. It is important to note that the seller may set xt;n < 1 o¤

the equilibrium path in a full-delivery PBE. A full-delivery PBE is a best full-delivery PBE

if there is no other full-delivery PBE that yields strictly higher payo¤ for the seller� we use

the word "optimal" for the best PBE overall and "best" for the best full-delivery PBE to help

avoid confusion. Note that on the equilibrium path of a full-delivery PBE there is no reason

for the seller to o¤er a menu of prices, as each consumer will either accept the lowest o¤ered

price or reject, so we simplify notation by writing pt for the lowest price o¤ered by the seller

at time t on the equilibrium path. Furthermore, a consumer who pays pt always receives

the good at time t; we say that a consumer who pays pt at time t on the equilibrium path of

a full-delivery PBE purchases the good at time t. Since we have restricted attention to pure

strategy equilibria, every consumer purchases at exactly one time in every full-delivery PBE,

with the convention that a consumer who never receives the good "purchases" at t =1.

Clearly, an optimal PBE of the relational contracting model can yield no higher payo¤

to the seller than an optimal PBE of the "full-commitment" model in which the requirement

that the seller�s strategy is sequentially rational is relaxed, and it follows from standard

results that an optimal PBE of this full-commitment model yields pro�ts equal to optimal

static monopoly pro�ts. Our main result is the following, which implies that the Coase
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conjecture does not hold in this game regardless of the relationship between v and c and also

provides a lower bound on the seller�s pro�t for any �xed �:

Theorem 1 In the relational contracting model:

1. An optimal PBE exists.

2. A best full-delivery PBE exists.

3. As � approaches 1, pro�t in a best full-delivery PBE approaches static monopoly pro�t.

4. If �v > c
�
and cost equals c, there exists a full-delivery PBE in which pro�t is strictly

greater than static monopoly pro�t when cost equals c
�
.

5. If �v > c
�
, any best full-delivery PBE has a strictly decreasing price path and involves

positive sales in every period.

6. If �v > c
�
, pt � max

�
v; c

�

	
for all t in any best full-delivery PBE.

7. If �v � c
�
, there is no PBE in which the seller ever delivers the good or receives positive

payments.

Sections 5 and 6 devoted to establishing Theorem 1: parts 1 and 2 are proved in this

section (in Propositions 2 and 5) and parts 3 through 7 are proved in Section 6 (in Proposi-

tions 6 through 9). We therefore take a moment to motivate devoting so much attention to

full-delivery PBE. Full-delivery PBE are those equilibria in which on-path delivery is as in

both the full-commitment model (in which the seller commits to both a price path (p)t and

a delivery path (x)t) and in the traditional no-commitment model described in Section 3,

which makes them a natural class of equilibria to study. Indeed, on-path non-delivery� the

equivalent of the seller selling "lottery tickets" that entitle consumers to receive the good

with some probability less than 1�may be unappealing in some settings, for example if con-

sumers can tell whether the seller has failed to deliver the good to anyone but not whether the

seller has delivered to some exact fraction of consumers. Furthermore, Theorem 1 implies

that the pro�t lost by the seller in a best full-delivery PBE as opposed to an optimal PBE

is bounded from above by the di¤erence between static monopoly pro�t when cost equals
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c and when cost equals c=�, which is small for � close to 1. Nonetheless, we conjecture

that in general the optimal PBE is not full-delivery, for reasons we discuss in Appendix B.

Appendix B proves the analogs of parts 3 and 4 of Theorem 1 for non-full-delivery equilibria

directly, i.e., without relying on the connection between the relational contracting model and

the related model with rationing introduced below. The approach of Appendix B also has

the advantage of explicitly constructing equilibria in the relational contracting model, while

the approach taken in the body of the paper in nonconstructive. Thus, there are at least two

very di¤erent kinds of PBE that yield high seller pro�ts: full-delivery PBE with declining

price paths, whose existence is proven nonconstructively in the text; and non-full-delivery

equilibria with constant price paths, which are constructed in Appendix B.

We adopt a novel approach to proving Theorem 1. We �rst introduce the following

variant of the relational contracting model, in which the seller can arti�cially restrict the

quantity of the good supplied each period:

1. The seller chooses a price pt and a maximum quantity to supply qt 2 [0; 1].17

2. Every consumer chooses whether or not to accept pt. If less than qt consumers accept,

all consumers who accept pay pt. Otherwise, the qt consumer with the highest valu-

ations among those who accept pay pt. Formally, a consumer with valuation v who

accepts pays if and only if the mass of consumers with valuation strictly greater than

v who accept is strictly less than qt.

3. If measure Qt of consumers pay pt (which we call the period t quantity), the seller

chooses what fraction xt 2 [0; 1] of these consumers receive the good. Each consumer

who pays pt receives the good with probability xt.

4. Repeat 1-3, discounting by �.

We have not allowed the seller to o¤er menus of prices as this would only complicate

notation, since we restrict attention to full-delivery PBE in what follows.

17For the remainder of the paper, qt refers to the quantity cap in period t and Qt refers to the number of

consumers who pay in period t (i.e., the period t quantity). By construction of the model with rationing,

Qt � qt.
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We call this game the "relational contracting model with rationing," or simply the "model

with rationing," or �R.18 Optimal, full-delivery, and best full-delivery PBE in �R are de�ned

as in �. The main reason we introduce �R is that full-delivery equilibria in �R may have �at

price paths, while every full-delivery equilibrium in � must involve price cuts, as otherwise

there would be no way to delay sales and thereby induce delivery.19 Full-delivery equilibria

with �at price paths are easy to analyze, as consumers�incentives in such equilibria are trivial:

if the price is �xed at p in a full-delivery equilibrium, a consumer with valuation v � p wants

to purchase as soon as possible, while a consumer with v < p will never purchase. We will

show that full-delivery equilibria with �at price paths exist in �R that approximate static

monopoly pro�ts for high �. Furthermore, we will show that a price-quantity path (p;Q)t is

a best full-delivery PBE price-quantity path in � if and only if it is a best full-delivery PBE

price-quantity path in �R (Corollary 1, in Section 5.4). Therefore, the best full-delivery PBE

pro�t attainable by the seller is the same in � and �R, so the above observation that simple

full-delivery PBE exist in �R in which pro�ts approximate static optimal pro�ts immediately

yields part 3 of Theorem 1, even though no such simple full-delivery PBE exist in �. The

proofs of parts 2 and 4 through 7 of Theorem 1 also rely on Corollary 1, as we will see; thus,

Corollary 1 is the key to our approach to proving Theorem 1.

To summarize the above roadmap, Sections 5 and 6 establish the following chain of

18In de�ning �R we have made two assumptions on the rationing technology: that types "on the boundary"

between receiving the good and not do not receive the good, and that any rationing that occurs is "e¢ cient,"

in that the highest-valuation consumers are eligible to receive the good. The �rst assumption is only for

technical convenience and simpli�es the proof of Lemma 3. The second assumption is substantive, as Van

Cayseele (1991) shows that under full-commitment a monopoly can achieve pro�ts above static monopoly

pro�ts by using "ine¢ cient" rationing. The second assumption is descriptive in the presence of a frictionless

resale market. Alternatively, one could view the model with rationing entirely as a technical aid in analyzing

the model without rationing.
19Our results about �R, especially Proposition 4, may also be of independent value to readers interested

in strategic rationing.
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inequalities:

Optimal PBE Pro�t in � � Best Full-Delivery PBE Pro�t in � (by de�nition)

= Best Full-Delivery PBE Pro�t in �R (by Corollary 1)

> Best Full-Delivery, Constant-Price PBE Pro�t in �R

(by Proposition 7)

= Static Monopoly Pro�t with Cost c=� (by Corollary 2).

Before beginning our analysis of �R, we �rst prove part 1 of Theorem 1 directly. The

proof proceeds by �rst showing that the seller�s pro�t is continuous in price-delivery paths

(p; x)t and then showing that any price-delivery path can be supported in PBE by endowing

consumers with the belief that the seller will never deliver the good if she ever deviates from

her prescribed price-delivery path. The details are deferred to Appendix A.

Proposition 2 (Theorem 1.1) An optimal PBE exists in �.

5.2 Existence of Best Full-Delivery PBE in the Model with Ra-

tioning

We now begin our analysis of the full-delivery PBE of � and �R and the relationship between

them. The goal of this subsection is to show that a best full-delivery PBE exists in �R. We

start with a de�nition:

De�nition 2 Given a price path (p)t, a valuation v is generic with respect to (p)t if

�t (v � pt) 6= �t
0
(v � pt0)

for all t 6= t0. If not, v is nongeneric with respect to (p)t.

That is, a valuation v is generic with respect to (p)t if a consumer with valuation v is

not indi¤erent between purchasing at any two times t and t0 when prices are given by (p)t.

For any price path (p)t, there are only countably many valuations which are nongeneric with

respect to (p)t, so the assumption that F admits a strictly positive density immediately

yields the following observation:
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Lemma 1 For any price path (p)t, the set of valuations v 2 [v; �v] that are generic with

respect to (p)t has measure 1.

We now present a series of lemmas that are needed to prove existence of a best full-

delivery PBE in �R. The longer proofs are deferred to Appendix A.

Lemma 2 simply states that any two consumers with the same valuation receive the same

payo¤ in any PBE, and consumers with higher valuations receive higher payo¤s:

Lemma 2 In any PBE of � or �R, any two consumers with the same valuation, v, receive

the same PBE payo¤, Vv. If v � v0, then Vv � Vv0.

Proof. The �rst part follows because at any PBE a consumer with valuation v can deviate

to the strategy of another consumer with valuation v and receive the same payo¤ as him,

because the actions of a single consumer do not a¤ect the path of play (in either � or �R).

The second part follows because at any PBE a consumer with valuation v � v0 can deviate

to the strategy of a consumer with valuation v0 and receive a weakly higher payo¤ than him

(in �R, this relies on the fact that a consumer with higher valuation can purchase whenever

a consumer with lower valuation can do so), again because the actions of a single consumer

do not a¤ect the path of play.

The next two lemmas show that, across all full-delivery PBE, the price-rationing path

(p; q)t uniquely determines the quantity path (Q)t. Lemma 3 is not trivial because the set of

times at which a consumer is able to purchase under price-rationing path (p; q)t depends on

the times at which higher-valuation consumers are purchasing. The intuition for the result is

that if a consumer with valuation v cannot purchase at the same set of times under two PBE,

then there must be a nontrivial mass of higher-valuation consumers who cannot purchase at

the same set of times under the two PBE, either, as otherwise almost all higher-valuation

consumers would purchase at the same times under both PBE and the original consumer

would not have been "rationed out" of purchasing at his preferred time. Therefore, there

can be no valuation v that is "approximately" the highest valuation that gets "rationed out,"

which implies that no valuation can be "rationed out."
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Lemma 3 Given a price-rationing path (p; q)t in �R and a valuation v that is generic with

respect to (p)t, there exists a time � v such that every consumer with valuation v purchases

at � v in any full-delivery PBE in �R with price-rationing path (p; q)t.

Combining Lemma 1 and Lemma 3 immediately yields the following:

Lemma 4 Given price-rationing path (p; q)t, every full-delivery PBE in �R with price-

rationing path (p; q)t has the same quantity path (Q)t.

In fact, this quantity path (Q)t can be viewed as a continuous function of the price-

rationing path (p; q)t:

Lemma 5 The unique quantity path (Q)t that may occur in a full-delivery PBE in �R with

price-rationing path (p; q)t is continuous in (p; q)t in the product topology.

We now show that a best full-delivery PBE exists in the model with rationing (Proposition

3). This holds because the set of full-delivery PBE price-rationing-quantity paths can be

shown to be compact in the product topology,20 and the seller�s pro�t is continuous in price-

rationing-quantity paths. It is straightforward to show that the set of full-delivery PBE

price-rationing paths is compact: the seller can be induced to set any price-rationing path

if consumers believe that she will never deliver the good if she sets the wrong path, and the

seller is willing to deliver Q units of the good if she is willing to deliver Q� " for all small ".

The di¢ culty is showing that small changes in the price-rationing path induce small changes

in the quantity path. This is taken care of by Lemmas 4 and 5, which are both proved in

Appendix A.

Proposition 3 A best full-delivery PBE exists in �R.

Proof. Let F be the set of full-delivery PBE price-rationing-quantity paths (p; q;Q)t in �R

satisfying pt 2 [v; �v] for all t. Note that if a PBE is best in the set of PBE with price-

rationing paths in F , then it is best overall, as any PBE with pt > �v for some t yields no

20Technically, this holds for price paths with pt 2 [v; �v] for all t, which we can restrict attention to without

loss of generality.
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more pro�t than a PBE with an identical price-rationing path but with pt = �v for all such

t instead, and similarly for pt < v. Given a price-rationing-quantity path (p; q;Q)t, the

associated pro�t for the seller is

1X
t=0

�t (pt � c)min fqt; Qtg ,

which is obviously continuous in (p; q;Q)t in the product topology. We will show that F

is compact in the product topology, and then apply Weierstrass�s Theorem to complete the

proof.

Observe that F � �1t=0 ([v; �v] ; [0; 1] ; [0; 1])t, which is compact by Tychono¤�s Theorem.

Therefore, to show that F is compact in the product topology it su¢ ces to show that F is

closed in the product topology. To see that it is, consider a sequence of paths f(p; q;Q)tgn 2

F converging pointwise to (p�; q�; Q�)t. We must show that there exists a full-delivery PBE

with price-rationing-quantity path (p�; q�; Q�)t. Consider the following strategy pro�le:

1. The seller sets price-rationing path (p�; q�)t and xt = 1 as long as she has conformed

to this strategy in the past. Otherwise, she sets pt = �v, qt = 1, xt = 0 for all future

periods. In particular, the seller sets xt = 0 in any period in which has set pt 6= p�t .

2. A consumer with valuation v who has not yet received the good at t accepts at t if

and only if the seller has never deviated from her prescribed strategy and �t (v � p�t ) �

�� (v � p�� ) for all � � t.

To establish that this pro�le is a PBE, we �rst observe that if the seller ever sets p� 6= p�� ,

she receives zero continuation payo¤. Since this is her minmax value, she cannot receive

continuation payo¤ strictly less than this in any PBE, so in particular her on-path continua-

tion value after � along (p; q;Q)t;n is weakly positive for every n, so by continuity of pro�ts in

(p; q;Q)t we see that her on-path continuation value after � along (p
�; q�; Q�)t is also weakly

positive. This implies that setting p� 6= p�� on-path is not a pro�table deviation. Similarly,

the fact that setting xt = 1 is optimal on-path along (p; q;Q)t;n for all n implies that setting

xt = 1 is optimal on-path in this strategy pro�le, because the cost of delivery and on-path

continuation values are continuous in (p; q;Q)t;n, while the payo¤ of zero that results from
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deviating from the equilibrium path in this pro�le is at least as bad as the payo¤ from de-

viating in any PBE. Also, the seller�s o¤-path play is optimal because o¤-path price-setting

does not a¤ect her payo¤s and o¤-path delivery imposes a positive cost at no bene�t.

We next check that each consumer�s play is optimal. It is again obvious that his o¤-path

play is optimal, as paying is costly and yields no bene�t when the seller sets xt = 0. To see

that his on-path play is optimal given (p�; q�; Q�)t, note that accepting at t yields �
t (v � p�t )

if he pays (i.e., if he is allowed to purchase the good) and his continuation payo¤ otherwise,

while rejecting always yields his continuation payo¤, and �t (v � p�t ) is weakly greater than

his continuation payo¤ if �t (v � p�t ) � �� (v � p�� ) for all � � t.

Finally, we must check that the prescribed consumer behavior actually induces quantity

path (Q�)t. By Lemma 4, for any price-rationing path (p; q)t there is a unique quantity

path (Q)t that occurs in a full-delivery PBE with price-rationing path (p; q)t, and (Q)t is

continuous in (p; q)t by Lemma 5. Therefore, the fact that (p; q)t;n converges to (p
�; q�)t

implies that (Q)t;n converges to (Q
�)t. Thus, there there exists a full-delivery PBE with

price-rationing-quantity path (p�; q�; Q�)t.

We have shown that F is closed, and therefore compact, in the product topology. Weier-

strass�s Theorem now implies that there is a point in F that maximizes pro�ts, which com-

pletes the proof.

5.3 Nonoptimality of Rationing in the Model with Rationing

We now show that any best full-delivery PBE in �R involves no rationing on the equilibrium

path. This is the central step in showing equivalence of best full-delivery PBE in � and �R

(Corollary 1), which is in turn our main tool in proving Theorem 1.

By Lemma 3, the path of play of a full-delivery PBE is given by a price-rationing path

(p; q)t, up to di¤erences in the play of the measure-0 set of consumers with nongeneric

valuations with respect to (p)t. Let us write D� ((p; q)t) for the quantity demanded at time

� given price-rationing path (p; q)t, i.e., the measure of consumers who would prefer to receive

the good at time � at price p� than to receive their PBE payo¤.21 Similarly, we say that

21Throughout the paper, D (p) � 1�F (p) is the static demand at price p, while D� ((p; q)t) is the time-�

demand in the dynamic model under price-rationing path (p; q)t.

21



a consumer demands the good at � if she prefers receiving the good at time � at price p�

to receiving her PBE payo¤. Finally, we say that rationing occurs along a price-quantity-

rationing path (p; q)t if there exists a time � such that D� ((p; q)t) > q� > 0.22 Note that

in a full-delivery PBE in which D� ((p; q)t) � q� , a consumer with nongeneric valuation who

demands the good at � must purchase at � .23

We show that every best full-delivery PBE in �R involves no rationing by arguing that any

full-delivery PBE involving rationing can be strictly improved upon by another full-delivery

PBE. The basic idea is that if rationing occurs at time t�, modifying the equilibrium by

slightly increasing price at t�, such that quantity sold at t� remains constant, and using

additional rationing to ensure that quantity sold in every other period does not increase,

leads the timing of all sales to remain constant and therefore yields an increase in pro�ts.

However, the proof is complicated by the fact that, without �rst ruling out rationing, we

cannot ensure that the price path is decreasing and cannot establish the usual skimming

property that higher-valuation consumers purchase earlier. The heart of the proof involves

showing that slightly increasing price at t� and using additional rationing to ensure that sales

do not increase elsewhere cannot lead to a decrease in sales at some other time � . If it did,

then those consumers who used to purchase at � must now purchase at some other time that

is better for them than � , as they still have the option of earning surplus by purchasing at � .

And the fact that they have this new opportunity means that some other, higher-valuation

consumers must also be purchasing at a di¤erent time. Since higher-valuation consumers

must purchase at some point rather than never purchasing if lower-valuation consumers do

so, following this "trail" of consumers who purchase at di¤erent times ultimately shows

that every consumer (with generic valuation) who purchased before the price increase still

purchases after the price increase. The details of the proof are deferred to Appendix A.

Proposition 4 In �R, no rationing occurs along a best full-delivery PBE price-quantity-
22If qt = 0, it is irrelevant whether we consider the monopoly to be rationing at t or to be setting price

equal to in�nity. We do not refer to this case as rationing for technical convenience.
23If D� ((p; q)t) = q� , this may fail for a measure-zero set of consumers who demand the good at � but

are unable to purchase at � due to rationing. Since measure-zero sets of consumers are irrelevant for our

analysis, we ignore this case in the discussion.
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rationing path.

5.4 Equivalence of Best Full-Delivery PBE in the Model with and

without Rationing

We are �nally ready to prove Corollary 1, which establishes a very close relationship between

best full-delivery PBE in the relational contracting model with and without rationing. The

intuition for Corollary 1 is simple: by Proposition 4, no rationing occurs on the equilibrium

path in a best full-delivery PBE of �R, and the worst possible o¤-path punishment (breaking

o¤ trade) does not require rationing, so a best full-delivery PBE of �R can be no better than

a best full-delivery PBE of �. The details of the proof, which involves constructing a PBE

in � corresponding to a given price-quantity path in �R, and vice versa, is deferred to the

appendix. The constructed PBE have the same grim-trigger structure as the PBE described

in the proof of Proposition 3 and in Section 6.1.

Corollary 1 A price-quantity path (p;Q)t is a best full-delivery PBE price-quantity path in

�R if and only if it is a best full-delivery PBE price-quantity path in �.

Corollary 1 combined with Proposition 3 immediately yields part 2 of Theorem 1:

Proposition 5 (Theorem 1.2) A best full-delivery PBE exists in �.

6 Properties of Best Full-Delivery Equilibria

6.1 High Pro�ts and Super-Monopoly Pricing

In this subsection, we use the facts about �R and its relationship to � established in Section

5 to prove parts 3 and 4 of Theorem 1.

We �rst show that pro�ts in a best full-delivery PBE in �R (which exists, by Proposition

3) converge to the static monopoly pro�t as � approaches 1, which is not di¢ cult. Corollary

1 then implies that the same is true in �. To see why payo¤s in the best full-delivery PBE

in �R converge to static monopoly pro�ts as � approaches 1, let D (p) � 1 � F (p)� the
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static demand at price p� and consider the following strategy pro�le, where 
 is a constant

in
�
0; p

m�c
pm

�
:

1. The seller sets price-rationing-delivery path pt = pm, qt = 
 (1� 
)tD (pm), xt = 1 as

long as she has conformed to this strategy in the past. Otherwise, she sets pt = �v,

qt = 1, xt = 0 for all future periods. In particular, the seller sets xt = 0 in any period

in which has set pt 6= pmt .

2. A consumer with valuation v who has not yet received the good accepts if and only if

the seller has never deviated from her prescribed strategy and v � pm.

That is, the seller keeps price �xed at the static monopoly price, pm, and sells to fraction


 of those consumers who demand the good each period, while consumers accept if and only

if v � pm and the seller has never deviated. It is clear that consumers�play is optimal,

and that the seller can never bene�t from setting a di¤erent value of pt or qt, so checking

that this pro�le is an equilibrium reduces to checking that the seller prefers to deliver the

good. The proof of Proposition 6 shows that the seller does in fact prefer to deliver the

good if 
 � �pm�c
�pm

, and if � is close to 1 then this strategy pro�le yields approximately static

monopoly pro�ts, as the cost of delay involved in selling to only fraction 
 of the consumers

who demand the good each period is small. Therefore, pro�ts in a best full-delivery PBE

in �R must approximate static monopoly pro�ts for � close to 1 as well.

Proposition 6 (Theorem 1.3) For both � and �R, for all " > 0, there exists �� < 1 such

that, for all � > ��, there exists a full-delivery PBE under which the seller�s payo¤ is within

" of the static monopoly payo¤.

Proof. We prove the result for �R below. Proposition 3 then implies that, for every � > ��,

there exists a best full-delivery PBE in �R under which the seller�s payo¤ is within " of the

static monopoly payo¤. Corollary 1 in turn implies that the same is true in �.

Recall that pm is the static monopoly price, so the static monopoly payo¤is (pm � c)D(pm).

Suppose that pm > c, i.e., that positive pro�ts are possible� the case where this fails is trivial.

Consider the strategy pro�le described above, for 
 some constant in
�
0; p

m�c
pm

�
. It

is clear that each consumer�s strategy is a best-reply. Note also that qt = Qt for all t
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along the equilibrium path. To check that this pro�le describes a PBE, we must only

check that the seller has an incentive to deliver the good along the equilibrium path, since

any other deviation yields continuation payo¤ zero against positive continuation payo¤ from

conforming. This condition is

1X
�=1

��qt+� (pt+� � c) � qtc for all t � 0.

For any t, this can be rewritten as


 (1� 
)t
�

�(1� 
)

1� �(1� 
)

�
D(pm)(pm � c) � 
(1� 
)tD(pm)c,

or �
�(1� 
)

1� �(1� 
)

�
(pm � c) � c.

Rearranging this inequality gives


 � �pm � c

�pm
. (1)

Thus, the strategy pro�le above is a PBE for any 
 satisfying (1). Since pm > c, there

exists 
 > 0 such that the strategy pro�le above is a PBE for high enough �, in particular

for � > c
pm
.

Suppose that � > c
pm
and �x any positive 
 satisfying (1). Note that this strategy pro�le

yields pro�t �



1� �(1� 
)

�
D(pm)(pm � c)

for the seller. As � approaches 1, this converges to D(pm)(pm� c), completing the proof.

The intuition for this result is that, for � high enough (� > c=pm), the seller can credibly

deliver the good to those consumers willing to pay the monopoly price at a �xed positive rate


, and taking � to 1 means that the loss from delay involved in this strategy is insigni�cant.

Observe that, while the proof of Proposition 6 shows that, in �R, there exists a single strategy

pro�le which is a PBE for all su¢ ciently high � and which yields pro�ts converging to static

monopoly pro�ts as � converges to 1, such a strategy pro�le need not exist in �.

Note that the strategy pro�le described in the proof of Proposition 6, with p = pm, is

not a best full-delivery PBE in �R for �xed � < 1. Indeed, there exist full-delivery PBE in

�R with constant price paths (i.e., pt = pt0 for all t; t0) that yield higher pro�ts. To see this,

25



consider the strategy pro�le in the proof of Proposition 6 with pm replaced by some price p.

Let


�(p) � �p� c

�p
.

The argument in the proof of Proposition 6 that led to equation (1) shows that 
�(p) is the

fastest rate at which the seller can sell in a full-delivery PBE in which price is �xed at p.

This implies that the seller�s pro�t in the best full-delivery PBE with a constant price path

at p and a constant sales rate 
 is�

�(p)

1� �(1� 
�(p))

�
D(p)(p� c),

which equals �
p� c

�

p� c

�
D(p)(p� c). (2)

Note that the �rst term of (2) represents the cost of the delay in sales required to induce

the seller to deliver, while the second term is simply the static pro�t at price p. Raising p

above pm yields a �rst-order increase in the �rst term in (2) and a second-order decrease in

the product of the second and third terms, so the seller does better to sell at price above pm.

The intuition is similar to that of Section 4: raising price reduces quantity, which reduces

the seller�s temptation to fail to deliver, and, with durable goods, this allows the seller to

sell at a faster rate. More speci�cally, the required delay in sales forces a seller who would

receive p � c per unit sold under full commitment to receive only p � c
�
per unit sold, so,

with a constant price path, a seller with cost c can do no better than imitating the pricing

of a static monopoly with cost c=�. That is, (2) equals�
p� c

�

�
D(p),

from which it is clear that the best full-delivery, �xed-price PBE in which the seller sells at

a constant rate is given by price pm
�
c
�

�
, the monopoly price when cost equals c=�, and sales

rate 
 = 
�(pm
�
c
�

�
). In fact, it is not hard to show that this is the best full-delivery, �xed-

price PBE overall: all that remains to show this is to establish that selling at the constant

rate 
�(p) is optimal given that prices are �xed at any given p, which follows from a standard

dynamic programming argument.24

24Corollary 2 applies only to the case �v > c
� . Proposition 9 shows that, if �v �

c
� , there is no full-delivery

PBE in � or �R in which the seller ever delivers the good or receives positive payments.
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Corollary 2 If �v > c
�
, the best full-delivery, constant-price PBE in �R is given by pt =

pm
�
c
�

�
and qt = 
�(pm

�
c
�

�
)
�
1� 
�(pm

�
c
�

�
)
�t
D(pm

�
c
�

�
). Furthermore,

�
pm
�
c
�

�
� c

�

�
D
�
pm
�
c
�

��
is a lower bound on the best full-delivery PBE pro�t in both � and �R.

Proof. Given the �rst part of the result, the second part follows immediately from Corollary

1.

Suppose pt = p for all t. Let Q be the static demand for price p. The problem of �nding

the best full-delivery PBE with a constant price p in �R reduces to �nding the best number

of consumers to sell to in every period while maintaining the seller�s incentive to deliver the

good; i.e., to solving the following functional equation:

V (Q) = max
q�Q such that �V (Q�q)�qc

(p� c) q + �V (Q� q). (3)

Standard dynamic programming results imply that there is at most one solution to this

equation with a non-trivial set satisfying the constraints. Conjecture that V (Q) = �p�c
�
Q.

The right-hand side of (3) then becomes

max
q�( �p�c�p )Q

(p� c) q + (�p� c) (Q� q)

= (p� c)

�
�p� c

�p

�
Q+ (�p� c)

�
c

�p

�
Q

=
�
p� c

�

�
Q,

where the constraint set is non-trivial if p > c=�. Therefore,
�
p� c

�

�
Q is the highest pro�t

attainable by a price path �xed at p > c=� when there are Q remaining consumers with

valuations greater than p, and 0 is the highest such pro�t if p � c=� (as the solution to (3)

must be nonincreasing in p). Setting Q = D(p) and maximizing over p completes the proof.

Finally, we note that (non-constant price) full-delivery PBE of �R exist that yield pro�ts

strictly above static monopoly pro�ts with cost equal to c=�, if �v > c=�. For example,

consider modifying the best full-delivery, constant price path by increasing p0 from pm
�
c
�

�
to pm

�
c
�

�
+ ", for " small. We claim that, for small ", q0 consumers will still pay p0. This

follows because a consumer with valuation v demands the good at time 0 and price p0 if

v � pm
�
c
�

�
� " � �

�
v � pm

�
c
�

��
, or " � (1� �)

�
v � pm

�
c
�

��
. This holds for all consumers
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with v > pm
�
c
�

�
in the limit as " goes to 0, and q0 =

�
�pm( c� )�c
�pm( c� )

�
D
�
pm
�
c
�

��
, which is strictly

less than 1 � F
�
pm
�
c
�

��
. Therefore, there exists " > 0 such that more than q0 consumers

demand the good at time 0 when p0 = pm
�
c
�

�
+ ". And the continuation path of play from

t = 1 onward is the same under the modi�ed strategy pro�le as under the best constant

price PBE, so the modi�ed pro�le yields strictly higher pro�ts overall. This yields part 4

of Theorem 1:

Proposition 7 (Theorem 1.4) If �v > c=�, there exists a full-delivery PBE of �R (when

cost equals c) yielding pro�ts strictly greater than static monopoly pro�ts when cost equals

c=�. By Corollary 1, the same is true of full-delivery PBE of �.

Before leaving this subsection, note that Corollary 2 suggests that the best full-delivery

PBE of the relational contracting model may involve pricing above the static monopoly level.

We demonstrate this here in a simple, two-type example.25

Example 1 Suppose that half the consumers have valuation 2: 36 while the other half have

valuation 2:12. Let c = :38 and � = :4. Note that the static monopoly price is 2:12,

as this yields pro�t 1: 74 while setting price equal to 2:36 yields pro�t :99. In the dy-

namic model, the discussion preceding Corollary 2 implies that the best full-delivery PBE

with price �xed at 2:36 yields pro�t
�
2:36� :38

:4

�
:5 = :71 while the best PBE with price �xed

at 2:12 yields pro�t
�
2:12� :38

:4

�
1 = 1: 17. On the other hand, one can check that setting

p0 = 2: 26 and pt = 2:12 for all t � 1 and selling to all high-valuation consumers in pe-

riod zero and then selling to the low-valuation consumers at the fastest possible rate yields

pro�t (2:26� :38) :5 + :4
�
2:12� :38

:4

�
:5 = 1: 174. Furthermore, this is a PBE price-quantity

path, as high-valuation consumers receive 2:36 � 2:26 = :1 from purchasing in period zero

and at most :4 (2:36� 2:12) = :096 from purchasing at a later date; while the seller gains

:4
�
2:12� :38

:4

�
:5 = :234 from delivering the good at time zero and gains :38 � :5 = :19 from

25This example does not exactly �t our model as we have assumed a continuous distribution of valuations.

However, the example can be slightly perturbed to yield a distribution that satis�es our assumptions, and,

noting that every best full-delivery PBE price path is decreasing (by Proposition 8), we conjecture that the

best full-delivery PBE in the perturbed example will have p0 > pm.
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failing to deliver.26 Since this full-delivery PBE yields higher pro�t than the best PBE that

�xes price at the monopoly price of 2:12, which is clearly the best PBE in which all prices

are weakly below the monopoly price, the best full-delivery PBE in this example must have

pt > pm for some time t.

6.2 Declining Prices

Finally, we establish three additional important properties of best full-delivery PBE of � and

�R, which hold for any �xed discount factor (parts 5 through 7 of Theorem 1). We �rst use

the possibility of rationing to ensure that best full-delivery PBE involve strictly decreasing

price paths and positive sales each period. The idea is that delaying sales is wasteful and

rationing can be used to ensure that speeding up sales does not violate the seller�s incentive

compatibility constraint, which might otherwise be a concern.

Proposition 8 (Theorem 1.5) If �v > c
�
, any best full-delivery PBE of � or �R has a

strictly decreasing price path and strictly positive sales each period.

Proof. We prove the result for �R, whence the result for � follows by Corollary 1. If �v > c
�
,

full-delivery PBE exist in which the seller makes positive pro�ts (by Proposition 7), so any

best full-delivery PBE of �R yields positive pro�ts.27 Suppose that (p; q)t is such a best full-

delivery PBE price path (which exists by 3). By Proposition 4, D� ((p; q)t) � q� for all � , so

Q� = D� ((p; q)t) for all � . Suppose that there exists some time � such that D� ((p; q)t) = 0.

Let t� be the �rst such time. If t� = 0, then de�ne a new path by letting p0t = pt+1,

q0t = qt+1, i.e., shifting the original price-rationing path forward one period, which implies

that Q0t = Qt+1, so pro�ts under the new path are 1
�
times pro�ts under the original path,

contradicting the optimally of the original path. If t� > 0, let vt��1 be the lowest valuation

such that a consumer with valuation vt��1 demands the good at t�� 1, which is well-de�ned

because a positive measure of consumers demand the good at t�� 1, by de�nition of t�. We

�rst claim that vt��1 > pt��1. To see this, �rst note that a consumer with valuation vt��1
26Corresponding o¤-path play may be taken to be as in the strategy pro�le in the proof of Proposition 6,

for example.
27See Proposition 9 for why this is not true if �v < c

� .
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can demand the good at t� � 1 only if vt��1 � pt��1. If vt��1 = pt��1, then it must be true

that p� = pt��1 for all � > t� � 1, since the price path is weakly decreasing by assumption;

and if the price ever falls strictly below pt��1 then all consumers with valuations su¢ ciently

close to pt��1 prefer to wait until this time to purchase, and all but at most a set of measure

0 of these consumers have the option of doing so since D� ((p; q)t) � q� for all � . The fact

that D� ((p; q)t) � q� for all � then implies that Q� = 0 for all � > t� � 1, as all consumers

prefer to purchase at t��1 than at any later time. Therefore, continuation pro�ts from time

t� � 1 onward equal 0, which implies that the seller does not deliver at t� � 1. This in turn

implies that no consumers pay at t��1, so that continuation pro�ts from time t��2 onward

equal 0 as well. By induction, continuation pro�ts from time 0 onward are 0, contradicting

the fact that any best full-delivery PBE yields positive pro�ts if �v > c
�
.

Now consider modifying (p; q)t by changing pt� to
pt��1�(1��)vt��1

�
. Since vt��1 > pt��1,

we have pt� < pt��1, and it is easy to check that all consumers with valuation weakly greater

than vt��1 continue to demand the good at t��1. By the skimming property (which is easily

seen to hold due to declining prices and no rationing), the seller can sell a positive quantity

at date t� + � only if pt�+� <
pt��1�(1���+1)vt��1

��+1
, so the seller strictly prefers selling to some

mass of consumers at t� at the new price to selling to them at any point in the future. Next,

observe that under the new price there is strictly positive demand at t�, since at the new

price a consumer with valuation vt��1 strictly prefers to purchase at t� � 1 than to purchase

at any other time except t�, and is indi¤erent between purchasing at t� � 1 and purchasing

at t�, so a consumer with valuation slightly below vt��1 strictly prefers purchasing at t� to

purchasing at any other time. Furthermore, the total sales at all future dates to consumers

who do not buy at t� is left unchanged, so total pro�ts are strictly higher under the new

path. Finally, the potential complication that the seller�s incentive compatibility constraint

may be violated at t� can be addressed by rationing at t�, since the necessity of positive

continuation pro�ts from t� on implies that the seller can credibly sell a strictly positive

quantity at t�. So the modi�ed path (possibly with rationing at t�) strictly improves on the

original path, contradicting the assumption that D� ((p; q)t) = 0 for some � .

We have shown that every best full-delivery PBE induces strictly positive sales at every

date. Since every best full-delivery PBE involves no rationing, this is possible only if every
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best full-delivery PBE has a strictly declining price path.

We are now ready to complete the proof of Theorem 1 by proving parts 6 and 7, which

show that every best full-delivery PBE of � (or �R) has an equilibrium price path (p)t that

asymptotes to a price at least as high as max fv; c=�g as t goes to in�nity. The intuition is

that a best full-delivery PBE has a declining price path, by Proposition 8; there is no reason

to price below v; and prices must be at least c=� in any full-delivery PBE with a declining

price path in which the seller ever delivers, in analogy with Proposition 1. The following

Lemma formalizes the last part of this intuition:

Lemma 6 In any full-delivery PBE of � or �R with price-quantity path (p; q)t in which

pt � pt+1 for all t and a strictly positive quantity of the good is delivered along the equilibrium

path, pt > c
�
for all t.

Proof. Consider �R �rst. Suppose that Q consumers have not yet received the good at

time t�. We �rst note that the seller�s continuation pro�t from time t� onward is bounded

from above by her continuation pro�t from time t� onward in a best full-delivery PBE of

the modi�ed continuation game where she is constrained to price weakly below pt� and all

remaining consumers�valuations are set to pt�. This follows because in the modi�ed game

the seller can set the original continuation price path (p)t�t� and use rationing in order to

sell according to the original price-quantity path.

The seller�s continuation value at t� in a full-delivery PBE of the modi�ed game is there-

fore bounded from above by the solution to equation (3) with p = pt�. As shown in the

proof of Corollary 2, equation (3) has a solution with V (Q) > 0 if and only if �pt� > c. So if

pt� � c
�
, the seller�s continuation value at t� equals 0 in any full-delivery PBE in the modi�ed

game, and therefore equals 0 in any full-delivery PBE of the unmodi�ed game as well. This

implies that the seller delivers 0 units of the good at time t�, which then implies that no

buyers pay anything to the seller at time t�, so that the seller�s continuation value at t� � 1

equals 0 as well. By induction, the seller�s continuation value equals 0 at all periods, and

the seller never delivers a positive quantity of the good.

By Proposition 3 and Corollary 1, the above argument shows that in any full-delivery

PBE of � with a declining price, the seller�s continuation value starting from any t� satisfying
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pt� � c
�
is 0. As above, this implies that the seller never delivers any positive quantity of

the good.

Proposition 9 (Theorem 1.6 and 1.7) Any best full-delivery PBE of � or �R has pt > c
�

and pt � v for all t if �v > c
�
. If �v � c

�
, there is no PBE in � or �R in which the seller ever

delivers the good or receives positive payments.

Proof. If �v > c
�
, the price path of any best full-delivery PBE of � or �R is declining, by

Proposition 8; and any full-delivery PBE with a declining price path has pt > c
�
for all t, by

Lemma 6. Finally, modifying any declining price path in �R by replacing all pt < v with

v and using rationing to ensure delivery yields a strict increase in pro�ts if pt < v for any t

(as sales occur in every period in a best full-delivery PBE, by Proposition 8), so the result

for �v > c
�
holds for �R. Corollary 1 then implies that it also holds for �.

Suppose that �v � c
�
and that mass Q consumers have not yet received the good at some

time t in � or �R. If the seller delivers q units of the good at time t, she cannot receive total

payments of more than �vq and must of course be willing to deliver the q units. Therefore, her

continuation payo¤ from time t onward is bounded from above by the solution to equation

(3) with p = �v. As we have seen, the only solution to equation (3) when �v � c
�
is V (Q) = 0

for all Q. So no PBE in � or �R yields positive pro�ts if �v � c
�
, which, as in the proof of

Lemma 6, implies that no PBE involves delivery or positive payments.

7 An Extension: Exogenous Chance of Nondelivery

Our analysis is based on the assumption that the seller has the option of failing to deliver

the good after receiving payment. We have argued that the presence of equilibria that

yield high pro�ts for the seller under this assumption suggests that sellers may try to avoid

committing themselves to delivering the good. However, in some environments sellers may

be "automatically" committed to delivery; for example, taking payment for a good and then

failing to provide it may be viewed by courts as breaching an "implicit" contract, particularly

if the seller has always provided the good to paying customers in the past (as is the case

in full-delivery PBE). In this section, we show that our model can easily be extended
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to an environment in which this concern that the seller may be involuntarily committed to

delivery does not apply. In particular, we assume that in every period there is an exogenous,

independent probability � > 0 that the seller privately learns that she is unable to deliver

the good after receiving payment.28 For example, the seller may require certain specialized

inputs in order to produce the �nal good, and these inputs may not always be available (and

consumers and courts may be unable to observe whether the inputs are available). In this

model, the seller periodically fails to deliver the good even if she wishes to deliver in every

period, and since courts cannot tell whether failure to deliver results from lack of inputs or

opportunistic behavior by the seller there is no possibility that the seller can be involuntarily

committed to trying to deliver the good in every period.

The equilibria we have constructed for both the non-durable and durable goods models

can easily be adapted to this environment by specifying that no purchases or delivery occur

after any nondelivery by the seller (so that trade eventually breaks down on the equilibrium

path), and that prior to the breakdown of trade consumers take into account that they receive

the good only with probability 1� � even if they pay (since consumers are risk-neutral, this

implies that the mass of consumers who wish to purchase at price p is now D
�

p
1��

�
rather

than D (p)). That is, our results are "continuous" in �. Rather than formally stating this

rather natural �nding, we instead focus on characterizing the best full-delivery, constant-

price PBE in �R, in analogy to Corollary 2, which provides an intuitive lower bound on the

best full-delivery PBE pro�t in both � and �R. It turns out that the analysis of Section 6.1

carries through with the sole modi�cation that D (p) is replaced by D
�

p
1��

�
: the intuition

for this result is that, in the best full-delivery PBE, the seller is indi¤erent between delivering

the good and breaking o¤trade, so she is not made worse o¤by the possibility that trade may

break o¤ exogenously (except insofar as this causes consumers with valuations v 2
h
p; p

1��

i
to reject price her price o¤er). Finally, we remark that our original de�nition of a full-

delivery PBE does not allow for the possibility that trade breaks down in equilibrium, which

leads us to use the following, somewhat ad hoc, de�nition in the statement of the result:

De�nition 3 A modi�ed full-delivery PBE is a PBE in which the seller sets xt = 1 at all

on-path histories at which Qt > 0 and sets xt = 0 at all on-path histories at which Qt = 0.
28I thank the editor for suggesting I pursue this analysis.
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Our earlier results pertaining to full-delivery PBE (in particular, Corollary 1) also apply

to modi�ed full-delivery PBE.

Proposition 10 If �v > c
�
, the best modi�ed full-delivery, constant-price PBE in �R is given

by pt = argmaxp
�
p� c

�

�
D
�

p
1��

�
� p� (�) and qt = 
� (p� (�)) (1� 
� (p� (�)))tD

�
p�(�)
1��

�
,

where 
� (p) = �p�c
�p

as in Section 6.1.

Proof. A consumer who demands the good at price p receives it with probability at most

1 � �, so at most D
�

p
1��

�
consumers ever purchase in a full-delivery PBE with constant

price p. The argument in the proof of Corollary 2 shows that, if the seller faces this

demand curve and can freely choose what quantity to deliver in every period, her best

(modi�ed) full-delivery PBE pro�t with constant price p equals
�
p� c

�

�
D
�

p
1��

�
. Therefore,�

p� (�)� c
�

�
D
�
p�(�)
1��

�
is an upper bound on the seller�s best modi�ed full-delivery, constant-

price PBE pro�t when in each period she may be unable to deliver the good with probability

�.

We claim that the following strategy pro�le attains this upper bound: the seller sets

(pt; qt) as in the statement of the proposition and sets xt = 1 until the �rst time that delivery

is impossible and subsequently sets xt = 0; and a consumer with valuation v demands the

good if and only if v � p
1�� and the seller has always set pt = p� (�) and delivered the good

in the past. The only nontrivial part of verifying that this pro�le is a PBE is checking

that it is optimal for the seller to deliver the good when prescribed. Nondelivery leads to

continuation payo¤ 0, and in every period prior to the �rst nondelivery the seller fails to

deliver with probability �. Therefore, the condition that it is optimal for the seller to deliver

the good when prescribed at time t is

1X
�=1

(1� �)��1 ��qt+� (pt+� � c (1� �)) � qtc.

Substituting in the speci�ed (pt; qt) yields


� (p� (�)) (1� 
� (p� (�)))t
�

� (1� 
� (p� (�)))

1� � (1� 
� (p� (�))) (1� �)

�
D

�
p� (�)

1� �

�
(p� (�)� c (1� �))

� 
� (p� (�)) (1� 
� (p� (�)))tD

�
p� (�)

1� �

�
c,
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or �
� (1� 
� (p� (�)))

1� � (1� 
� (p� (�))) (1� �)

�
(p� (�)� c (1� �)) � c.

This can be rewritten as


� (p� (�)) � �p� (�)� c

�p� (�)
,

exactly as in (1), which holds by de�nition of 
� (p� (�)). This veri�es that the above

strategy pro�le is a modi�ed full-delivery, constant-price PBE, and it is straightforward to

check that it yields expected pro�t
�
p� (�)� c

�

�
D
�
p�(�)
1��

�
.

Thus, Proposition 10 shows that the lower bound on optimal monopoly pro�ts derived

in Section 6.1 extends naturally to environments with an exogenous change of nondelivery,

where it may be more realistic to view the seller as having the option of nondelivery.

8 Conclusion

The main insight of this paper is that the optimal pricing strategy of a dynamic monopoly

may be very di¤erent from that in traditional models when the relationship between the

seller and consumers is regulated by relational incentives. Unlike in Hart and Tirole (1988),

a non-durable goods monopoly in our model can earn high pro�ts even if consumers are non-

anonymous, provided the discount factor is su¢ ciently high. And unlike in Coase (1972), a

durable goods monopoly can earn approximately static monopoly pro�ts in the limit as the

discount factor approaches one, even if the lowest consumer valuation is above the marginal

cost of production. A durable goods monopoly can also earn high pro�ts when the discount

factor is bounded away form one.

While our model has many equilibria, restricting attention to the best equilibria for the

seller brings out some novel economic intuitions and empirical predictions. First, for both

non-durable and durable goods monopolies, the temptation to fail to deliver provides an

incentive for pricing above the static monopoly level.29 The intuition is the same in both

cases: The larger the quantity of the good a monopoly is supposed to deliver, the greater

is its incentive to renege. So the monopoly bene�ts from restricting quantity, and the most

29This possibility that dynamic monopolies may price higher than static monopolies is a prediction of our

model which di¤ers from standard models of dynamic monopoly pricing.
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pro�table way for it to restrict quantity is to raise price. Second, in the durable goods case,

the monopoly has an incentive to gradually cut prices over time, using high prices rather

than rationing to restrict sales early on. These new e¤ects have potentially interesting

applications for regulation: In traditional models, observing a monopoly cutting its price

is a sign that consumers are doing better than they would be if the monopoly had full

commitment power, since they are paying lower prices and (if the discount factor is high) are

not facing costly delays in purchasing. In our model, however, consumers may be better o¤

when the monopoly has full commitment power, for two reasons: they may face lower prices

(since without commitment the monopoly may price above the static monopoly price), and

they may receive the good signi�cantly faster. This also points to an important empirical

prediction of our model: in contrast to the standard full-commitment and "no-commitment"

models of durable good monopoly, our model predicts that a monopoly will cut prices over

time, but will do so slowly enough that the costs from delay are signi�cant.

We also introduce two methodological innovations. First, we use an augmented "model

with rationing" to help analyze the durable-goods seller problem. This greatly simpli�es the

analysis by allowing us to construct simple equilibria with �at price paths in the model with

rationing and then use the relationship between the model with and without rationing to

draw conclusions about best full-delivery equilibria in the model without rationing. Second,

and more generally, we use relational incentives to replace the temptation to deviate at the

contract o¤er stage (price o¤ers in our model) with the temptation to deviate at the contract

execution stage (delivery of the good in our model), which may have applications to other

areas where studying dynamics in the presence of adverse selection has proved di¢ cult. For

example, recall that in our model of non-durable goods and non-anonymous consumers, the

"dynamic enforcement" constraint that the seller delivers the good replaced the ratchet e¤ect

in price setting. Perhaps further insights may be gained from applying this idea to dynamic

principal-agent problems with adverse selection, where characterizing dynamics in models

with "no commitment" is di¢ cult due to the ratchet e¤ect (see, e.g., La¤ont and Tirole,

1988).
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Appendix A: Omitted Proofs

Proof of Proposition 1. We �rst observe that the problem of �nding the best PBE for

the seller is equivalent to �nding the best PBE for the seller when she can fully commitment

to her sequence of prices
�
fpt;ngn

�
t
. To see this, note that we can specify o¤-path beliefs

for buyers such that each buyer expects the seller to never deliver the good following any

deviation in price-setting by the seller. Given these beliefs, no buyer will ever accept a

strictly positive price in any period following a deviation in price-setting by the seller, so the

seller always receives continuation payo¤ zero, equal to her minmax payo¤, after any such

deviation.

Using this observation and applying the revelation principle to each period, we can write

the problem in a standard mechanism design notation, writing T for transfers:

max
fTt(�);xt(�)gt

1X
t=0

�t
Z �v

v

(Tt(v)� cxt(v)) f(v)dv

subject to

vxt(v)� Tt(v) 2 argmax
v0

vxt(v
0)� Tt(v

0) for all v and t (IC)

vxt(v)� Tt(v) � 0 for all v and t (IR)

and
1X
�=1

��
Z �v

v

(Tt+� (v)� cxt+� (v)) f(v)dv � c

Z �v

v

xt(v)f(v)dv for all t. (DE)

Note that the third constraint is the seller�s incentive compatibility constraint, which we

also refer to as the dynamic enforcement or DE constraint. Substituting for Tt(v) using the

IR and IC constraints in the usual way and temporarily ignoring the resulting monotonicity

constraint lets us rewrite the problem as

max
fxt(�)gt

1X
t=0

�t
Z �v

v

((v � c) f(v)� (1� F (v)))xt(v)dv

subject to the DE constraint

1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v)))xt+� (v)dv � c

Z �v

v

xt(v)f(v)dv for all t.
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Let fx�t (v)gt be a solution to this problem. Note that, for all t, x�t (v) must solve

max
xt(�)

Z �v

v

((v � c) f(v)� (1� F (v)))xt(v)dv

subject to

1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v)))x�t+� (v)dv � c

Z �v

v

xt(v)f(v)dv,

since the solution to this program maximizes both the original objective and the left-hand

side of each original constraint over all xt(�) that satisfy the original time t constraint.

This implies that, for all t; t0, if (v � c) f(v) � (1� F (v)) > 0, then x�t (v) > x�t0(v) ifP1
�=1 �

�
R �v
v
x�t+� (v)dv >

P1
�=1 �

�
R �v
v
x�t0+� (v)dv; while if (v � c) f(v) � (1� F (v)) < 0, then

x�t (v) = x�t0(v) = 0. Since
P1

�=1 �
t+�
R �v
v
x�t+� (v)dv is bounded from above, there exists a �nite

x�(�) such that x�(v) = supt x�t (v) if (v � c) f(v)� (1� F (v)) � 0 and x�(v) = 0 otherwise.

We claim that xt(v) = x�(v) for all t and v in any solution to this problem. Clearly,

the pro�t corresponding to this allocation is an upper bound on the pro�t in any solution.

Furthermore,

1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v)))x�(v)dv =
1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v))) sup
t
x�t (v)dv

� sup
t

1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v)))x�t+� (v)dv

� sup
t
c

Z �v

v

x�t (v)f(v)dv

= c

Z �v

v

x�(v)f(v)dv,

where the �rst line is by the de�nition of x�(v), the second is immediate, the third follows

because fx�t (v)gt satis�es the DE constraint for all t, and the fourth follows because x�t (v) �

x�t0 (v) if and only if x
�
t (v

0) � x�t0 (v
0) for any t, t0, v, and v0, so the sup may be moved inside

the integral. The above chain of inequalities implies that repeating x�(v) satis�es the seller�s

incentive compatibility constraint. Finally, if there exists t such that x�t (v) 6= x�(v), then

the allocation fx�t (v)gt yields strictly lower pro�t than repeating x�(v) in period t and yields

weakly lower pro�t in all other periods, so every solution to the original problem has the

same allocation rule in every period.
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We have shown that the optimal allocation rule is stationary, so the problem becomes

max
x(�)

Z �v

v

((v � c) f(v)� (1� F (v)))x(v)dv

subject to the DE constraint

1X
�=1

��
Z �v

v

((v � c) f(v)� (1� F (v)))x(v)dv � c

Z �v

v

x(v)f(v)dv for all t.

The DE constraint may be rewritten asZ �v

v

(vf(v)� (1� F (v)))x(v)dv �
�c
�

�Z �v

v

x(v)f(v)dv.

If the constraint is slack, we have standard monopoly pricing. If the constraint is binding,

noting that our assumptions on F (v) imply that x(v) continues to take a cuto¤ form whereby

x(v) = 0 if v < v� and x(v) = 1 if v � v� for some v� yields that, for any v � v�, price equals

v�
R v
v� x (s) ds = v�. And complementary slackness implies that the constraint is binding if

and only if pm � c
�
. Finally, note that in any case these solutions satisfy the monotonicity

constraint.

If �v < c
�
, then v� > �v , so x (v) = 0 for all v, which implies that the seller never delivers

the good or receives positive payments in any optimal PBE. Since the seller�s minmax payo¤

is zero, every PBE is optimal if �v < c
�
, which proves the result in the �v < c

�
case.

Proof of Proposition 2. The proof is similar to the proof of Proposition 3, so we omit

some details. Let F be the set of PBE price-quantity-delivery paths (p;Q; x)t satisfying

pt 2 [v; �v] for all t. If a PBE is optimal in the set of PBE with price-demand-delivery paths

in F , then it is optimal overall. Furthermore, it is clear that the seller�s PBE payo¤ is

continuous in price-quantity-delivery paths (p;Q; x)t in the product topology.

Next, we note that the continuation value of a consumer with valuation v facing price-

quantity-delivery path (p;Q; x)t at time t is continuous in (p;Q; x)t in the product topol-

ogy.30 To see this, observe that the maximum gain in continuation value over a "-ball about

(p;Q; x)t 2 F is no more than (1+�v)"
1�� , corresponding to receiving the good, valued at �v, with

30This continuation value is well-de�ned here by standard dynamic programming arguments, because,

unlike in the model with rationing, each consumer faces the same optimization problem regardless of the

behavior of the other consumers.
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additional probability " in each period, and paying " less in each period. This converges to

0 as " does.

We now show thatF is compact in the product topology. Observe thatF � �1t=0 ([v; �v] ; [0; 1] ; [0; 1])t,

which is compact by Tychono¤�s Theorem. Therefore, it su¢ ces to show that F is closed

in the product topology. To see that it is, consider a sequence of paths f(p;Q; x)tgn 2 F

converging pointwise to (p�; Q�; x�)t. We must show that there exists a PBE with price-

demand-delivery path (p�; Q�; x�)t. Consider the following strategy pro�le:

1. The seller sets price-delivery path (p�; x�)t as long as she has conformed to this strategy

in the past. Otherwise, she sets pt = �v, xt = 0 for all future periods. In particular,

the seller sets xt = 0 in any period in which she has set pt 6= p�t .

2. A consumer with valuation v who has not yet received the good at t pays at t if and only

if the seller has never deviated from her prescribed strategy and x�tv � p�t � �x�tV
v
t+1,

where V v
t+1 is the continuation value of such a consumer facing (p

�; Q�; x�)t.

The proof that the seller�s play is optimal is as in the proof of Proposition 3. To see

that each consumer�s play is optimal, �rst note that it is obvious that her o¤-path play is

optimal, as paying is costly and yields no bene�t when the seller sets xt = 0. To see that

her on-path play is optimal given (p�; Q�; x�)t, note that paying at t gives expected payo¤

x�tv � p�t + � (1� x�t )V
v
t+1, while not paying gives �V

v
t+1, so paying is optimal if and only if

x�tv � p�t � �x�tV
v
t+1.

That the prescribed consumer behavior induces quantity path (Q�)t follows from the

observation that each consumer�s payo¤ is continuous in (p;Q; x)t, and that each consumer

plays a best response to each (p;Q; x)t;n in equilibrium. This completes the argument that

F is closed, and therefore compact, in the product topology. Weierstrass�s Theorem then

implies that there is a point in F that maximizes pro�ts, completing the proof.

Proof of Lemma 3. Fix a price-rationing path (p; q)t and two full-delivery PBE � and �
0.

Let V be the set of generic valuations v such that there exists a consumer with valuation v

who purchases at di¤erent times under � and �0. Suppose, towards a contradiction, that V

is nonempty. Then V has a supremum, which we denote by v�. Let Vv� be the payo¤ of a

40



consumer with valuation v� under �, let V 0
v� be the payo¤ of a consumer with valuation v

�

under �0, and without loss of generality assume that Vv� � V 0
v�.

We �rst claim that Vv� = V 0
v�. To see this, suppose that there exists a consumer with

valuation v� who purchases at time � v� under � and purchases at time � 0v� 6= � v� under �0,

with ��v� (v� � p�v� ) > ��
0
v�
�
v� � p� 0

v�

�
, so that the consumer receives a higher payo¤ under

�. This is possible only if the consumer is unable to purchase at time � v� under �0, which

in turn is possible only if strictly more than q�v� consumers accept price p�v� at time � v�

under �0. Since the consumer is able to purchase at time � v� under �, which is possible

only if no more than q�v� consumers accept price p�v� at time � v� under �, this implies that

there is a positive measure � of consumers with valuations greater than v� who purchase at

� v� under �0 but not under �. By Lemma 1, this implies that there exists a consumer with

valuation v0 > v� and v0 generic with respect to (p)t who purchases at di¤erent times under

� and �0, which contradicts the fact that v� = sup fv : v 2 Vg. This implies that Vv� = V 0
v�,

which also implies that v� =2 V, as if Vv� = V 0
v� then either every consumer with valuation v

�

purchases at the same time under � and �0 or v� is nongeneric with respect to (p)t.

If Vv� = V 0
v� = 0, then is no time t at which v

� > pt and a consumer with valuation v� is

able to purchase under either � or �0. This implies that there is no time t at which v � pt

and a consumer with valuation v is able to purchase under either � or �0, for any v 2 V, as

v < v� for all v 2 V and a consumer with a lower valuation is able to purchase at a weakly

smaller set of times. Therefore, a consumer with valuation v never purchases under either

� or �0, for all v 2 V, which implies that V is empty, a contradiction.

If Vv� = V 0
v� > 0, then for any � 2 (0; Vv�) there exist at most �nitely many times t such

that there exists v 2 [v; �v] such that �t (v � pt) � Vv��� and qt > ~Qt, where ~Qt is the measure

of consumers who purchase at time t under � and have valuations greater than v� (as pt � 0

for all t); call the set of such times T . Let "t � qt� ~Qt, and let " � min f"t : t 2 T g =2 > 0.

Since every consumer with generic valuation greater than v� purchases at the same time

under � and �0, by de�nition of V, and the set of consumers with nongeneric valuations is

of measure 0, by Lemma 1, the measure of consumers with valuations greater than v� � "

who purchase at any t under �0 is less than ~Qt + ". By de�nition of ", this implies that

the measure of consumers with valuations greater than v� � " who purchase at any t 2 T
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under �0 is less than qt. So any consumer with valuation v > v� � " can purchase at any

time t with �t (v � pt) � Vv� � � under �0 at which she can purchase under �. By the

same argument, there exists "0 > 0 such that a consumer with valuation v > v� � "0 can

purchase at any time t with �t (v � pt) � Vv��� under � at which she can purchase under �0.

Therefore, letting "00 � min f"; "0g, we see that a consumer with valuation v > v� � "00 can

purchase at the same set of times t with �t (v � pt) � Vv� � � under � and �0. Furthermore,

a consumer with valuation close enough to v� can purchase at any time at which a consumer

with valuation v� can purchase, by our speci�cation of rationing, so there exists "� such that

a consumer with valuation v > v� � "� receives a payo¤ of at least Vv� � � under both �

and �0. Finally, by de�nition of v�, there exists v 2 V such that v > v� �min f"00; "�g. A

consumer with valuation v receives a payo¤ of at least Vv� � � under both � and �0, which

implies that he purchases at a time t with �t (v � pt) � Vv� � � under both � and �0. The

set of such times at which the consumer can purchase is the same under � and �0. Since v

is generic with respect to (p)t, the consumer has a strict preference ordering over purchase

times, which implies that he purchases at the same time under � and �0, which contradicts

the assumption that v 2 V.

Proof of Lemma 5. Consider the problem of maximizing Qt over price-rationing paths

(p0; q0)t in an "-ball about (p; q)t. As " ! 0, the measure of consumers who have dif-

ferent preference orderings over purchase times (i.e., over the
�
�t (v � pt)

	
t
) under (p0; q0)t

and (p; q)t converges to 0. Furthermore, the maximum di¤erence between Q� and a Q0�

corresponding to (p; q0)t in an "-ball about (p; q)t (holding (p)t �xed) is no more thanP1
t=0max f";Qtg, the maximum measure of consumers whose purchasing times can be af-

fected decreasing qt by " for all t, holding other consumers� purchasing times �xed; this

follows because if rationing prevents measure � consumers from purchasing at some time

t, each of these consumers cannot alter his play in a way that leads more than one total

consumer to purchase at time � (i.e., he can purchase at time � himself, or he can displace

one other consumer through rationing at some other time).31 Thus, the maximum variation

in Qt over an "-ball about (p; q)t converges to lim"!0
P1

t=0max f";Qtg as "! 0, so the the

31We omit the measure-theoretic details of this argument, which are similar to those in the proof of

Proposition 4.

42



following technical lemma completes the proof:

Lemma 7 Given any quantity path (Q)t, lim"!0
P1

t=0max f";Qtg = 0.

Proof. First, note that

lim
"!0

1X
t=0

max f";Qtg =
�
lim
"!0

"# ft : Qt > "g
�
+

 
lim
"!0

X
t:Qt<"

Qt

!
= lim

"!0
"# ft : Qt > "g .

Let N" � # ft : Qt > "g to simplify notation. Assume, towards a contradiction, that the

lemma is false, i.e., that there exists � > 0 such that for all �" > 0 there exists " < �" satisfying

"N" > �. Fix such a � > 0, and let "0 > 0 satisfy "0N0 > �. Now for all n � 1, let �"n = "n�1
2n
,

and let "n be a strictly positive number strictly less than �"n satisfying "nN"n > �. Note that
"n
"n�1

< 1
2n
.

Observe that, for any n, N"n <
1
"n
, for otherwise the total quantity of sales made in the

N"n periods in which Qt > "n would exceed 1. Since N"n <
1
"n
, and "n+1N"n+1 > �, we have

that N"n+1 � N"n >
�

"n+1
� 1

"n
. Now N"n+1 � N"n is the number of periods in which Qt is

between "n+1 and "n, so total sales made in all periods is at leastX
n�0

�
N"n+1 �N"n

�
"n+1 >

X
n�0

�
� � "n+1

"n

�
>

X
n�0

�
� � 1

2n+1

�
= 1.

This contradicts the assumption that the population of consumers is of measure 1.

Proof of Proposition 4. Suppose that rationing occurs at time t� along a full-delivery

PBE path (p; q)t. We show that (p; q)t cannot be a best full-delivery PBE path.

First, consider the path (p0; q0)t given by p
0
t = pt for all t and q0t = Qt for all t, where

(Q)t is the unique (by Lemma 4) quantity path corresponding to (p; q)t. All consumers are

best-responding if they purchase at the same time under (p0; q0)t as they did under (p; q)t,

and by Lemma 3 this purchasing schedule is unique up to the measure-0 set of consumers

who are indi¤erent between purchasing at di¤erent times, so the seller�s pro�t is the same in

any full-delivery PBE corresponding to (p0; q0)t and in any full-delivery PBE corresponding
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to (p; q)t. Furthermore, Dt� ((p
0; q0)t) > q0t�. Since F admits a strictly positive density, there

is a small enough strict increase in pt�, �p, such that demand at t� still exceeds qt� when

price at t� is increased by �p. So consider the path (p�; q�)t given by p
�
t� = pt� +�p, p�t = pt

for all t 6= t�, and q�t = Qt for all t. We claim that Q�t = Qt for all t, which then implies

that pro�t is higher under (p�; q�)t than under (p
0; q0)t (and therefore (p; q)t), since Qt� > 0

(by the de�nition of rationing occurring at t�).

Since q�t = Qt for all t, we have Q�t � Qt for all t, so since Q�t� = Qt� by de�nition of

�p it su¢ ces to show that
P

t6=t� Q
�
t �

P
t6=t� Qt. Suppose, towards a contradiction, thatP

t6=t� Qt �
P

t6=t� Q
�
t � � > 0. For any � 6= t�, if Q� � Q�� � �� > 0, then D� ((p

�; q�)t) =

q����� . Since the price at � is the same under (p�; q�)t and (p; q)t, this is possible only if there

are measure �� consumers who demanded the good at � under (p; q)t and have higher PBE

payo¤s under (p�; q�)t. Since prices are weakly higher in each period under (p�; q�)t, this

implies that at least �� consumers who purchase at � under (p; q)t must purchase at times

under (p�; q�)t at which they could not purchase under (p; q)t. This argument applies to all �

such that �� > 0, so at least � =
P

t �t consumer purchase at times under (p
�; q�)t at which

they could not purchase under (p; q)t, and receive higher payo¤s under (p
�; q�)t. Let D be

the set of consumers who purchase at times under (p�; q�)t at which they could not purchase

under (p; q)t and receive higher payo¤s under (p
�; q�)t. Now measure � of consumers can

purchase at times under (p�; q�)t at which none of them can purchase under (p; q)t only

if there exists a measure-preserving injection  : D ! [v; �v] (mapping consumers who do

better under (p�; q�)t to consumers they "displace") from these consumers to a another set

of consumers of mass � satisfying

1.  (v) > v for all v 2 D

2. If a consumer with generic (with respect to (p�)t) valuation v purchases at time t

under (p�; q�)t, then every consumer with valuation  (v) purchases at time t under

(p; q)t, and (since  is measure-preserving) for every t the measure of consumers in the

preimage who purchase at time t under (p�; q�)t equals the measure of consumers in

the image who purchase at time t under (p; q)t.

3. A consumer in the image of  who purchases at time t under (p; q)t purchases at some
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time t0 6= t under (p�; q�)t

Note that each of the consumers in the image of  retains under (p�; q�)t the option of

purchasing at the same time at which she purchased under (p; q)t, because her valuation is

higher than that of the corresponding consumer in the preimage, so since she does not do

so it must either be that she purchases at a time t0 at which she could not purchase under

(p�; q�)t and receives a higher payo¤ under (p
�; q�)t or that t = t�, in which case purchasing

at t has become less attractive. That is, if a consumer is in the image of  , then either he

is also in D (the preimage of  ) or he purchases at t� under (p; q)t but not under (p
� q�)t.

Iterating the procedure of constructing such a measure-preserving injection from consumers

who purchase at di¤erent times under (p�; q�)t and (p; q) and receive higher payo¤s under

(p�; q�)t to the consumers they "displace" implies that there are � consumer who did not

purchase at t� under (p; q)t who do purchase at t
� under (p�; q�)t, that all of them receive

higher payo¤s under (p�; q�)t than under (p; q)t, and that a measure-preserving bijection

satisfying 1 through 3 exists between the set of consumers who receive a higher payo¤ under

(p�; q�)t than under (p; q)t and the set of consumers who purchase at t
� under (p; q)t who do

not purchase at t� under (p�; q�)t.

By the preceding paragraph, the measure of consumers who purchase at t� under (p; q)t

who do not purchase at t� under (p�; q�)t is at least �. Since all consumers who purchase

at t� under (p�; q�)t but not under (p; q)t receive a higher payo¤ under (p
�; q�)t, it follows

that every consumer who purchases at t� under (p; q)t has a higher valuation than any of

these consumers, and therefore has a higher valuation than any consumer who receives a

higher payo¤ under (p�; q�)t than under (p; q)t. Therefore, every consumer who purchases

at t� under (p; q)t but not under (p
�; q�)t prefers to purchase at any � satisfying �� > 0 to

never purchasing. Furthermore, suppose that mass " of such consumers, with valuations

with in�mum v, purchase at time �̂ satisfying ��̂ = 0 under (p�; q�)t. Then there must

exist mass " of consumers each with valuation strictly less than v who purchase at �̂ under

(p; q)t but not under (p
�; q�)t. Consider such a consumer with valuation v0 < v, �x any �

satisfying �� > 0, and suppose towards a contradiction that v
0 < p� . We have that v > p� ,

a consumer with valuation v prefers purchasing at time �̂ and price p�̂ to purchasing at time

� and price p� (by revealed preference at (p�; q�)t, since there is no rationing at � under
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(p�; q�)t), and a consumer with valuation v
0 also prefers purchasing at time �̂ and price p�̂ to

purchasing at time � and price p� (since v0 > p�̂ by revealed preference at (p; q)t and v
0 < p�

by assumption). Now there also exists a consumer who purchases at time � and price p�

under (p; q)t and obtains a higher payo¤ under (p
�; q�)t, since �� > 0. Such a consumer

must have valuation v00 2 [p� ; v), so v00 > v0, which implies that such a consumer has the

option of purchasing at �̂ under (p; q)t. Therefore, such a consumer must prefer purchasing

at time � and price p� to purchasing at time �̂ and price p�̂ . Thus, the assumption that

v0 < p� � v00 < v yields a violation of single-crossing. Therefore, each of the � consumers

who purchases at t� under (p; q)t but not under (p
�; q�)t either purchases at a � such that

�� > 0 under (p�; q�)t or else displaces another consumer who prefers to purchase at any

such � to never purchasing. So the measure of consumers who purchase at some (�nite)

time under (p�; q�)t must weakly exceed the measure of consumers who purchase at some

time under (p; q)t. Since Q
�
t� = Qt�, this implies that

P
t6=t� Q

�
t �

P
t6=t� Qt, completing the

proof that pro�t is higher under (p�; q�)t than under (p; q)t.

It remains only to check that there exists a full-delivery PBE with price-rationing path

(p�; q�)t. This follows from the fact that there exists a full-delivery PBE with price-rationing

path (p; q)t, because, since Q
�
t = Qt for all t and p�t � pt for all t, the seller�s gain from nonde-

livery is the same in every period under (p�; q�)t as under (p; q)t, and her gain from delivery

is weakly higher in every period under (p�; q�)t, in a strategy pro�le in which consumers

expect the seller to never deliver in the future if she does not deliver in the current period.

Proof of Corollary 1. Suppose that (p�; q�)t is a best full-delivery PBE price-rationing

path in �R. Consider the following strategy pro�le in �, which we denote by �:

1. The seller sets price path (p�)t and xt = 1 as long as she has conformed to this strategy

in the past. Otherwise, she sets pt = �v, xt = 0 for all future periods. In particular,

the seller sets xt = 0 in any period in which she has set pt 6= p�t .

2. A consumer with valuation v who has not yet received the good at � accepts at �

if and only if the seller has never deviated from her prescribed strategy and � 2
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argmaxt �
t (v � p�t )

32.

To establish that � is a PBE, we �rst observe that a consumer with valuation v re-

ceives the same payo¤ Vv under � as under any full-delivery PBE with price-rationing path

(p�; q�)t in �R. This follows because, since no rationing occurs along (p�; q�)t in �R (by

Proposition 4) and the path of play does not depend on an individual consumer�s actions,

a consumer with generic valuation v facing (p�; q�)t in �R purchases at time � if and only

if � 2 argmaxt �t (v � p�t ) in any full-delivery PBE. Furthermore, if valuation v is generic

with respect to (p�)t, then the payo¤of a consumer with valuation v uniquely determines her

purchase time. Therefore, (Q)t is the same under any full-delivery PBE with price-rationing

path (p�; q�)t in �R as under �.

Next, note that if the seller ever sets p� 6= p�� , she receives zero continuation payo¤.

Since this is her minmax value in �R, she cannot receive continuation payo¤ strictly less

than this in the continuation game from � + 1 onward in �R under a full-delivery PBE with

price-rationing path (p�; q�)t. Now we have seen that (Q)t is the same in any full-delivery

PBE with price-rationing path (p�; q�)t in �R as in �, and by construction (p)t is the same

as well, so the seller�s on-path continuation payo¤ from � + 1 onward must be the same,

too, so in particular this continuation payo¤must be nonnegative. This implies that setting

p� 6= p�� on-path is not a pro�table deviation. Similarly, the fact that setting qt = q�t is

optimal on-path along (p�; q�)t implies that setting qt = q�t is optimal on-path in �, because

the cost of delivery and on-path continuation values are identical, while the payo¤ of zero

that results from deviating from the equilibrium path in � is at least as bad as the payo¤

from deviating in any PBE of �R. Also, the seller�s o¤-path play is optimal because o¤-path

price-setting does not a¤ect her payo¤s and o¤-path delivery imposes a positive cost at no

bene�t.

We next check that each consumer�s play is optimal. It is again obvious that his o¤-path

play is optimal, as paying is costly and yields no bene�t when the seller sets qt = 0. That

his on-path play is optimal follows from the fact that the seller�s strategy is full-delivery. So

� is a full-delivery PBE of �.

32The case where there are multiple maximizers is irrelevant, as this is occurs for a set of measure zero

consumers.
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The above argument shows that if a price-quantity path (p;Q)t is a best full-delivery

PBE price-quantity path in �R, then it is also a best full-delivery PBE price-quantity path

in �. For the converse, suppose that (p�; Q�)t is a full-delivery PBE price-quantity path in

�. Consider the following strategy pro�le in �R:

1. The seller sets price path (p�)t and qt = 1, xt = 1, as long as she has conformed to

this strategy in the past. Otherwise, she sets pt = �v, qt = 1, and xt = 0 for all future

periods. In particular, the seller sets xt = 0 in any period in which has set pt 6= p�t .

2. A consumer with valuation v who has not yet received the good at � pays at �

if and only if the seller has never deviated from her prescribed strategy and � 2

argmaxt �
t (v � p�t ).

It is easy to check that this is a PBE in �R. Furthermore, since no other players condition

play on an individual consumer�s actions, a consumer with generic valuation v purchases at

time � under this strategy pro�le if and only if a consumer with this valuation purchases at

� in any full-delivery PBE in � with price-quantity path (p�; Q�)t. This implies that the

mass of consumers who purchase at each period under this pro�le is the same as the mass

of consumers who purchase at each period in any full-delivery PBE in � with price-quantity

path (p�; Q�)t, which then implies that the seller�s pro�t under this strategy pro�le is the

same as under any full-delivery PBE in � with price-quantity path (p�; Q�)t. This completes

the proof.

Appendix B: Non-Full-Delivery Equilibria

This appendix considers non-full-delivery PBE of the relational contracting model of Section

5. We conjecture that optimal PBE of � are not fully-delivery PBE, though the di¤erence

in payo¤ between an optimal PBE and a best full-delivery PBE must converge to 0 as �

converges to 1, as argued in the text. This is because setting x < 1 allows the seller to sell

to some lower-valuation consumers before higher-valuation consumers. This may be useful

for the seller, as selling to low-valuation consumers before high-valuation consumers may be
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a way of increasing continuation payo¤s without increasing quantity sold today, allowing the

seller to sell more quickly.

While a complete analysis of optimal (non-full-delivery) PBE is outside the scope of the

paper, we show here that analogues of parts 3 and 4 of Theorem 1 for non-full-delivery PBE

can be established without reference to the model with rationing. We view these results as

complementary to those in the text, because full-delivery PBE are of particular interest for

reasons discussed in the text. The results in this Appendix do not establish that full-delivery

equilibria exist that yield pro�ts close to static monopoly pro�ts; we do not know how to

establish this result without using the connection to the model with rationing developed in

Section 5.

Intuitively, we can prove analogues of parts 3 and 4 of Theorem 1 directly for non-full-

delivery PBE because we can use non-delivery to substitute for rationing. That is, instead

of using rationing to ensure that only fraction 
 of those consumers who demand the good

at price pt at time t are allowed to purchase at t, the seller can charge 
pt to each of these

consumers in exchange for delivering the good to each of them with probability 
. With

this idea in hand, the proof of parts 3 and 4 of Theorem 1 follows easily from the proof of

Proposition 6 in Section 6:

Proposition 11 There exists a strategy pro�le in � that is a non-full-delivery PBE for high

enough � under which the seller�s payo¤ converges to her static monopoly payo¤ as � ! 1.

Proof. Consider the following strategy pro�le:

1. The seller sets pt = 
pm, xt = 
 for all t, for 
 an arbitrary positive constant less than

1, as long as she has conformed to this strategy in the past. Otherwise, she sets pt = �v,

xt = 0 for all future periods, and in particular sets xt = 0 in any period in which has

set pt 6= 
pm.

2. A consumer with valuation v who has not yet received the good pays if and only if

v � pm and the seller has never deviated from her prescribed strategy.

At any period t along the equilibrium path, a consumer with valuation v < pm has

continuation value 0, while a consumer with valuation v � pm who has not yet received the
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good has continuation value �

1��(1�
) (v � pm) < 


1��(1�
) (v � pm), so every consumer�s play

is optimal by the one-shot deviation principle. It is clear that the seller�s o¤-path play and

on-path price setting is optimal. It remains only check that the seller has an incentive to

deliver the good along the equilibrium path. This condition is

1X
�=1

�� ((1� 
)t+� pt+� � 
 (1� 
)t+� c) � 
 (1� 
)t c for all t � 0.

For any t, this can be rewritten as inequality (1). Now if � > c=pm then there exists a positive


 that satis�es (1). The above strategy pro�le then yields pro�t
�



1��(1�
)

�
D(pm)(pm � c)

for the seller, which converges to D(pm)(pm � c) as � converges to 1.

For the analogue of part 4 of Theorem 1 for non-full-delivery PBE, we argue as in the

discussion following Proposition 6. Consider the strategy pro�le where the seller �xes the

price of a 
 chance of receiving the good at some given 
p. Recall that


�(p) � �p� c

�p
.

By the same argument that led to (1), 
�(p) is the greatest probability of receiving the

good that the seller can credibly o¤er at price 
�(p)p in a PBE with �xed price and delivery

probability. The best PBE pro�t for the seller with a constant price path at 
p and a

constant sales rate 
 is therefore�

�(p)

1� �(1� 
�(p))

�
D(p)(p� c),

which can be rewritten as �
p� c

�

�
D(p).

Therefore, if the seller sets pt = 
pm
�
c
�

�
and xt = 
�

�
pm
�
c
�

��
=

�pm( c� )�c
�pm( c� )

for all t on

the equilibrium path, and o¤-path play is given as in the strategy pro�le in the proof of

Proposition 11, the seller�s pro�t is equal to the static monopoly pro�t when cost equals c=�.

Finally, the seller can achieve a strictly higher payo¤ than this by slightly raising price and

delivery probability early on while keeping quantity delivered constant in every period, in

analogy with the discussion preceding Proposition 7.
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