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1 Introduction

The recent rise in product-market concentration has been viewed as a driving force
behind several macroeconomic trends.1 What are the implications of trends in con-
centration or market power for the transmission of monetary policy? Do strategic
interactions in pricing between increasingly large firms amplify or dampen the real
effects of monetary shocks? The baseline New Keynesian model, built on the tractable
paradigm of monopolistic competition, is not designed to address these questions as
there is no notion of market concentration.

In this paper, we provide a new framework to study the link between market
structure and monetary policy. We generalize the New Keynesian model by allow-
ing for dynamic oligopolistic competition between any finite number of firms in each
sector of the economy. Firms compete by setting their prices, but they do so in a stag-
gered and infrequent manner due to nominal rigidities. We study Markov equilibria
of our dynamic game, where the pricing strategy, or reaction function, of every firm
is a function of the prices of its competitors. We use this model to study the aggregate
real effects of monetary shocks.

Departing from monopolistic competition to oligopoly poses new challenges, as
it requires solving a dynamic game with strategic interactions and embedding it into
a general equilibrium macroeconomic model. Despite these complexities, our first
results derive a closed-form solution for the response of the aggregate price level
and output to small monetary shocks. We show that the degree of aggregate price
stickiness is conveniently captured by a single measure of strategic complementar-
ities given by the slope of the price-setting reaction function to competitors’ prices.
Indeed, only the reaction function at a steady state is required. In this way, our result
links the partial equilibrium industry dynamics, with the general equilibrium macro
response to a monetary shock.

Given the importance of this slope, we next investigate its determinants. We pro-
vide a formula for it that inputs three sufficient statistics: market concentration as
captured by the effective number of firms within a sector, demand elasticities, and
markups.2 According to our formula, all other things the same, higher observed

1For instance, Gutiérrez and Philippon (2017) document an increase in the mean Herfindahl index
since the mid-nineties, and argue that it has weakened investment. Autor, Dorn, Katz, Patterson and
Van Reenen (2017) and Barkai (2020) relate the rising concentration of sales over the past 30 years in
most US sectors to the fall in the labor share.

2In the standard monopolistic competition model desired markups are constant and only a function
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markups predict larger output responses to monetary shocks. At the heart of this re-
sult is the notion that, away from the monopolistic limit, markups reveal the strength
of strategic complementarities. This is the case because greater strategic complemen-
tarities lead to higher markups in our dynamic oligopoly game.

Our sufficient statistic formula can be used to gauge the present non-neutrality, for
a given estimate of these three statistics. All three statistics are endogenous, however,
so this formula should not be used for comparative statics. For example, an increase
in concentration is likely to affect both demand elasticities and equilibrium markups.

To perform counterfactual experiments, we take a more structural approach and
solve the oligopolistic equilibrium in terms of fundamentals. We go beyond CES and
use a general homothetic demand with flexible elasticities and superelasticities, as the
latter can affect monetary policy transmission through variable markups even under
monopolistic competition.

We first vary concentration in each sector while keeping preference parameters
fixed. We find that higher concentration can significantly amplify or dampen aggre-
gate price stickiness and therefore the real effects of monetary policy, depending on
how properties of demand vary with n.3 On the one hand, when preferences are re-
stricted to CES, higher concentration unambiguously amplifies stickiness. Maximal
effects are attained under duopoly, for which the half-life of the price level and output
in reaction to monetary shocks is 40% higher than under monopolistic competition.
Translated to a more common measure of non-neutrality, this is a significant effect:
we show it is equivalent to dividing the slope of the Phillips curve by 1.42 ≈ 2.4 On
the other hand, with non-CES preferences (e.g., Kimball 1995), higher concentration
amplifies aggregate stickiness if the superelasticity (the elasticity of the elasticity) of
demand is low, as under CES, but has the opposite effect if the superelasticity is high.
It is thus essential to first understand the link between concentration and finer prop-
erties of demand functions.

We use evidence on the heterogeneity in the pass-through of idiosyncratic cost
shocks across small and large firms from Amiti, Itskhoki and Konings (2019) to cal-
ibrate how concentration affects the superelasticity of demand, and find that con-

of the demand elasticity. However, in a strategic and dynamic environment the endogenous markup
is no longer a simple function of the demand elasticity.

3In Section 6 we extend the model to allow for firm heterogeneity within sectors and show that
the model with n symmetric firms is an excellent approximation to a model with heterogeneous firms
and inverse Herfindahl index 1/n. Thus a rise in concentration has the same effect for monetary policy
whether it comes from higher market shares for larger firms, or from a decrease in the number of firms.

4We explain later why the slope of the Phillips curve is the inverse of the square of the half life.
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centration amplifies stickiness substantially, even more than under CES: the half-life
doubles when going from n = ∞ to n = 3. Translating, this corresponds to dividing
the slope of the Phillips curve by four! Under this calibration the rise in the average
Herfindahl index observed in the U.S. since 1990 increases the half-life by 15%, or a
one-third reduction in the slope of the Phillips curve.

What explains these results? The number of competitors in a market has an effect
on firms’ dynamic strategic incentives, but also on the residual demand faced by each
firm. On the one hand, “feedback effects” make each firm care about its rivals’ current
and future prices when setting its price, due to the shape of demand. On the other
hand, “strategic effects” arise because each firm realizes its current pricing decision
can affect how its rivals will set their prices in the future. Feedback effects are present
in monopolistic competitive models with non-CES demand, but strategic effects can
only exist when firms are not atomistic.

To isolate these two effects for each n, we compare the oligopolistic model with n
firms to a “naive” equilibrium where the n firms correctly predict the path of prices on
the equilibrium path, but ignore the off-equilibrium effect of their own price choices
on rivals’ future prices. The naive equilibrium is also equivalent to a “recalibrated”
rational model with n = ∞ and Kimball preferences set to match the elasticity and
superelasticity of residual demand with finite n.5

We find that the feedback effects dictated by the shape of demand explain most of
our results. While strategic effects matter for the level of steady state markups, they
only have a modest impact on monetary policy transmission. Of course, this quan-
titative conclusion that strategic effects play a small role cannot be reached offhand,
but only after solving the full, strategic, model as we have done.

We conclude by generalizing our model and analysis: we allow for more gen-
eral preferences and go beyond permanent money supply shocks to derive an exact
“Phillips curve”, that is, an equilibrium relationship between inflation and other equi-
librium variables such as real output. The Phillips curve can be used to study any type
of shock, with any degree of persistence. For example, we study interest rate shocks
under a Taylor rule, or the effects of hitting the zero lower bound, or news shocks
about these changes. One can also use it to study real shocks, for a given monetary
policy rule.

Relative to the standard New Keynesian model, which is a simply first-order dy-

5Another natural benchmark is a model with n = ∞ that matches the same own-cost pass-through
as the oligopolistic model. It is not equivalent but very close to the naive model.
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namical system, our Phillips curve includes higher-order terms. Thus, these terms can
in principle generate endogenous inflation persistence and cost-push shocks. How-
ever, we find again that for a wide range of shocks the equilibrium with naive firms
provides an accurate approximation to the strategic model. Since the naive model
is equivalent to a monopolistic setup, this implies that a standard (first-order) New
Keynesian Phillips curve provides an excellent approximation to the actual (higher-
order) Phillips curve.

Overall, our results show that the monopolistic model with an appropriately cho-
sen Kimball demand provides an approximation to an oligopolistic reality. Although
this virtual equivalence is true and is useful in a reduced form way, in a deeper sense,
it does not imply that oligopoly is irrelevant.

First, one must choose the Kimball demand correctly, in a manner that depends
on market concentration. Our framework provides a rigorous mapping from micro-
evidence on pass-through and concentration to the reduced-form Kimball parameter
driving these models.

Second, the oligopoly model yields a unique link between markups and monetary
policy transmission, in the aggregate and in the cross-section, that cannot arise under
monopolistic competition, even with non-CES demand. Under monopolistic compe-
tition, predictions of the model depend on calibrating two independent parameters of
demand functions: the markup only depends on the elasticity, and the price response
to monetary policy only depends on the superelasticity. Oligopolistic competition,
on the other hand, highlights a tight connection: the superelasticity of demand has a
positive effect on both markups and the pass-through of monetary policy. Therefore,
our model predicts that monetary policy is transmitted relatively more through sec-
tors or regions with higher markups all else equal, because they are the ones featuring
the slowest price adjustment following monetary shocks.

Related Literature

An important early exception to the complete domination of monopolistic compe-
tition in the macroeconomics literature on firm pricing is Rotemberg and Saloner
(1986), who propose a model of oligopolistic competition to explain the cyclical be-
havior of markups. Rotemberg and Woodford (1992) later embed their model into
a general equilibrium framework with aggregate demand shocks driven by govern-
ment spending. These two papers assume flexible prices and abstract from monetary
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policy.6 Another important difference is that we focus on Markov equilibria, in line
with the more recent industrial organization literature, rather than trigger-strategy
price-war equilibria.

The first paper to combine non-monopolistic competition and nominal rigidities
in general equilibrium is Mongey (2018). This paper uses a rich quantitative model
with two firms, menu costs, and idiosyncratic shocks to show that duopoly can gen-
erate significant non-neutrality relative to the Golosov and Lucas (2007) benchmark.
It also finds that duopoly is closer to monopolistic competition under Calvo price-
setting than with menu costs. Our paper takes a complementary approach, more an-
alytical but assuming Calvo pricing and abstracting from idiosyncratic shocks.7 This
allows us to go beyond two firms and explore different questions, in particular by
changing industry concentration, separating strategic complementarities from resid-
ual demand effects, and allowing for arbitrary shocks through the Phillips curve.8

Modeling more than two firms also lets us incorporate recent evidence linking cost
pass-through and market shares from Amiti, Itskhoki and Konings (2019) to infer the
relation between concentration and monetary non-neutrality. This evidence implies
that even under Calvo pricing, oligopoly leads to significant amplification.

The literature on variable markups in international trade highlights the impor-
tance of market structure for cost (e.g., exchange rate) pass-through in static settings
(e.g., Atkeson and Burstein 2008). We study a dynamic general equilibrium version
of these models, as is needed to analyze monetary policy, and show how to map
pass-through estimates to aggregate effects of monetary policy. Our results also share
some of the mechanisms studied in partial equilibrium in the industrial organization
literature exploring the link between market structure, demand systems and pass-
through of costs to prices in models featuring menu costs (Slade 1998, Neiman 2011),
non-CES demand systems (Goldberg and Verboven 2001), or both (Nakamura and
Zerom 2010).

6Rotemberg and Saloner (1987) study a static partial-equilibrium menu-cost model, comparing the
incentive to change prices under monopoly and duopoly.

7Calvo pricing remains an important benchmark in the literature on price stickiness, due to its
tractability, but additionally, recent work on menu costs, such as Gertler and Leahy (2008), Midrigan
(2011), Alvarez, Le Bihan and Lippi (2016b) and Alvarez, Lippi and Passadore (2016a), show that
certain menu-cost models may actually behave close to Calvo pricing.

8Several papers, including Benigno and Faia (2016) and Corhay, Kung and Schmid (2020) with
Rotemberg pricing and Etro and Rossi (2015) and Andrés and Burriel (2018) with Calvo pricing, con-
sider models of monopolistic competition that depart from the standard CES setting because the de-
mand curve faced by a firm depends on the number of competitors; but firms still behave atomistically,
taking rivals’ current and future prices as given.
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Kimball (1995) introduced non-CES aggregators that increase non-neutrality even
under monopolistic competition.9 As we show in Section 5, there is a close connection
between this class of models (e.g., Klenow and Willis 2016, Gopinath and Itskhoki
2010) and our oligopolistic model. By making the market structure explicit, our pa-
per provides foundations for the dynamic pricing complementarities embedded in
the monopolistic Kimball aggregator, in a way consistent with the data on firm size
and long-run pass-through. Relative to this strand of the literature, the oligopolis-
tic model also generates unique predictions on the cross-sectional relation between
markups, concentration, and monetary policy transmission.

In addition to the dynamic pricing with staggered price stickiness we focus on,
market structure can affect the degree of monetary non-neutrality through other mar-
gins. Nakamura and Steinsson (2013) organize sources of complementarities in pric-
ing into “micro” (e.g., variable markups or decreasing returns to scale) and “macro”
complementarities (e.g., intermediate inputs). Afrouzi (2020) studies the incentives
to acquire information in a flexible prices rational-inattention oligopolistic model.

We focus on short-run dynamics holding concentration fixed. It would be interest-
ing to incorporate endogenous entry and exit to study the feedback between fluctua-
tions in output and concentration, as in, e.g., Bilbiie, Ghironi and Melitz (2007). The
challenge would be to solve for an additional fixed point: monetary shocks leading to
higher output may stimulate entry; but the resulting higher number of firms would
imply a faster aggregate price adjustment, which dampens the output response that
stimulated entry in the first place.

2 A Macro Model with Oligopolies

The household side of our model is standard. Things are more interesting on the firm
side: we depart from monopolistic competition to introduce oligopolies.

Basics. Time is continuous with an infinite horizon t ∈ [0, ∞).10 We abstract from
aggregate uncertainty and focus on an unanticipated shock.

9Other non-CES preferences achieve the same purpose (e.g., translog preferences in Bergin and
Feenstra, 2000). We focus on Kimball preferences for concreteness, but our results apply to any homo-
thetic preferences, including those in the wide class studied in Matsuyama and Uschchev (2017).

10Our analysis translates easily to a discrete-time setup, but continuous time has a few advantages
and permits comparisons with the menu-cost literature (e.g., Alvarez and Lippi, 2014).
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There are three types of economic agents: households, firms and the government.
Households are described by a continuum of infinitely lived agents that consume
nondurable goods and supply labor. The government controls the money supply,
provides transfers and issues bonds, to ensure it satisfies its budget constraint.

Firms produce across a continuum of sectors s ∈ S. Each sector is oligopolistic,
with a finite number ns of firms i ∈ Is, each producing a differentiated variety. Firms
can only reset prices at randomly spaced times, so the price vector within a sector is a
state variable. By setting ns → ∞ or ns = 1 we obtain a standard monopolistic setup,
where each firm has a negligible effect on competitors. Away from these limit cases
there are strategic interactions across firms within a sector, but not across sectors. As
we spell out below, this induces a dynamic game in each sector. We focus on Markov
equilibria.

Household Preferences. Utility is given by∫ ∞

0
e−ρtU(C(t), `(t), m(t))dt,

where `(t) denotes labor, m(t) = M(t)/P(t) denotes real money balances and aggre-
gate consumption at any point in time satisfies

C =

(∫
S

Cs
1− 1

ω ds
) 1

1− 1
ω

Cs = Hs ({ci,s}i∈Is) ,

with C = exp
∫

S log Csds when ω = 1 where {Cs} and {ci,s} are sectoral consumption
across sectors s ∈ S and good varieties across firms i ∈ Is within each sector. Hs is
homogeneous of degree one and can be more general than CES (e.g. Kimball).

In most of the paper we adopt the Golosov and Lucas (2007) specification

U(C, `, m) =
C1−σ

1− σ
+ ψ log m− `.

As is well known, these preferences help simplify the aggregate equilibrium dynam-
ics; however, we consider more general preferences in Section 7.

Household Budget Constraints. The flow budget constraint at any t ≥ 0 is

P(t)C(t) + Ḃ(t) + Ṁ(t) = W(t)`(t) + Π(t) + T(t) + R(t)B(t),
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where (dropping the t dependence) B are nominal bond holdings, R is the nominal in-
terest rate, M money holdings, W the nominal wage, T nominal lump-sum transfers,
Π =

∫
∑i∈Is Πi,s ds denotes aggregate firm nominal profits, and P the price index de-

scribed below. Imposing the No Ponzi condition limt→∞ e−
∫ t

0 R(s)ds(B(t) + M(t)) ≥ 0
gives the present value condition∫ ∞

0
e−
∫ t

0 R(s)ds(P(t)C(t) + R(t)M(t)− T(t)−W(t)`(t)−Π(t))dt = M(0) + B(0).

Prices and Price Indices. At every point in time, let the vector of prices within a
sector s be

ps = (p1,s, p2,s, . . . , pns,s)

and let p−i,s = (p1,s, . . . , pi−1,s, pi+1,s, . . . , pn,s) so that ps = (pi,s, p−i,s).

The aggregate price index is given by P =
(∫

P1−ω
s ds

) 1
1−ω for ω 6= 1 or P =

exp
∫

log Psds for ω = 1 where Ps is the sectoral price index, defined by the unit cost
condition Ps = minci,s ∑ pi,sci,s subject to Hs({ci,s}i∈Is) = 1.

Demand. The demand for firm i ∈ Is can be written as

yi,s(t) = C(t)P(t)ω di,s(pi,s(t))

for a demand function di,s that depends only on prices in sector s. The term C(t)P(t)ω

captures aggregate time-varying effects on demand. The individual demand func-
tion di,s captures both within-sector substitution and across-sector substitution.11 We
assume that goods within a sector are gross substitutes: di

j > 0 for i 6= j. This gener-
alizes the standard assumption that goods are more substitutable within than across
sectors (i.e., if Hs is a CES aggregator with elasticity of substitution η then di

j > 0 is
equivalent to η > ω).

Firms. Each firm i ∈ Is in sector s ∈ S produces from labor according to the produc-
tion function,

yi,s(t) = zi,s f (`i,s(t))

where f is increasing and differentiable. If f is concave then this captures decreasing
returns. We first assume no differences in productivity within sectors, so that the ns

11Indeed, di,s(ps) is homogeneous of degree −ω.
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firms are symmetric, and thus normalize to zi,s = 1.12 Section 6 extends the analysis
to heterogeneous firms.

Profits for firm i are

Πi,s(pi,s, p−i,s; t) = C(t)P(t)ωdi(pi,s, p−i,s)pi,s −W(t) f−1
(

C(t)P(t)ωdi(pi,s, p−i,s)
)

.

Firms receive opportunities to change their price pi,s at random intervals of time de-
termined by a Poisson arrival rate λs > 0, the realizations of which are independent
across firms and sectors. Between price changes, firms meet demand at their posted
prices. They maximize the present value of profits

E0

∫ ∞

0
e−
∫ t

0 R(s)ds Πi,s(pi,s(t), p−i,s(t); t)dt.

Although there is no aggregate uncertainty, the expectations averages over idiosyn-
cratic realization of times at which firms can change their prices.

Markov Equilibrium. A strategy for firm i specifies its desired reset price at any
time t should it have an opportunity to change its price. A Markov equilibrium in-
volves a strategy that is a function only of the price of its rivals and calendar time t,

gi,s(p−i; t).

The dependence of gi,s on t is required to accommodate monetary shocks and the
ensuing transition with possibly time-varying aggregates C(t)P(t)ω, W(t) and R(t).
The general non-stationary Hamilton-Jacobi-Bellman equation and optimality condi-
tion are detailed in Appendix B. In Section 2.1 below we describe the stationary case.

Given that firms are symmetric within sectors, we consider strategies that are sym-
metric gi,s = gs. We do not require the equilibrium to be unique: if there are multiple
equilibria, our results apply to each one of them.

Equilibrium Definition. Given initial prices {pi,s(0)}, an equilibrium is given by
paths for the aggregate price P(t), wage W(t), interest rate R(t), consumption C(t),
labor `(t) and money supply M(t), as well as demand functions for consumers di,s

and strategy functions for firms gi,s such that: (a) consumers optimize quantities
taking as given the sequence of prices and interest rates; (b) each firm’s reset price

12Any differences across sectors zi,s = zs can be absorbed into the units used to measure consump-
tion in sector s, so that setting zs = 1 is without loss in generality.
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strategy gi,s is optimal, given the path for P(t), C(t), its rivals’ strategies gj,s and the
demand functions d; (c) consistency: the aggregate price level evolves in accordance
with the reset strategy g employed by firms; (d) markets clear: firms meet demand
for goods, yi,s(t) = ci,s(t), the supply of labor equals demand

`(t) =
∫

∑
i∈Is

`i,s(t)ds

and the demand for money equals supply, both denoted by M(t) so implicitly im-
posed already.

2.1 Stationary Markov Equilibrium

We first study the dynamics within a sector in partial equilibrium, that is, assuming
all conditions external to the sector (i.e., the wage, the nominal discount rate, ag-
gregate consumption and price) are constant. The resulting oligopoly game within
such as sector is then stationary. This partial equilibrium analysis also characterizes
a steady state in general equilibrium. We later show that these within sector dynam-
ics also help characterize the aggregate macroeconomic adjustment to a permanent
monetary shock.

We focus on a sector and omit the notation s ∈ S. In a stationary game we can
suppress the dependence on t in the Bellman equation, and a stationary Markov equi-
librium is characterized by

ρVi(p) = Πi(p) + λ ∑
j

(
Vi(g(p−j), p−j)−Vi(p)

)
(1)

where g(p−i) ∈ arg maxpi Vi(pi, p−i) with necessary condition

Vi
pi
(g(p−i), p−i) = 0. (2)

With Poisson rate λ, one of the n firms indexed by j (including firm i) will adjust its
price to g(p−j), which will make firm i’s value jump to Vi (gj(p−j), p−j

)
.13 A useful

simple observation is that g only depends on ρ and λ through the ratio λ/ρ. Let p̄
denote the steady state price, satisfying p̄ = g( p̄).

13Vi (gj(p−j), p−j
)

serves as shorthand notation for Vi (p1, . . . , pj−1, gj(p−j), pj+1, . . . , pn
)
.
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Reaction Slope. We focus on equilibria with differentiable value and reaction func-
tions. By symmetry, at the steady state price p̄, the slope ∂g

∂pj
( p̄) does not depend on j.

We scale this slope by the number of rivals and define

B = (n− 1)
∂g
∂pj

( p̄).

To a first order approximation, firm i resets its price to

log pi = log p̄ + B× ∑j 6=i
(
log pj − log p̄

)
n− 1

. (3)

Thus, B represents the reaction to average rival prices.
The slope parameter B will play a starring role in our analysis. It will serve as

a unifying concept capturing strategic complementarities in pricing, whether they
arise from dynamic oligopoly, non-CES demand, or decreasing returns to scale in
production. In the basic model with monopolistic competition, CES demand, and
constant returns, B = 0.

Limit λ/ρ → 0: Static Bertrand-Nash equilibrium. When prices are infinitely
sticky or firms are infinitely impatient, so that λ/ρ→ 0 then (1) implies that V(p)→
Π(p) and, thus, firms play a static best-response. Intuitively, they take the current
prices of other firms as fixed forever. The equilibrium then converges to a static
Bertrand-Nash:

lim
λ/ρ→0

g(p−i) = gNash(p−i) = arg max
pi

Πi (pi, p−i) .

The steady state price p̄ converges to the Bertrand-Nash price denoted pNash.

Remark 1. Our focus on differentiable equilibria rules out the typer of “kinked de-
mand curve” and “Edgeworth cycles” Markov equilibria studied by Maskin and Ti-
role (1988). They considered a Bertrand duopoly (n = 2) model with perfectly substi-
tutable goods (a particular limit of the d function) as firms become infinitely patient
(ρ → 0); in our setting the latter is isomorphic to fixing any ρ > 0 but taking the
flexible prices limit λ → ∞. Under these conditions, they showed that firms can
effectively “collude” around the joint monopoly price by using strategies that are
non-monotonic in the rival’s price.

Similar non-monotone equilibria of this type are possible in our model in some
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cases. However, in practice, numerical explorations away from their limiting assump-
tions of perfect substitutability and price flexibility show that for a wide range of pa-
rameters Markov equilibria strategies are indeed monotonic and consistent with the
differentiable ones we study.14 Indeed, with linear demand functions d the game has
a Markov equilibrium in linear strategies. This is also consistent with the subsequent
IO literature, which has focused on Markov equilibria not displaying the form of tacit
“Edgeworth cycle” collusion explored in Maskin and Tirole (1988).

3 Monetary Shocks: Dynamics and Sufficient Statistics

We now study an unanticipated permanent shock to money. We suppose the econ-
omy is initially in a steady state: constant aggregates P−, M−, C−, `−, W−, R− = ρ

and prices in each sector at their steady state pi,s = p̄s. Consider a permanent mone-
tary shock arriving at t = 0 so that M(t) = M+ = (1 + δ)M− for all t ≥ 0.

After the shock, sectors readjust towards their steady state, but do so in a ran-
dom manner that depends on the realizations of the random Calvo price adjustment
opportunities across the finite number of firms within a sector. At the aggregate
level, however, sectoral idiosyncratic uncertainty averages out, producing determin-
istic paths for the aggregate price level and consumption.

3.1 Exact Dynamics: Partial Equilibrium To General Equilibrium

Firms must forecast the path that macroeconomic variables will take after the shock.
Any given path for aggregates determines a Markov reset price strategy gi,s. These
strategies, in turn, determine the evolution of aggregates. It is possible to solve this
fixed-point problem quite generally as we do in Section 7, but we first focus on a sim-
ple case. In the spirit of Golosov and Lucas (2007), our assumptions on preferences
lead to the following simplification:

14Figure A.11 displays the locus of existence of these monotone equilibria in the (λ, η)-space (where
η is the within-sector elasticity of substitution). While the curse of dimensionality prevents us from
solving numerically for the full MPE with general n, we conjecture that the region of existence of these
equilibria increases with the number of firms, since a higher n reduces the potential monopoly profit
(the case of monopolistic competition n → ∞ being an extreme example). Similarly, a higher outer
elasticity ω lowers the joint monopoly profit, which should also enlarge the region of existence of the
monotone equilibrium.
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Proposition 1. Equilibrium aggregates satisfy

W(t) = (1 + δ)W−, R(t) = ρ, P(t)C(t)σ = ρM+. (4)

If in addition
ωσ = 1 (5)

then the equilibrium prices after the shock satisfy pi,s = (1 + δ) p̂i,s and the normalized
prices p̂ are initialized at p̂i,s (0) =

pi,s(0)
1+δ and evolve according to the reaction function g of

the stationary game in Section 2.1, so that upon resetting firm i sets

p̂i,s = g ( p̂−i,s) .

Proposition 1, proved in Appendix A.1, is extremely useful. It provides condi-
tions under which firm reset prices may ignore the transitional dynamics of macroe-
conomic variables following the monetary shock. This result allows us to extend the
partial equilibrium analysis to general equilibrium. This is an exact result, not an ap-
proximation for small monetary shocks (as in Alvarez and Lippi, 2014). Until Section
7 , we consider preferences that satisfy ωσ = 1.

For concreteness imagine a positive shock δ > 0. Following the shock the inter-
est rate is unchanged and the nominal wage rises permanently in proportion with
money. The left panel of Figure 1 displays price dynamics within a sector (for a
duopoly), following a cobweb adjustment process, but with the times of adjustment
randomly determined. The right panel displays the paths for aggregates P(t) and
C(t). In the long run, normalized prices p̂ converge back to their steady state, so that
actual prices adjust proportionally by the factor 1+ δ (or δ in logs). On impact, prices
are unchanged, but C(t) rises above its steady state value by a factor (1 + δ)

1
σ . Over

time, as prices rise, P(t)C(t)σ remains constant, so consumption falls, eventually re-
turning to its steady state value. Although the nominal interest rate is unchanged,
the real interest rate falls along the transition due to the rise in inflation, explaining
the temporary rise in consumption.

The classic paper by Rotemberg and Saloner (1986) studied a partial equilibrium
model of oligopoly, facing exogenous fluctuations in demand without price rigidities.
They assumed a fixed real interest rate. Their analysis focused on non-Markov trigger
strategies that sustain “collusive” prices in bad times, but lead to price wars during
booms (creating an amplification mechanism for output). In their model, price wars
occur because booms are periods with higher demand and, thus, high temporary
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Figure 1: Dynamics following a monetary shock δ. Left: Price dynamics within a
sector. Right: Aggregate dynamics. h log 2 denotes the half-life of the price level.

profits to compete over, so the incentive to raise prices is greater. A similar effect
is generally present in our model. However, Proposition 1 shows that when ωσ =

1 these effects may not be present in general equilibrium since P(t) moves in the
opposite direction. An equivalent way to describe this is that Rotemberg and Saloner
(1986) assumed a fixed real interest rate, but in our model a boom lowers real interest
rates, which makes firms care about the future more, exactly counterbalancing the
increase in stakes from higher current profits.

3.2 Approximate Dynamics: The Importance of Bs

We are interested in the speed of convergence of the price level to its new steady state
P̄ = (1 + δ) P−. From (4), log P(t) + σ log C(t) is constant after the monetary shock
so this also gives us the speed of convergence of output. The next proposition studies
the approximate dynamics of these paths (proof in Appendix A.2).

Proposition 2. Suppose ωσ = 1, then to first order in the size of the monetary shock δ,

log P(t)− log P̄ = −δ
∫

s
ζse−λs(1−Bs)tds, (6)

log C(t)− log C̄ =
δ

σ

∫
s

ζse−λs(1−Bs)tds, (7)

where ζs = P̄sC̄s/(P̄C̄) is the steady state expenditure share of sector s.15 The present-value

15Away from ωσ = 1, one can show that P(t) follows (6) except that Bs is replaced with αs + Bs,
where αs captures firms’ incentives to increase or decrease prices in response to aggregate fluctuations;
αs = 0 in each sector when ωσ = 1 or in the limit λs/ρ→ 0.
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output effect of the shock discounted at any rate r ≥ 0 is∫ ∞

0
e−rt log

(
C(t)

C̄

)
dt =

δ

σ

∫
s

ζsds
r + λs (1− Bs)

. (8)

This proposition summarizes the approximate dynamics for money shocks for our
oligopolistic model. It takes the reduction in complexity obtained in Proposition 1 one
step further, to closed-form solutions requiring only a handful of statistics, including
the frequency of price adjustments λs and the slopes Bs. Intuitively, for small shocks
the dynamics are dictated by the slope of g around a steady state.

Our proposition highlights a crucial role for the statistic Bs that provides a strong
unifying principle: complementarities in pricing at the sectoral level affect the aggre-
gate response to monetary shocks captured in a simple partial equilibrium statistic,
Bs. If Bs is high then prices converge more slowly contributing towards larger real
effects. Our result also allows for heterogeneity in price frequency λs and the slope
parameter Bs across sectors, showing how how these are aggregated; we come back
to this aspect later.16

There are a few ways to depart from the benchmark B = 0 case and obtain strate-
gic complementarities B > 0. Two are standard in the literature, even under monop-
olistic competition (n = ∞): non-CES (e.g., Kimball) demand and decreasing returns
to scale.17 The third way is oligopolistic competition n < ∞, which can generate
B > 0 even with CES demand and constant returns to scale. Proposition 2 nests all
these cases and puts them on equal footing through the single statistic B. We shall
also show that, naturally, as n → ∞ the effect of oligopoly disappears and the slope
B converges to the complementarity under monopolistic competition.

3.3 On Half Lives and Phillips Curves

Without sectoral heterogeneity, a useful statistic is the half-life of the price level (dis-
played in Figure 1) which by (7) is also equal to the half-life of the output gap. It is
given by h · log 2 with

h =
1

λ(1− B)
.

16When Bs = 0, equation (8) specializes to Proposition 1 in Carvalho (2006) about the cumulative
output effect of a monetary shock with heterogeneous price stickiness λs.

17These are often discussed under the rubric of “real rigidities”. A similar effect is obtained by
allowing for input-output linkages, which we have abstracted from here.

16



To simplify, we henceforth refer to h simply as the half life, rather than h · log 2. In the
basic New Keynesian model with monopolistic competition, CES demand, and con-
stant returns to scale, B = 0 hence the half-life of the price level following a monetary
shock is simply 1/λ and the cumulative output effect (i.e., (8) with r = 0) is δ

σλ .
The slope of the Phillips curve often serves as a measure of non-neutrality, which

can be used to compare oligopoly to monopolistic competition. It turns out that a
standard New Keynesian Phillips curve perfectly fits the reaction to a permanent
money shock when ωσ = 1 and abstracting from sectoral heterogeneity.

Proposition 3. Suppose ωσ = 1 and no heterogeneity across sectors, then to a first order

π̇(t) = ρπ(t)− κ mc(t) π(t) = κ
∫

e−ρsmc(t + s)ds

κ = λ̂(ρ + λ̂) λ̂ = λ(1− B)

where π(t) = ∂
∂t log P(t) and mc(t) = 1

σ (log C(t)− log C̄) is the log-deviation of real
marginal cost.

Up to constants of proportionality and for ρ small

κ ≈ 1
h2 .

This implies that for any percent increase in the half life h the slope of the Phillips
curve is reduced by about twice this percentage. The metric κ is arguably more di-
rectly relevant for describing the tradeoff between inflation and output. The half-life
h, however, is commonly reported in the menu-cost literature. In what follows we
discuss both measures.

In Section 7 we investigate general preferences and develop a Phillips curve rela-
tionship that can be used for shocks of any kind, not just permanent money shocks.
We show that the exact Phillips curve no longer generally takes the simple New Key-
nesian form above. However, despite these qualitative differences, we also find that
the simple Phillips curve above continues to provide a quantitatively excellent ap-
proximation to the dynamics of inflation.

3.4 Sufficient Statistics for B: Markups and Elasticities

We now provide a key expression for the slope B in each sector, in terms of observable
sufficient statistics. We focus on one sector and omit the s notation. For any n, we
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obtain B in terms of two steady state objects, the demand elasticity and the markup:

Proposition 4. In a sector with n ≥ 2 firms, the slope of the reaction function around the
steady state satisfies

B =
1 + ρ

λ

1 + 1−(µ−1)(ω−1)
(n−1)[(ε−1)(µ−1)−1]

(9)

where ε = − ∂ log di

∂ log pi
( p̄) is the demand elasticity and µ = p̄

W/ f ′( f−1(di( p̄)))
is the steady state

markup (i.e., price over marginal cost).

Proposition 4 shows how to locally infer unobserved steady state strategies from a
small number of potentially observed statistics. Taking as given market concentration
n and the demand elasticity ε, a higher steady state markup µ is associated with a
higher slope B since ε ≥ ω.18 The advantage of Proposition 4 is that in order to infer
the slope, we do not need to know the factors behind an observed markup, which is
particularly useful as we show later that markups depend on many objects beyond ε.
This is the sense in which µ is a sufficient statistic.19

The intuition behind this result is best seen in the other logical direction. If firm i
deviates to a price above the equilibrium markup µ, a high B means that its rivals will
react strongly and increase prices as well; this limits how much demand firm i loses
from its deviation. Intuitively, this leads to a higher markup. Indeed, when ω = 1
and ρ→ 0 to simplify,

µ− 1
µNash − 1

= 1 +
1

n− 1
· B

1− B

where µNash = ε
ε−1 . Thus, a high equilibrium markup must be a consequence of steep

reaction functions. Note also that, according to this formula, what matters for B is the
net markup relative to net Nash markup and n—the elasticity of demand plays no
further role once we condition on this markup ratio.

Combining the results in this section, the response of the aggregate price level
and output to a permanent monetary shock depends on three steady state statistics:
markups, demand elasticities and market concentration. Armed with these sufficient

18The formula and its proof rely on strategic interactions between at least n = 2 firms. Recall that
the case n = 1 recovers monopolistic competition: the demand elasticity is ε = ω and the markup is
µ = ω

ω−1 .
19Equation (9) is a relation between endogenous objects. In particular, we cannot take limits in n or

λ while holding µ fixed. In Section 4, we show how varying n and other parameters affects both sides
of the equation.
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statistics, it is unnecessary to solve the Markov equilibrium to analyze the effects of
monetary shocks.

If these statistics are not observed, we need to solve the Markov equilibrium.
Equation (9) gives a function B = B (µ, ω, ε, n, λ/ρ). In particular, taking ε and n as
given, to solve for the markup µ, and thus B, we need another relationship between
B and µ. The next section provides this relationship.

4 Market Concentration and other Comparative Statics

The sufficient statistic approach from the previous section answers the question: given
the observed markups, concentration and demand elasticities, what is the aggregate
price stickiness?

In this section we seek to answer how aggregate stickiness would change when
market concentration and other parameters change.20 To do so, we take a more struc-
tural approach: instead of using the observed equilibrium markup as a sufficient
statistic, we need to solve for it. This allows us to perform counterfactual analyses,
and investigate in depth which factors cause the oligopolistic model to depart from
the standard monopolistic model.

4.1 Preliminaries: Method, Elasticity and Superelasticity

For a small number of firms, the Markov equilibrium can be easily solved numerically
using standard methods, such as value function iteration. We employ this method,
but since we want a solution for any n, the state space can become very large. Thus,
we develop an alternative solution method, detailed in Appendix D.21

Our method selects Kimball preferences that generate an equilibrium that can be
solved analytically locally around the steady state. Crucially, we can match any de-
sired elasticities, superelasticities, and higher order elasticities of the demand func-
tion di, up to any desired order m. We employ m = 2 on the grounds that this is

20To simplify we analyze the effect of changes in market concentration, that have occurred slowly
over time relative to business cycle frequencies, as a one-time comparative static experiment.

21The IO literature also acknowledges this challenge and employs approximate solution concepts
such as “oblivious equilibria” (Weintraub, Benkard and Van Roy, 2008). Our method relates to the
algorithm in Krusell, Kuruscu and Smith (2002) and Levintal (2018). Their solution approximates the
Markov policy and value functions using polynomials of order m. Instead, we exhibit primitives such
that locally the equilibrium is indeed polynomial of order m.
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sufficient to flexibly match the first two derivatives, which are the only ones indi-
rectly estimated in practice (using pass-through regressions, as we discuss later).22

Equivalently we are matching the elasticity ε and the “superelasticity” Σ of demand
at the steady state:23

ε = − ∂ log di

∂ log pi
( p̄) and Σ =

∂2 log di

∂ log p2
i
( p̄) /

∂ log di

∂ log pi
( p̄) .

Our method can be summed up as follows. The sufficient statistic formula (9) pro-
vides one equation

B = B(µ, ω, ε, n, λ/ρ).

In Appendix E we derive an additional equation

µ = µ(B, ω, ε, Σ, n, λ/ρ).

We then solve these two equations in two unknowns (B, µ) for given (ω, ε, Σ, n, λ/ρ).

Elasticity and Superelasticity. Our analysis allows for general sectoral demand (i.e.
general aggregator Hs) taking only as inputs the local ε and Σ.

One way to flexibly parameterize demand locally is to use the preference con-
struct from Kimball (1995). For our local analysis, this turns out to be without loss of
generality. Define Hs implicitly as the unique solution for Cs to 1

ns
∑i∈Is φs

(
ci,s
Cs

)
= 1

for some increasing, concave function φs with φs(1) = 1. If φs is a power function,
we obtain the standard CES aggregator across firms. Letting Φs(x) = − φ′s(x)

xφ′′s (x) it is
standard to define

ηs = Φs(1) and θs = −Φ′s(1),

so that ηs is the (local) elasticity of substitution and CES corresponds to θs = 0.24

22Another interpretation (as in Krusell et al. 2002) is that the infinite sequence of elasticities is given,
for instance if preferences are exactly CES, and our method approximates preferences to match the
same elasticities up to order m < ∞. We show in Appendix D in the context of a duopoly with CES
preferences that using a higher order m = 3 yields very close results to m = 2 and that the results are
also very close to the solution obtained using value function iteration.

23Given homotheticity these own-price elasticities also pin down cross-price elasticities, as proved
in Appendix C.

24Klenow and Willis (2016) propose a functional form defined so that θ = −Φ′s(x) holds globally for
all x, but this is not needed for our local analysis.

20



Then we have (dropping the s subscript):

ε =

(
1− 1

n

)
η +

1
n

ω, (10)

Σ =
n− 1

n
· (n− 2)θη + η2 − (1 + ω) η + ω

(n− 1) η + ω
. (11)

Equation (11) shows that as n goes to infinity, Σ converges to θ hence the superelastic-
ity under monopolistic competition is non-zero only if preferences are not CES. But
with finite n, Σ generally differs from zero even with CES preferences θ = 0. As equa-
tion (10) shows, elasticities depend on market shares and, thus, n as is well known in
the CES case studied by Atkeson and Burstein (2008). Our expressions above general-
ize this to any Kimball aggregator and derive new expressions for the superelasticity
(Appendix C provides cross-elasticities).

Note that for the special case n = 2, equation (11) reveals that θ plays no role and
the superelasticity Σ is restricted to being that of the CES case θ = 0. This restriction
with n = 2 is not special to Kimball preferences and reflects a more general property
of symmetric homothetic demand systems that we prove in Appendix C.

4.2 Market Concentration

Our main counterfactual exercise is to study how changes in market concentration
(the number of firms n in a sector) affect the transmission of monetary policy. If we
knew how the sufficient statistics entering (9) changed with concentration, it would
not be necessary to solve the model further. Absent this information, we need to make
assumptions on how these statistics depend on n, for instance by taking a stand on
what parameters to keep fixed when changing n. We start by holding “preferences”
fixed, and exogenously shifting the number of firms; the implicit assumption is that
each firm offers a fraction 1/n of varieties. We then explore an alternative, calibrating
these preferences to the available evidence on pass-through from costs to prices.

Exogenous Changes in Number of Firms. We first hold preferences, embedded in
the Kimball aggregator φs, fixed when changing n. Therefore the parameters η and
θ are fixed, but the elasticities ε and Σ will change according to (10)-(11). One in-
terpretation is that the set of varieties demanded by consumers is unchanged, but
concentration increases due to mergers and acquisitions: firms expand and get to set
prices for more varieties. We assume constant returns to scale in production, f (`) = `
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Table 1: Parameter values.

Parameter Description Value

ρ Annual discount rate 0.05
λ Price changes per year 1
ω Cross-sector elasticity 1
η Within-sector elasticity 10

to focus on complementarities coming from the demand side. The remaining param-
eters are described in Table 1.

When we restrict preferences to be CES (θ = 0), higher market concentration in
the sense of lower n increases monetary non-neutrality. The maximal half-life, at-
tained under duopoly n = 2, is approximately 40% higher than under monopolistic
competition. This is a substantial effect: from Proposition 3 this corresponds to di-
viding the slope of the Phillips curve by 1.42 ≈ 2. The amplification from oligopoly
decreases rapidly with n, however: with n = 10 firms the half-life is only 10% higher
than under monopolistic competition. Allowing for an arbitrary number of firms n is
thus crucial to understand the effect of a realistic increase in concentration.

Once we consider more general preferences than CES, Figure 2 shows that for high
values of θ that generate strong demand complementarities, and thus large effects of
monetary policy even under monopolistic competition, oligopoly can dampen mone-
tary policy. For instance, for θ = 15, going from monopolistic competition to duopoly
decreases the half-life by 20%. The reason is that a high superelasticity Σ increases B,
and for low θ (e.g., θ = 0) Σ decreases with n, but the opposite holds for high θ. We
discuss this further in Section 5.

In principle, this dampening effect of oligopoly can be arbitrarily large: the half-
life with high n increases without bounds with θ, but interestingly, in the special case
of a duopoly n = 2 the half-life is always the same as under CES. This can be seen
from equation (11), where θ is irrelevant for Σ when n = 2.

There is therefore no guarantee that concentration increases non-neutrality: the
direction of the effect depends on finer properties of demand, e.g., how ε and Σ de-
pend on n. Next, we offer a different calibration strategy that infers these properties
from available pass-through estimates.

A Calibration Based on Pass-Through. Previously, we fixed the “preference param-
eters” η, θ when changing the number of firms n. We now provide an alternative that
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Figure 2: Half-life as a function of n for different values of θ.

does not hold preferences φs fixed as we change the number of firms. We have seen
that the shape of demand is crucial to understand how market structure impacts the
transmission of aggregate monetary shocks. As Atkeson and Burstein (2008) empha-
sized in a static setting, market structure also affects the pass-through of firm-level
cost shocks, hereafter simply “pass-through”. We now argue that calibrating the
model to match the empirical relation between market share and pass-through im-
plies that concentration significantly amplifies monetary non-neutrality, even more
than under CES.25

Amiti et al. (2019) estimate pass-through regressions

∆ log pit = α̂∆ log mcit + B̂
∑j 6=i ∆ log pjt

n− 1
+ uit (12)

separately for small and large firms, and find considerable heterogeneity in pass-
through. Small firms behave as under a CES monopolistic competition benchmark,
passing through own marginal cost shocks fully (and thus maintaining a constant
markup) while not reacting to competitors’ price changes orthogonal to their own
cost. Large firms exhibit substantial strategic complementarities: they only pass
through around half of their own cost shocks, thus letting their markup decline to
absorb the other half.26 Amiti et al. (2019) show that α̂ as a function of market share s

25This alternative calibration strategy can be interpreted in two ways. First, we can assume that if a
sector becomes concentrated due to its firms growing larger, then these firms’ idiosyncratic cost pass-
through becomes similar to the pass-through of large firms currently observed in other concentrated
sectors. Second, we can assume that aggregate concentration increases due to already concentrated
sectors becoming larger in a way that preserves within-sector demand (and thus pass-through).

26Other papers such as Berman, Martin and Mayer (2012) and Chatterjee, Dix-Carneiro and
Vichyanond (2013) also find lower pass-through for larger firms.
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is well approximated by

α̂ ≈ 1

1 + (η−1)(1−s)s(η−ω)
ω(η−1)−s(η−ω)

(13)

with η = 10 and ω = 1 (equation 12 and calibration p. 2398 in their paper).27 Empiri-
cal variation in s captures both differences in concentration across sectors and hetero-
geneity across firms within sectors. We will associate the share under our symmetric
model to concentration: s = 1/n.28

Appendix F details how to calibrate our model to pass-through estimates. We
sketch our approach here. First we generalize the reaction function (3) to allow for
shocks to marginal costs mcj. When firm i adjusts its price it sets

p̃i = αm̃ci + B
∑j 6=i p̃j

n− 1
+ γ ∑

j 6=i
m̃cj (14)

where tildes denote log-deviations from steady state values.29 Equation (14) describes
the reaction function, while (12) is a relation between equilibrium changes. The fol-
lowing result, proved in Appendix F, describes the mapping from the model param-
eters α, B in (14) to empirical estimates α̂, B̂ from pass-through regressions (12):

Proposition 5. There exist unique scalars

α̂ =
nα + B− 1

α + B + n− 2
B̂ =

(n− 1) (1− α)

α + B + n− 2
(15)

such that for any vector of cost shocks [∆mci]
′
i=1..n, equation (12) holds with ui = 0.

Therefore in a sector with n firms we set as target α̂ from (13) with s = 1/n. Then,
fixing other parameters (i.e., η, λ, ρ), for each (n, θ) we compute α and B and solve for
θn that satisfies (15).

Remark 2. The mapping (α, B) 7→
(
α̂, B̂

)
given by Proposition 5 cannot be inverted to

obtain directly α, B as functions of empirical estimates α̂, B̂. That is, for any α̂, B̂ such
27As they show in Table 7 and discuss in Appendix D, this calibration implies that a firm with a

market share of 12.5% has a cost pass-through of around 0.5, which matches their empirical pass-
through estimates in Table 3 for large firms (defined by employment or sales share).

28Pass-through as a function of market share is essentially the same, whether variation in market
share comes from varying the number n of symmetric firms, or from within-sector heterogeneity
among a fixed number of firms. This equivalence is exact in a static model, and holds approximately
in our dynamic model as shown in Figure A.6. In Section 6 we show that the equivalence also holds
for the response to aggregate monetary shocks.

29The coefficients α, B, γ can be computed as before using envelope conditions applied to a general-
ization of the Bellman equation (equation (A.27)).
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Figure 3: Half-life as a function of the number of firms n. AIK: variable θn to match
pass-through estimates from Amiti et al. (2019).

that α̂ + B̂ = 1 (a condition that α̂ and B̂ in (15) must satisfy), the system (15) does not
identify α, B.

This non-invertibility is the reason why we need to solve the full dynamic model
to map pass-through estimates to the aggregate effects of monetary policy, as the
model provides additional restrictions on α and B. Note that static oligopoly (i.e.,
the limit λ/ρ → 0) also yields an additional restriction α + B = 1 or equivalently
γ = 0 on the coefficients in (14): in a static model firm i does not respond to a rival’s
cost shock mcj directly because competitors’ prices are sufficient statistics for payoffs
(and thus competitors’ costs are irrelevant conditional on their prices). Under that
additional restriction we can recover uniquely α = α̂, B = B̂. The same holds for
n → ∞. However, under dynamic oligopoly, B differs from B̂ in general. Indeed,
quantitatively B is close to 1−

√
1− B̂, which can be much lower than B̂.

Results. We fix η at 10, a common benchmark in the literature since Atkeson and
Burstein (2008). We hold η fixed to focus the discussion on how pass-through and
hence the superelasticity Σ changes with concentration.30

Figure 3 shows our results. “AIK” is our calibration with a variable parameter
θn as explained above. Concentration amplifies stickiness substantially, much more

30Ideally, one would obtain non-parametric estimates of both ε (n) and Σ (n) from matching jointly
the relation of markups and pass-through with market shares, but at the time of writing there was no
direct counterpart to Amiti et al. (2019) for markups. In recent work, Burstein, Carvalho and Grassi
(2020) examine the relation between market shares and markups and find in French data that a linear
regression of the inverse markup against the sectoral HHI yields a coefficient of−0.44. In our dynamic
model, the corresponding coefficient is−0.24 and gets closer to their estimate than a CES model, which
would yield −0.15. Allowing η to increase with n instead of fixing η = 10 would improve the fit
further.
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Figure 4: Steady state markup µ as a function of θ (left panel) and λ (right panel).

than under CES. When going from monopolistic competition to n = 3 firms, the
half-life doubles; equivalently, the slope of the Phillips curve is divided by four. For
comparison we include calibrations that hold θ fixed.

Unlike under CES, oligopoly matters even for realistic levels of concentration.
Consider a rise in national concentration from an average Herfindahl index 1/n of
0.05 to 0.1, reflecting the trends observed since 1990 by, e.g., Gutiérrez and Philippon
(2017). Under the “AIK” calibration, the half-life is 20% higher than under monopo-
listic competition when n = 20, and 40% higher when n = 10. This 15% increase in
non-neutrality in terms of half lives is equivalent to a one-third reduction in the slope
of the Phillips curve.31

4.3 Other Comparative Statics: the Determinants of Markups

Our sufficient statistics formula (9) highlights the role of markups. Other parame-
ters such as preferences and price stickiness also affect markups and monetary policy
transmission, holding concentration (i.e., n) fixed. Here we summarize the main find-
ings and refer interested readers to Appendix G for more discussion and numerical
explorations.

As under monopolistic competition, a lower elasticity of substitution η increases
the markup. But the effect on stickiness is ambiguous (and depends on θ), because a
lower η also decreases the demand elasticity ε hence multiple terms in (9) are chang-
ing.

We argued that under dynamic oligopoly, markups are not fully determined by

31Rossi-Hansberg et al. (2020) show a decline in local concentration, in particular in the retail sector.
An interesting open question is then which level of aggregation (what we call “sectors” s) is most
relevant for consumer price inflation. The answer depends in part on the prevalence of “uniform
pricing” policies (DellaVigna and Gentzkow, 2019) and how concentration varies at different points of
supply chains (e.g., pass-through is lower for wholesale prices than retail prices).
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demand elasticities. Figure 4 illustrates this point. A higher superelasticity param-
eter θ increases the markup. Since this leaves ε unchanged, this experiment is the
most transparent application of our sufficient statistic result: B and thus the half-life
increase. Finally, markups increase with the frequency of price changes λ and de-
crease with discount rates ρ: more patient firms can sustain a higher markup, as in
the literature on collusion.

5 Inspecting the Mechanism: Strategic vs. Naive Firms

The presence of a finite number of firms has two distinct effects on competition and
pricing incentives: “feedback effects” capture the fact that each firm cares about its
rivals’ current and future prices when setting its price; “strategic effects” capture in-
stead the fact that each firm realizes its current pricing decision can affect how its
rivals will set their prices in the future. Feedback effects are present even under mo-
nopolistic competition (n = ∞) with Kimball demand or decreasing returns, however
strategic effects are not.

We disentangle the two effects through the lens of a “naive” model, in which firms
are naive in the following sense: when resetting their price, they form correct expec-
tations about the stochastic process governing their competitors’ future prices, but in-
correctly assume that their own price-setting will have no effect on those competitors’
future prices. The naive model captures all the feedback effects, while suppressing
strategic effects. We have the following equivalence result.

Proposition 6. The time paths for aggregates in the naive model with finite firms n < ∞
and parameters (η, θ) are identical to those of an economy with monopolistic competition
n′ = ∞ and modified Kimball preferences (η′, θ′) set to match the demand elasticity ε and
superelasticity Σ of the model with n firms, using (10)-(11).

Therefore the naive model provides a behavioral foundation for the notion of a
“properly recalibrated” monopolistic economy.32 We compute the half-life of the
price level h in the strategic model and hNaive in the naive model, and then define

32We could also compare oligopoly to a model with monopolistic competition that matches the same
own-cost pass-through (the naive model matches elasticities, not pass-through). While such an econ-
omy lacks the behavioral interpretation of the naive model, it is a natural benchmark when thinking
about recalibration. Quantitatively, this alternative is almost identical to the naive model, because
matching elasticities is very close (and equivalent when n→ ∞ or λ→ 0) to matching pass-through.
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strategic effects as follows:

h =
1
λ
× hNaive

1/λ︸ ︷︷ ︸
feedback effect

× h
hNaive︸ ︷︷ ︸

strategic effect

.

As n goes to infinity, h/hNaive goes to 1 and the strategic effect disappears; what is left
is the standard feedback effect that can stem from non-CES demand or decreasing
returns to scale.

The Naive Reaction Slope. The solution of the naive model is in Appendix H.
The key difference with the strategic equilibrium is that here, when setting a price
firm i treats the evolution of rivals’ prices as exogenous to its choice pi. The steady
state price of the naive model is the static Bertrand-Nash price pNash, that solves
Πi

i
(

pNash) = 0. To first order, each resetting firm i sets

log pi,s(t) = log pNash
s + BNaive

s
∑j 6=i

(
log pj,s(t)− log pNash

s
)

ns − 1
.

Following the same steps as for Proposition 2, the price level in the naive model
evolves according to (6) with BNaive

s instead of Bs.
Denote BNash

s the slope of the static best response of a firm to a simultaneous price
change by all its competitors33

BNash
s =

(ns − 1)Πi,s
ij
(

pNash
s

)
−Πi,s

ii
(

pNash
s

) .

The following result shows that the slope BNaive
s is a simple increasing function of

BNash
s .

Proposition 7. Let ϕ (x, y) = 1 + 1/ (2y)−
√
(1 + 1/ (2y))2 − (1 + 1/y) x. Then

BNaive
s = ϕ

(
BNash

s ,
λs

ρ

)
.

33We can reexpress BNash in terms of the demand elasticities as BNash = Γ
1+Γ where Γ = Σ

ε−1 is also
known as the markup elasticity (Gopinath and Itskhoki, 2010) or responsiveness (Berger and Vavra,
2019). In the limit of monopolistic competition, BNash → θ

θ+η−1 .
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is increasing in BNash
s and decreasing in λs/ρ and

1−
√

1− BNash
s ≤ BNaive

s ≤ BNash
s . (16)

Note that if BNash
s = 0 (as under monopolistic competition n = ∞ with CES de-

mand) then BNaive
s = 0. With a finite number of firms, BNash

s > 0 and thus BNaive
s > 0

even with CES demand.
The naive price-setting strategy is not completely naive: it is still forward-looking

and differs from the static best-response, indeed BNaive
s < BNash

s for λs/ρ > 0. The
lower and upper bounds in (16) come from the limits λs/ρ → ∞ and λs/ρ → 0,
respectively.

In practice, since ρ is small relative to λ, BNaive
s is closer to its lower bound 1−√

1− BNash
s . Numerically, we also find that Bs is close to BNaive

s , as we show below.

Strategic, Naive, and Static Models. How well does the naive model approximate
the strategic model? We start with some familiar limiting benchmarks. Intuitively,
the strategic effects vanish if λ/ρ is small or n is large. Formally,

lim
λ/ρ→0

Bs = lim
λ/ρ→0

BNaive
s = BNash

s .

Also for λ/ρ > 0,

lim
n→∞

Bs = lim
n→∞

BNaive
s = ϕ

(
lim

n→∞
BNash

s ,
λs

ρ

)
= ϕ

(
θs

θs + ηs − 1
,

λs

ρ

)
.

This latter limit for Bs together with Proposition 2 summarizes the standard monop-
olistic competitive model, with CES (θ = 0) or Kimball preferences (θ > 0).

Away from these two limit cases, we need to evaluate numerically the distance be-
tween the naive and strategic models. Figure 5 displays the strategic effect h/hNaive

as n varies from 3 to 25. We find that quantitatively, strategic effects do not explain
much of the aggregate price stickiness under oligopoly. Strategic effects are consider-
ably stronger in the “AIK” calibration, which also features stronger feedback effects.
This interaction is intuitive: the reason a firm acts strategically is that its price will
have a feedback effect on competitors when they get to reset their prices. Yet in all
specifications, strategic effects are small: the half-life is always less than 3% higher
than the naive half-life. Consistent with their definition, strategic effects vanish as
n grows and the economy approaches monopolistic competition: they fall below 1%
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Figure 5: Strategic effect h/hNaive as a function of n. AIK: variable θn to match pass-
through estimates from Amiti et al. (2019).

when n exceeds 5.

Comparative Statics in the Naive Model. The effect of oligopoly on monetary pol-
icy transmission is transparent in the naive model because changes in n, θ, η affect
BNaive only through BNash. Going back to the findings from Section 4.3, the naive
model helps understand, for instance, when concentration amplifies or dampens ag-
gregate price stickiness. Figure 2 shows that the effect of n in the strategic model
depends on the value of θ; in the naive model we can prove this property analytically
and understand better the underlying intuition.

Holding fixed θ and η, BNash is decreasing in n if and only if

θ <
(η − 1)2

η + 1
. (17)

Therefore, with CES preferences θ = 0, concentration amplifies aggregate price stick-
iness, while θ above around 7.5 (for η = 10) implies that concentration dampens
stickiness, which matches closely Figure 2.

Intuitively, there are two opposite forces. Recall that with CES preferences, the
demand elasticity of a firm i with market share si is simply ε = η (1− si) + ωsi; a
higher price pi decreases si hence increases ε; in other words, Σ > 0. A smaller
number of firms n strengthens this source of superelasticity because the impact of a
given price change on the market share is larger. The opposite force arises only with
non-CES preferences: θ > 0 increases a firm’s incentives to set a price close to the
average price of other varieties. A smaller n weakens this source of complementarity,
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because each remaining firm controls prices for a larger share of varieties and thus
becomes less sensitive to other firms’ prices. Condition (17) characterizes precisely
when the first force dominates.34

6 Heterogeneity Across and Within Sectors

We now explore the role of heterogeneity across and within sectors. Across sectors
we focus on heterogeneity in the frequency of price changes λs, and discuss when it
interacts with oligopolistic competition to further amplify monetary non-neutrality.
Within sectors we allow firms to differ in their productivity or the demand they face,
which results in heterogeneous firm size. Our main finding is that the baseline model
with symmetric firms is a very good approximation of a richer model with hetero-
geneous firms, once we reinterpret the number of firms n in a sector as an “effective
number of firms” equal to the inverse Herfindahl index.

6.1 Heterogeneous Price Stickiness across Sectors

The effect of the frequency of price changes on markups and therefore reaction func-
tions is magnified in the presence of sector heterogeneity in λ. Several papers have
documented a link between frequency of price changes and market structure.35 Mod-
els with menu costs provide a microfoundation for the effect of concentration on price
flexibility. Although our Calvo framework does not endogenize the frequency, inter-
esting insights still arise from taking observed correlations as given, by letting λs

comove with ns. From (8), the cumulative output effect for a monetary shock of size
δ is:

δ

σ
×
{

E
[

1
λs

]
E
[

1
1− Bs

]
+ Cov

(
1
λs

,
1

1− Bs

)}
(18)

where E [xs] =
∫

s ζsxsds denotes the average of a variable x across sectors. In Section
4.2 we saw that 1

1−Bs
is higher in more concentrated sectors. If these sectors are also

characterized by a lower frequency λs, then the covariance term is positive, which

34Similarly, holding n fixed, BNash decreases with the elasticity of substitution η (and thus the ob-

served markup) if and only if θ < n
n−2 ×

(η−1)2

1+(n−1)η2 , which explains why, in Figure A.3, the half-life
decreases with the markup µ under CES (θ = 0) but not when θ is high enough.

35See, e.g., Carlton (1986). Most recently, Mongey (2018) shows that price changes are less frequent
in more concentrated wholesale markets. Given that market shares and pass-through are negatively
correlated, this fact is also consistent with Gopinath and Itskhoki (2010), who show price changes are
less frequent for goods with a lower long-run exchange rate pass-through.
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Figure 6: Effects of heterogeneous frequency across sectors. The black line shows the
cumulative output effect and the gray area shows the covariance term in (18).

Note: Example with two sectors, one with n = 3 firms and one with n = 20 firms, with “AIK” calibra-
tion. λ3 is the frequency in the sector with 3 firms, and we set the frequency λ20 in the other sector to
keep the average duration 1

2

(
1

λ3
+ 1

λ20

)
fixed at 1.

increases aggregate non-neutrality. This channel differs from the role of heterogeneity
in, e.g., Carvalho (2006) under Calvo pricing or Nakamura and Steinsson (2010) under
menu costs. Oligopoly is a very natural reason to have heterogeneity in Bs, but note
that even under monopolistic competition ns → ∞, heterogeneous Bs could arise
from differences in Kimball demand or the degree of decreasing returns to scale across
sectors.

Figure 6 shows the magnitude of this channel in an example with one concen-
trated sector (n = 3) and one competitive sector (n = 20) under the “AIK” calibration.
If the two sectors have the same price duration of 12 months, then the cumulative
output effect is 56% higher than in a standard New Keynesian model without com-
plementarities. If, instead, the durations are 18 months in the concentrated sector and
6 months in the competitive sector, the average duration is unchanged at 12 months,
but tthe cumulative output effect is now 75% higher than in the standard model.

6.2 Heterogeneous Firm Productivity within Sectors

We now extend our baseline model to allow for permanent heterogeneity between
firms within sectors, in terms of tastes and productivity. Focusing on one sector s,
suppose that firms differ in their productivity zi while consumers have different tastes
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Figure 7: Heterogeneous vs. symmetric firms.
Note: Red line: Half-life with 10 heterogeneous firms (na = 2, nb = 8) when varying relative pro-
ductivity. Black dots: Half-life with n = 2, 3, . . . , 10 symmetric firms. All cases feature nested CES
preferences with η = 10 and ω = 1.

captured by multiplicative demand shifters ξi.36

We solve the heterogeneous firms in Appendix E.2 using the same method as in
the symmetric case. We consider a simple form of heterogeneity: in each sector, there
are na firms of type a and nb firms of type b, with the convention na ≤ nb. The two
types of firms allow us to capture the case of small and large firms in a sector.37

The takeaway is that our baseline model with n symmetric firms is a good ap-
proximation to a model with heterogeneous firms, once we reinterpret n as the in-
verse HHI of the heterogeneous firms model. The red line in Figure 7 shows the
half-life as a function of the inverse HHI of type-a firms as we vary continuously
their relative productivity. Each black dot represents the half-life of a model with
n = na, na + 1, . . . , na + nb symmetric firms. The black dots remain extremely close to
the red line. The same conclusion holds for different choices of na, nb. Therefore, even
though we assume symmetry in our baseline model for simplicity, our results extend
to more realistic firm distributions once reinterpreted properly.

36Sectoral consumption Cs solves 1
n ∑i∈Is φ

(
ξici
Cs

)
= 1.

37With heterogeneity we need to solve for an asymmetric steady state price vector and a matrix of

strategy slopes βi
j =

∂gi

∂pj
. We only assume two types for computational simplicity. The same solution

method works with any k ≤ n types of firms, which would require solving for k prices and k2 slopes.
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7 The Oligopolistic Phillips Curve

We focused so far on the dynamics following a permanent money supply shock, un-
der parametric restrictions that allowed to go from the stationary industry equilib-
rium to general equilibrium. In this section we generalize our analysis considerably
in terms of preferences and shocks.

Qualitatively, our main result is an oligopolistic Phillips curve that features ex-
tra terms relative to the basic monopolistic competitive model, but is still tractable
enough for computation. We then use a three-equation oligopolistic New Keynesian
model to study the response to a variety of shocks. Quantitatively, our main finding
is that although this extended model can display larger strategic effects than in the
previous experiments, the standard monopolistic Phillips curve obtained with naive
firms provides a very good approximation to inflation dynamics.

7.1 The Phillips Curve

We now relax the restrictions on preferences and the type of shock from Section 3. In
Appendix I we derive the following Phillips curve, first expressed in integral form.

Proposition 8. There exists q ≤ 7 and a q × q matrix A described in Appendix I, that
depends on steady state demand elasticities, with eigenvalues

{
νj
}q

j=1, such that

π(t) =
∫ ∞

0
γmc (s)mc (t + s) ds +

∫ ∞

0
γc (s) c (t + s) ds +

∫ ∞

0
γR (s) (R (t + s)− ρ) ds

(19)
where R(t) is the nominal interest rate, mc(t) and c(t) are the log-deviations of the real
marginal cost and consumption, respectively, and for each variable x ∈ {mc, c, R}, γx (s) is
a linear combination of

{
e−νjs

}q
j=1.

The Phillips curve provides a general mapping from the paths of future marginal
costs, aggregate consumption and interest rates to current inflation. For the shocks
we considered so far, equilibrium marginal costs and consumptions are in fixed pro-
portions and R(t) = ρ is fixed, but (19) is more general, allowing to incorporate, e.g.,
interest rate and productivity shocks. The content of Proposition 8 is not that there
exist generic coefficients γx (s) satisfying (19), but that they have a very specific and
solvable structure tied to the oligopoly game and demand elasticities.
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Under monopolistic competition, (19) simplifies drastically to

π(t) = κ
∫ ∞

0
e−ρsmc (t + s) ds (20)

or equivalently π̇ = ρπ − κ mc for some coefficient κ, that is, the slope of the Phillips
curve. In particular, when firms are naive, the Phillips curve is simply

π̇ = ρπ − κNaive(n) mc (21)

with κNaive(n) = (1− BNash(n))λ(λ + ρ).
Under strategic oligopoly, inflation is also primarily determined by a weighted

average of future marginal costs captured by the first term in (19), but oligopoly is
not isomorphic to a lower λ due to two qualitative differences. First, the multiplic-
ity of eigenvalues induces higher-order terms in the dynamical system that alter the
shape of γmc (s). Second, inflation depends on other variables than future marginal
costs through the other terms in (19). In the standard New Keynesian model, real
marginal costs capture all the forces that influence price setting. Here, consumption
and interest rates have an independent first-order effect because they alter the strate-
gic complementarities between firms. For instance the coefficients γc (s) capture the
Rotemberg and Saloner (1986)-like aggregate demand effects absent when ωσ = 1.38

We can transform (19) into a high-order scalar ordinary differential equation for
inflation. Focusing on an example with few firms, n = 3, to highlight the differ-
ences with monopolistic competition, the integral Phillips curve (19) is approximately
equivalent to39

π̇ = 0.07π − 0.27mc + 1.33π̈ + 0.44ṁc + 0.03 (R− ρ)︸ ︷︷ ︸
=u

(22)

under the AIK calibration. Turning to the naive Phillips curve (21), we have

κNaive (3) = 0.25,

κNaive (∞) = 1.05.

Going from n = ∞ to n = 3 reduces κNaive by a factor of four; in this sense the

38Figure A.7 illustrates the coefficients γmc (s) , γc (s) , γR (s) for different n.
39In general there are q = 7 eigenvalues, but q can be reduced to 3 under a simplifying condition

(A.36) given in Appendix I, which we assume to ease the exposition of (22); inflation dynamics are
almost unchanged when we use q = 7, as we do in all the figures.
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amplification from oligopoly appears very large. This result is consistent with Figure
3 in which the half-life h doubles when going from n = ∞ to n = 3, given the relation
κ ∝ 1/h2 from Proposition 3.40

Relative to the naive Phillips curve, the strategic Phillips curve (22) features a sim-
ilarly low coefficient on mc, but also (i) more discounting, (ii) a higher-order term
1.33π̈, and (iii) a term u that resembles an endogenous “cost-push” shock. Although
the Phillips curve (22) is qualitatively different, in practice we show next that the
naive equilibrium continues to provide a great fit. By implication, the standard NK
Phillips curve with slope κNaive (21) provides a very good fit to the dynamics of infla-
tion in response to various shocks.

7.2 Three-Equation Model

We can now analyze a three-equation New Keynesian model that combines the Phillips
curve with an Euler equation

ċ = σ−1 (R− π − ρ− εr) ,

and a monetary policy interest rate rule

R = max {0, ρ + φππ + εm} ,

where εr (t) and εm(t) are real and monetary shocks, respectively. The rest of the
model is standard. Wages are flexible, technology is linear in labor Y = ` and house-
holds have preferences C1−σ

1−σ − `1+ψ

1+ψ , hence mc = (ψ + σ) c. We set standard values
σ−1 = 0.5 for the elasticity of intertemporal substitution, ψ−1 = 0.5 for the Frisch
elasticity of labor supply, and φπ = 1.5 for the Taylor rule coefficient on inflation.

Date-0 Monetary Policy Shocks. We first consider unanticipated date-0 interest rate
shocks that decay geometrically, εm(t) = εm

0 e−ξt, while shutting other shocks, εr = 0,
so that the zero lower bound remains slack. The solution is detailed in Appendix I.1.
Under both monopolistic and oligopolistic competition, all the equilibrium variables
x ∈ {c, π, mc, R− ρ} are proportional to e−ξt, e.g., x(t) = x (0) e−ξt, hence differ-

40Another measure (e.g., Mongey 2018) is the standard deviation of output when the economy is
hit by recurring monetary shocks hence at a yearly frequency ct = e−

1
h ct−1 + mt. Under that metric

the doubling of the half-life is equivalent to a 17% increase in the standard deviation of output σc =
σm√

1−e−2/h .
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Figure 8: Effective slope of the Phillips curve κ̂, strategic vs. naive oligopoly.

Note: Left panel: κ̂ = ξ+ρ
ψ+σ ·

π(0)
c(0) as a function of n following an interest rate shock εm

0 with decay ξ = 10 under AIK calibration.

Solid black line: (strategic) oligopolistic Phillips curve (19). Dashed gray line: κNaive. Right panel: Ratio κ̂/κNaive as a function
of n.

ences across models are summarized by the impact effects on consumption c (0) and
inflation π (0).41 Since mc(0) = (ψ + σ)c (0) then

κ̂ =
ξ + ρ

ψ + σ
· π (0)

c (0)

is defined to reveal the actual slope κ in the special case of a first-order Phillips curve;
in particular κ̂ = κNaive in the naive economy. More generally it captures the trade-off
between inflation and output, even in the more complex strategic oligopoly model.

The left panel of Figure 8 compares κ̂ to κNaive as a function of n (under the AIK
calibration); the right panel shows the ratio κ̂/κNaive as a measure of strategic effects.
The message is consistent with what we found for permanent money shocks: con-
centration amplifies monetary non-neutrality by a significant amount. The left panel
shows that a large part of the amplification can again be explained by feedback ef-
fects, that is, through the lens of the naive model. For low n strategic effects are more
substantial than we found earlier: the naive model actually underestimates the ef-
fective slope κ̂ by around 30% when n = 3. But strategic effects vanish rapidly as n
increases.42

41One can recover the permanent money shock case from Proposition 3 by setting ξ = λ(1 − B)
since then φππ + εm = 0 so R(t) is unchanged.

42The shock is very transitory as the exponential decay ξ is set at 10; more persistent shocks bring
κ̂/κNaive even closer to 1.
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Other Shocks: News Shocks and Liquidity Traps. In the Appendix we consider
two more sophisticated policy experiments. First, we assume the previous monetary
shock is realized at some date tshock > 0:

εm(t) =

0 t < tshock

εm
0 e−ξ(t−tshock) t ≥ tshock.

This captures a news shock about monetary policy (the same results obtain with news
about real shocks εr). Figure A.8 shows the similarity of the impulse responses in the
strategic and naive models, for different shock dates tshock = 1, 2, 3.

Finally we consider a liquidity trap scenario, in which the nominal interest rate R
is stuck at zero from t = 0 to t = T while the natural real rate ρ + εr turns negative to
−1%, i.e., εm = 0 and

εr (t) =

−ρ− 0.01 t < T

0 t ≥ T.

At t = T the economy reverts to the steady state with c (T) = π (T) = 0 (for instance
because the central bank lacks commitment). Figure A.9 shows the impact effects
c (0) and π (0) as a function of the length of the trap T, for two economies, n = 3
and n = ∞. Just like higher price flexibility λ leads to more deflation and deeper
recession (e.g.,Werning 2012), for given λ the stickiness due to oligopoly significantly
dampens the severity of the trap by weakening the deflationary response. Figure
A.10 compares the impact effects c (0) and π (0) for the strategic and naive models
as a function of the length of the trap T: the responses are almost identical for short
traps, but start diverging as T increases.

Overall, for a variety of shocks we find that the naive model captures most of
the dynamics, except for very small n, in which strategic effects can cause up to a
30% increase in the effective slope of the Phillips curve. By implication, despite the
new terms in our exact oligopolistic Phillips curve, a standard first order NK Phillips
curve, appropriately parameterized using κNaive (n), provides a very good approxi-
mation.
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8 Conclusion

We conclude by collecting some takeaways and directions for future work suggested
by our analysis.

Quantitatively we find that market concentration has a large effect on monetary
policy transmission. The direction and magnitude of the effect depend on how con-
centration affects the superelasticity of demand. Under a calibration that matches
pass-through estimates, going from monopolistic competition n = ∞ to an oligopoly
with n = 3 firms doubles the half-life of the price level following monetary shocks,
or equivalently divides the slope of the Phillips curve by four.

A central insight of our paper is that simple game-theoretic, partial equilibrium,
objects—the slopes Bs—encapsulate the relevant pricing interactions and the general
equilibrium response to standard monetary shocks. These slopes Bs can be computed
from sufficient statistics; our model predicts that measures of sectoral non-neutrality
are positively related to markups, after controlling for elasticities, frequency and con-
centration.43 The markup, in turn, is not simply a function of the demand elasticity
as in a static model. For example, a higher superelasticity of demand increases the
markup.

We show that a simpler model with monopolistic competition and non-CES (e.g.,
Kimball) demand, when properly recalibrated, goes a long way towards approximat-
ing the dynamic responses to shocks. We propose a way to calibrate the relevant
properties of demand using pass-through estimates and applied it using one partic-
ular study. More generally, our results highlight the importance of understanding
how demand elasticities and superelasticities depend on market concentration, an
important avenue for further empirical work.

Menu costs introduce several additional effects which we abstracted from here.
Higher concentration may affect the frequency of price changes by reducing the profit-
losses from failing to adjust prices (e.g., Rotemberg and Saloner 1987). Moreover, for
a given average frequency of price changes, concentration interacts with menu costs
through two effects: the selection effect (i.e., which firms are more likely to adjust),
and possibly by coordinating the price changes (i.e., increasing the correlation be-
tween different firms’ price changes). In Mongey (2018) the first effect dominates and

43Menu costs models may also imply a positive relation between markups and non-neutrality: lower
demand elasticity can increase both markups and monetary non-neutrality, but it does so by lowering
the frequency of price changes (e.g., Alvarez and Lippi 2014). The effect we describe is different as it
is conditional on frequency.

39



generates additional amplification from oligopoly relative to Calvo pricing. The sec-
ond effect, on the other hand, works towards price flexibility. In extreme cases this is
what Nirei and Scheinkman (2021) call “repricing avalanches”.

Klenow and Willis (2016) have pointed out that high strategic complementarities
from Kimball demand are difficult to reconcile with the observed large price changes.
An interesting possibility in an oligopolistic model with firm heterogeneity may help
explain this fact. Small firms adjust their prices in response to cost shocks, whereas
larger firms may have more market power, and only pass through a fraction of their
cost shocks, but drive most of the aggregate price stickiness. This suggests distin-
guishing empirically the distributions of price changes by small and large firms.

We focused on Markov Perfect equilibria, the dominant equilibrium concept in
Industrial Organization. Extending the analysis to non-Markov equilibria with “trig-
ger strategies” seems feasible. Indeed, Proposition 1 applies to any equilibrium of the
dynamic game, and can be used to study the aggregate response to a monetary shock
for non-Markov equilibria.

To solve for the set of subgame perfect equilibria (e.g., the best and worst) one can
employ the methods in Abreu, Pearce and Stacchetti (1990) adapted to the staggered
price-setting structure. Although a full analysis is beyond the scope of this paper,
when discounting is low enough, the best equilibrium achieves “perfect collusion”:
on the equilibrium path, firms set prices to maximize the present value of total sec-
toral profits. One can show that this implies greater aggregate price stickiness than
under the Markov equilibrium. Understanding the extent to which this conclusion
extends to other situations (e.g. low discounting) or other equilibria (not the best
equilibrium) is a promising avenue for future research.

There is much more to investigate. We emphasized that the shape of demand is
crucial to understand the transmission of shocks, and affected by trends in concen-
tration. Another possibility is that macroeconomic shocks also affect the shape of
demand, creating a force for inflation independent of the marginal cost changes we
focused on.
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Appendix
For Online Publication

A Dynamics after a Monetary Shock

A.1 Exact Dynamics

Proof of Proposition 1. If the consumer maximizes∫
e−ρt

[
C(t)1−σ

1− σ
− N(t)1+ψ

1 + ψ
+

m(t)1−χ

1− χ

]
dt

we have

˙C(t)
C(t)

=
1
σ
(R(t)− π(t)− ρ)

N(t)ψC(t)σ =
W(t)
P(t)

⇒ ψ
˙N(t)

N(t)
=

˙W(t)
W(t)

− R(t) + ρ

M(t)−χP(t)χC(t)σ = R(t)

We look for an equilibrium with constant nominal interest rate R(t) = R and nominal
wage W(t) = W following a permanent shock to M. Suppose ψ = 0 then we get

˙W(t)
W(t)

= R− ρ

To get constant wage W(t) = W we need R = ρ (this is necessary, otherwise we
would get permanent wage inflation). The constant wage implies

P(t)C(t)σ = W

Then the third equation gives

ρMχ = P(t)χC(t)σ

So we need χ = 1 for our guess to be indeed an equilibrium.
The representative consumer’s expenditure in sector s at time t is

Es(t) = Ps(t)1−ω [C(t)P(t)ω]
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where P(t) is the aggregate price level
(∫

s Ps(t)1−ωds
) 1

1−ω hence the real demand vec-
tor in sector s is (given our within-sector CRS assumption as in Kimball)

D
({

pj,s(t)
}

, Es(t)
)
= D

({
pj,s(t)

}
, 1
)

Ps(t)1−ωC(t)P(t)ω

where Ps is the sectoral price index.Denote the function of prices in sector s only

d
({

pj,s
})

= D
({

pj,s
}

, 1
)

Ps
1−ω

The nominal profit of firm i in sector s given all the other prices in the economy is

di (pi,s, p−i,s)C(t)P(t)ω

[
pi,s −W(t)

f−1 (di (pi,s, p−i,s)C(t)P(t)ω
)

di (pi,s, p−i,s)C(t)P(t)ω

]

where p−i,s =
{

pj,s
}

j 6=i. Thus the real profit is

di (pi,s, p−i,s)C(t)P(t)ω−1

[
pi,s −W(t)

f−1 (di (pi,s, p−i,s)C(t)P(t)ω
)

di (pi,s, p−i,s)C(t)P(t)ω

]

Firm i maximizes the present value of real profits discounted using the SDF e−ρtC(t)−σ,
that is∫

e−ρtC(t)1−σP(t)ω−1di (pi,s, p−i,s)

[
pi,s −W(t)

f−1 (di (pi,s, p−i,s)C(t)P(t)ω
)

di (pi,s, p−i,s)C(t)P(t)ω

]
dt.

With general σ (but linear disutility of labor and log-utility of real balances, that are
needed to obtain constant nominal interest rate and wage) we have that

P(t)C(t)σ = W,

therefore if
ωσ = 1

then the terms

C(t)1−σP(t)ω−1 = W
1
σ−1P(t)ω− 1

σ

C(t)P(t)ω = W
1
σ P(t)ω− 1

σ

are constant. Denote p̂s =
( p1,s

1+δ , . . . , pn,s
1+δ

)
the vector of normalized prices. The present
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discounted value of real profits is

W1/σ−1
∫

e−ρtdi ( p̂s)

[
pi,s −W

f−1 (di (pi,s, p−i,s)W1/σ
)

di (pi,s, p−i,s)W1/σ

]
dt

=W1/σ−1
− (1 + δ)1/σ−ω

∫
e−ρtdi ( p̂s)

 p̂i,s −W−
f−1

(
di ( p̂s)W1/σ

− (1 + δ)1/σ−ω
)

di ( p̂s)W1/σ
− (1 + δ)1/σ−ω

 dt

=W1/σ−1
−

∫
e−ρtdi ( p̂s)

 p̂i,s −W−
f−1

(
di ( p̂s)W1/σ

−
)

di ( p̂s)W1/σ
−

 dt

which is exactly the same as before the shock up to the change of variables p→ p̂.

A.2 Approximate Dynamics

Proof of Proposition 2. Fix n and a sector s ∈ [0, 1]. Define the state vs(t) as

vs = (z1, . . . , zn)
′

where zi = log pi − log p̄. Denote the first-order expansion of the best response p′i =
g (p−i, P) by

z′i = αZ + β

(
∑
j 6=i

zj

)
where Z(t) = log P(t)− log p̄ is the log deviation of the aggregate price level. Propo-
sition 1 shows that α = 0 if ωσ = 1; otherwise α will be non-zero and we derive the
aggregation in the general case.

When firm i adjusts its price, the state of sector s changes to

v′s(t) = αZ(t)ui + Mivs(t)

where ui is the vector (0, . . . , 0, 0
↑
i

, 0, . . . , 0) Mi is the identity matrix except for row i

which is equal to (β, . . . , β, 0
↑
i

, β, . . . , β).

First suppose that all sectors are identical. Define the aggregate state variable

V(t) =
∫

s∈[0,1]
vs(t)ds ∈ Rn
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Between t and t + ∆t, a mass nλ∆t of firms adjusts prices so V evolves as

V(t + ∆t) = (1− nλ∆t)V(t) +
∫

a firm in s adjusts
vs(t + ∆t)ds

= (1− nλ∆t)V(t) + (λn∆t)
[

αZ(t)∑i ui

n
+

∑i Mi

n
V(t)

]
therefore in the limit ∆t→ 0

V̇(t) = λαZ(t)U + nλ

(
∑i Mi

n
− In

)
V(t)

where U = ∑i ui = (1, . . . , 1)′ and

∑i Mi

n
− In =


−1
n

β
n · · · β

n
β
n

−1
n · · · β

n
...

... . . . ...
β
n

β
n · · · −1

n


The aggregate price level is then Z(t) = LVt where L = 1

n (1, . . . , 1). The eigenvalues

of nλ
(

∑i Mi
n − In

)
are:

• µ1 = −λ(1 + β) with multiplicity n− 1,

• µ2 = −λ[1− (n− 1)β] with multiplicity 1.

The vector U is an eigenvector associated with µ2, so if we start from symmetric initial
conditions V(0) = (log p0 − log p̄)U we have

V(t) = V (0) e(λα+µ2)t

hence finally, the price index evolves to first order in δ as:

log
(

P(t)
P̄

)
= log

(
P(0)

P̄

)
e−λ[1−α−(n−1)β]t

= −δe−λ[1−α−(n−1)β]t

With heterogeneous sectors s the aggregation across sectors yields

log
(

P(t)
P̄

)
= −δ

∫
s

ζse−λs[1−αs−(ns−1)βs]tds

where ζs is the steady state expenditure share of sector s.
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B Markov Equilibrium and Sufficient Statistics

Let Vi,s(p; t) denote the value function for firm i, where p is the vector of ns prices.
We focus on equilibria with differentiable g and V satisfying the Bellman equation

R(t)Vi,s(p; t) = Πi,s(p; t) + λs ∑
j∈Is

(
Vi,s(gj,s(p−j; t), p−j; t)−Vi,s(p; t)

)
+

∂Vi,s

∂t
(p; t)

(A.1)
where gj,s(p−j; t) satisfies the optimality condition gj,s(p−j; t) ∈ arg maxpj V j,s(pj, p−j; t)
with first-order necessary condition

V j,s
pj (gj,s(p−j; t), p−j; t) = 0 (A.2)

for all j.

Proof of Proposition 4. Differentiating the Bellman equation (A.1) and making use
of symmetry, we obtain at the steady state p̄ of a symmetric equilibrium:

0 = Πi
pi
( p̄) + λ ∑

j 6=i

[
Vi

pj
( p̄)

∂gj

∂pi
( p̄)
]

Vi
pj
( p̄) =

Πi
pj
( p̄)

ρ + λ
+

λ

ρ + λ ∑
k 6=i,j

[
Vi

pk
( p̄)

∂gk

∂pj
( p̄)

]
∀j 6= i

Using ∑j ∑k 6=i,j Vi
pk
( p̄) = (n− 2)∑j 6=i Vi

pj
( p̄), the second condition becomes

∑
k 6=i

Vi
pk
( p̄) =

∑k 6=i
Πpk ( p̄)

ρ+λ

1− λ(n−2)βn
ρ+λ

Hence the first condition becomes

0 = Πpi( p̄) +
λβn

ρ + λ [1− (n− 2)βn]
∑
k 6=i

Πpk( p̄)

and the symmetry of Πi
pj

across j 6= i, we obtain

0 = Πi
i
( p̄) +

λ (n− 1) β

ρ + λ [1− (n− 2)β]
Πi

j
( p̄)
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thus the formula for B = (n− 1) β is

B =
ρ + λ

λ

1

n−2
n−1 +

(
Πi

j

−Πi
i

) . (A.3)

We can reexpress
Πi

j

−Πi
i

=
εi

j (1− 1/µ)

−εi
i (1− 1/µ)− 1

where µ = p̄
W/ f ′( f−1(di( p̄)))

is the steady state markup (the denominator is the marginal

cost) to rewrite (A.3) in terms of demand own-elasticity εi
i =

∂ log di

∂ log pi
and cross-elasticity

εi
j =

∂ log di

∂ log pj
:

B =
ρ + λ

λ

1

n−2
n−1 +

εi
j

−εi
i−

µ
µ−1

.

Homothetic preferences imply that the cross-elasticity is related to the own-elasticity
through (n− 1)εi

j = −(ω + εi
i).

B =
λ + ρ

λ

1

1 + 1−(µ−1)(ω−1)
(n−1)[(ε−1)(µ−1)−1]

where ε =
∣∣εi

i

∣∣.
C Demand Elasticities

C.1 General non-parametric results

We first assume an outer elasticity ω = 1. Differentiating the budget constraint, we
have for any i and p

ci + ∑
j

pj
∂cj

∂pi
= 0 (A.4)

Then Slutsky symmetry and constant returns to scale imply

εi
i + ∑

j 6=i
εi

j = −1 (A.5)
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where εi
j =

∂ log ci

∂ log pJ
. At a symmetric price, this becomes

εi
j = −

1 + εi
i

n− 1
(A.6)

so the convergence to Nash holds as long as the own elasticity εi
i is bounded. Call for

any pair j, k

εi
jk =

∂2 log di

∂ log pk∂ log pj

We can differentiate (A.5) with respect to log pi to get

εi
ii + ∑

j 6=i
εi

ij = 0

hence at a symmetric price,
εi

ii + (n− 1)εi
ij = 0 (A.7)

Differentiating once more the budget constraint with respect to pi

2
∂ci

∂pi
+ ∑

j

∂2cj

∂p2
i
= 0 (A.8)

Elasticities and second-derivatives are related by

∂2ci

∂pk∂pj
=

ci

pk pj

[
εi

jk + εi
jε

i
k

]
for any j 6= k

∂2ci

∂p2
j
=

ci

p2
j

[
εi

jj − εi
j +
(

εi
j

)2
]

for any j

At a symmetric price (using ε
j
ii = εi

jj), we have from (A.8)

εi
jj = εi

j

(
1− εi

j

)
− 1

n− 1

[
εi

ii + εi
i

(
1 + εi

i

)]
(A.9)

Finally, differentiating (A.4) with respect to pk for some k 6= i gives

∂ci

∂pk
+

∂ck

∂pi
+ ∑

j 6=i,k
pj

∂2cj

∂pk∂pi
+ pi

∂2ci

∂pk∂pi
+ pk

∂2ck

∂pk∂pi
= 0
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and at a symmetric price p

2
p

∂ci

∂pk
+ (n− 2)

∂2ci

∂pk∂pj
+ 2

∂2ci

∂pk∂pi
= 0

Therefore, in elasticities at a symmetric price,

2εi
j + (n− 2)

[
εi

jk +
(

εi
j

)2
]
+ 2

[
εi

ij + εi
jε

i
i

]
= 0 (A.10)

for k 6= j, i, j 6= i. The own-superelasticity is defined as the elasticity of (minus the)
elasticity:

Σ =
∂ log(−εi

i)

∂ log pi
=

εi
ii

εi
i

So in the end we have two degrees of freedom:
{

εi
i, εi

ii
}

or equivalently {ε, Σ} to
parametrize a symmetric steady state.

In the non-Cobb-Douglas case ω 6= 1, all the steps are almost the same except that
we start from the sectoral budget constraint

∑
i∈Is

pidi = P1−ω
s

where Ps is the sectoral price index. As a result the elasticities at a symmetric price
satisfy (A.7), (A.10) as before, but (A.6) and (A.9) become respectively

εi
j = −

ω + εi
i

n− 1

εi
jj = εi

j

(
1 + εi

j

)
− 1

n− 1

[
εi

ii + εi
i

(
ω + εi

i

)]
.

Special case: n = 2. If n = 2 there is only 1 degree of freedom, so CES is without
loss of generality (locally), even when the outer aggregation is not Cobb-Douglas (i.e.,
ω 6= 1). From (A.10), the cross-superelasticity εi

ij is determined by elasticities, hence
so is εi

ii = −(n− 1)εi
ij.

C.2 Closed-form elasticities with Kimball Demand

Here again we outline the steps under Cobb-Douglas preferences across sectors, ω =

1, but give the general expressions with ω 6= 1 below.
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Start with a general Kimball (1995) aggregator that defines C as

1
n ∑

i
Ψ
( ci

C

)
= 1 (A.11)

where Ψ is increasing, concave, and Ψ(1) = 1 which ensures the convention that at a
symmetric basket ci = c, we have C = c. The consumer’s problem is

min
{ci}

∑
i

pici s.t.
1
n ∑

i
Ψ
( ci

C

)
= 1

There exists a Lagrange multiplier λ > 0 such that for all i

pi = λΨ′
( ci

C

) 1
C

(A.12)

If we define the Kimball sectoral price index P (which differs from the ideal price
index except under CES) by

1
n ∑

i
ϕ
(

Ψ′(1)
pi

P

)
= 1

where
ϕ = Ψ ◦ (Ψ′)−1

then at a symmetric price pi = p we have P = p, and λΨ′(1) = PC so we can rewrite
(A.12) as

pi

P
Ψ′(1) = Ψ′

( ci

C

)
Taking logs and differentating (A.12) with respect to log pi yields

1 =
∂ log P
∂ log pi

+
Ψ′′
( ci

C
)

Ψ′
( ci

C
) ci

C

[
εi

i −
∂ log C
∂ log pi

]
Differentiating (A.11) yields

∑
j

Ψ′
(

cj

C

)
cj

C

[
∂ log cj

∂ log pi
− ∂ log C

∂ log pi

]
= 0

hence

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C ε

j
i

∑j Ψ′
(

cj
C

)
cj
C
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Using Slutsky symmetry pjε
j
i = piε

i
j to express this using demand elasticities for good

i only, we can reexpress as

∂ log C
∂ log pi

=
∑j Ψ′

(
cj
C

)
cj
C

pi
pj

εi
j

∑j Ψ′
(

cj
C

)
cj
C

At a symmetric price, budget exhaustion with constant returns implies

∂ log C
∂ log pi

=
1
n ∑

j
εi

j =
−1
n

For any k 6= i we can differentiate

log Ψ′
(

ci

C

)
− log Ψ′

(
ck

C

)
= log pi − log pk

with respect to log pi to get

Ψ′′
(

ci

C

)
Ψ′
(

ci

C

) ( ci

C

)
∂

∂ log pi

[
log ci − log C

]
−

Ψ′′
(

ck

C

)
Ψ′
(

ck

C

) ( ck

C

)
∂

∂ log pi

[
log ck − log C

]
= 1

or, defining

R(x) = −xΨ′′ (x)
Ψ′ (x)

We have

R

(
ck

C

)[
εk

i −
∂ log C
∂ log pi

]
− R

(
ci

C

) [
εi

i −
∂ log C
∂ log pi

]
= 1 (A.13)

Hence at a symmetric steady state, using εk
i = εi

k = −
1+εi

i
n−1 we have

εi
i = −

(
n− 1

n
1

R(1)
+

1
n

)
Differentiating once more with respect to log pi,

−R′
(

ci

C

) [
εi

i −
∂ log C
∂ log pi

]2

+ R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

]2

− R
(

ci

C

) [
εi

ii −
∂2 log C
∂2 log pi

]
+ R

(
ck

C

)[
εk

ii −
∂2 log C
∂2 log pi

]
= 0

At a symmetric steady state,

−R′ (1)
[

εi
i +

1
n

]2

+ R′ (1)
[

εk
i +

1
n

]2

− R (1)
[
εi

ii − εk
ii

]
= 0
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−R′ (1)
[

εi
i +

1
n

]2

+ R′ (1)
[

εk
i +

1
n

]2

− R (1)
[
εi

ii − εi
jj

]
= 0

Using (A.9) we get

−R′ (1)
[

n− 1
n

1
R(1)

]2

+ R′ (1)

[
− 1 + εi

i
n− 1

+
1
n

]2

− R (1)
[

εi
ii

n
n− 1

− εi
j

(
1− εi

j

)
+

1
n− 1

[
εi

i

(
1 + εi

i

)]]
= 0

Now differentiating (A.13) with respect to log pj for some j 6= i, k

R′
(

ci

C

)[
εi

j −
∂ log C
∂ log pj

] [
εi

i −
∂ log C
∂ log pi

]
+ R

(
ci

C

)[
εi

ij −
∂2 log C

∂ log pi∂ log pj

]

−R′
(

ck

C

)[
εk

i −
∂ log C
∂ log pi

] [
εk

j −
∂ log C
∂ log pj

]
− R

(
ck

C

)[
εk

ij −
∂2 log C

∂ log pi∂ log pj

]
= 0

At a symmetric price,

R′ (1)
[

εi
j +

1
n

] [
εi

i +
1
n

]
+ R (1) εi

ij = R′ (1)
[

εi
j +

1
n

]2

+ R (1) εi
jk

Therefore, using (A.10) we have

εi
i = −

[(
n− 1

n

)
1

R (1)
+

1
n

]
(A.14)

εi
j =

1
R(1) − 1

n

εi
ii = −

n− 1
n2

[
R(1) [1− R(1)]2 + (n− 2)R′(1)

R(1)3

]

εi
ij =

R(1) [1− R(1)]2 + (n− 2)R′(1)
n2R(1)3 (j 6= i)

εi
jj =
−(n− 1)R(1) [1− R(1)]2 + (n− 2)R′(1)

n2R(1)3 (j 6= i)

εi
jk =

R(1) [1− R(1)]2 − 2R′(1)
n2R(1)3 (j 6= k, n ≥ 3)
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In the general case ω 6= 1, following similar steps these expressions generalize to

εi
i = −

[(
n− 1

n

)
1

R (1)
+

1
n

ω

]
εi

j =

1
R(1) −ω

n

εi
ii = −

n− 1
n2

[
R(1) [1− R(1)] [1− R(1)ω] + (n− 2)R′(1)

R(1)3

]
εi

ij =
R(1) [1− R(1)] [1− R(1)ω] + (n− 2)R′(1)

n2R(1)3 (j 6= i)

εi
jj =
−(n− 1)R(1) [1− R(1)] [1− R(1)ω] + (n− 2)R′(1)

n2R(1)3 (j 6= i)

εi
jk =

R(1) [1− R(1)] [1− R(1)ω]− 2R′(1)
n2R(1)3 (j 6= k, n ≥ 3)

Equations (10)-(11) are written using the more convenient ϕ (x) = 1/R (x).
Klenow and Willis (2016) use the functional form

Ψ′(x) =
η − 1

η
exp

(
1− xθ/η

θ

)

Ψ′′(x) = −x
θ
η−1

η
Ψ′(x)

Ψ′′′(x) =


x

θ
η−1

η

2

−
(

θ − η

η2

)
x

θ
η−2

Ψ′(x)

Therefore

R(1) =
1
η

R′(1) =
θ

η2
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so that this nests CES with θ = 0. We thus have

εi
i = −

η (n− 1) + ω

n
(A.15a)

εi
j =

η −ω

n
(A.15b)

εi
ii = −

(n− 1)
n2

[
η2 − (1 + ω) η + ω + (n− 2)θη

]
(A.15c)

εi
ij =

η2 − (1 + ω) η + ω + (n− 2) θη

n2 (A.15d)

εi
jj =

(n− 2)θη − (η − 1)(n− 1) (η −ω)

n2 (A.15e)

εi
jk =

η2 − (1 + ω) η + ω− 2θη

n2 (A.15f)

With ω = 1 as in the main text, the superelasticity, defined as Σ =
εi

ii
εi

i
, satisfies

Σ = =
1

S
1−S + η

[
θη +

(
(η − 1)2 − 2θη

)
S
]

≈ θ +

[
(η − 1)2

η
− 2θ

]
S

with S = 1/n denoting the market share. The approximation in the second line holds
if S is small relative to η/ (1 + η), as is the case in a calibration with η = 10. With
constant θ and η, the superelasticity is approximately linear in the Herfindahl index.

If θ is lower than (η−1)2

2η which equals 4.05 when η = 10 (as in the CES case θ = 0)
then Σ increases with S. With high enough θ, it can actually decrease with S, but a
high fixed θ is at odds with pass-through being larger for smaller firms.

D Solution Method

Iteratively differentiating the Bellman equation (A.1) and the optimality condition
(A.2) generates a system of equations relating the derivatives of the reaction function
g′, g′′, and so on, to the steady state markup, demand elasticity εi

i, superelasticity εi
ii,

and so on. Our formula (9) is one of such equations.
The standard interpretation of this system treats the sequence of derivatives of g

as unknowns, and the infinite sequence of higher-order elasticities as given structural
parameters. Instead, we acknowledge that it is empirically impossible to know such
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fine properties of preferences or demand functions, since we can only estimate a fi-
nite number of elasticities. This leads us to take a dual view of the same system of
equations: we still take low order elasticities as given, but choose the values of the
unknown higher order elasticities to achieve some desired properties for the deriva-
tives of g. In particular, we can find primitives such that the reaction function g is
locally polynomial of order m, meaning that all its derivatives of higher order than m
vanish when evaluated at the steady state.

Formally, let

ε(1) =
∂ log di

∂ log pi
, ε(k) =

∂ε(k−1)

∂ log pi
∀k ≥ 2.

Proposition 9. For any order m ≥ 1 and target elasticities
(

ε(1), . . . , ε(m)

)
, there exist

Kimball within-sector preferences φ̃ such that

(i) the resulting elasticities up to order m match the target elasticities, and

(ii) any MPE of the game with within-sector preferences φ̃, strategy g̃ and steady state p̃
satisfies g̃(k) ( p̃) = 0 for k ≥ m.

Another interpretation is to view the infinite sequence of elasticities as structural:
for instance, we could assume that preferences are exactly CES and compute the im-
plied elasticities of any order. In this context our method is then an approximation of
the exact solution given by the limit m→ ∞ where we can match all elasticities.

Under this interpretation we can evaluate the accuracy of the approximation by
noting that for low n, we can compute the exact solution m→ ∞ using standard value
function iteration. We then compare the resulting steady state price to what follows
from our solution method with finite m. Figure A.1 plots the steady state markup
with m = 1, 2, 3 in the case of a duopoly, showing that m = 2 already provides an
excellent approximation (within 1%) to the exact solution m → ∞ and going to a
higher order m = 3 improves the fit but not by much. Note that low n allows us
to check numerically the accuracy of the approximation, but we know theoretically
that the approximation should be even better as n grows, since all the orders m of
approximation coincide with monopolistic competition as n→ ∞.
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η
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p

pexact

Figure A.1: Steady state markup p with n = 2 firms, under our solution method with
m = 1, 2, 3, relative to exact solution pexact (which corresponds to m→ ∞).

Proof of Proposition 9. We start from the system that defines an MPE:

(ρ + nλ)V(p) = Π(p) + λ ∑
j

V
(

g(p−j), p−j
)

(A.16)

Vp (g(p−i), p−i) = 0 (A.17)

Differentiating k times the Bellman equation (A.16) gives us for each k ≥ 1 a linear
system in the kth-derivatives V(k) = (V11...11, V11...12, V11...22, . . . ) of the value function
V (evaluated at the symmetric steady state p̄), which we can invert to obtain these
derivatives as a function of the profit derivatives Π(k) = (Π11...11, . . . ) and derivatives
of the policy function (there are k + 1 such equations in the case of n = 2 firms).

We can then compute Π(k) as a function of p̄ and own- and cross-superelasticities
of the demand function d of order up to k.

Combining the solution V(k) with the k − 1th-derivative of the FOC (A.17) gives
us a sequence of equations that must be satisfied at a steady state

Fk
(

p̄, g′ ( p̄) , g′′ ( p̄) , . . . , g(k) ( p̄) ; ε(0), ε(1), ε(2), . . . , ε(k)

)
= 0

where Fk is linear in ε̃(k). Thus we can construct recursively a unique sequence ε̃(k)

A.15



starting from k = m + 1, using

Fm+1
(

p̄, g′, . . . g(m−1), 0, 0; ε(1), ε(2), . . . , ε̃(m+1)

)
= 0

Fm+2
(

p̄, g′, . . . g(m−1), 0, 0, 0; ε(1), ε(2), . . . , ε̃(m+1), ε̃(m+2)

)
= 0

and so on. Below we show that for n ≥ 3 there are indeed enough degrees of freedom
to make the equations Fm, Fm+1, . . . independent.

Define ϕ̃ as

ϕ̃ (x) =
∞

∑
k=0

ϕ̃(k) (1)
k!

(x− 1)k

where ϕ̃(k+1)(1) is characterized by
(

ε(1), . . . , ε(m), ε̃(m+1), . . . , ε̃(k)

)
through the same

computations as in Appendix C. Given this construction, p̄, g′, . . . , g(m−1) are pinned
down by

(
ε(1), . . . , ε(m)

)
as the solution to the system of equations Fk for k = 1, . . . , m.

The main potential impediment to the proof is that demand integrability (e.g.,
demand functions being generated by actual utility functions) imposes restrictions
on higher-order elasticities that would prevent us from constructing the sequence
ε̃. Indeed, in Appendix C we saw that with n = 2 firms, general Kimball demand
functions cannot generate superelasticities beyond those arising from CES demand.
We now show that as long as n ≥ 3, this is not the case, by proving that the number
of elasticities exceeds the number of restrictions.

Formally, we want to compute #n (m), the number of cross-elasticities of order m,
that is derivatives

∂m log d1(p)
∂i1 log p1∂i2 log p2 . . . ∂in log pn

where

0 ≤ i1, . . . , in ≤ m

i1 + · · ·+ in = m

as functions of the own-mth-elasticity ε1
11 . . . 1︸ ︷︷ ︸

m times

, and compare #n (m) to the number of

restrictions imposed by demand integrability and symmetry arguments.
By Schwarz symmetry, in a smooth MPE, we can always invert 2 indices in the

derivatives. Moreover, from the viewpoint of firm 1 (whose demand d1 we’re differ-
entiating), firms 2 and 3 are interchangeable. For instance, in the case of n = 3 firms
and order of differentiation m = 3, these symmetries reduce the number of potential
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elasticities nm = 27 to only 6 elasticities

ε1
111, ε1

112, ε1
122, ε1

123, ε1
222, ε1

223.

Denote
qn (M)

the number of partitions of an integer M into n non-negative integers. For M ≥ n we
have

qn (M) = pn (M + n)

where pn (M) is the number of partitions of an integer M into n positive integers. We
can see this by writing, starting from a partition of M into n non-negative integers
i1, . . . , in:

M + n = (i1 + 1) + · · ·+ (in + 1)

We can then compute pj (M) using the recurrence formula

pj (M) = pj (M− j)︸ ︷︷ ︸
partitions for which ik ≥ 2 for all k

+ pj−1 (M− 1)︸ ︷︷ ︸
partitions for which ik = 1 for some k

Lemma 1. For any n ≥ 1 and m ≥ 1 the number of elasticities of order m is

#n (m) =
m

∑
k=0

qn−1 (m− k) (A.18)

hence #n (m + 1) = #n (m) + qn−1 (m + 1).

Proof. Firm 1 is special, so we need to count the number of times we differentiate with
respect to log p1, which generates the sum over k. Then we get each term in the sum
by counting partitions of m− k into n− 1 non-negative integers.

Next, we want to count the reduction in the number of degrees of freedom im-
posed by economic restrictions. Our restrictions are

Φ(p) = ∑
j

pjdj(p) = 0 ∀p (A.19)

di
j(p) = dj

i(p) ∀p, ∀i, j (A.20)

The first equation is the budget constraint. The second equation is the Slutsky sym-
metry condition (constant returns to scale allow to go from Hicksian to Marshallian
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elasticities). Note that Φ defined in (A.19) is symmetric, unlike the demand function
d1 we are using to compute elasticities. Therefore Φ’s derivatives give us fewer re-
strictions than what we need in (A.18), leaving room for restrictions to come from the
Slutsky equation.

We need to differentiate these two equations to obtain independent equations that
relate the mth-cross-elasticities to the mth-own-elasticity. The number of restrictions
coming from derivatives of Φ at order m is simply the number qn (m) of partitions
of m into n non-negative integers. Denote [n (m) the number of restrictions we have
from derivatives of the Slutsky equation. The initial equation d1

2 = d2
1 is irrelevant at

a symmetric steady state; it only starts mattering once we differentiate it. We actually
do not need to compute [n (m) exactly. The following lemma shows that there are
always enough degrees of freedom #n (m) to construct the Kimball aggregator in 9:

Lemma 2. For n ≥ 3 and any m we have

qn (m) + [n (m) + 1 ≤ #n (m) (A.21)

Proof. We know by hand that (A.21) holds for m = 1, 2 so take m ≥ 3. Then all the
Slutsky conditions can be written as starting with

d1
12... = . . .

hence we have

[n (m) ≤ #n (m− 2) = #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)

hence the number of equations is bounded by

qn (m) + [n (m) ≤ pn (n + m) + #n (m)− pn−1 (n + m− 1)− pn (n + m− 2)

Then we have (A.21) if

pn (n + m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn−1 (n + m− 1) + pn (m) < pn−1 (n + m− 1) + pn (n + m− 2)

⇔pn (m) < pn (n + m− 2)

which holds for n ≥ 3.

Note that so far we have considered general CRS demand functions. Restricting
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attention to the Kimball class makes the inequality (A.21) bind, meaning that we can
parametrize all the cross-elasticities of order m using the own-elasticity of order m.

What fails in the knife-edge case n = 2? Slutsky symmetry imposes too many
restrictions: at m = 2 we only have 3 elasticities ε1

11, ε1
12, ε1

22 and also 3 restrictions, so
we can solve out all the superelasticities as functions of ε1

1, which prevents us from
constructing the Kimball aggregator in Proposition 9.

E Model Solution

We apply the solution method described in Appendix D to derive analytical expres-
sions in the case m = 2.

E.1 Symmetric Firms

We first solve the linear system in
{

Vi
j , Vi

ii, Vi
ij, Vi

jj, Vi
jk

}
obtained from envelope con-

ditions

(ρ + λ)Vi
j = Πi

j + λ (n− 2)Vi
j β

(ρ + λ)Vi
ii = Πi

ii + λ (n− 1)
(

Vi
jjβ

2 + 2Vi
ijβ
)

(ρ + 2λ)Vi
ij = Πi

ij + λ (n− 2)
(

Vi
jjβ

2 + Vi
ijβ + Vi

jkβ
)

(ρ + λ)Vi
jj = Πi

jj + λ (n− 2)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

(ρ + 2λ)Vi
jk = Πi

jk + λ (n− 3)
(

Vi
jjβ

2 + 2Vi
jkβ
)
+ λ

(
Vi

iiβ
2 + 2Vi

ijβ
)

Injecting the solution into the derivative of the first-order condition

Vi
iiβ + Vi

ij = 0

yields an equation

0 = AiiΠi
ii ( p̄) + AijΠi

ij ( p̄) + AjjΠi
jj ( p̄) + AjkΠi

jk ( p̄) (A.22)

with coefficients
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Aii =β((β + 1)λ3 (β2 (−2n2 + 9n− 10
)
+ β3(n− 2) + 6β(n− 2)− 4

)
(A.23a)

− λ2ρ
(

β3 (n2 − 5n + 6
)
+ β2 (2n2 − 15n + 22

)
+ β(24− 9n) + 8

)
+ λρ2 (β2(n− 2) + β(3n− 8)− 5

)
− ρ3)

Aij =− 2(β + 1)λ3
(
−2β3 (n2 − 3n + 2

)
+ β4(n− 1) + 2β2(n− 1)− β(n− 2) + 1

)
(A.23b)

+ λ2ρ
(

β4 (−2n2 + 7n− 5
)
− 4β3 (n2 − 4n + 3

)
+ 3β2n− 4β(n− 3) + 5

)
+ λρ2 (β2n− 2β(n− 3) + 4

)
+ ρ3

Ajj =β2λ((β + 1)λ2 (2 (β2 + 3β + 2
)
+ β(β + 1)n2 −

(
3β2 + 7β + 2

)
n
)

(A.23c)

+ λρ
(
4β2 + 10β + β(β + 1)n2 −

(
5β2 + 9β + 3

)
n + 6

)
+ ρ2(β− (β + 1)n + 2))

Ajk =− βλ(n− 2)((β + 1)λ2 (−β + β3(n− 1) + 3β2(n− 1) + 1
)

(A.23d)

+ λρ
(
2β3(n− 1) + β2(3n− 4) + 2

)
+ ρ2)

Finally p̄3Πi
ii ( p̄) , p̄3Πi

ij ( p̄) , p̄3Πi
jj ( p̄) , p̄3Πi

jk ( p̄) are all linear functions of p̄ and

W. Therefore, multiplying (A.22) by p̄3

W we get a linear equation in µ which can be
solved to obtain a function

µ = µ (B, ω, ε, Σ, n, λ/ρ) . (A.24)

Equation (A.24) together with the sufficient statistic formula (9)

B = B (µ, ω, ε, n, λ/ρ)

form a system of two equations in the two unknowns µ and β.

E.2 Heterogeneous Firms

The demand faced by firm i is

ci =
1
ξi

di ( p̃i, p̃−i)

where di is the demand function from the symmetric case (ξi = 1 for all i) and p̃j =

pj/ξ j is the normalized price of good j. As a result the nominal profit of firm i can be
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written as

Πi(t) = p̃i(t)di ( p̃i(t), p̃−i(t))−W(t) f−1
(

di ( p̃i(t), p̃−i(t))
ξizi

)
(A.25)

where di is the previous demand function from the symmetric firms model, and p̃j =

pj/ξ j is the normalized price of good j. If ξizi = 1, the model with normalized prices
is isomorphic to one with symmetric firms.

Suppose as in Section 6.2 that there are two types of firms, a and b, with n = na +

nb. a and b firms can differ permanently in their productivity z, their demand shifters
ξ, or both. With two types we need to solve for six unknowns: two steady state prices
{pa, pb} and four slopes

{
βa

a, βa
b, βb

a, βb
b
}

where βi
j is the slope of the reaction of a firm

of type i to the price change of a firm of type j. The envelope conditions for firms of
type a are

(ρ + λ)Vi,a
i = Πi,a

i + λ (na − 1)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
ja = Πi,a

ja + λ (na − 2)Vi,a
ja βa

a + λnbVi,a
jb

βb
a

(ρ + λ)Vi,a
jb

= Πi,a
jb
+ λ (na − 1)Vi,a

ja βa
b + λ (nb − 1)Vi,a

jb
βb

b

and, in the locally linear equilibrium:

(ρ + λ)Vi,a
ii = Πi,a

ii + λ (na − 1)
[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

ijb
βb

a

]
(ρ + 2λ)Vi,a

ija = Πi,a
ija + λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + Vi,a
jaka

βa
a + Vi,a

ija βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ Vi,a

jakb
βb

a + Vi,a
ijb

βb
a

]
(ρ + 2λ)Vi,a

ijb
= Πi,a

ijb
+ λ (na − 1)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

ija βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
ijb

βb
b

]
(ρ + λ)Vi,a

ja ja = Πi,a
ja ja + λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 2)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + 2λ)Vi,a

jakb
= Πi,a

jakb
+ λ

[
Vi,a

ii βa
aβa

b + Vi,a
ijb

βa
a + Vi,a

ija βa
b

]
+ λ (na − 2)

[
Vi,a

ja ja βa
aβa

b + Vi,a
jakb

βa
a + Vi,a

jaka
βa

b

]
+ λ (nb − 1)

[
Vi,a

jb jb
βb

aβb
b + Vi,a

jbkb
βb

a + Vi,a
jakb

βb
b

]
(ρ + 2λ)Vi,a

jaka
= Πi,a

jaka
+ λ

[
Vi,a

ii (βa
a)

2 + 2Vi,a
ija βa

a

]
+ λ (na − 3)

[
Vi,a

ja ja (βa
a)

2 + 2Vi,a
jaka

βa
a

]
+ λnb

[
Vi,a

jb jb

(
βb

a

)2
+ 2Vi,a

jakb
βb

a

]
(ρ + λ)Vi,a

jb jb
= Πi,a

jb jb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 1)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]
(ρ + 2λ)Vi,a

jbkb
= Πi,a

jbkb
+ λ

[
Vi,a

ii (βa
b)

2 + 2Vi,a
ijb

βa
b

]
+ λ (na − 1)

[
Vi,a

ja ja (βa
b)

2 + 2Vi,a
jakb

βa
b

]
+ λ (nb − 2)

[
Vi,a

jb jb

(
βb

b

)2
+ 2Vi,a

jbkb
βb

b

]

We can use these 11 envelope conditions to solve linearly for
{

Vi,a
i , Vi,a

ja , Vi,a
jb

, Vi,a
ii , . . .

}
,
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and then inject the solution into the first-order conditions

Vi,a
i = 0

Vi,a
ii βa

a + Vi,a
ija = 0

Vi,a
ii βa

b + Vi,a
ijb

= 0

The same steps for firms of type b give us 3 more equations.

F Calibration to Pass-Through Evidence

In Section 4 we use evidence on own-cost pass-through from Amiti et al. (2019) (hence-
forth AIK) to calibrate how the superelasticity Σ varies with concentration. We de-
scribe the procedure in more detail here.

In the presence of permanent shocks to marginal costs mcj, when firm i adjusts its
price it sets

log pi − log p̄i = α (log mci − log c̄i) + B
∑j 6=i log pj − log p̄j

n− 1
+ γ ∑

j 6=i

(
log cj − log c̄j

)
(A.26)

where the coefficients

α =
∂gi

∂mci
, B = (n− 1)

∂gi

∂pj
, γ =

∂gi

∂mcj

can be computed as before using our envelope conditions applied to a generalization
of the Bellman equation (A.1) that allows for permanent cost shocks:

(ρ + nλ)Vi (p, mc) = Πi (p, mci) + λ ∑
j

Vi
(

gj (p−j, mc
)

, p−j, mc
)

. (A.27)

Unlike in static models of oligopoly (see Remark 2 below) γ is non-zero in general:
although competitor j’s cost cj does not affect firm i’s current profits, it will affect
how firm j sets its price pj in the future, which is relevant for firm i’s future payoffs.
Anticipating this, firm i will already respond itself to cj when it gets to reset its price.
The coefficients must satisfy the homogeneity restriction

α + B + (n− 1) γ = 1,
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which says that if all firms’ marginal costs increase by 1% then all firms’ prices also
increase by 1%.

Rewrite (A.26) in vector form as

∆p̃ = (αI + γS)∆m̃c+ βS∆p̃

where S = J − I and J is the matrix with 1’s everywhere, ∆p̃ = [log pi − log p̄i]
′,

∆m̃c = [log mci − log m̄ci]
′. The following result describes the mapping from the

parameters α, B in (A.26) to the regression estimates α̂, B̂ in (12).

Proposition 10. There exist unique scalars α̂, B̂ such that for all vectors ∆mc

∆ p̃i = α̂∆m̃ci + B̂
∑j 6=i ∆ p̃j

n− 1

for all i, namely

α̂ =
nα + B− 1

α + B + n− 2
(A.28)

B̂ =
(n− 1) (1− α)

α + B + n− 2
(A.29)

thus they satisfy α̂ + B̂ = 1.

Proof. We need for all ∆c

∆p̃ = α̂∆m̃c+ β̂S∆p̃

that is (
I − β̂S

)
(I − βS)−1 (αI + γS) = α̂I

where β = B
n−1 , β̂ = B̂

n−1 . Using M = (I − βS)−1 = ∑k≥0 βkSk this is equivalent to

∑
k≥0

βk
[
Sk − β̂Sk+1

]
(αI + γS) = α̂I

∑
k≥0

βk
[
αSk + γSk+1 − αβ̂Sk+1 − γβ̂Sk+2

]
= α̂I

αM +
γ

β
(M− I)− α

β̂

β
(M− I)− γ

β̂

β2 (M− I − βS) = α̂I

αβM +
(
γ− αβ̂− γβ̂/β

)
(M− I) + γβ̂S = α̂βI
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Multiplying by I − βS this becomes

αβI +
(
γ− αβ̂− γβ̂/β

)
βS + γβ̂

(
S− βS2

)
= α̂β (I − βS)(

γβ− αββ̂ + α̂β2
)

S− γβ̂βS2 = (α̂− α) βI

Using
J2 = nJ

(recall that J is the matrix with ones everywhere) we have

S2 = (n− 1) I + (n− 2)S

Therefore α̂, β̂ must satisfy(
γβ− αββ̂ + α̂β2 − γβ̂β(n− 2)

)
S =

[
(α̂− α) β + γβ̂β (n− 1)

]
I

which can only be true if both sides are zero, that is (after replacing γ using the ho-
mogeneity restriction):

α̂ =
nα + B− 1

α + B + n− 2

B̂ =
(n− 1) (1− α)

α + B + n− 2

Amiti et al. (2019) show that the empirical behavior of α̂ as a function of market
share is well approximated by

α̂ ≈ 1

1 + (η−1)(1−s)s(η−ω)
ω(η−1)−s(η−ω)

with η = 10 and ω = 1. Therefore in a sector with n firms we set as target the
corresponding pass-through α̂n = 1

1+9/n . Then, fixing other parameters (e.g., η, λ, ρ),
for each (θ, n) we can compute α and B and solve for θn that sets allows to match α̂n.

Figure A.2 shows the resulting pass-through as a function of market share 1/n
under this “AIK” calibration, contrasting with the case of fixed θ = 0 (CES) and fixed
θ = 10.
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Figure A.2: Pass-through α̂ as a function of market share 1/n.
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Figure A.3: Half-life as a function of steady state markup µ when η varies.

G Other Comparative Statics

Changes in Preference Parameters η and θ. Changes in η and θ affect both the
steady state markup µ and the half-life of the price level following monetary shocks.

Figure A.3 shows the half-life as a function of the steady state markup, when vari-
ation in markups is produced through variation in the within-sector elasticity of sub-
stitution η; higher η implies lower markups. The effect on the half-life is ambiguous,
however, except in the special case n = 2 in which there is always a negative relation
between the markup and the half-life.44 In particular, as soon as there are at least
n = 3 firms, the value of θ matters. When θ = 0 (CES), we have the same negative re-
lation as in the duopoly case, but with a high enough value of θ, the half-life becomes
negatively related to the steady state markup. We explain these patterns in Section 5.

44In Appendix C.1 we show that for any homothetic preferences, ε and Σ are the same as under CES
when there are only n = 2 symmetric firms, whether the cross-sector aggregator has unit elasticity ω
or not. This means that θ is irrelevant when n = 2, as can be seen in Figure 2, where all the curves
coincide when n = 2. When n is above 2, however, knowing the markup is not enough to infer the
slope, which is why formula (9) also requires information on demand elasticities.
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Figure A.4: Half-life as a function of steady state markup µ when θ varies.

We argued that under dynamic oligopoly, markups are not fully determined by
demand elasticities. Figure A.4 shows the half-life as a function of the steady state
markup, when variation in markups is produced through the superelasticity param-
eter θ. Higher θ implies higher markups, even though the demand elasticity ε is
unchanged throughout. As we vary θ, all the objects appearing in the right-hand side
of (9) remain fixed except µ, hence this experiment yields a transparent application of
the formula showing how B and the half-life increase with µ.

Changes in Discount Rates and Price Stickiness. The discount rate ρ and the fre-
quency of price changes λ can also affect the steady state markup (and therefore the
slope B). These two parameters only enter through the ratio ρ/λ, so a higher fre-
quency is isomorphic to a lower discount rate and we focus the discussion on λ.

Figure A.5 shows that markups increase with λ, especially when n is low. This
shows once again that equilibrium markups are complex objects that depend on
many features of the environment beyond demand elasticities. In the limit of in-
finitely sticky prices λ→ 0, firms play the one-shot best-response, and so the Markov
equilibrium coincides with the static Bertrand-Nash equilibrium, both in terms of
steady state markup and reaction functions, which is apparent in Figure A.5. In-
terestingly, the limit of infinitely frequent price changes λ/ρ → ∞ does not equal the
frictionless (flexible price) model, in which firms would play the static Bertrand-Nash
equilibrium at each instant. For instance, when n = 3 (in red), the static markup is
µNash = 1.17 while the steady state markup converges to µ = 1.24 as λ → ∞. For
higher n, the gap between the Nash markup and the λ → ∞ limit becomes negligi-
ble.45

45This discontinuity in markups in the limit of flexible prices or very patient firms has been noted in
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Figure A.5: Steady state markup µ and slope B as a function of frequency of price
changes λ under “AIK” calibration. Dashed horizontal lines correspond to the static
Bertrand-Nash equilibrium (µNash and BNash).

H Solution of the Naive Model

The quadratic approximation of profit Πi of firm i around the naive steady state
which is the static Nash pNash writes

πi (zi, z−i) = BQi + CQ2
i + DziQi + Ez2

i + FRi

where zj = log pj − log pNash for each j and

Qi = ∑
j 6=i

zj

Ri = ∑
j 6=i

z2
j

There is no term Azi because we are approximate around the Nash price pNash where
Πi

i = 0 for all i. The most important coefficients D and E are

D = Πij

(
pNash

)
E =

Πii

2

(
pNash

)
other contexts, such as the alternating moves model of Maskin and Tirole (1988) and the model with
quadratic Rotemberg adjustment costs in Jun and Vives (2004). A recent empirical IO literature, e.g.,
Brown and MacKay (2021), finds that algorithms allowing for fast repricing do lead to higher markups.
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We look for a symmetric equilibrium where each resetting firm j sets

z∗j = βQj.

Then between s and s + ∆s we have

EtQi(s + ∆s) = (1− (n− 1)λ∆) EtQi(s) + λ∆Et ∑
j 6=i

[
Qi(s)− pj(s) + βQj(s)

]
hence taking the limit ∆s→ 0

d
ds

EtQi(s) = λ

{
β ∑

j 6=i
EtQj(s)− EtQi(s)

}

thus the variable Z(s) = ∑i EtQi(s) follows

d
ds

Z(s) = −λ [1− β(n− 1)] Z(s)

Therefore, by symmetry

EtQi(s) = Qi(t)e−λ[1−β(n−1)](s−t)

When it resets, firm i chooses z∗i (t) such that

max
z∗i (t)

Et

[∫ ∞

t
e−(λ+ρ)(s−t)πi(z∗i (t), zi(t + s))ds

]
The FOC is

z∗i (t) = −
∫ ∞

t e−(λ+ρ)(s−t)DEt [Qi(s)] ds∫ ∞
t e−(λ+ρ)s2Eds

= −
∫ ∞

t e−(λ+ρ)(s−t)
(

DQi(t)e−λ(1−(n−1)β)(s−t)
)

ds∫ ∞
t e−(λ+ρ)(s−t)2Eds

= − D(λ + ρ)

2E [λ + ρ + λ(1− (n− 1)β)]
Qi(t)

Therefore B = (n− 1) β solves

B =
BNash

1 + λ
ρ+λ [1− B]

(A.30)
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where the ratio BNash =
(n−1)Πij
−Πii

is the slope of the static best response to a simulta-
neous price change by all firms j 6= i in a static model. We need BNash to be strictly
lower than 1 for a static symmetric Nash equilibrium to exist. (A.30) shows that the
slope of the dynamic naive best response at a stable steady state is always smaller
than the slope of the static best response BNash and is decreasing in λ/ρ. The stable
root in (0, 1) is

BNaive =

(
ρ + 2λ

2λ

)[
1−

√
1− 4

λ(ρ + λ)

(ρ + 2λ)2 BNash

]
.

I Derivation of the Oligopolistic Phillips Curve

Consider the general non-stationary versions of the Bellman equation (A.1) and the
first-order condition (A.2):

(Rt + nλ)Vi (p, t) = Vi
t (p, t) + Πi (p, MCt, Zt) + λ ∑

j
Vi
(

gj (p−j, t
)

, p−j, t
)

(A.31)

Vi
i

(
gi (p−i, t) , p−i, t

)
= 0 (A.32)

Nominal profits are given by

Πi (p, MC, Z) = ZDi(p) [pi −MC]

where Z is an aggregate demand shifter that can depend arbitrarily on Ct and Pt.46

Define α(t) as the solution to

gi (α(t), α(t), . . . , α(t), t) = α(t).

This is the price that each firm would set if all the firms were resetting at the same
time. α is the counterpart of the reset price in the standard New Keynesian model.

To obtain the dynamics of α from (A.31), we start by deriving time-varying enve-
lope conditions evaluated at the symmetric price p1 = p2 = · · · = pn = α(t). After
applying symmetry and using Proposition 9 to make the strategies approximately
linear in the neighborhood of the steady state, the non-linear first-order and second-
order envelope conditions of the non-stationary game imply the following partial

46In Section 3, conditions (5) ensured a constant Zt.
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differential equations (PDEs)

0 = Vi
it + Πi

i + λ (n− 1)Vi
j β (A.33a)

(it + λ)Vi
j = Vi

jt + Πi
j + λ (n− 2)Vi

j β (A.33b)

(it + λ)Vi
ii = Vi

iit + Πi
ii + λ (n− 1)

(
Vi

jjβ
2 + 2Vi

ijβ
)

(A.33c)

(it + 2λ)Vi
ij = Vi

ijt + Πi
ij + λ (n− 2)

(
Vi

jjβ
2 + Vi

jkβ + βVi
ij

)
(A.33d)

(it + λ)Vi
jj = Vi

jjt + Πi
jj + λ (n− 2)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(A.33e)

(it + 2λ)Vi
jk = Vi

jkt + Πi
jk + λ (n− 3)

(
Vi

jjβ
2 + 2βVi

jk

)
+ λ

(
Vi

iiβ
2 + 2βVi

ij

)
(A.33f)

Denote the functions

W i
i (t) = Vi

i (α(t), . . . , α(t), t) , W i
ii(t) = Vi

ii (α(t), . . . , α(t), t)

and so on for all derivatives of the value function Vi. We can transform the system
(A.33) into a system of ordinary differential equations in the functions W i

i (t), W i
j (t),

and so on. The partial derivatives with respect to time such as

Vi
it =

∂Vi
i

∂t
(α(t), . . . , α(t), t)

in equations (A.33) can be mapped to corresponding total derivatives of W functions
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Ẇ i
it =

dWi
it

dt using

Vi
it = Ẇ i

i −
[

Vi
ii + ∑

j 6=i
Vi

ij

]
α̇

Vi
jt = Ẇ i

j −
[

Vi
ij + Vi

jj + ∑
k 6=i,j

Vi
jk

]
α̇

Vi
iit = Ẇ i

ii −
[

Vi
iii + ∑

j 6=i
Vi

iij

]
α̇

Vi
ijt = Ẇ i

ij −
[

Vi
iij + Vi

ijj + ∑
k 6=i,j

Vi
ijk

]
α̇

Vi
jjt = Ẇ i

jj −
[

Vi
ijj + Vi

jjj + ∑
k 6=i,j

Vi
jjk

]
α̇

Vi
jkt = Ẇ i

jk −
[

Vi
ijk + Vi

jjk + Vi
jkk + ∑

l 6=i,j,k
Vi

jkl

]
α̇

where the third derivatives of V at the steady state come from the third-order enve-
lope conditions of the stationary game, solving the linear system:

(ρ + λ)Vi
iii = Πi

iii + λ (n− 1)
{

Vi
jjjβ

3 + 3Vi
ijjβ

2 + 3Vi
iijβ
}

(ρ + 2λ)Vi
iij = Πi

iij + λ (n− 2)
{

Vi
jjjβ

3 + 2Vi
ijjβ

2 + Vi
jjkβ2 + 2Vi

ijkβ + Vi
iijβ
}

(ρ + 2λ)Vi
ijj = Πi

ijj + λ (n− 2)
{

Vi
jjjβ

3 + 2β2Vi
jjk + β2Vi

ijj + 2βVi
ijk + βVi

jjk

}
(ρ + 3λ)Vi

ijk = Πi
ijk + λ (n− 3)

{
Vi

jjjβ
3 + 2β2Vi

jjk + β2Vi
ijj + 2βVi

ijk + βVi
jkl

}
(ρ + λ)Vi

jjj = Πi
jjj + λ (n− 2)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jjk

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijj

}
(ρ + 2λ)Vi

jjk = Πi
jjk + λ (n− 3)

{
β3Vi

jjj + 3β2Vi
jjk + βVi

jjk + 2βVi
jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + βVi

ijj + 2βVi
ijk

}
(ρ + 3λ)Vi

jkl = Πi
jkl + λ (n− 4)

{
β3Vi

jjj + 3β2Vi
jjk + 3βVi

jkl

}
+ λ

{
β3Vi

iii + 3β2Vi
iij + 3βVi

ijk

}
Importantly, to approximate the second derivatives of Vi, we need to solve for the
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third derivatives of Vi around the steady state by applying the envelope theorem one
more time.

Imposing symmetry again, the following non-linear system of ODEs in the func-
tions

(
α, β, W i

j , W i
ii, W i

ij, W i
jj, W i

jk

)
holds exactly (omitting the time argument):

0 = −
[
W i

ii + (n− 1)W i
ij

]
α̇ + Πi

i + λ (n− 1)W i
j β (A.35a)

(it + λ)W i
j = Ẇ i

j −
[
W i

ij + W i
jj + (n− 2)W i

jk

]
α̇ + Πi

j + λ (n− 2)W i
j β (A.35b)

0 = W i
ii β + W i

ij (A.35c)

(it + λ)W i
ii = Ẇ i

ii −
[
Vi

iii + (n− 1)Vi
iij

]
α̇ + Πi

ii + λ (n− 1)
(

W i
jjβ

2 + 2W i
ij β
)

(A.35d)

(it + 2λ)W i
ij = Ẇ i

ij −
[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
α̇ + Πi

ij + λ (n− 2)
(

W i
jj β

2 + W i
jk β + W i

ij β
)

(A.35e)

(it + λ)W i
jj = Ẇ i

jj −
[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
α̇ + Πi

jj + λ (n− 2)
(

W i
jj β

2 + 2βW i
jk

)
+ λ

(
Wi

ii β
2 + 2βW i

ij

)
(A.35f)

(it + 2λ)W i
jk = Ẇ i

jk −
[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
α̇ + Πi

jk + λ (n− 3)
(

W i
jj β

2 + 2βW i
jk

)
+ λ

(
Wi

ii β
2 + 2βW i

ij

)
(A.35g)

Next, we linearize system (A.35) around a symmetric steady state ᾱ = α (∞) with zero
inflation (and steady state values of aggregate variables C̄, P̄). Let lower case variables
denote log-deviations, e.g., a(t) = log α(t)− log ᾱ, and write nominal marginal cost
as

p(t) + k(t)

where k(t) is the log-deviation of the real marginal cost. Profit derivatives such as
Πi

i(t) in (A.35) are evaluated at the moving price α(t), hence become once linearized47

πi
i(t) = ᾱ

[
Πi

ii + (n− 1)Πi
ij

]
a(t) + M̄CΠi

i,MC (p(t) + k(t)) + Πi
i
(
zcc(t) + zp p(t)

)
πi

j(t) = ᾱ
[
Πi

ij + Πi
jj + (n− 2)Πi

jk

]
a(t) + M̄CΠi

j,MC (p(t) + k(t)) + Πi
j
(
zcc(t) + zp p(t)

)
πi

ii(t) = ᾱ
[
Πi

iii + (n− 1)Πi
iij

]
a(t) + M̄CΠi

ii,MC (p(t) + k(t)) + Πi
ii
(
zcc(t) + zp p(t)

)
πi

ij(t) = ᾱ
[
Πi

iij + Πi
ijj + (n− 2)Πi

ijk

]
a(t) + M̄CΠi

ij,MC (p(t) + k(t)) + Πi
ij
(
zcc(t) + zp p(t)

)
πi

jj(t) = ᾱ
[
Πi

ijj + Πi
jjj + (n− 2)Πi

jjk

]
a(t) + M̄CΠi

jj,MC (p(t) + k(t)) + Πi
jj
(
zcc(t) + zp p(t)

)
πi

jk(t) = ᾱ
[
Πi

ijk + 2Πi
jjk + (n− 3)Πi

jkl

]
a(t) + M̄CΠi

jk,MC (p(t) + k(t)) + Πi
jk
(
zcc(t) + zp p(t)

)
where Π̄i

i, Π̄i
ii etc. denote steady state values.

47It is more convenient to linearize and not log-linearize profit derivatives, but we use the notation
πi

i(t) = Πi
i(t)− Π̄i

i.
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This yields the system of 6 linear ODEs in
(

a(t), wi
j(t), wi

ii(t), wi
ij(t), wi

jj(t), wi
jk(t)

)
[
Vi

ii + (n− 1)Vi
ij

]
ȧ(t) =

1
ᾱ

πi
i(t) + λ (n− 1)

Vi
j β

ᾱ

[
wi

j(t) + b(t)
]

(ρ + λ)wi
j(t) + Rt − ρ = ẇi

j(t)− ᾱ

[
Vi

ij + Vi
jj + (n− 2)Vi

jk

Vi
j

]
ȧ(t) +

1
Vi

j
πi

j(t) + λ (n− 2) β
[
wi

j(t) + b(t)
]

(ρ + λ)wi
ii(t) + Rt − ρ = ẇi

ii(t)−
ᾱ

Vi
ii

[
Vi

iii + (n− 1)Vi
iij

]
ȧ(t) +

1
Vi

ii
πi

ii(t)

+ λ (n− 1)

{
Vi

jjβ
2

Vi
ii

[
wi

jj(t) + 2b(t)
]
+

2Vi
ijβ

Vi
ii

[
wi

ij(t) + b(t)
]}

(ρ + 2λ)wi
ij(t) + Rt − ρ = ẇi

ij(t)−
ᾱ

Vi
ij

[
Vi

iij + Vi
ijj + (n− 2)Vi

ijk

]
ȧ(t) +

1
Vi

ij
πi

ij(t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
ij

[
wi

jj(t) + 2b(t)
]
+

Vi
jkβ

Vi
ij

[
wi

jk(t) + b(t)
]
+ β

[
wi

ij(t) + b(t)
]}

(ρ + λ)wi
jj(t) + Rt − ρ = ẇi

jj −
ᾱ

Vi
jj

[
Vi

ijj + Vi
jjj + (n− 2)Vi

jjk

]
ȧ(t) +

1
Vi

jj
πi

jj(t)

+ λ (n− 2)

{
Vi

jjβ
2

Vi
jj

[
wi

jj(t) + 2b(t)
]
+

2Vi
jkβ

Vi
jj

[
wi

jk(t) + b(t)
]}

+ λ

{
Vi

iiβ
2

Vi
jj

[
wi

ii(t) + 2b(t)
]
+

2Vi
ijβ

Vi
jj

[
wi

ij(t) + b(t)
]}

(ρ + 2λ)wi
jk(t) + Rt − ρ = ẇi

jk −
ᾱ

Vi
jk

[
Vi

ijk + Vi
jjk + Vi

jkk + (n− 3)Vi
jkl

]
ȧ(t) +

1
Vi

jk
πi

jk(t)

+ λ (n− 3)

{
Vi

jjβ
2

Vi
jk

[
wi

jj(t) + 2b(t)
]
+

2Vi
jkβ

Vi
jk

[
wi

jk(t) + b(t)
]}

+ λ

{
Vi

iiβ
2

Vi
jk

[
wi

ii(t) + 2b(t)
]
+

2Vi
ijβ

Vi
jk

[
wi

ij(t) + b(t)
]}

In general there are thus 6 ODEs because β may be time-dependent hence b(t) 6= 0.
But note that if b(t) = 0 then the system becomes block-recursive and we can solve
separately the first two equations in a and wi

j. From the optimality conditions we
have

β̇ = −α̇
[
W i

iij [1− (n− 1) β] + (n− 1)W i
ijj − βWiii

]
Using our perturbation argument we can show that there exists a third-order cross-
elasticity εi

iij such that at the steady state

Vi
iij [1− (n− 1) β] + (n− 1)Vi

ijj − βViii = 0 (A.36)

where Viij, Vijj, Viii are solutions to the system (A.34). Thus in what follows we con-
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sider β as constant for the first-order dynamics to simplify expressions, although we
could solve the larger system without this assumption.

The last step is to replace the single “reset price” variable a(t) with two variables,
the aggregate price level p(t) and inflation π(t) = ṗ(t) using our aggregation result
that inflation follows

π(t) = λ [1− (n− 1) β(t)] [log α(t)− log P(t)] .

After log-linearization we have

a(t) =
π(t)

λ [1− (n− 1) β]
+ p(t).

Therefore, we obtain in matrix form that the vector

Y(t) =
(

π(t), p(t), wi
j(t)
)′

solves the linear differential equation

Ẏ(t) = AY(t) + Zkk(t) + Zcc(t) + ZR [R(t)− ρ]

where A ∈ R3×3, Zk, Zc, ZR ∈ R3 collect the terms above (evaluated at the steady
state), with boundary conditions limt→∞ Y(t) = 0. The solution is given by

Y(t) = −
∫ ∞

0
esA {Zkk (t + s) + Zcc (t + s) + ZR [R (t + s)− ρ]} ds

where esA = ∑∞
k=0

skAk

k! denotes the matrix exponential of sA. Proposition 8 then
follows by taking the first component of Y.

To obtain the scalar higher-order ODE for π, let [M]i and [M]xy denote the ith
line and the (x, y) element of a generic matrix M respectively. Let B(t) = Zkk(t) +
Zcc(t) + Zr [r(t)− ρ]. Iterating Ẏ(t) = AY(t) + B(t), we have for all k ≥ 1

Y(k)(t) = AkY(t) +
k−1

∑
j=0

AjB(k−1−j)(t).

Taking the first line for each k = 1, . . . , K = 3, we have K equations

dkπ(t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j)(t)

]
1

=
[
Ak
]

1
Y(t)
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which we can each rewrite as

dkπ(t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j)(t)

]
1

−
[
Ak
]

11
π(t) =

K

∑
i=2

[
Ak
]

1i
yi(t)

Let

M =


A12 . . . A1n[
A2]

12

[
A2]

1n
...

...
[An]12 . . . [An]1n

 ∈ RK×(K−1)

Take any vector απ =
(

απ
j

)K

j=1
in ker M′ (whose dimension is at least 1), i.e., such that

M′γπ = 0 ∈ RK−1. Then

K

∑
k=1

απ
k

dkπ(t)
dtk −

[
k−1

∑
j=0

AjB(k−1−j)(t)

]
1

−
[
Ak
]

11
π(t)

 = 0.

and we can define απ
0 = −∑K

k=1 απ
k
[
Ak]

11. This simplifies to

...
π = (Aππ + Aww) π̈ (A.37)

+
(
Aπp + AπwAwπ −AππAww

)
π̇

+
(
AπwAwp −AπpAww

)
π

+ AπwḂw + B̈π −AwwḂπ

I.1 One-time shocks

Given (19) we can guess and verify that x = ψxe−ξt for all variables x ∈ {π, k, c, R− ρ}
and solve for the coefficients ψx using the system

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
= ψk

(
γk

0 − γk
1ξ + γk

2ξ2
)

+ ψc

(
γc

0 − γc
1ξ + γc

2ξ2
)

+ (ψR − ψπ)
(

γr
0 − γr

1ξ + γr
2ξ2
)

−ξψc = σ−1 (ψR − ψπ − εr
0)

ψR = φπψπ + εm
0 + (1− κ) εr

0
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Thus

ψc =
1

σξ
(ψπ (1− φπ) + κεr

0 − εm
0 )

ψk = ψc (χ + σ)

and

ψπ

(
γπ

0 − γπ
1 ξ + γπ

2 ξ2 − γπ
3 ξ3
)
=

1
σξ

(κεr
0 − εm

0 − ψπ (φπ − 1))
[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(

γc
0 − γc

1ξ + γc
2ξ2
)]

+ (εm
0 + (1− κ) εr

0 + ψπ (φπ − 1))
(

γr
0 − γr

1ξ + γr
2ξ2
)

which yields

ψπ =

κεr
0−εm

0
σξ

[
(χ + σ)

(
γk

0 − γk
1ξ + γk

2ξ2
)
+
(
γc

0 − γc
1ξ + γc

2ξ2)]+ (εm
0 + (1− κ) εr

0
) (

γr
0 − γr

1ξ + γr
2ξ2)

γπ
0 − γπ

1 ξ + γπ
2 ξ2 − γπ

3 ξ3 + (φπ − 1)
[
(χ+σ)(γk

0−γk
1ξ+γk

2ξ2)+(γc
0−γc

1ξ+γc
2ξ2)

σξ −
(
γr

0 − γr
1ξ + γr

2ξ2
)]
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J Additional Figures
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Figure A.6: Pass-through α̂ as a function of market share: symmetric firms (solid black
line) vs. heterogeneous firms (dashed gray line). The two lines lie almost exactly on
top of each other.

Note: Black line: market share varies through the number n = 2, 3, . . . of symmetric firms (black). Gray
dashed line: market share varies through heterogeneity in productivity among a fixed number n = 10
of firms. Nested CES preferences with η = 10, ω = 1.
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Figure A.7: Green functions γmc (s) , γc (s) , γR (s) for different numbers of firms n.

Note: AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive model.
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Figure A.8: Impulse responses for consumption and inflation following date-0 news
about monetary policy shock happening at tshock indicated by the vertical line.

Note: n = 3 firms with AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive
model. c and π denote log-deviations from steady state values in %.
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Figure A.9: Date-0 consumption and inflation in a liquidity trap lasting from t = 0 to
t = T, for different values of T.

Note: Solid black line: n = 3. Dotted gray line: n = ∞. c and π denote log-deviations from steady state
values in %.
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Figure A.10: Date-0 consumption and inflation in a liquidity trap lasting from t = 0
to t = T, for different values of T.

Note: n = 3 firms with AIK calibration. Solid black line: Strategic oligopoly. Dashed gray line: Naive
model. c and π denote log-deviations from steady state values in %.
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Figure A.11: In white: convergence of value function iteration algorithm towards a
monotone MPE in (λ, ε) space, with n = 2 firms.
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