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Abstract

We propose a new estimator for the dynamic panel model, which solves the failure of strict exogeneity

by calculating the bias in the first-order conditions as a function of the autoregressive parameter and

solving the resulting equation. The estimator does well in a wide variety of situations where other

estimators do not perform well: stationary initial condition, predetermined but not strictly exogenous

regressors, and the presence of correlation between the error terms and the fixed effects. We also propose

a general method for including predetermined variables in fixed-effects panel regressions.
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1 Introduction

Our paper contributes to the literature on estimating linear dynamic panel data models with

lagged dependent variables. The idea that estimating the dynamic panel equation by OLS

will produce biased and inconsistent estimates has been explored in the literature since Nickell

(1981) and Anderson and Hsiao (1982), with Arellano and Bond (1991) proposing an optimal

GMM estimator. The Arellano-Bond estimator exhibits substantial downward bias when the

coeffi cient on the lagged dependent variable is close to unity, as then the dependent variable

follows a near random walk and lagged levels correlate poorly with lagged differences, thus

creating a weak instrument problem. A strand of the literature (Ahn and Schmidt (1995) ,

Blundell and Bond (1998), Hahn (1999)) solves this problem by imposing further restrictions

on the dependent variable process and exploiting the resulting moment conditions; however,

these restrictions may not hold in practice. Hahn, Hausman and Kuersteiner (2007) follow

Griliches and Hausman (1986) and take long differences of the data to improve the correlation

between levels and differences; however, this approach does not make use of all the data

available. Hence the estimation of dynamic panel models is still an open problem.

We propose a new estimator for the dynamic panel model, which is based on computing

the bias terms in the first-order condition for the autoregressive coeffi cient that result from

the failure of strict exogeneity. The main assumption that we must maintain for this approach

is the lack of serial correlation between the model errors, as in Arellano and Bond (1991).

We find a modified version of this first-order condition, one of whose roots is a consistent

estimator of the true autoregressive parameter. We can expand our estimator to accomodate

all predetermined variables, and we develop a general method for predetermined variables

in a panel regression context that is also based on the idea of correcting the first-order

conditions to make them unbiased estimators of zero at the true parameter values.

Simulations of the performance of our estimator against that of previous GMM-based

estimators suggests that our estimator nearly always produces unbiased estimates of the

coeffi cients on the lagged dependent variable and on the covariate (which often tends to

be of primary interest in applications) in finite samples. In particular, we present evidence



that, unlike many instrumental-variables based estimators, our technique delivers consistent

estimates regardless of the distribution of the initial values of the dependent variable. Our

estimator also produces estimates of both coeffi cients with variances that are somewhat

smaller than those of Arellano-Bond for multiple data generating processes, and tends to

produce estimates with variances that are close to the variances of Arellano-Bond in other

settings. Our estimator also matches the performance of existing estimators in terms of

allowing other regressors to be predetermined but not exogenous. We also compare our

estimator with the factor-based approach recently proposed by Bai (2013) and find that our

estimator can accommodate the case in which fixed effects and model errors are correlated

(also matching the performance of Arellano and Bond 1991), while the Bai (2013) estimator

delivers consistent estimates only on the assumption that the two are uncorrelated.1

The rest of the paper is organized as follows. Section 2 presents a simple version of our

dynamic panel estimator. Section 3 expands the estimator to accomodate weaker assump-

tions on the data. Section 4 presents simulation evidence on the properties of our estimator.

Section 5 concludes.

2 The Estimator

We consider the problem of estimating the model

yi,t = α0yi,t−1 + x′i,tβ0 + µi,0 + εi,t (1)

where yi,t is the dependent variable, xi,t is a vector of regressors, µi,0 is a fixed effect and

εi,t is the error term. There are N panel units i, with N thought of as large, and T time

units t, with T treated as a fixed parameter. We consider combinations of the following

assumptions:
1Hsiao, Pesaran and Tahmiscioglu (2002) also propose an estimator under additional assumptions on the covariates xi,t.

Our approach does not require any assumptions on xi,t.
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E (εi,tεj,t′) = 0 if i 6= j or t 6= t′ (NSC)

E (xi,tεj,t′) = 0 if i 6= j or t 6= t′ (GM)

E (xi,tεj,t′) = 0 if i 6= j or t′ ≥ t (PR)

Assumption NSC is the no-serial correlation assumption used by much of the literature

following Arellano and Bond (1991), and it will be maintained for this estimator.2 Assump-

tion GM states that the regressors xi,t are strictly exogenous, and assumption PR states that

they are predetermined, but not necessarily exogenous. We will see that assumption GM

can be weakened to assumption PR. We will also consider an additional assumption, which

we will not require to hold in our approach.

E
(
µi,0εi,t

)
= 0 (ECF)

Assumption (ECF) states that the errors are uncorrelated with the true fixed effects µi,0.

This assumption will be important later on, as the estimator of Bai (2013) implicitly relies

on it. 3

2.1 Notation

First, we define the empirical fixed effects as functions of estimators of α and β:

µ̂i (α, β) =
1

T

T∑
t=1

(
yi,t − αyi,t−1 − x′i,tβ

)
2 In principle, failure of assumption (NSC) can be seen as evidence for model misspecification and lack of inclusion of an

adequate number of lags of the dependent variable into the model. Our methodology can easily be extended in principle to
multiple lags of the dependent variable, with the key step becoming the solution of a system of polynomial equations in the
coeffi cients on the multiple lags.

3Strictly speaking, we make an additional assumption that the errors are uncorrelated with the initial values of the process,
yi,0.

E (yi,0εi,t) = 0 (ECI)

We can relax this assumption in our estimator, while failure of this assumption would be problematic for the Arellano-Bond
approach as yi,0 is typically part of the Arellano-Bond moment conditions. However, given the assumption (NSC) that errors
are not serially correlated, it is hard to envision a scenario in which assumption (ECI) fails while (NSC) holds. One such scenario
would be if the processes yi,t were started at very nonrandom values that had to do with the subsequent error processes εi,t
(which were, otherwise, serially correlated), but such a situation appears contrived since practitioners usually choose the starting
period t = 0 for reasons of data availability rather than because the data generating process changes at that date.
The assumption can be accommodated in our estimator by including an additional term E (ε̂i,t (β (α)) yi,0), which is easily

computable using the data, in the bias correction. It is, once again, a polynomial in α, so nothing changes qualitatively.
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Suppose that we know β0 and α0. Then,

µ̂i (α0, β0) = µi,0 +
1

T

T∑
t=1

εi,t = µi,0 +Op

(
1

T

)
under any combination of the assumptions above. Hence, the empirical fixed effects are

unbiased (but not consistent) for the true fixed effects µi,0.

Now, for any variable ri,t, define

r̂i,t = ri,t −
1

T

T∑
τ=1

ri,τ

the "demeaned" version of the variable ri,t.

In particular, we have

ŷi,t = α0ŷi,t−1 + x̂′i,tβ0 + ε̂i,t

2.2 Coeffi cients as Functions of Autoregressive Parameter

2.2.1 Case 1: Strictly Exogenous Covariates

In this subsection, we assume that assumption (GM) —that the covariates xi,t are strictly

exogenous, and hence uncorrelated with εi,τ in all periods τ , holds. Then, for a given value

of α, the best estimator of β0 in a least-squares sense is

β̂GM (α) =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,t (ŷi,t − αŷi,t−1)
)

the OLS estimate of the coeffi cient on the regressors. The estimator β̂GM (α0) is consistent

for β0 because assumption (GM) implies that

E (x̂i,tε̂i,t) = 0 (2)

(since xi,t is uncorrelated with the leads and lags of εi,t as well as with its current value)

so
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1

NT

N∑
i=1

T∑
t=1

x̂i,tε̂i,t → E (x̂i,tε̂i,t) = 0

and

β̂GM (α0) = β0 +

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1
1

NT

N∑
i=1

T∑
t=1

x̂i,tε̂i,t → β0

Hence, if the true value of the autoregressive parameter were known, the OLS estimate for

the coeffi cient on the regressors in equation (1) would be consistent for β0. The inconsistency

in this estimate is entirely a result of having an inconsistent estimate of α0.

2.2.2 Case 2: Predetermined Covariates

It is interesting to relax strict exogeneity (assumption (GM)) to the weaker assumption

that the covariates are uncorrelated with current and future errors, but may be correlated

with past errors (assumption (PR)). Assuming predetermined, instead of strictly exogenous,

regressors is natural in the dynamic panel data context, as the lagged dependent variable

itself can be thought of as a predetermined regressor. Many dynamic panel data estimators,

including those of Arellano and Bond (1991) can deliver consistent estimates of the autore-

gressive parameter and the coeffi cient vector in the presence of predetermined regressors.

If we relax assumption (GM) to assumption (PR), equation (2) is no longer true. However,

we can instead compute the following estimator for β0 given a value for α:

β̂PR (α) =

(
1

NT

N∑
i=1

T∑
t=1

ẑi,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

ẑi,t (ŷi,t − αŷi,t−1)
)

where

zi,t = xi,t +
T∑

τ=t+1

(
1

T − τ − 1

)
xi,τ , t < T

= xi,T , t = T

It is straightforward to show that

β̂PR (α0)→ β0
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because

E (xi,tεi,t′) = E (xi,tε̂i,t′) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ )

where ε̂i,t are the empirical residuals evaluated at α = α0 and β = β0. The complete

derivation of the form of the variable zi,t is presented in the Appendix. It is worth noting

that although β̂PR (α) is numerically identical to an instrumental variables estimator with ẑi,t

as an instrument for x̂i,t, the exclusion restriction plainly need not hold, since, for example

E (zi,T εi,1) = E (xi,T εi,1) need not be equal to zero. Once again, however, it is clear that

even if the regressors are predetermined but not exogenous, the fundamental source of the

inconsistency of their estimates lies with having an incorrect value for α.

2.3 Modified FOC for α

Consider the first-order condition for α derived from OLS. We have

Fα (α) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − αyi,t−1 − x′i,tβ (α)− µ̂i (α)

)
yi,t−1

where β (α) and µ̂i (α) = µ̂i (α, β (α)) have been definued in the previous subsection.

For consistent estimation, we need

Fα (α0) = 0

However,
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Fα (α0) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − α0yi,t−1 − x′i,tβ (α0)− µ̂i (α0)

)
yi,t−1

=
1

NT

N∑
i=1

T∑
t=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
yi,t−1 + op (1)

=
1

NT

N∑
i=1

T∑
t=2

(
εi,t −

1

T

T∑
τ=1

εi,τ

)(
αt−10 yi,0 +

t−1∑
τ=1

ατ−10 x′i,t−τβ0 +

(
t−1∑
τ=1

ατ−10

)
µi,0 +

t−1∑
τ=1

ατ−10 εi,t−τ

)
+ op (1)

→ 1

T

T∑
t=2

E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
t−1∑
τ=1

ατ−10 εi,t−τ

]
(I)

+
1

T

T∑
t=2

(
t−1∑
τ=1

ατ−10

)
E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
µi,0

]
(II)

+
1

T

T∑
t=2

E

((
εi,t −

1

T

T∑
τ=1

εi,τ

)
t−1∑
τ=1

ατ−10 x′i,t−τβ0

)
(III)

So the FOC evaluated at the true value of α = α0 approaches in probability a sum

of three terms, not necessarily zero.4 These terms are all O
(
1
T

)
and comprise the Nickell

bias of OLS in the presence of a lagged dependent variable (Nickell 1981). Term I will

be nonzero (specifically, negative) under any combination of assumptions discussed earlier

in this section. Term II will be zero iff the errors are uncorrelated with the fixed effects

(assumption (ECF) holds). Lastly, Term III will be zero under assumption (GM) —strict

exogeneity of the regressors —but not under assumption (PR), which allows regressors that

are predetermined, but not exogenous.

The term that is always nonzero is (I). It is straightforward to see that as long as the

errors are not serially correlated (assumption (NSC) holds)

(I) = − 1

T 2

T∑
t=2

t−1∑
τ=1

αt−1−τ0 E
(
ε2i,τ
)

Define the empirical residual as

ε̂i,t (α) = ŷi,t − αŷi,t−1 − x̂′i,tβ (α)

= ŷi,t − x̂′i,tβ̂0 − α
(
ŷi,t−1 − x̂′i,tβ̂1

)
4Recall that we are assuming E (yi,0εi,t) = 0 as an extension of Assumption (NSC). If this assumption is violated, we have

an additional term, whose properties are straightforward, and similar to the properties of the other three terms.
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where

β̂0 =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,tŷi,t

)

β̂1 =

(
1

NT

N∑
i=1

T∑
t=1

x̂i,tx̂
′
i,t

)−1(
1

NT

N∑
i=1

T∑
t=1

x̂i,tŷi,t−1

)

or the equivalent of these terms under assumption PR (predetermined regressors),

and note that

ε̂i,t (α0) = εi,t −
1

T

T∑
τ=1

εi,τ + op (1)

Then, we can estimate the quantities E
(
ε2i,τ
)
as a function of α as follows:

E
(
ε2i,t
)
← 1

N

N∑
i=1

(
T

T − 2

(
ε̂2i,t (α0)−

1

T − 1

1

T

T∑
t=1

ε̂2i,t (α0)

))
This approach is similar to the result of Stock and Watson (2008) for the estimation of

standard errors in a panel setting with fixed T .

In particular, rather than being a potentially more complicated function, term (I) is a

polynomial in α0 of order T . We note that

ε̂i,t (α) = r0i,t − αr1i,t

where r0i,t and r
1
i,t are residuals from regressions of ŷi,t on x̂i,t and ŷi,t−1 on x̂i,t, respec-

tively (instrumented by ẑi,t when we assume predetermined, rather than strictly exogenous,

regressors, or relax assumption GM to assumption PR).

Then, we define the following moments of residuals:
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R1t =
T

T − 2

1

N

N∑
i=1

[(
r1i,t
)2 − 1

T − 1

1

T

T∑
t=1

(
r1i,t
)2]

Rρ
t =

T

T − 2

1

N

N∑
i=1

[
r0i,tr

1
i,t −

1

T − 1

1

T

T∑
t=1

r0i,tr
1
i,t

]

R0t =
T

T − 2

1

N

N∑
i=1

[(
r0i,t
)2 − 1

T − 1

1

T

T∑
t=1

(
r0i,t
)2]

It follows straightforwardly that

P1 (α0) := − 1

T 2

(
T∑
t=2

(
T−t+1∑
τ=1

R1τ

)
αt0 − 2

T−1∑
t=1

(
T−t∑
τ=1

Rρ
τ

)
αt0 +

T−2∑
t=0

(
T−t−1∑
τ=1

R0τ

)
αt0

)
→ (I)

and we can rewrite the modified first order condition as

P1 (α0)− α0 + αOLS = 0

or

P̃1 (α0) = 0

The fact that the modified first-order condition in α takes the form of a polynomial makes

our estimator tractable, as it does not involve numerically solving an equation or maximizing

a criterion function, where the existence and uniqueness of roots, as well as the convergence

properties of most root-finding algorithms are not generally known. Instead, we obtain

exactly T roots, some imaginary and some real.

As N goes to infinity, P̃1 (α) should have at least one real root —at α0. However, in finite

samples, P̃1 (α) may not have any real roots. Therefore, we also consider values of α that

are local minima of (P1 (α))2, or, equivalently, solve P ′1 (α) = 0 subject to P ′′1 (α) > 0.

We then face the problem of finding which member of our solution set to select as our

estimate.5 One straightforward approach is to select the root that is closest to another,

consistent estimator of α0. We will present simulations using an infeasible version of the
5While we do not have a criterion function, as in maximum likelihood, to select the root that attains the global maximum,

we can exhaustively catalogue the candidate roots, while this is generally not possible to do with a likelihood function that is
not globally concave.
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estimator in which we select the root that is closest to the true value of the autoregressive

parameter used to construct the simulation, as well as using the root that is closest to

an estimator based on instrumenting the lagged dependent variable with lags of strictly

exogenous regressors.

3 Extensions of the Basic Estimator

As alluded to in the previous subsection, we can easily relax all of the assumptions under

which Terms II and III are nonzero by approximating them in ways that are similar to the

approximation of Term I. All of the approximations are polynomials in α, because consistent

estimators of the error variances, of moments of fixed effects and of interactions between

predetermined covariates and errors are linear or quadratic in α. We discuss the construction

of these approximations as polynomials of α below:

3.1 Term II

Term (II) is nonzero iff we have E
(
µi,0εi,t

)
6= 0 (failure of assumption (ECF), which states

that errors and fixed effects are uncorrelated). It can also be estimated straightforwardly,

since

1

N

N∑
i=1

ε̂i,t (α0) µ̂i,0 (α0) =
1

N

N∑
i=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)(
µi,0 +

1

T

T∑
t=1

εi,t

)
where we recall that

µ̂i,0 (α0) = µ̂i (α0, β (α0)) =
1

T

T∑
t=1

(
yi,t − α0yi,t−1 − x′i,tβ0

)
The second term can be further analyzed as

1

T

T∑
τ=1

1

N

N∑
i=1

(
εi,t −

1

T

T∑
t′=1

εi,t′

)
εi,τ →

1

T
E
(
ε2i,t
)
− 1

T 2

T∑
τ=1

E
(
ε2i,τ
)

and then the entire sum of second terms becomes
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1

N

N∑
i=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
µi,0 =

1

N

N∑
i=1

ε̂i,tµ̂i (α0)−
1

T

T∑
t=2

(
t−1∑
τ=1

ατ−10

)[
1

T
E
(
ε2i,t
)
− 1

T 2

T∑
τ=1

E
(
ε2i,τ
)]

where E
(
ε2i,t
)
is estimated as in term (I), so everything on the right hand-side is estimable.

We can consequently express term (II) as another polynomial in α of order T . First, we

define

R̃1t =
1

N

N∑
i=1

r1i,tr̃
1
i

R̃
1/2
t =

1

N

N∑
i=1

(1/2)
(
r0i,tr̃

1
i + r1i,tr̃

0
i

)
R̃0t =

1

N

N∑
i=1

r0i,tr̃
0
i

where r̃0i and r̃
1
i are the panel unit fixed effects from the regressions generating β̂0 and β̂1

respectively. Then, we define

R̄k
t =

1

N

N∑
i=1

((
r0i,t
)2−2k (

r1i,t
)2k − 1

T

T∑
τ=1

(
r0i,t
)2−2k (

r1i,t
)2k)

, k = 0, 1/2, 1

and

Zk
t = R̃k

t −
1

T
R̄k
t

It is then easy to see that

P2 (α0) :=
1

T

T∑
t=2

(
T∑
τ=t

Z1τ

)
αt0 − 2

1

T

T−1∑
t=1

(
T∑

τ=t+1

Zρ
τ

)
αt0 +

1

T

T−2∑
t=0

(
T∑

τ=t+2

Z0τ

)
αt0 → (II)

where P2 (α0) is a polynomial in α0 of order T .

3.2 Term III

Next, we may need to estimate term (III) if assumption (GM) —the strict exogeneity of the

regressors —does not hold, but assumption (PR) does (regressors are not strictly exogenous,

but are predetermined). Then
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(IV )→ − 1

T

T∑
t=2

(
1

T

t−1∑
τ ′=1

αt−τ
′−1

0

(
τ ′−1∑
τ=1

E
(
εi,τx

′
i,τ ′
)))

β0

and we can estimate E
(
εi,τx

′
i,τ ′

)
for τ ′ > τ by the formula

E (xi,tεi,t′) = E (xi,tε̂i,t′ (α0)) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (α0))

which is derived in Appendix I as part of the general estimator for predetermined variables.

If we define

fki,t = xi,tβ̂k

where k ∈ {0, 1} as before, and we define

X̃0
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

f 0i,tr
0
i,t′

X̃
1/2
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

(1/2)
(
f 0i,tr

1
i,t′ + f 1i,tr

0
i,t′
)

X̃1
t =

(
T

T − (t− 1)

)
1

N

N∑
i=1

t−1∑
t′=1

f 1i,tr
1
i,t′

we can easily show that

P3 (α0) := −
(

1

T 2

T−1∑
t=2

(
T−t+1∑
τ=2

X̃1
τ

)
αt0 − 2

1

T 2

T−2∑
t=1

(
T−t∑
τ=2

X̃1/2
τ

)
αt0 +

1

T 2

T−3∑
t=0

(
T−t−1∑
τ=2

X̃1
τ

)
αt0

)
→ (III)

another polynomial of order T .

4 Simulations

We run simulations to illustrate the properties of our new estimator. All of these simulations

involved the model

yi,t = α0yi,t−1 + β0xi,t + µi,0 + εi,t

with various assumptions. We use the version of our estimator that includes Terms I and

II, and we consider a version of our estimator that also includes term III when we investigate
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the estimates under predetermined variables. We typically compute two versions of our

estimator: an infeasible estimator, where we select the root that is closest to the true value

of α0 to be our estimate; and a feasible estimator, where we select the root that is closest

to the estimate of α0 provided by instrumenting the lagged dependent variable with lags of

xi,t
6. The second approach requires that E (xi,tεi,s) = 0 for all s, t, which is equivalent to

xi,t being strictly exogenous. Hence, in specifications involving predetermined regressors, we

select the root that is closest to the estimate of α0 provided by instrumenting with xi,0, the

only lag of xi,t that is uncorrelated with all the error terms.

4.1 Stationary Initial Condition

We assume that

µi˜N (0, 1) , iid

εi,t˜N (0, 1) , iid

xi,t˜N (µi, 1) , iid

We set β0 = 1 and allow α0 to take values from the set {0.25, 0.5, 0.75, 0.9, 0.95, 0.99}.

This set enables us to see the performance of our estimator for a wide variety of autoregressive

parameters,

Table I presents simulation results in which we draw yi,0 from the stationary distribution

of this process, specifically

yi,0˜N

(
1 + β0
1− α0

µi,
1 + β20
1− α20

)
iid

Each row of Table I presents summary statistics of the distribution of Monte Carlo es-

timates for the given method (in the panel) and the given value of α0 (in the row). The

first panel presents results that use the Arellano-Bond estimator. We see from the first row,

where α0 = 0.25, that the mean of the estimates in the simulations is 0.246 with a standard

deviation of 0.025. Hence, for α0 = 0.25, a low value of α0, Arellano-Bond performs well,
6Specifically, we construct our instruments as

zji,t = xi,t−j · (t ≥ j) , for j = 1, ..., T
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since the process is far from a random walk in yi,t and the change in the dependent variable

is correlated with its level. However, if we look at the row with α0 = 0.99, we see that the

mean of the estimates in the simulations is 0.58 with a standard deviation of 0.308, very far

from the actual value of α0 and with large variations across the data samples. It is clear

that as α0 becomes larger, Arellano-Bond delivers downward biased estimates with large

standard errors. For large values of α0, the bias in α affects the measurement of β, causing

it to be biased away from β0. For example, when α0 = 0.99, the mean of the estimates of β

is 0.795, given that β0 = 1.

Proceeding similarly, we see that the method of Blundell and Bond (1998) in the second

panel and the method of Bai (2013) in the fifth panel deliver consistent estimates of α0 with

fairly low MSE, for low as well as high values of α0. For example, when α0 = 0.99, the

mean of the Blundell-Bond estimates is 0.994 and the mean of the Bai estimates is 0.991.

The standard deviation of the Bai estimator is 0.023, while the standard deviation of the

Blundell-Bond estimator is a much smaller 0.002. In the third panel of the table, we use the

infeasible version of our estimator (in which the closest root to the true value is picked as the

estimator). First, we see that the resulting estimates are consistent for α0, with the mean of

the estimates for each value of α0 differing from the true value by no more than 0.005. The

standard deviations of the estimates are heterogeneous, and vary with α0. For low and high

values of α0 (α0 = 0.25, 0.5 and 0.99), the standard deviations produced by the infeasible

estimator are close to or below those of the Blundell-Bond estimator (for α0 = 0.25 and 0.5)

or the Bai estimator (α0 = 0.99). However, the standard deviations of the estimates for

α0 = 0.75, 0.9 or 0.95 are twice or three times as large as the standard deviations produced

by the Blundell and Bond estimator or the Bai estimator for these values of α0. This can be

entirely explained by the inclusion of Term II (which accounts for correlation between errors

and fixed effects, which is not present here), and if Term II were removed, the standard

deviations produced by the infeasible estimator would be virtually identical to those of the

Bai estimator. In any case, the standard deviations produced by the infeasible estimator

are considerably smaller than the standard deviations of the Arellano-Bond estimator. If

we select the closest root to the "simple IV" estimator, the simulation results are almost
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identical to the infeasible case. Hence, for data simulated from this stationary distribution,

our estimator yields consistent estimates unlike the Arellano-Bond estimator, and performs

comparably to the Bai (2013) estimator and the Blundell-Bond (1998) estimator in terms of

mean squared error.

4.2 Nonstationary Initial Condition

Table II presents simulation results in which we draw yi,0 from the nonstationary distribution

yi,0˜N (2µi, 4/3) iid

following Blundell and Bond (1998). Here, the Arellano-Bond estimator delivers consis-

tent estimates with low standard errors, as does the Bai (2013) estimator. The MSEs range

from 0.025 to 0.006 for the Arellano-Bond estimator (declining with α0) and from 0.012

to 0.004 for the Bai estimator (similarly). On the other hand, the Blundell-Bond (1998)

estimator performs poorly, generating upward-biased estimates (though with low standard

errors). For example, for α0 = 0.25, the mean of the Blundell-Bond estimates is 0.4 (with a

standard error of 0.012) and for α0 = 0.99, it is 1.086 (with a standard error of 0.002). The

infeasible version of our approach yields consistent estimates for all values of α0 (the mean

of the estimates is within 0.001 of the true α0) and has better MSE than does the Arellano-

Bond procedure (though slightly worse MSE than the Bai (2013) estimator, although the

differences are small enough to be simulation error). The feasible version (starting from the

"simple-IV" estimates) is identical to the infeasible version. It is also notable that, while

both the Arellano-Bond estimator and our estimator produce consistent estimates of the

covariate coeffi cient β, our estimator yields lower RMSE than does Arellano-Bond.

The virtue of our approach (which, up to this point, it shares with the Bai (2013) esti-

mator) is that it delivers consistent estimates of α0 and β0 regardless of whether the initial

condition of the dynamic process is stationary or nonstationary. We have seen in Table I

that Arellano-Bond is inconsistent with large MSE when the initial distribution is station-

ary, and we have seen here that Blundell-Bond is inconsistent with large MSE when it is

nonstationary. Our approach allows for consistent estimation without having to pre-test for
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the stationarity of the distribution, which introduces additional variance into the procedure.

4.3 Correlated Fixed Effects and Errors

While the estimator of Bai (2013) performs as well (or slightly better) than our estimator

in the two settings considered above, it relies on the assumption that the errors of the

dynamic process are uncorrelated with the fixed effects (assumption ECF in Section 1).

In this simulation, we consider data that does not satisfy this assumption. We use the

nonstationary distribution from the nonstationary simulation exercise, but also define the

fixed effect as

µi = µ̃i + εi,1

and

µ̃i˜N (0, 1) iid

while drawing

xi,t˜N (µ̃i, 1) , iid

yi,0˜N (2µ̃i, 4/3) , iid

to avoid making the regressors be predetermined. Here, we no longer consider the

Blundell-Bond method as we know that it does not work well when the initial distribution

is nonstationary. We present the simulation results in Table III. We see that Arellano-Bond

delivers consistent estimates with low RMSE that are very similar to the ones in Table II.

On the other hand, the Bai (2013) estimator delivers estimates that are biased downwards,

with the bias being particularly severe for low values of α0. For example, for α0 = 0.25,

the mean of the Bai (2013) estimates is 0.11 with a standard error of 0.012. If we do not

include Term (II) in our estimator (but include only Term I), our estimator yields estimates

that are also biased downwards in a very similar way to the Bai (2013) estimator. However,

once we include the correction (Term II), our estimates become consistent, with somewhat

smaller variance than the Arellano-Bond estimates (for example, if α0 = 0.25, the MSE
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of our estimator that uses the "simple IV" estimate to select the root is 0.015, while the

MSE of the Arellano-Bond estimator is 0.025). Therefore, our estimator delivers consistent

estimates with low MSE in cases where the Bai (2013) estimator is biased and inconsistent.

We can also see that the standard deviations of the Bai estimator and of the version of our

estimator that includes only term (I) are nearly identical, suggesting that including Term II

when assumption (ECF) holds, and the errors are uncorrelated with the fixed effects (such

as in Tables (I) and (II)) increases the variance of our estimator.7

4.4 Predetermined Regressors

Lastly, we investigate how our approach performs when the regressors are predetermined, but

not exogenous. The fourth table also starts with the nonstationary distribution simulation,

but makes xi,t be predetermined. Specifically, we define

x̃i,t˜N (µi, 1) , iid

and

xi,t = x̃i,t + εi,t−1

The Bai (2013) estimator is equipped to handle only regressors that are autoregressive,

which is not the case in this simulation, but the Arellano-Bond estimator can accommo-

date arbitrary predetermined regressors if the econometrician appropriately specifies them.

Therefore, we consider how well our estimator performs relative to the Arellano-Bond esti-

mator. Since xi,t is predetermined and x̃i,t is unobservable, we base our feasible estimator

on a modified version of the the "simple IV" estimator, which just includes the initial val-

ues of xi,t interacted with year fixed effects as instruments for yi,t−1. It is clear that these

instruments satisfy the exclusion restriction, since xi,0 is uncorrelated with any εi,t for t ≥ 1.

We present the simulation results in Table IV. The version of our estimator (feasible or

infeasible) that includes Term III deliver consistent estimates with acceptably low RMSE,
7An extension of our estimator could involve pre-testing for whether assumption (ECF) holds or fails, and including Term

(II) in our estimator only when the test fails to reject the null that assumption (ECF) holds.
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although for middling values of α0, such as α0 = 0.75, the RMSE is 0.069 for the infeasible

estimator and 0.078 for the feasible one. The Arellano-Bond estimator also delivers consistent

estimates with lower MSE than does our estimator. On the other hand, the version of our

estimator that includes only Terms I and II delivers estimates that are downward biased,

especially for low values of α0. In particular, when α0 = 0.25, the mean of the estimates is

0.15. The general predetermined correction described in the Appendix works very well in

obtaining a consistent estimate of β, with the mean of the estimates being essentially at the

true value of 1; the uncorrected estimator yields estimates of β below 0.91 on average.

5 Conclusion

A persistent problem in dynamic panel data analysis is finding an estimator that performs

well in many different data settings under minimal assumptions. For example, the Arellano-

Bond (1991) estimator tends to perform poorly when the underlying process comes from a

stationary distribution and the dependent variable follows a near random walk. Attempts to

improve the Arellano-Bond estimator, such as Blundell and Bond (1991), tend to perform

poorly in situations when Arellano-Bond performs well.

We propose a new estimator for linear dynamic panel data models with serially uncor-

related errors that is less sensitive to the distribution of initial values than are the popular

Arellano and Bond (1991) and Blundell and Bond (1998) estimators, and that does not rely

on any additional assumptions about the canonical model. The approach behind this esti-

mator is not to use linear moment restrictions to find instruments for the lagged dependent

variable, but to compute the bias in the first-order condition for the autoregressive parame-

ter α, and use it to obtain a modified first-order condition that is an unbiased estimator of

zero when α = α0. Our estimator performs well in simulations regardless of the initial dis-

tribution of the outcome variable. We also compare our estimator with the recent estimator

by Bai (2013), which also delivers consistent estimates in the fixed-T setting regardless of

initial conditions. We find that our estimator performs just about as well as the Bai (2013)

estimator in terms of MSE when model errors and panel unit fixed effects are uncorrelated.

However, when they are correlated, our estimator continues to deliver consistent estimates
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with low MSE, while the Bai estimator is biased and inconsistent.

While our methodology is presented for the case with only one lag of the dependent

variable in the true model, it is straightforward to extend our approach to generate a system

of polynomial equations that would be a consistent estimator of zero at the true values of

the lag coeffi cients. We leave this extension and its implementation to future research.
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6 Tables

Table I (I)

Simulations of α and β: Stationary Initial Condition
T=5, N=1000, Distribution of y0 is stationary. There are 1000 replications.

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .247 .021 .021 .247 .057 .998 .019 .019 .998 .050
0.50 .498 .032 .032 .498 .083 .998 .023 .023 .997 .060
0.75 .739 .051 .052 .741 .128 .994 .028 .029 .995 .072
0.90 .833 .126 .143 .833 .316 .968 .064 .071 .968 .161
0.95 .765 .210 .280 .783 .518 .909 .106 .139 .917 .259
0.99 .580 .308 .512 .617 .784 .795 .155 .256 .814 .395

Blundell-Bond (1998)
0.25 .254 .020 .020 .252 .049 1.003 .019 .019 1.003 .048
0.50 .506 .023 .024 .506 .058 1.002 .021 .021 1.002 .055
0.75 .758 .024 .025 .761 .062 1.002 .019 .019 1.002 .048
0.90 .918 .018 .026 .919 .040 1.005 .018 .019 1.005 .047
0.95 .968 .011 .021 .968 .027 1.005 .017 .018 1.005 .045
0.99 .994 .002 .005 .994 .005 1.001 .017 .017 1.001 .044

Hausman-Pinkovskiy (2017) Infeasible
0.25 .250 .014 .014 .251 .036 .999 .015 .015 .998 .038
0.50 .499 .017 .017 .501 .043 .999 .016 .016 1.000 .043
0.75 .750 .023 .023 .751 .058 1.000 .018 .018 1.000 .046
0.90 .894 .041 .041 .902 .087 .997 .024 .024 .998 .059
0.95 .955 .037 .037 .960 .086 1.002 .023 .023 1.003 .057
0.99 .994 .010 .011 .994 .017 1.001 .016 .016 1.002 .040

Hausman-Pinkovskiy (2017) Simple IV
0.25 .250 .014 .014 .251 .036 .999 .015 .015 .998 .038
0.50 .499 .017 .017 .501 .043 .999 .016 .016 1.000 .043
0.75 .750 .023 .023 .751 .058 1.000 .018 .018 1.000 .046
0.90 .900 .044 .044 .904 .082 .999 .024 .024 1.000 .057
0.95 .957 .038 .039 .961 .085 1.003 .024 .024 1.004 .058
0.99 .993 .013 .013 .994 .017 1.000 .016 .016 1.001 .040

Bai (2013)
0.25 .249 .013 .013 .248 .033 .999 .015 .016 .998 .040
0.50 .500 .015 .015 .500 .038 .999 .017 .017 .999 .042
0.75 .751 .016 .016 .750 .041 1.000 .017 .017 .999 .044
0.90 .901 .019 .019 .900 .051 1.000 .017 .017 1.000 .045
0.95 .950 .021 .021 .950 .056 1.000 .018 .018 1.000 .049
0.99 .991 .023 .023 .990 .061 1.001 .020 .020 1.001 .051

This table presents simulation results for the model described in Section 4.1. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.

20



Table II (II)

Simulations of α and β: Nonstationary Initial Condition
T=5, N=1000. Distribution of y0 is N (2µi, 4/3). There are 1000 replications.

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .246 .025 .025 .247 .067 .998 .020 .020 .998 .052
0.50 .495 .035 .035 .497 .091 .997 .025 .025 .997 .064
0.75 .749 .012 .012 .749 .033 .999 .019 .019 .998 .050
0.90 .899 .007 .007 .899 .020 1.000 .018 .018 .999 .047
0.95 .949 .006 .006 .949 .017 .999 .018 .018 1.000 .049
0.99 .989 .006 .006 .989 .015 1.000 .018 .018 1.000 .047

Blundell-Bond (1998)
0.25 .402 .012 .152 .402 .032 1.083 .018 .085 1.084 .046
0.50 .683 .007 .183 .683 .018 1.094 .019 .096 1.095 .051
0.75 .894 .004 .144 .894 .010 1.120 .017 .121 1.120 .044
0.90 1.014 .003 .114 1.014 .009 1.155 .018 .156 1.155 .046
0.95 1.054 .003 .104 1.054 .008 1.169 .018 .170 1.169 .045
0.99 1.086 .002 .096 1.086 .007 1.181 .017 .182 1.181 .044

Hausman-Pinkovskiy (2017) Infeasible
0.25 .250 .014 .014 .251 .037 .999 .015 .015 .998 .038
0.50 .499 .014 .014 .500 .037 .999 .016 .016 .999 .041
0.75 .750 .010 .010 .750 .025 1.000 .016 .016 1.001 .043
0.90 .900 .006 .006 .900 .017 .999 .016 .016 .999 .040
0.95 .950 .005 .005 .950 .014 1.000 .016 .016 1.000 .042
0.99 .990 .005 .005 .989 .012 .999 .015 .015 .999 .039

Hausman-Pinkovskiy (2017) Simple IV
0.25 .250 .014 .014 .251 .037 .999 .015 .015 .998 .038
0.50 .499 .014 .014 .500 .037 .999 .016 .016 .999 .041
0.75 .750 .010 .010 .750 .025 1.000 .016 .016 1.001 .043
0.90 .900 .006 .006 .900 .017 .999 .016 .016 .999 .040
0.95 .950 .005 .005 .950 .014 1.000 .016 .016 1.000 .042
0.99 .990 .005 .005 .989 .012 .999 .015 .015 .999 .039

Bai (2013)
0.25 .249 .012 .012 .249 .034 .999 .015 .015 .998 .039
0.50 .500 .012 .012 .500 .032 .999 .016 .016 .999 .043
0.75 .750 .008 .008 .750 .021 1.000 .016 .016 .999 .041
0.90 .900 .006 .006 .900 .015 1.000 .015 .015 1.000 .041
0.95 .949 .005 .005 .949 .013 1.000 .016 .016 1.000 .041
0.99 .989 .004 .004 .989 .013 1.000 .016 .016 1.000 .042

This table presents simulation results for the model described in Section 4.2. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.

21



Table III (III)

Simulations of α and β: Correlation Between Errors and Fixed Effects
T=5, N=1000. NS distribution is N (2µ̃i, 4/3). Fixed effect is µi = µ̃i + εi,1. There are 1000 reps

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .247 .025 .025 .246 .064 .998 .020 .020 .998 .052
0.50 .498 .034 .034 .497 .089 .998 .024 .024 .998 .064
0.75 .749 .012 .012 .748 .032 .999 .018 .018 .998 .048
0.90 .899 .007 .007 .899 .018 .999 .018 .018 .999 .046
0.95 .950 .006 .006 .949 .015 .999 .018 .018 .999 .047
0.99 .990 .005 .005 .990 .013 1.000 .018 .018 1.000 .047

Hausman-Pinkovskiy (2017): No Correction, Infeasible
0.25 .114 .010 .135 .114 .026 .966 .015 .036 .966 .039
0.50 .366 .009 .133 .366 .026 .959 .014 .043 .959 .037
0.75 .667 .006 .082 .667 .016 .967 .015 .036 .967 .039
0.90 .848 .005 .051 .848 .012 .976 .015 .027 .976 .038
0.95 .907 .004 .043 .907 .012 .979 .015 .025 .979 .040
0.99 .952 .004 .038 .952 .011 .981 .014 .023 .980 .037

Hausman-Pinkovskiy (2017): Correlation Correction, Infeasible
0.25 .249 .015 .015 .248 .038 .999 .016 .016 .999 .042
0.50 .500 .018 .018 .500 .046 1.000 .015 .016 1.001 .040
0.75 .749 .011 .011 .749 .028 .999 .016 .016 1.000 .042
0.90 .900 .006 .006 .899 .017 .999 .015 .015 .999 .039
0.95 .950 .005 .005 .950 .015 1.000 .016 .016 1.000 .042
0.99 .990 .005 .005 .990 .013 1.000 .015 .015 .999 .038

Hausman-Pinkovskiy (2017): Correlation Correction, Simple IV
0.25 .249 .015 .015 .248 .038 .999 .016 .016 .999 .042
0.50 .500 .018 .018 .500 .046 1.000 .015 .016 1.001 .040
0.75 .749 .011 .011 .749 .028 .999 .016 .016 1.000 .042
0.90 .900 .006 .006 .899 .017 .999 .015 .015 .999 .039
0.95 .950 .005 .005 .950 .015 1.000 .016 .016 1.000 .042
0.99 .990 .005 .005 .990 .013 1.000 .015 .015 .999 .038

Bai (2013)
0.25 .111 .012 .138 .111 .032 .965 .015 .037 .965 .040
0.50 .365 .010 .135 .365 .026 .958 .015 .044 .958 .037
0.75 .672 .007 .077 .672 .019 .969 .014 .033 .969 .036
0.90 .855 .005 .044 .855 .015 .979 .015 .025 .980 .039
0.95 .913 .005 .036 .913 .013 .982 .015 .023 .982 .040
0.99 .959 .004 .031 .959 .012 .985 .015 .021 .985 .040

This table presents simulation results for the model described in Section 4.3. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.
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Table IV (IV)

Simulations of α and β: Predetermined Variables
T=5, N=1000. y0 distribution is N (2µi, 4/3). Covariate is xi,t = x̃i,t + εi,t−1. There are 1000 reps.

α0 Mean, α SD, α RMSE, α Median, α IDR, α Mean, β SD, β RMSE, β Median, β IDR, β
Arellano-Bond (1991)

0.25 .244 .017 .018 .244 .043 .996 .017 .017 .996 .044
0.50 .493 .022 .023 .492 .060 .994 .023 .024 .995 .062
0.75 .746 .012 .013 .746 .032 .995 .021 .021 .996 .054
0.90 .898 .007 .007 .898 .019 .997 .017 .018 .996 .044
0.95 .949 .006 .006 .948 .016 .997 .018 .018 .997 .046
0.99 .989 .005 .006 .989 .015 .997 .017 .017 .997 .044

Hausman-Pinkovskiy (2017): No Correction, Infeasible
0.25 .148 .027 .104 .156 .081 .907 .012 .093 .907 .031
0.50 .334 .008 .166 .333 .022 .905 .011 .095 .906 .030
0.75 .630 .007 .119 .630 .017 .886 .011 .114 .886 .029
0.90 .818 .005 .082 .818 .014 .880 .011 .120 .880 .028
0.95 .879 .005 .070 .879 .013 .879 .011 .121 .879 .029
0.99 .927 .004 .063 .927 .012 .878 .010 .122 .877 .026

Hausman-Pinkovskiy (2017): Predetermined Correction, Infeasible
0.25 .249 .024 .024 .247 .065 .999 .023 .023 .999 .058
0.50 .490 .069 .069 .499 .173 .992 .066 .067 .999 .173
0.75 .747 .018 .018 .748 .046 .997 .030 .030 .997 .077
0.90 .898 .009 .009 .899 .024 .997 .024 .024 .997 .061
0.95 .949 .010 .010 .948 .026 .998 .031 .031 .996 .078
0.99 .986 .010 .010 .986 .025 .989 .036 .038 .989 .089

Hausman-Pinkovskiy (2017): Predetermined Correction, Simple IV
0.25 .249 .024 .024 .247 .065 .999 .023 .023 .999 .058
0.50 .510 .078 .079 .514 .193 1.010 .074 .074 1.016 .189
0.75 .747 .018 .018 .748 .046 .997 .030 .030 .997 .077
0.90 .898 .009 .009 .899 .024 .997 .024 .024 .997 .061
0.95 .949 .010 .010 .948 .026 .998 .031 .031 .996 .078
0.99 .988 .012 .012 .989 .033 .995 .039 .040 .998 .102

This table presents simulation results for the model described in Section 4.4. IDR refers to the difference between the 90th

and the 10th percentiles of the coeffi cient in question.
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7 Addendum: Proof of method of calculating β for general pre-
determined variables in fixed effect setting

Suppose that we seek to estimate the model

yi,t = x′i,tβ0 + µi + εi,t

Suppose errors are uncorrelated with each other (but heteroskedastic) but regressors are predetermined.
So we assume that

E (xi,tεi,τ ) = 0, τ ≥ t

but

E (xi,tεi,τ ) 6= 0, τ < t

The objective function is

min
β

1

NT

N∑
i=1

T∑
t=1

(
yi,t − x′i,tβ − µi

)2

Fµi (β) = −2 1
T

T∑
t=1

(
yi,t − x′i,tβ − µi

)
= 0

⇒ µ∗i (β) =
1

T

T∑
t=1t

(
yi,t − x′i,tβ

)

Fβ (β) = −2 1

NT

N∑
i=1

T∑
t=1

xi,t
(
yi,t − x′i,tβ − µ∗i

)
Fβ (β0) = −2 1

NT

N∑
i=1

T∑
t=1

(
εi,t −

1

T

T∑
τ=1

εi,τ

)
xi,t

→ −2 1
T

T∑
t=1

E

[(
εi,t −

1

T

T∑
τ=1

εi,τ

)
xi,t

]

= 2
1

T 2

T∑
t=2

t−1∑
τ=1

E (xi,tεi,τ ) 6= 0

Now, let ŷi,t and x̂i,t be de-meaned yi,t and xi,t by panel unit.

ŷi,t = yi,t −
1

T

T∑
τ=1

yi,τ

and

ε̂i,t (β) = ŷi,t − x̂′i,tβ

the detrended residuals.
Then,

ε̂i,t (β0) = εi,t −
1

T

T∑
τ=1

εi,τ
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and, for any t > 1,

E (xi,tε̂i,t′ (β0)) =
1

N

N∑
i=1

xi,t
(
ŷi,t′ − x̂′i,t′β0

)
= E

(
xi,t

(
εi,t′ −

1

T

T∑
τ=1

εi,τ

))
= E (xi,tεi,t′)−

1

T

t−1∑
τ=1

E (xi,tεi,τ )

so

1

t− 1

t−1∑
t′=1

E (xi,tε̂i,t′ (β0)) =
1

t− 1

t−1∑
t′=1

E (xi,tεi,t′)−
1

T

t−1∑
τ=1

E (xi,tεi,τ )

=
1

t− 1

(
1− t− 1

T

) t−1∑
τ=1

E (xi,tεi,τ )

Then, for any t > 1,

t−1∑
τ=1

E (xi,tεi,τ ) =
T

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (β0))

and for t′ < t

E (xi,tεi,t′) = E (xi,tε̂i,t′ (β0)) +
1

T − (t− 1)

t−1∑
τ=1

E (xi,tε̂i,τ (β0))

Then, the limit of the FOC is

Fβ (β0)→ 2
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
E (xi,τ ε̂i,t (β0))

Hence, we look for a β̂ satisfying

Fβ

(
β̂
)
= −2 1

NT

N∑
i=1

T∑
t=1

xi,t

(
ŷi,t − x̂′i,tβ̂

)
= 2

1

N

N∑
i=1

1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ

(
ŷi,t − x̂′i,tβ̂

)
or

1

N

N∑
i=1

[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ ŷi,t +

1

T

T∑
t=1

xi,tŷi,t −
[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ x̂

′
i,t +

1

T

T∑
t=1

xi,tx̂
′
i,t

]
β̂

]
= 0

Let

zi,t = xi,t +

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ , t < T

= xi,T , t = T

Define the matrices
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WXX =
1

N

N∑
i=1

[
1

T

T−1∑
t=1

T∑
τ=t+1

(
1

T − (τ − 1)

)
xi,τ x̂

′
i,t +

1

T

T∑
t=1

xi,tx̂
′
i,t

]

=
1

NT

N∑
i=1

T∑
t=1

zi,tx̂
′
i,t =

1

NT

N∑
i=1

T∑
t=1

ẑi,tx̂
′
i,t

WXY =
1

NT

N∑
i=1

T∑
t=1

zi,tŷi,t =
1

NT

N∑
i=1

T∑
t=1

ẑi,tŷi,t

(the last equalities following mechanically because of idempotence of residual maker matrix)
Then,

β̂ =W−1XXWXY

So, β0 can be estimated by IV with ẑi,t as the "instrument".
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