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1. Introduction

As a positive science, the purpose of economics is to explain
social phenomena. In this regard the relatively recent incorporation
of uncertainty and imperfect information into economic models has led
to some rather exciting developments. We now have for examplé coherent
economic models consistent with observations on investment activity,
hiring-layoff decisions, job tenure, the rate of firm growth, and
fluctuations in aggregate economic activity. The purpose of this

essay is to provide a framework under which these and other models can

be better understood and compared. We have attempted to minimize

formalism and mathematical abstraction and to illustrate and generalize
the constructs that have proven most useful in developing theories to
explain economic phenomena for which uncertainty is the essential
element.

We emphasize that the succeésful models to which we refer have
in common a generalization of single agent statistical decision theory
to market contexts and precisely defined concepts of equilibrium.
These models also have in common a dynamic framework; stationary
Markov processes, decision rules, and equilibrium concepts; and low
dimensional state variables. We now elaborate on these themes.‘

In statistical decision theory a single agent chooses a
decision from some specified set of possible decisions and receives a
reward which is a function of that decision and some random outcomes
(see Section 2 for a simple exposition). The decision problem of the

agent is well defined in that the return or objective function and
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the distribution of the random variables are known. Yet the
distinguishing characteristic of economicbenvironments is that there
is more than one decision maker. 1In particular in market environments
it is assumed, at least implicitly, that there are many agents. 1In
such contexts then the reward to a single agent depends not only on
his own decision but also on the decisions of the other agents. Thus
to predict the decisions wﬁich agents will make in a multi-agent
environment there is needed some notion of consistency. We emphasize

here as did Rothschild [1973] that the things which each agent takes as

given in making his own decision must be consistent with maximizing

behavior on the part of the other agents. In short what is needed is a

precisely stated definition of equilibrium with this property. We focus
in this essay on the competitive rational expectations equilibrium and

the Nash equilibrium.

The relationship between thg rational expectations equilibrium
and the Nash equilibrium is illustrated first in a simple (essentially
static) framework of Muth [1961] (see Section 2). 1In a rational
expectations equilibrium the distribution of prices which agents
take as given, prior to making production decisions, is the distribu-
tion which is generated by these decisions. In contrast, in a Nash
equilibrium, each agent takes as given the production decisions of
Ehe others. In the limit, however, as the output of each agent becomes
negligible relative to the aggregate, the two equilibrium concepté are

equivalent.
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Frequently in statistical decision problems, an agent makes
a decision after receiving some information, that is, after observing
the realization of a random variable related to the underlying random
outcome. One may then refer to the agent's decision rule or policy
which specifies his decision as a function of the observation. 1In a
multi-agent context then one may define a Nash equilibrium in the
space of decision rules, a concept which allows for asymmetric
information (see Section 3). This equilibrium concept is related to
the notion of a Bayesian equilibrium as introduced by Harsanyi [1968].
Yet in markets with asymmetric information one frequently
utilizes the notion of a rational expectations equilibrium with prices
conveying information. 1In Section 3 of this essay we also analyze the
relationship between the Nash equilibrium in the space of decision
rules and such rational expectations equilibria in a simple version
of an (essentially static) asset holding model of Grossman
and Stiglitz [1976]. Again; an equivalence is estaﬁlishedf

Some have argued that the notion of a rational expectations

competitive equilibrium with prices conveying information is
conceptually flawed: is it not inconsistent that each agent obtains

information from the prices which he takes as given prior to making

" his decision even though such prices are determined by the decisions

of all agents? By viewing the rational expectations equilibrium as a
Nash equilibrium in the space of decision rules, this apparent paradox

is resolved.
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One way of modeling dynamic economic phenomena, as would be
suggested by the general equilibrium models of Arrow and Debreu, is
to search for optimal actions conditional on the sequence of realizations
of all past and present random variables or shocks. An alternative
approach which has proven more useful in developing testable theories
is to replace the attempt to locate equilibrium sequences with the
search for equilibrium decision rules, Qhere, in dynamic contexts,
these decision rules aré functions of a limited number of 'state
variables" (see Section 4). Such state variables include those
elements which determine the technology available to the agents, such
as the stocks of capital goods, and those elements which specify the
effect of past decisions on cdntemporary preferences., State variables
also include those elements which specify the relevant aspects of the
agents' information sets. We emphasize that state variables should be
of minimal dimension, indexing only those factors which can (potentially)
change over time. A related point is that information sets (conditional
distributions) are characterized by only a few parameters.

Consistent with the attempt to provide econometrically testable
hypothegis, the models are time invariant or stationary. It is postulated
that the stochastic process governiﬁg the distribution of next period's
state variables, as a function of the current state variables and
decisions, is stationary. Similarly the equilibrium concepts are
stationary, either the recursive Nash or the recursive rational
expectations equilibrium. Thus it turns out that the stochastic processes
governing the relevant time series of the model are stationary and

consequently subject to time series (econometric) analysis.
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To reiterate, we hope to lay out in this essay the common
elements of models which have proven successful in explaining
economic phenomena. We do so in part by examining their role in a
few selected structures. Section 5 presents a generalized version
of the Lucas-Prescott (1971) model of investment under uncertainty;
We note that the exposition here draws a distinction between
individual and aggregate state variables. Section 5 also outlines
the essential elements of Crawford's (1976) model of industry
employment and hours decisions. Hefe we emphasize the important
econometric feature that the state variables include a low dimensional
statistic summarizing information on permanent and transient shocks,
sufficient for forecasting future shocks. Section 6 presents a simple,
discrete-~time version of‘Jovanovic's (1978) model of job match and)
labor turnover. Section 7 presents Lucas's (1972) model of the

Phillips curve, the essence of which is information asymmetries.

Finally Section 8 presents a model of asymmetric information in
which a few state variables characterize the distribution of beliefs
of agents on an initial demand shock. The model is a modification
of Townsend (1978), motivated by the search for stationary schemes
and by the notion that agent's prior beliefs differ only if their
information sets differ. The econometric implications of this last

approach is the subject of ongoing research.

We would like to emphasize here that this essay certainly is not
intended as a survey of existing literature on equilibrium under uncertainty.

Rather we have chosen to concentrate on a few of the recent exciting
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contributions, a choice which we think best illustrates the points

we have emphasized above.
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2. Elements of Multi-Agent Decision Theorv

In this section we offer a brief description of decision theory
as it pertains to single agent problems and discuss extensions necessary
for an application to multi-agent enviromments. We emphasize the need
for a concept of equilibrium, and, in an essentially étatic context,
define formally the Nash equilibrium and the rational expectations
equilibrium. These equilibrium concepts are illustrated in the simple
partial equilibrium framework adopted from Muth [1961].

The single agent decision pfoblem is now described formally.l/
An agent is to select a decision d from the space of all possible
decisions @. The reward to the decision maker for any such decision
is assumed to depend on random variable ®w with distribution F(w).gl
That is, the relationship among decisioﬁs, outcomes, and rewards can
be expressed by a function r where r(d,w) is the reward to the
agent for decision d given outcome w. The agent acts to maximize
his expected reward fr(d,w)dF(w), by choice of his decision d€¢.2/

The distinguishing characteristic of multi-agent environments

is that the decision problem of any one agent cannot be considered

independently of the decisions of others. To formalize this suppose

there are n agents or decision makers. Each agent i can make a

decision di in some set of possible decisions ¢ Then the reward

i’

to agent i for decision di is assumed to depend on a random outcome

w as well as on the decisions of others, Di = (dl’dz""di—l’di+1’f°°dn)'



These relationships may be described by a function ry where
ri(di’Di’w) is the reward to agent 1.

If the decision problem of any agent i 1is to be well defined,
then agent i must be able to view his reward as a function of the
random outcome  and his own decision di only. The natural way
to do this in the space of decisions is for agent i to take the
decisions D, of o§hers as fixed, independent of his own decision.

i
Of course one would like to have the self-fulfilling property that the

decisions which agent i takes as given are in fact the decisions employed

TR i

by the others. This leads to the definition of a Nash equilibrium,

which has this self-fulfilling property.

i

Definition. A Nash equilibrium is a specification of a decision

* _
diEqai for each agent i€ {1,2,...,n} such that

[z (&} D} 0)aF (@) 2 [z, (4, ,D; ,w)dF (@)

for all di€¢i.
*
Hence in a Nash equilibrium the decision di is maximal for each
*
agent i given the decisions Di of others.

An alternative way of suppressing the dependence of agent i's

reward on the decisions of others is to focus attentionAon some random
variable ?{w,D) which agents take as given even though it depends on
the aggrégate decisions of all agents D = Z§=1dj' That is, it may be
that there exists a random variable P(w) and a reward function fi such

that the decision problem of each agent i 1is of the form
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(2.1) max T, [P(w),d, ]dF(0) .
diéwi

In a rational expectations equilibrium ?(w,D) will have the self-
fulfilling property.

Definition. A rational expectations equilibrium is a random variable

* *
P (w) and a specification of a decision di for each agent i€{1,2,...,n}

such that
%* *
(1) For every i, di solves problem (2.1) under P (w).
%* ~ *
(ii) P (w) = P(w,D ) .

Hence in a rational expectations equilibrium the decision of each

agent is maximal given P*(w), and P*(w) is generated by the decisions.
These two equilibrium concepts are now illﬁstrated in a structure

adopted from Muth [1961]. The objective function of each firm

i€{1,2,...,n} is expected p:bfits, E{Pqi - (1/2a)qi} a function

which is quadratic in output qiEIi and linear in the price P.

This produced commodity is sold in a competitive market with price

determined in accordance with stochastic inverse demand P(e,Q) = 8+e -(Q/n)

where Q = z?=1qj denotes the aggregate (industry) output, ¢ is a

normal random variable with mean 0 and variance var(e), and 6 is

a known parameter. Production decisions must be made prior to the

realization of .
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A rational expectations equilibrium in the Muth structure is
a specification of an output choice ‘q: for each firm iE{l,Z,...,n}
and a pricing function P*(e) such that for each i, qz maximizes
E'.[P*(C-:)'-l:.L - (1/Za)q§] and P*(e) = f(e,Q*). It may be verified that
q; = a8/(L+a), 1€{1,2,...,n}, and p¥(e) = [0/(1+a)] + ¢ have the
desired properties. A Nash equilibrium in the Muth strﬁcture is a
specification of an output choice q: for each firm i€{1,2,...,n}

* ~ *
such that 9 maximizes E[P(e, £ 4q, + q,)q, - (1/Za)q2]. Here it
i R -2y
*
may be verified that the q, = a®/[1+a+(a/n)], i€{1,2,...,n}, have the

desired properties. Now{it may be noted in the Nash equilibrium that
firms take account of the influence of aggregate output Q = E?;lqi

on price. If the output of firm i were negligible relative to the
aggregate Q, then the price P would be viewed by firm i as being
independent of his individual action 9, just as for the rational
expectations equilibrium. 1In fact, as the number of firms gets large,
i.e., as n - =, it is clear that the Nash equilibrium convergeé to
the rational expectations equilibrium.

An alternative way to establish this equivalence is to analyze
directly the limit economy. That is, let the set of firms be the
unit interval [0,1] and let P(e,Q) = 6+e-Q. It can be verified
that the appropriate elements of q: = ab/(1+a), i€[0,1], P*(e)
= [6/(1+a)] + ¢ constitute both a Nash and a rational expectations

equilibrium.ﬁl
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3. Statistical Decision Theory with Asymmetric Information

In this section we consider statistical decision problems in
which agents make decisions after observing the realization of a
random variable related to the underlying random outcome. The concepts
of the state variable, decision rule, and Nash equilibrium in the
space of decision rules are introduced in an essentially static
context. The relationship between the Nash equilibrium in the space
of decision rules and the rational expectations equilibrium with prices
conveying -information is illustrated in a model of financial assets

of Grossman and Stiglitz [1976] and certain simultaneity issues are

resolved.

First the single agent statistical decision problem is modified.

. Prior to making a decision d, the agent observes a realization of

a random variable x. The notion that x conveys information of the
forthcoming outcome ® is formalized by postulating the existence

of a joint distribution F(w,x) of the random variables ® and x.
The marginal distribution of x ‘is denoted by F(x), and the family
of conditional (posterior) distributions of ®w given x is denoted

by F(w|x); In this context a decision rule for an agent is a function
6 where &(x) 1is a decision in ¢ given an observation x.é/ The .
observation x may also be referred to as the state; it should be
noted that decisions depend entirely on the state. The agent seeks

a best decision rule in the class of all feasible rules. That is,

his problem is to choose some §, with &(x)ep for every x, to

maximize expected utility jfr[&(x),w]dF(wlx)dF(x).




Somimmgs
i e T oY e e S
ISR

S

12~

Now returning to the multi-agent enviromment, recall that the
reward to each agent i€{1,2,...,n} depends on the random w, on

his own decision di E¢i and on the decisions of others

D. = (dl’dZ""d

1 .dn), i.e., we have ri(di,Di,w). It is

i-1’di+1”'
now assumed that prior to making a decision, each agent 1 observes
a realization of a random variable x, . Let F(w’xl’XZ""xh) denote
the joint distribution of w and the observations (xl,x ,...xn). In
this context a feasible decision rule for each agent i 1is a function

i
Given the decision rules of others, Ai = (51’52’"'51-1’61+1’°"6n)’

§, where éi(xi) is a decision in ?, given the observation X, -

the expected reward for agent i from decision rule éi is then

[fry 06, (=), B, (X)) ,01dF(0,X, | %, )aF(x;) = v, (8;,4,)
where Xi = (xl’XZ""xi-l’xi+1""xn) and
BN CHCH NN IR S CHRP FLITC NEPFITRLNC )

The natural candidate for an equilibrium in this context is
the Nash equilibrium in the space of decision rules. A Nash equilibrium
is a specification of feasible decision rules such that the decision
rule of each agent is maximal for him given the decision rules.of others.

More formally we have
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Defipition. A Nash equilibrium is a specification of a feasible
decision rule 6: for each agent iE{l,Z,...,n} such that
vi(éz,A:)<2 vi(éi,A:) for all feasible rules 6i.

In market contexts an alternative equilibrium concept is the
rational expectations equilibrium with prices conveying information.
This concept is first illustrated in a simple version of a model of
financial assets by Grossman and Stiglitz [1976]. Its relationships
to the Nash equilibrium is then established.

Consider the following two-period model. In the first period
each agent i of a set of n agents is endowed with ﬁi units of
a riskless asset and with ii units of a risky asset. In the second
period each unit of the riskless asset yields R units of the single
consumption good of the model. Each unit of the risky asset yieids
u units of the consumption good where u ~ N[E(u), vaf(u)]. In
the first period there exist competitive markets for thé two assets.
Let P denote the price of a unit of the risky asset with the price
of the riskless asset at unity. Each trader i has a common utility

function v for second-period consﬁmption ¢ of the form

v(ci)= -exp(-aci) where a > 0. The problem of each agent 1 is to

choose asset holdings ”Xi and Mi to maximize the expected utility

g

of consumption ¢ 5 + uXi subject to the budget constraint

i
M, - M) + P(X, - X)) =0.
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Expectations are taken with respect to all available information.
The information structure is described as follows. A set I of
informed traders, fraction A of the population, receives a signal
® =u+ ¢, where ¢ ~ N[O,var(e)], prior to making a portfolio decision.
Clearly 6 conveys information on the forthcoming realization of wu.
In fact the posterior distribution of u conditional on the
observation 6 (cf. Zellmer [1971] for such updating formulas) is

normal with mean

var(u)

E(u|®) = E(u) + y [8 - E()]

var(u) + var(e

and with variance

: var(u)
var(ule) = var(u) [1 - - ] .
. var(u) + var(e)

Note that only the mean depends on 6. The set U of uninformed
traders do not observe 6 directly but do know the price P of the
risky asset. Let us suppose that uninformed traders believe that P
depends on 8, that is, that P = 5(9) is a realization of a random
variable ?k').‘ Then we may refer to the mean E[ulP;?{-)] and variance
var[u‘P;?(~)] of the posterior distribution of u of uninformed
traders conditional on the observation P.

It can be established that the demand XI(Ple) of any informed

trader for the risky asset as a function of P and 6 is of the fomm
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E(ul8) - R P
XI(Ple) T a var(u|€)

and the demand X [P|P;F(-)] of any uninformed trader for the risky
asset as a function of P is of the form
E[u|P;B(-)] - R P

[P|B;F(-)] = -
XU a var{u‘P;fK~)]

Market clearing then requires that demand for the risky asset equal
the total endowment. In addition it is assumed that the distribution
of price ?(-) which uninformed agents take as given is in fact the

distribution generated in equilibrium. That is, a rational expectations

%*
equilibrium is a price function P (-) of the random variable ©

such that, for every 9,

* , * * * oo
(3.1) A X [P(8)] 0] + (1 - \)nxy [P (&) [P (8);P (-)] = Iy
It can be established that the equilibrium price function P*(-)
is of the form P*(S) = a; + @, E(u[e) where al >0 and @, >0
are real numbers. Clearly then P*(G) fully reveals to uninformed
traders E(ule) which itself is a linear function of ef Hence in
equilibrium uninformed traders are as well informed as informed traders.
It remains to establish that this rational expectations equilibrium

is also a Nash equilibrium in the space of decision rules if there is a

continuum of traders. Let the set of agents be the unit interval.é/
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Let the decision glement for each trader be a demand function for

the risky asset, and let the final allocation be determined by these
demand functions in accordance with market clearing. Now let the
decision rule for an informed trader i be a mapping from the observed
8 to a choice of a demand function xi(-,e). Uninformed traders i
choose a demand function Xi(-). Equilibrium (*) choices are specified

*
as follows. For every informed agent i let Xi (-,8) be defined by

E(ul8) - R P
a var(u|8)’

* 8) =
xi(P’ ) =

*
For every uninformed agent i let Xi(') be defined by

EfulP;2(-)] - R P

X, (P) = :
a var[ulP;P ()]

where P*(e) = oy + oy E(ule) as before. Now consider some uninformed
trader i who takes as given tﬁe demand functions X;(-,B), j€ I and
X; (*), j€u - {i}. Given these functions agent 1 knows that the .
equilibrium price will be determined in accordance with (3.1), so in
fact P*(-) is.the equilibrium price function.zj But agent i can
condition his demand on the price which will prevail, and he knows

the relationship between prices and 6, namely P*(-). This yields
X:(-) as his optimal decision. Clearly also X:(-,e) is an optimal
decision for any informed agent i by construction. This establishes

the desired result. Note that what is crucial in the argument is that

any one agent i has negligible weight, i.e., prices are determined
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entirely by the demand functions of the other agents. (The property
that prices reveal completely all information is inessential to the
argument.)

As was noted in the introduction, some have argued that
the notion of a rational expectations competitive equilibrium with
prices conveying information is co;ceptually flawed. It is inconsistent,
they argue, for each agent to obtain information from the prices which
he takes as given, prior‘to making his decision, even though such prices
are determined by the decisions of all agents. By viewing the rational
expectations equilibrium as a Nash equilibrium in the space of decision

rules, this apparent paradox has been resolved.
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4. Sequential Statistical Decision Theory and Economic Dynamics

There are important economic phenomena that are
inherently dynamic and cannot be viewed as a sequence of static
equilibria differing only in the value of certainve#ogenous shocks.
Optimal current actions of the economic agents depend not only upon
the current situation but upon their expectations of future events.
This occurs for example whenever either preferences or technology
fail to be time separable. One way of modeling dynamic economic
phenomena is to search for optimal actions conditional upon all
exogenous shocks observable at the time of the decision. This
approach, which is how uncertainty is incorporated in Arrow-Debreu
economies, has not provenvvery useful in characterizing equilibria
and explaining the phemonena of interest. An alternative approach
which has proven more useful is to replace the attempt to locate
équilibrium.seguences of decisions, given exogenous sequences of shocks,

with the search for equilibrium decision rules, functions of a limited

1ist of "state variables,” which summarize both past decisions and
current shocks,

A particularly useful class of structures are those of the
recursive or time invariant variety, for the resulting equilibrium
is a system of time invariant stochastic difference equations as
assumed in most econometric analyses. There are three basic structures
for preferences with this property. The first construct assumes an
infinitely-lived family or fimm with discounting. The investment under

uncertainty example presented in Section 5 uses this construct. The
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second is the assumption of exponential life of agents as in the

Javonovic job match equilibrium analysis in Section 6. The third is

Samuelson's overlapping generations abstract which is used in the Lucas

business cycle model summarized in Section 7.

The stationary statistical decision problem, which was rigorously

analyzed by Blackwell [1965], is one for which§/

(L

(ii)

(iii)

The return function is time séparable jointly in
in the period t decision variable dt and an
appropriately defined state variable Se» and
returns are discounted by factor B €(0,1); that

is, the return function has the form
© t
Zt=OB r(dt,st) .

The state variable is observed or is a function of

observables at time ¢t. The conditional distribution
of Setr1 given current and past decisions depends only
upon (dt’st) and the distribution function F(st+lldt’st)

is time invariant or stationary. Frequently, s is

t+1
a function of (dt’st)’ and an identically and independently

distributed random variable.

The decision dt is constrained to belong to a

correspondence ¢(st).
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A stationary decision policy 6 is a decision rule used in every
period t specifying the current decision as a function of the current

state:

dt = 6(st).
The stationary decision policy is feasible if 6(st) € ¢(st) for all
possible S, Blackwell has shown that if an optimal policy exists
in the more general class of not necessarily stationary decision
policies, {dt = Gt(sl,...,st) with dt Ev(st) almost surely}, then an
optimal statiomary policy exists.

Under some fairly weak continuity conditions that are typically
satisfied in economic applicationsgf, there is a unique bounded value

function v satisfying Bellman's optimality equati on:

v(s) =  sup {r(d,s) + Bfv(y)dF(y|d,s)]} .
d€w(s)

Here v(s) is the supremum of the (expected discounted) return over all
feasible policies given state .s. A feasible stationary policy

8(-) is optimal if and only if for all s the above supremum is
obtained for d = 8(s). Compactness of sets ¢(s) along with the

continuity assumptions are sufficient to ensure the existence of such

a policy.
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The state variable s, _typically specifies stocks of assets or
capital goods. Sometimes, however, st reflects the effect of past
decisions upon current return. For example, if last period's labor
supply decision affects the disutility of current labor supply, then
last period's labor supply must be a component of S, Thus, a
recursive structure does not require time separable utility functions

any more than it requires time separable technologies.

The state variable must also include relevant aspects of the

--agents' information set. If, for example, earnings are subject to a

second order autoregressive process, earnings in both the_cﬁf?ent an&
previous period are elements of the state variable, for they are needed

to forecast future incomes of the utility-maximizing individual.

If eafnings are subject to unobserved permanent and transitory shocks

as in Friedman's permanent income theory of consumption, an exponentially
weighted sum of past incomes is sufficient for forecasting future

10/

incomes and is, therefore, a suitable information state variable.-—

The multi-agent stationary decision problem with common information

is defined as follows:
(i) The return function of agent i€{1,2,...,n} has the form

E = Bt d D. ,S
(Zy 0P r3(d5,58;,,D,,,8,,)]

where (dit’sit) is the decision-state pair of agent i and

(Dit’sit) are the pairs for agents other than i.
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(ii) The decision constraint correspondences are
d; . emi(sit,sit) for i € {1,2,...n} .

(iii) The distribution of (s1 t+1,...,sn t+1) depends only upon

and (d and not upon time.

(slt""’snt) 1t,..‘.,dut)

A stationary policy for agent i 1is a decision rule,

dip = 8;(8;085¢) >
specifying the current decision of agent i as a function of his and
other agents' state variables. If agents other than i are using

stationary decision rules Ai = {51,...,61_1,61+1,...,6n}, the decision

problem facing agent { is a stationary statistical decision problem.

For a feasible decision policy 61 there will be a return,ll .
(6.,4.) = E{z_B"r, (4, .8 D, 5. )]6..8,)
vi(8;,8;) = Bl P T3 e fier i P10 T

A stationary sequential Nash equilibrium is an n-tuplet of mutually

* ok *
feasible stationary decision policies (61, 62,...,8n) such that

* % *

for all feasible policies &, for each iE{l,Z,...n}.lg/
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At this point we do not have a general defini;ion of a
stationary competitive equilibrium that is suitable for all the
existing examples of stationary competitive equilibrium analyses.
Instead we shall focus on three structures and be precise in the
definition of equilibrium for each. For the first two, the investment
under uncertainty and job-match market analyses, the agents are
faced with a discountea stationary statistical decision problem.

The business cycle example is stationary in the equilibrium decision

rules of each generation.
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5. Investment Under Uncertainty Example

A competitive industry with constant returns to scale, increasing
costs of rapid adjustment, and demand uncertainty will be used to
jllustrate the equilibrium constructs developed here. The constant
returns to scale assumption greatly simplifies the analysis as well
as being consistent with percentage growth rates being uncorrelated
with firm size (Gibrat's Law) and the observed great variability of
firm sizes. The simplification occurs because the distribution of
capital or capacity over price-taking firms is irrelevant; only total
industry capital or capacity matters.

A representative firm's production possibility set is a closed
convex cone constraining current period capital kt € R, next period
capital kt+1 € R, and the currént period commodity vector xtélin.
wWith the constant returns to scale assumption, (xt’kt+1) is feasible
given kt if

o+l
(5.1) (xt/kt’ kt+1/kt) ETCR

for some closed convex technology set T. A component of X, is
nonnegative if an output and nonpositive if- an input. With this
convention, often used in general equilibrium theory, there is no
need to distinguish between inputs and outputs and all prices are
nonnegative. The set T is assumed to haQe an interior.

The industry is subject to demand shocks z,. Letting Xt be

industry "output,” the downward sloping inverse 'demand" function is
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(5.2) P, = D(Xt’zt) .

The demand shocks are subject to a stationary Markov process and
initially we assume shocks observed by all firms. The probability

distribution function for =z conditional on z_ is F(z

t+1 t t+1|zt)'

The objective of the firm is to maximize its expected present value,

(5.3) e{z,_, 8% p_-x )
: t=0 pt €

given its initial capital, ko. The discount factor B equals

1/(1+r) where r is the time invariant interest rate.

The state of the industry is the beginning-of-period distribution
of capital among firms and the current demand shock. The former
completely specifies current and future production possibilities of all
firms, while the latter is sufficient relative to the entire history

for predicting subsequent shocks. With the constant returns to scale

and price-taking assumptions, however, only total industry capital,

(5.4) R, = T k,
all firms

matters for market variables and not how it is distributed over firms.

Therefore the pair (Kt’zt) is an appropriate set of state variables for

this industry equilibrium analysis.

Definition. A recursive competitive equilibrium is a pricing function

P, = p(Kt,zt), a law of motion for industry capacity Kt+1 = f(Kt’zt)’

and a feasible, stationary firm investment-output policy
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(5.5) X, = kt 61(Kt,zt) and kt+1 = kt 62(Kt,zt)
such that

(i) Decision policy & = (51,62) maximizes value, that is,

maximizes (5.3), given functions p and f£.

(i1) For decision policy 52, the law of motion for

industry capacity will be f; that is for all (Kt’zt)

. (5.6) ERpz) = E Kk8,(R,z) = K8)(Rp,z)
' all firms

(iii)' For decision policy 61

D(Xt,zt) = p(Kt,zt) for all (Kt’zt) where

P4
1]

T x, = 8 (K _,z.)
all firms t t 17t

f‘ These equilibrium conditions warrant further discussion. The

T

firm faces the following stationary statistical decision problem in

IO A

state variable (kt’Kt’zt) and decision (kt+1’xt)' The objective

function whose expected value is being maximized is

© - t
(5.7) IS BPx, = Tong B PKRpz )X,
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Period t return depends only upon the state and decision vector
as required. The industry state (Kt’zt) is subject to a first order
time invariant Markov process defined by the conditional distribution

F(zt+1‘zt) and the law of motion for industry capital Kt+ = f(Kt,z ).

1 t

The element kt+1 is as selected in period t so is trivially determined
by decision in period t. The constraint on period t decision

(xt’kt+1) depends only upon state variable kt and not on time.

This constraint is (xt/kc’kt+1/kt)€T' Because of the special form

of the constraint set and the objective function, if an optimal policy

exists it 1s of the form.

(5.8) xt - kt 51(Kt,zt) and kt+1 = kt 52(Kt’zt)
as required in our definition of industry equilibrium.
Conditions (ii) and (iii) ‘are that these optimal decision rules

are consistent with the equilibrium pricing function P, = P(Kt’zt) and

equilibrium motion of industry capital Kt+ = f(Ké,zt). This is the

1
condition that predicted and actual distributions of future prices
be equal or that expectations are rational.

In Lucas and P;escott (1971) it was shown for a special case
of the above model that a unique recursive competitive équilibrium

exists. The equilibrium is such that the expected discounted consumer

surplus function,

- X
(5.9a) E{Z__, B_tS(Xt,zt)}, vhere s(X ,z,) = E’;:l fotij(i,zt) dy,
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is maximal over all feasible programs. Analytically one considers

the functional equation

(5.9b) wK,2z) = max {s(X,z) + B[ wr’,z") dF(z’|2)} ,
(X/R,K’/R)ET
ﬁhere the prime indicates the next period's variable. The stochastic
process governing the industry in equilibrium is Markovian and has
stationary transition probabilities. In Lucas and Prescott, additional
conditions are imposed which ensure the stationarity of this process.
The stationarity of the equilibrium process governing the industry
behavior is, we think, important for it is necessary for testing

hypotheses using standard time series methods.

Crawford (1976) uses recursive equilibfium analysis to model
employment, “output and hours decisions for an industry. He assumes
costly labor force adjustment so the workforce, as well as beginning
of period inventories, are components of the "capital" vector k.

He estimates output, hours, and workforce change equations as a
function of industry capital K and the information set relevant
for forecasting future demand shocks,

For the Crawford analysis the process governing the industry
demand shock is not first order Markovian and z, is not a sufficient
statistic for forecasting future shocks. ‘The same problem arises in
Friedman's permanent income consumption theory as observed income is
the sum of unobserved permanent and transitory components. The

econometric resolution of this problem is to develop a low dimensional

statistic m, which is sufficient relative to the entire history of
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shocks for forecasting future demand shocks. It, along with zZ, and
the capital stocks, are the elements of the state vector. To obtain
the Markov process governing (mt’zt) one develops the conditional

distribution of z

given m_ and the functional dependency

t+1l t

m = m(mt,z These can be used to determine

t+1 t+1)'

(5.10) F(mt+1’zt+1‘mt) RS TR RLIWC L LIPLISEEEREY
The pair (mt,zt) are thus subject to a time invariant Markov process
and the problem has the stationary structure required.
The probability structure of the industry demand shock in
Crawford's analysis is as follows: The observed or deducible shock
t

z is the sum of unobserved tramsient shock Yie and unobserved

permanent shock You!
(5.11) zZ, = ¥y, + Yoe -

The transient and permanent shocks satisfy

(5.12) yl,t+1 = 0¥y, + €1e? 0<p <1l ,
1
V2,641 T Y2e t €p¢ -
The €14 and €), are identically and independently distributed normal

zero mean variates over time and are independent of each other.
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This probability structure is an example of the Kalman filter
model which is proving to. be as useful in economic studies as it has
in engineering analyses. In general the observed Z.» which can be

a vector, is a known linear combination of the unobserved components
. z = .
(5.13) N B Ve

It is required that z, have lower dimensionality than unobserved
Ve and that B be of full row rank. For the Crawford analysis z,
has dimensionality one and B = (1 1).
The vector Ve is subject to a first order vector autoregressive

process with identically and independently distributed normal zero

mean errors €t2

(5.14) Ver1 = A Ve + e_ .

t

For the Crawford problem

(5.15) A=

and Ze’ the covariance matrix of st, is diagonal. Crawford finds that

this prob;bility structure fits the data well and estimates parameters

p and ZG.
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If y, were known, it would be sufficient relative to the
entire history of observables for forecasting future demand shocks
and would be a valid information sﬁate variable. But Ve is not
observed, and it is the prior &istribution for y. at time ¢t

which is sufficient relative to the history for forecasting future

shocks. We will see for this structure that the prior distribution for

Y, is completely specified by m, the conditional expectation of

. .given the history, and that m o1 is a linear function of m
t

and 2z

e+l The pair (mt,zt) are subject to-a Markov process with

time invariant transition probabilities as required by the theory
We now establish these results.

If at the time of the period t production decisions the
prior distribution for Ve '(i.e., the conditional distribution of
Ve given zt’zt-l"") is normal with mean m and covariance

L, , the predictive probability distribution function of the pair

t’
(zt+1,yb+1) is from (5.13) and (5.14) (singular) normal with

(5.16) E{zt+1|mt,2t} =BAm
l':{yt:+1|m':’zt:} =Am

- 7
Var(zH_llmt,Zt} = B (A ZtA + Ze) B = Var(zt+1‘zt)

— l —
Var(yt+1|mt,2t) = A Et A"+ Ze = Var(yt+1‘2t)

— , =
Cov(yb-l—l’zt+1|mt’zt) =(@AZ A+1)B C°V(yt+1’zt+1‘zt) .

»

1}
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Letting m o1 be the mean of the prior distribution for ¥y at

t+1
time t+1, then

(5.17) m

-1
e41 AT T Cov(yt+1’zt+1‘Zt)[var(zt-l-l‘zt)] (24 ~BA®) .

In addition

- ) -1
(5.18) el T Var(ytﬂlzt) C°V(~yt+1’zt+1‘zt)[var(ztﬂ‘zt)]

g e

e

Cov(zt+l’yt+ll2t) :

i

Assuming the modulus of the largest eigenvalue of A 1is in or on the

unit circle, Zt converges exponentially fast to the unique positive

definite matrix I satisfying (5.18).12/

Crawford sets Zo equal to I so all Et “are equal to Z.

As Zt is time invariant it need not and is not included in the state

vector. Further with 2t=2, the difference equation governing m,

(5.17), is stable and the effect of m, upon m . becomes negligible

after a few periods.

Remaining to be determined is F(m The distribution

t+1’zt+1‘mt) :
of zZ.1 given mt is normal with mean and variance given in (5.16).
With Zt =%, from (5.17) w1 is a linear function of m, and

zt+1; that is

(5.19) m
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where matrices L1 and L2 are functions of I, Ee, A and B. Therefore
it can be established that the joint distribution of (mt+1,zt+1)

conditional on m, is singular normal with mean [A m, B A mt) and

covariance matrix

4
L2Var(zt+1|Z)L2 L2Var(zt+llz)

(5.20)

7
Var(zt+1|E)L2 Var(zt+1|2)

This establishes that a Markov process with stationary transition
probabilities governs the evolution of (mt,zt). as required for the
analysis.

With this approach, the demand shock is decomposed into an
expected permanent component o, and an expected transieﬁt,éomponen£
m,, the effect of which declines at rate p. Crawford explains
industry output, hiring-layoff, and hour decisions as a function of
capital stock state variables, industry inventory and workforce, and
of the information state variables, o, and m,, - The decompositiod
of z, into expected effects facilitates tésting restrictions impoéed
by the theory. As predicted by the theory, Crawford finds that
permanent demand shocks have a greater impact than transient shocks
on the hire-layoff decision, and that transient shocks have the

greater impact on hours of employment.
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6. A Market Analysis of Job Matching

The study of Jovanovic [1978] is another illustratioh of the
usefulness of stationary equilibrium comstructs. His analysis is in
continuous time but, in order to match better with the notation
previously developed and to avoid some difficult mathematical issues,
a discrete time version of his model is considered here.

There are many firms and many workers. Workers and firms
are matched pairwise, with the unknown job characteristic € of a
worker under a specified match determined by a draw from a known
distribution. That is, the output X, of an employéd worker in a

time period t is a normal random variate with unobserved worker -

job match mean 8 and known variance 1. At the beginning of the
first period of a worker-job match, the prior distribution of @

is normal with mean p and precision m. Thus the information about
8, the parameter of the match, changes subsequent to each observed
product of the match =x. For this probability structure the distribution .
on 6 at time t is normal with mean m, and precision ht. Next

period job-match state variables, assuming the match continues, satisfy

-1
(6.1) moy T (ht + 1) -(mtht + xt)
and
(6.2) e, =h +1
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The distribution of x, conditional on m and ht is normal with
mean m, and precision ht/(ht + 1). Thus, the distribution of next
period job-match state (mt+l’ht;1) given the current state (mt,ht)
is well defined.

If the match is terminated in period t, the worker is unemployed
for the period and his net output is a possibly negative constant
reflecting value of leisure and moving costs. The mean and precision

of such a worker's next period match are m
P

gey =B @nd b, =T

Worker's Problem

The objective of the worker is to maximize the present value of
earnings. Let Q be the maximal obtainable present value of earnings
for a new worker or one who has terminated a job-match and was
unemployed in the previous period. If the stationary wage policy of

the current employer is to pay wage

(6.3) w,=w(m, h),

t t

the problem facing the worker is a stationary statistical decision

problem. A stationary policy or stopping rule is defined by a set
S; the worker terminates the match at the first t for which

(6.4) (mt’ht) € Ss.

Assuming the worker behaves optimally subsequent to the termination,

his present value of earnings v(S,w,Q) will depend upon the separation

il
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set S, the wage policy for the current match, and parameter Q.
Results cited in Section &4 justify restricting the search for optimal
separation policies to the stationary set. The worker's problem is
to select S given the function w and the parameter Q so as to
maximize v(S,w,Q). The correspondence of optimal separation sets
(there may be more than one) is denoted by o(w,Q).

Firm's Problem

The contribution of a match to a firm's valuation (the expected
discounted difference between the product of the match and the wages
paid the worker) depends upon its wage policy w(m,h) and the

separation set S chosen by the worker. It is denoted by

(6.5) m(w,S) .

The firm maximizes this quantity subject to the constraints that the
worker chooses S optimally and that the expected present value of

the match for the worker is at least Q; that is subject to

(6.6) S € g(w,Q) and v(S,w,Q) >Q .

1f there is no wage contract with non-negative profits, the demand for
workers will be zero. If a wage contract exists which yields strictly
positive profits, the demand will be infinite. As for all constant

returns to scale technologies, profits must be zero in equilibrium.
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Definition of Equilibrium

An equilibrium is a triplet (Qfsfw*) such that
(i) V(S,W*,Q*) < v(S*,w*,Q*) or equivalently §*€ c(ﬁ*,d*) .
[utility maximization by workers]
(ii) mWw,8) < n(w*,S*) = 0 for all (w,S) such that § E—O(W,Q*)
and v(S,w,Q*) > Q*. [value maximization by firms]
(111) Q" = v(s*,w,Q") [The maximal obtainable utility is
indeed Q*.]
-Jovanovic establishes that paying workers their expected product,
w*(m,h) = m, is an equilibrium wage policy. The equilibrium set S*
is the unique one which results in society's product being maximized.
The set S* has the property that the more precisely a match's 6 is
known, that is the larger precision h, the greater must mean m be
for the match to continue. As h approaches infinity, the m required
for continuation approaches an asymptote.
This model has the implication, consistent with the data,
that there is a negative correlation between labor turnover and job
tenure with most job separation occurring in the first few periods of
employment. Other important phenomena explained are the positive
correlation between wages and job tenure, and, when tenure is held
constant, the negative relationship between the wage and the

probability of subsequent separation.

1]
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7. Business Cycle Example

Lucas considers a variant of Samuelson's model of pure
consumption loans. In each of an infinite number of time periods
N people are born. Each person lives two periods. Hence in each

period there are N young people and N old. Each young person has

"a linear technology for transforming labor effort n into output y

of the single nonstorable consumption good in accordance with y = n.
Each young person values current consumption ¢ and leisure in
accordance with a common utility function u(c,n),uc >0, u < 0.
The old have no labor and value consumption ¢’ in accordance with a
common utility function v(c').

There is one other good in this economy--fiat money, issued
by the government. At the beginning of the second period of his
1ife each old person receives a transfer of such money which is
proportional to his pretransfer holdings A. Let the proportionality
factor x be random with known density f on (0,®). There are
also two competitive markets in which the consumption good can be
exchanged for money. Fraction 8/2 of the youné are distributed
to the first market and 1 - (8/2) to the second. Here € 1is
random with known density g on (0,2). (Both x and € are
independent of each other and independent over time.) In each of
these markets each old person will supply his money balances, Ax,
inelasticaliy, and each young person will exchange for money some

of the consumption good which he produces, the amount depending
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on the price p of the consumption good. The old are distributed to
markets in such a way as to equate the supply of money balances in
each market.

The decision problems of the agents are now stated formally.
It should be noted first that the state variables of this economy are
m, the per capita pre-transfer holdings of the old, and the realizations
x and 8. The old know m and =x, and the problem of the old
is triv1a1 namely maximize v(e¢ ) by choice of consumption ¢’ and
money supply n® subject to the budget constraint p ¢’ < m° where
n® < Ax. Clearly n® = Ax and ¢’ = Ax/p are maximizing choices.
Each young person is assumed to know m, but observes neither x nor
8. Yet each believes p depends on m, x and ©, that is, p = Skm,x,e)
is a realization of the random variable ;k-). Hence the price é
conveys information on x and 6. Similarly the young believe the
future price p’ = p(m’,x’,8’) is a realization of P(-). Finally
each young pérson takes into account his maximizing behavior when old,
i.e., ¢! = (kx')/p' where again )\ denotes money balances acquired

when young. This yields the following problem:

A x’

max {u(c n) + Iv
A,e,n >0 P(m x, x’,08")

dG[x,x',e'Im,p;'f:'(-)]}

subject to the budget constraint p c + 2\ < p n. Again note that
Since p' is a realization of ;(-), expectations can be taken with
respect to the known distributions of X, x', and 8’. Note also that

p' depends on x through m’ = mx and under ;(~), P conveys

]
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information on x. Hence the distribution G is conditional on m
and p and depends on ;('). Let X[plm,p;;(-)] denote the maximizing
choice of A. |

In a rational expectations equilibrium of the first market
the demand for money of the N(8/2) young must equal tﬁe supply of
money of the old. Moreover it is postulated that the pricing function
;(-) which agents take as given is also realized. That is, a rational
expectations equilibrium of the first market is a priciﬁg function

p*(-) of m,x and 6 such that, for all m,x and &,

N(S/2ALp (m,x,8) |m,p (m,x,8);p ()] = (V/2)mx .

Lucas establishes under specified assumptions on the utility
functions u(-j and v(‘) and on the densities f and g that the
equilibrium pricing function p*(~) of the first market is of the
form p*(m,x,e) = m@(x/8) where ¢(z) is monotone increasing in z.
(Similarly in the second market P*(m,x,z-e) = m ¢[x/(2-8)].) Thus
in equilibrium the young discern the ratio 2z of x to 8. It is
also shown that the maximizing labor supply decision is an increasing
function of real money balances acquired, A/p. Also equilibrium
real balances mx/8p are shown to be an increasing function of z.
Hence a relatively large 2z will be associated with relatively large
output in the first market as well as high prices. Now, roughly
speaking, if z is high because 6 1is low, then there is an effect

of opposite directions in the second market. On the other hand 1if
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z 1is large because x 1is large, then the effect in the second market
is in the same direction. This is shown by Lucas to yield a Phillips
éurve in which aggregate real output is positively associated with the
rate of inflation--an empirical observation not explained by an
equilibrium theory prior to Lucas' work. It should be emphasized that
this result turns on information asymmetries. Because only x/6 1is
known, monetary disturbances are interpreted in part as réal disturbances

and have real consequences. If in contrast there are no real

i

*
disturbances, i.e., 6=1 with probability one, then under p (), x
would be made known to the young, and labor supply decision would be

some constant independent of x.
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8. The Distribution of Beliefs as State Variable

The models considered thus far essentially have the property
that informed agents trade with uninformed agents only once. The

state variable then is naturally the vector of observables as well

'as those variables which determine the exchange opportunities available

to the agents. In contrast agents may get repeated observations on
variables which are determined in part by the actions of those with
additional information. This is true for example of Lucas' [1975]

model of the business cycle. It is established now by the way of an

example that the natural candidate for the state variable in such

‘environments is the distribution of beliefs of the agents. The

exposition here is a modified version of Townsend [1978].

Returning to the partial equilibrium structure of Section 2, it
will be convenient to take the set of firms as the unit intefval.-
Each firm i €[0,1] maximizes expected profits at time t by choice
of output Qypo yielding best decision Ge = a Eit(Pt)? a linear
function of the price expected by firm i. These decisions in

conjunction with inverse market demand at time t, gt(et’Qt) =0+ ¢, ~-Q

t t

yield the price at time t. Here industry output is Qt = Iéqt(i)du(i).
(See footnote 4.) Also, the {et}:=1 are independently and identically
distributed with €.~ N[O,var(e)]. It is assumed that parameter 8 1is
unknown initially and viewed by all firms as drawn from a normal
distribution with mean E(6) and variance var(®). The price Pt is
observed at time t. Industry output Qt and the realization of

€. are unobserved.
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At the beginning of the first period, each firm of a set of
informed firms I, fraction pI of the set of all firms, observe a
random variable u where u= 06+ v, v ~ N[O,var(v)]. The distribution
of v 1is known by everyonme. The observation u conveys to informed
firms information about 6. In particular after observing u informed
firms view 6 as distributed normally with mean EIt(e) and variance

varIt(e), t = 1, where

var(8)
E;1(8) = E(8) + [u - E(9)]
: var(8)+var(v)
[var(8)]?
varIl(e) = var(8) - .
var(8)+var(v)

None of those in thé set of uninformed firms U, fraction pU of
the set of all firms, observes u. Hence initially uninformed firms
view € as distributed normally with mean EUt(e) and variance

varUt(B), t = 1, where
Eul(e) = E(8) and varUl(G)'= var(8) .

Now from the point of view of informed firms, EIl(e) is
known.' Of course © is unknown. Uninformed firms, however, do not
observe u and hence EIl(e) is not known. But from their point of
view, given the above updating formulasi EIt(e) can be viewed as an

unknown parameter Mo t = 1, which is jointly normally distributed

0
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with the unknown parameter 6, i.e., [e,nt] is distributed normally
with mean [EUt(e)"EUt(ﬂt)] and variance-covariance matrix ZUt(G,nt), t =1,

where [E.Ul(e), Eul(ﬂl)] = [E(e)’ E(e)]’

var(9) C var(8)

(0, =
L1 1 C var(8) cz[var(e) + var(v)]

given C = var(8)/[var(8) + var(v)] . i

Motivated by this discussion it may be guessed that the state
variable of this model are the beliefé of informed aﬁd uninformed
firms. In particular let the state variables at time ¢t bg
specified by s, = [nt, varIt(e), EUt(e), EUt(nt), ZUt(e,nt)] where
= EIt(e)' One may guess from the linearity that the Nash
equilibrium decision rule of each firm j, specifying output as a

function of the state variables known to firm i, is a stationmary

(linear) function of mean beliefs alone. That is qjt = 6U[EUt(9),

EUt(ﬂt)], j€u, and qjt = 5I[E1t(e)', EUt(B), EUt(‘n't)] JEI. It is

understood here that at any time ¢t informed firms know all the
state ﬁariables and uninformed firms do not know M- Moreover it
may be guessed that, given the Nash equilibrium in decision rules
each period, the state variables st evolve in gccordance with a
stationary Markov process. Finally, as information variables, the

state variable s should be expressible, in equilibrium, as a

t+1

deterministic, time invariant function of the state variables s, and

. = . 11 the
the obsgrvable Pt’ i.e., Setl g(st,Pt) Of course a se

conjectures turn out to be correct, as is now shown.
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First postulate that Nash equilibrium decision rules at time

t are of the form
* P
(8.1) Qe = @y By () + o, By (m) , jEU
%*
(8.2) Uyp = BoBrp(8) + ByE; (&) + BE, (M), JETI.
If this is so, then
* m—

Q, = PylayEy (8) + B ()] + po [B B, (8)

+ By (0) + BBy ()]

. Y * *
Given that Pt(st,Qt) = 0 + € - Qt , 1t follows that each uninformed

trader j has maximizing decision
(8.3) 1y, = alE;, () - pylagEy (8) + @By (m,)]

= PplBoEye (M) + BiE; (8) + BB, (m)]]

and each informed trader j has maximizing decision
(8.4) Uy = 2B (®) - pylanBy (8) + aE , (7)]

- PrlBoEL(®) + BB, (8) + BE, (m)1} .

it
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(Note again that m, = EIt(e) is unknown by uninformed firms.)
Equations (8.1)-(8.4) can be made consistent by appropriate choice
of the parameters dl’a2’50351’ and BZ. Hence there exists a Nash
equilibrium at time t with the desired properties.

It remains to consider the evolution of the state variables
and verify the conjectured properties. Note first that upon observihg

Pt informed firms view

e

xIt = Pt + pU [QIEUt(e) + aZEUt(nt)] + ?I[BOEIt(e)

! + BB, (8) + BB, (n)]

as a realization of © +'et. (It is assumed here that all state
variables are known by informed firms at time t.) It follows that

upon observing Pt;

N TR TSR

(8.5a) _EI,t+1(e) = EIt(e) + CO[XIt,- EIt(G)]
g where Co = varIt(B)/ [varIt(G) + var(e)]
and
[var,, ()17
(8.5b) varI’t+1(6) = varIt(B) -

varIt(e) + var(e)
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Thus in equilibrium EI t+1(9) and var 1(6) are time-invariant

I,t+

functions of the price Pt and the state variables at time t.
Moreover in equilibrium the price Pt is a time invariant function
of the state variables at time t and the random variable €p> and

hence E (8) and var (8) evolve in a time invariant stochastic

I,t+l

way. Uninformed firms view

I,t+1

Xye = Bp + Pyl By (8) + By ()] + o [B B, (8) + BoEye (M)l

It follows that for uninformed

B

as a realization of 6 + €. = PP,

firms

(8.62) EU,t+1(e)- = Eye(® +'Cl [Xge = Bye(® + PBoly e (m)]
(8.6D) “PrPofy, 41 (M) = “PBolye (M) + CoI%ye = By (®)

+ PPy ()]
(8:60) Ty (8. = YISy, (8,m )]

where C1 and C2 can be expressed in terms of the entries of

zUt(e,nt) and § maps EUt(e,nt) into ZU,t+1(e’ﬂt) .
Now at the beginning of period t+l1 uninformed firms care about

o = EIt(G). (See 8.1.) But from (8.5a)

t+1

= EI,t+1<e)’ not

1]
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(8.7) Tep1 =T Co{Pt + Pyl By (8) + oy (m)]
+p[Bgm, + BiE (8 + BB, (m)] - m ).

Therefore taking the expectation in (8.7) and substituting from (8.6b),
EU,t+1(nt+1> can be expressed as a time-invariant functiog of the price
and state variables of time t. It is also cléar from (8.6a), (8.6c)
and (8.7) that EU,t+1(e) and ZU,t+1(e’ﬂt+1) have the same property.
Hence all the state variables will be known by informed firms at time
t+l, and all the state variables evolve in a time invariant stochastic
way.

Finally it may be noted that this recursive Nash equilibrium
may also be viewed as a recursive competitive équilibrium in the state
variables 8, - Here a recursive competitive equilibrium is a price
function Pt = p(st,et), a law of motion for the state variables,
8ey1 = g(Pt,st), and decision rules 9y, = 5I[E1t(e), EUt(e),
EUt(nt)] for i€1, 9, = QU[EUt(G), EUt(nt)] for i€U such that (i)
decision rules are maximal given the price function p, and, (ii) given the
price function p, the law of motion g, and updating in accordance with
Bayes' rule, the state variables evolve by the law of motion g. For
having established above the existence of Nash equilibrium decis;on
rules at time t in [nt,EUt(e),EUt(nt)L it is élear that the price
Pt can be expressed as a linear function of these variables and €

in such a way as to have the self-fulfilling property. That is, given
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Pe = 8+ ey - pylogEp (B) + opE, ()] - P1[PoEL (8

+ BB (8) + BB (M)T

where the parameters al’az’BO’Bl’ and Bz are determined in the

Nash equilibrium, each firm will choose the previous Nash equilibrium
decision rule and Pt will be realized. Now suppose that each firm
believes that the state variables evolve in accordance with the
inference process outlined above, i.e., Sip1 = g(Pt,st). Then? by
the arguments given above, the state variables will evolve in fact in
this way. That is, given the equilibrium price function, the same as
in the Nash equilibrium, each informed firm forms posterior beliefs
on 6 in accordance with (8.5a) and (8.5b). Taking this updating

as given, each uninformed firm forms beliefs on 6 and "t+1’ as
before. As before, informed firms take this updating as given. Thus
the state variables at time t+1 are determined as before. Again

at time t+l there exists a self-fulfilling price function of these

variables, and so on.
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9. Concluding Remarks

We would like to reiterate in these concluding remarks the
success of a rigorous application of statistical decision theory to
economic modeling of markets subject to uncertainty. Statistical
decision theory suggests that the prior beliefs of agents concerning
as yet unobserved random shocks or unknown parameters are not arbitrary.
Rather agents are assumed to know the joint distribution of these
random shocks and observed random variables. Then priors are defined
by the conditional distributions in accordance with Bayes' rule. 1In
short one must be precise about the information structure of the model --
who observes what and when -; and this in turn gives the model some
content. The message we wish to convey in this essay is that the
restrictions on observations impiied by these models are consistent
with certain stylized facts.

In closing we would like to broach some questions concerning the
optimality of the equilibrium notions we have commended. Unfortunately
little can be said in general, though there has been some work on
particular structures. One can assert that with common information
sets and unde? miminal assumptions as specified by Debreu, competitive
equilibrium allocations are necessarily optimal. But even here one
must assert that the set of markets is sufficieatly rich, that is,
that the modeler has not exogenously limited the set of markets in a
binding way. Much less can be said of models with asymmetric information,
though there have been some recent advances. Harris and Townsend [1978]

have argued that with asymmetric information one can not define optimal
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allocations independent of a consideration of resource allocation
mechanisms. Employing the notion that sequenfial Nash equilibrium

in the space of decision rules, they establish that the equilibrium
final allocations of well defined mechanisms must necessarily satisfy
certain self-selection properties. They are then able to show, in
the context of a pure exchange economy with one informed and one
uninformed agent, that a particularly simple mechanism is optimal

(in their sense) even though the equilibrium final allocations are
not optimal relative to full information. Subsequent work generalizes
this result. Yet there remain ﬁany open questions concerning the

optimality market and non-market arrangements under uncertainty.

{1
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FOOTNOTES

1. The exposition here is motivated by DeGroot [1970].

2. Both here and below random variables may be viewed as having
realizations in n dimensional Euclidean space. This space
is not made explicit.

3., Alternatively one may view the reward to the agent as the
expected utility of consumption, in which case r is a composite

function.

F g
PR

i 4, With a continuum of firms the correct way to sum is by integration
so that Q = Ilq(j)du(j) where q:[0,1] = R 1is a Lebesgue )

.: integ;able fungtion and q(j) = qj is the output of firm j. Thus
57 ' Q = f q(j) dp(j) 1is independent of q(i) as firm i 1is of
Lebesguevmeasure zero. .

5. Here the fule § is assumed to be a measurable function of x.

6. The definition of a equilibrium must be modified of course to

allow for the continuum.

i 7. With a continuum (3.1) must be modified. 1In particular set n = 1

and integrate on the right side.

R
T~

8. Measurability of functions is assumed as required for expectations
to be Qell defined.
9. These conditions are the continuity of the return function r,
the correspondence ¢(s), and the probability Set1 belongs to any
measurable subset of the state space as a function of (dt’st)' If
in addition for any s, ®(s) is compact, then the supremum is obtained

and the max can be substituted. If the function r({d,s) is concave
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11.

12.
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and the set {(d,s): d€p(s)} is convex, then the value function
v is concave. All these results are rigorously established

in Lucas and Prescott [1971]. Without these continuity
properties, as Blackwell [1965] has shown, optimal or even
almost optimal (e-optimal) policies may not exist.

See Lucas [1976] for an exposition of this theory in statistical
decision theoretic terms.

This return functional depends upon the initial conditions
(SI,O""’sn,O) as well. Optimal §i given Ai does not, so
this dependency can be suppressed.

For dynamic games there are many Nash equilibria depending upon
how the decision space is defined (see Friedman [1977],

Kydland [1975]); thus the predicate sequential is needed.

The norm used is the standard one for symeetric matrices, namely,

the largest absolute value of the eigénvalues.

0
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