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ABSTRACT. –  We demonstrate analytically that for the widely used 
simultaneous equation model with one jointly endogenous variable and 
valid instruments, 2SLS has smaller MSE error, up to second order, than 
OLS unless the R2, or the F statistic of the reduced form equation is 
extremely low. We also consider the relative bias of estimators when the 
instruments are invalid, i.e. the instruments are correlated with the stochastic 
disturbance. Here, both 2SLS and OLS are biased in finite samples and 
inconsistent. We investigate conditions under which the approximate 
finite sample bias or the MSE of 2SLS is smaller than the corresponding 
statistics for the OLS estimator. We again find that 2SLS does better than 
OLS under a wide range of conditions, which we characterize as functions 
of observable statistics and one unobservable statistic.

Estimation avec instruments valides et invalides

RÉSUMÉ. – Nous démontrons analytiquement que, pour le modèle 
largement utilisé à équations simultanées avec une variable conjointement 
endogène et des instruments valides, les DMC ont une plus petite 
erreur quadratique (MSE), jusqu’au second ordre, que les MCO à moins 
que la statistique de R2 ou de Fischer de l’équation en forme réduite 
soit extrêmement faible. Nous examinons aussi le comportement des 
estimateurs lorsque les instruments ne sont pas valides, c’est-à-dire 
lorsqu’ils sont corrélés avec la perturbation stochastique. Dans ce cas, 
à la fois les DMC et les MCO sont biaisés et non convergents à distance 
finie. Nous recherchons les conditions pour lesquelles le biais à distance 
finie ou l’erreur quadratique moyenne est plus faible pour les DMC que 
pour les MCO. Nous trouvons encore que les DMC se comportent mieux 
que les MCO sous un large ensemble de conditions, caractérisées par 
des fonctions des statistiques observables et d’une statistique non 
observable. 
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‡ J. Hausman: Massachusetts Institute of Technology (MIT).
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Introduction

While 2SLS is the most widely used estimator for simultaneous equation mod-
els, OLS may do better in finite samples. Econometricians have recognized this 
possibility, and many Monte Carlo studies were undertaken in the early years of 
econometrics to attempt to determine condition when OLS might do better than 
2SLS. Here we demonstrate analytically that for the widely used simultaneous 
equation model with one jointly endogenous variable and valid instruments, 2SLS 
has smaller MSE error, up to second order, than OLS unless the R2, or the F statistic 
of the reduced form equation is extremely low.

We then consider the relative bias of estimators when the instruments are invalid, 
i.e. the instruments are correlated with the stochastic disturbance. Here, both 2SLS 
and OLS are biased in finite samples and inconsistent. We investigate conditions 
under which the approximate finite sample bias or the MSE of 2SLS is smaller than 
the corresponding statistics for the OLS estimator. We again find that 2SLS does 
better than OLS under a wide range of conditions, which we characterize as func-
tions of observable statistics and one unobservable statistic.

We then present a method of sensitivity analysis, which calculates the maximal 
asymptotic bias of 2SLS under small violations of the exclusion restrictions. For 
a given correlation between invalid instruments and the error term, we derive the 
maximal asymptotic bias. We demonstrate how the maximal asymptotic bias can 
be estimated in practice.

Next, we turn to inference. In the “weak instruments” situation the bias in the 
2SLS estimator creates a problem, since it is biased towards the OLS estimator, 
which is also biased. The other problem that arises is that the estimated standard 
errors of the 2SLS estimator are often much too small to signal the problem of 
imprecise estimates. Here we derive the bias in the estimated standard errors for the 
first time, which turns out to cause the problem. This derivation also has implica-
tions for the test of over-identifying restrictions.

We do not survey the weak instruments literature. For recent surveys see Stock 
et. al. [2002] and Hahn and Hausman [2003].

1  Model specification

We begin with the model specification with one right hand side (RHS) jointly 
endogenous variable so that the left hand side (LHS) variable depends only on 
the single jointly endogenous RHS variable. This model specification accounts for 
other RHS strictly exogenous variables, which have been “partialled out” of the 
specification. We will assume that1

1	 Without loss of generality we normalize the data such that y2 has zero mean.
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(1.1)	

(1.2)	

where dim (π2) = K. Thus, the matrix z is the matrix of all strictly exogenous vari-
ables, and equation (1.1) is the reduced form equation for y2 with coefficient vector 
π2. We also assume homoscedasticity:

(1.3)	

We use the following notation:

	

We initially assume the presence of valid instruments, E[z’ε/n] = 0 and π2 ≠ 0.
Throughout this paper, we assume that  is fixed as in Bekker [1994]. 
We also assume:

	C ondition 1: K → 0 as n → ∞ such that  for some µ ≠ 0.

Bekker [1994] introduced an alternative asymptotics, where K = O(n). Bekker 
asymptotics are a simpler version of a higher (third) order asymptotic approxi-
mation2. The approximation  adopted here is a simpler version of a 

second order asymptotics, which will highlight the role of the second order bias in 
various instrumental variable estimators.

2  Estimation with valid instruments

In this section, we calculate the second order properties of 2SLS and OLS, and 
demonstrate analytically that 2SLS has smaller bias and mean squared error (MSE), 
up to second order, than OLS unless the R2, or the F statistic of the reduced form 
equation is extremely low.

2	 See, e.g., Hahn and Hausman [2002a].
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We first characterize asymptotic properties of 2SLS under Condition 1. As a spe-
cial case of Theorem 3 in Section 3, we obtain that:

	T heorem 1:  where V2SLS = σεε/Θ.

Note that Theorem 1 predicts that the asymptotic variance of  is 
equal to the usual 2SLS first order asymptotic variance. Theorem 1 also predicts 
that the approximate bias of 2SLS:

(2.1)	

where R2 ≡ Θ/var(y2) is the theoretical value from the second (reduced form) equa-
tion3. As a consequence, we obtain the approximate mean squared error (MSE) of 
2SLS:

(2.2)	

Note that both terms in equation (2.2) approach zero as  increases with 
increasing sample size. The first term, bias squared also approach zero more 
quickly, as expected, since 2SLS is -consistent.
We now characterize the asymptotic properties of OLS under Condition 1. As a 
special case of Theorem 4 in Section 3, we obtain the distribution for the OLS 
estimator:

 	T heorem 2:  

	 where	  

Theorem 2 predicts the approximate bias and approximate variance as:

(2.3)	

(2.4)	

3	 Note that the approximate bias of 2SLS in equation (2.1) is identical to the well-known result for the 
second order bias of 2SLS. See, e.g., Rothenberg [1983] or Hahn and Hausman [2002a, 2002b].
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Thus, the approximate MSE of OLS is

(2.5)	

The inconsistency of OLS is evident from equation (2.5) because while the second 
term goes to zero as n becomes large, the first term is not a function of n.

We now compare the approximate finite sample properties of 2SLS and OLS. We 
first compare biases:

(2.6)	

where  can be interpreted as the “theoretical” F-statistic from the 

first-stage reduced form. Thus, if F  1, 2SLS has less bias. However the OLS 
variance is less than the 2SLS variance so we compare the MSEs below.

Before leaving the bias comparisons, we also consider what happens when we 
are close to being unidentified so that  where the vector a has dimen-
sion K. Thus, the reduced form coefficients are “local to zero”. With  
equation (2.1) predicts the bias of 2SLS to be

(2.7)	

where Ψ ≡ a'z'za. On the other hand, equation (2.3) predicts the approximate bias 
for OLS to be:

(2.8)	

Taking the ratio of the biases under local to zero asymptotics:

(2.9)	

From equation (2.9), it follows that the bias of 2SLS is smaller than OLS as long as 
K  n, a condition which will usually be satisfied in practice.

We next compare the MSE of 2SLS to the MSE of OLS. It is convenient to intro-
duce a normalization, which will simplify the M2SLS and MOLS expressions. Without 
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loss of generality we rescale the units of variables σεε = σνν = 1 so that var(y2) = 1/
(1-R2) and σεν = ρ.4 Using this normalizations we find:

(2.10)	

(2.11)	

and

(2.12)	

Which estimator to use will depend on whether equation (2.12) is less than or 
greater than unity. We can solve for the “critical value” of ρ2 which causes the 
MSE of the 2 estimators to be equal.5 The solution for this “critical value” has a 
remarkably simple form:

(2.13)	

As n becomes large the “critical value” of ρ2 goes to zero. In any particular sample 
R2 and F can typically be accurately estimated from the unbiased estimates of the 
reduced form so that only ρ2 is unknown. While this parameter value is typically 
unknown, the applied econometrician will often have a good (a priori) knowledge 
of the possible values of ρ so that she will be able to determine whether the critical 
value is below the square of the correlation coefficient.6 As we now demonstrate, 
the critical value is often so low that 2SLS will have a lower MSE than OLS, even 
for situation with relatively “weak instruments” or a low F statistic.

In Table 1 we calculate the critical value of ρ (using the absolute value) for a 
range of values of R2 for K of 5, 10, and 30 and for sample sizes of n = 500 and 
n = 1,000. Here we find that if R2 ≥ 0.1 that 2SLS typically will have a lower MSE. 
Thus, except in the case of weak instruments, which can arise when both R2 is low 
and the number of instruments is high, 2SLS is typically the preferred estimator 
based on an approximate finite sample comparison of MSEs.

4	 Structural equations are homogeneous of degree zero. Since we rescale the variance of the stochastic 
disturbance we have to either rescale the coefficients or rescale the units of the variables. We adopt 
the latter convention here, although we can do either.

5	 The correlation parameter ρ is the key parameter in simultaneous equation analysis because if it is zero 
the OLS estimator is the unbiased Gauss-Markov estimator and the ratio of MSEs in equation (2.12) 
equals 1/R2 > 1, but OLS is biased and inconsistent if the parameter value of ρ is not zero.

6	 The parameter ρ is also estimated from the 2SLS estimation, but a good estimate may be difficult to 
achieve in a “weak instrument” situation.
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3  Estimation with invalid instruments

Up to this point we have assumed that the instruments are valid so that they are 
orthogonal to the stochastic disturbance ε1. However, the econometrician may not 
be certain that the instruments satisfy the orthogonality condition. We now con-
sider the situation where the orthogonality condition on the instruments fails so that 
E[z’ε1/n] ≠ 0. We first consider the traditional “large sample bias” of 2SLS:

(3.1)	

where W = zπ2. When we compare this expression with the analogous expression 
for OLS

(3.2)	

In general either estimator may be preferred on this criterion depending on circum-
stances. The numerator of equation (3.1) would likely be smaller (“less correla-
tion” in the instrument) than the numerator of equation (3.2), but the denominator 
of equation (3.1) is always smaller since R2 < 1. Indeed, if R2 is very small, the 
OLS estimator may do better in terms of inconsistency.

Table 1
Critical Values of ρ
R2 0.01 0.1 0.2 0.3 0.5 0.7 0.9
K = 5

100 ** 0.3677 0.2323 0.1863 0.1432 0.1210 0.1070
500 ** 0.1423 0.1002 0.0818 0.0634 0.0536 0.0473

1,000 0.3654 0.1002 0.0708 0.0578 0.0448 0.0378 0.0334
K = 10

100 ** ** 0.2601 0.1949 0.1455 0.1220 0.1075
500 ** 0.1445 0.1006 0.0819 0.0634 0.0536 0.0473

1,000 ** 0.1006 0.0708 0.0578 0.0448 0.0378 0.0334
K = 10

100 ** ** ** ** 0.1789 0.1339 0.1135
500 ** 0.1771 0.1050 0.0834 0.0638 0.0538 0.0474

1,000 ** 0.1049 0.0716 0.0581 0.0448 0.0379 0.0334
Notes : ** denotes no critical value of ρ less than 1.0 exists.
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In order to gain a better insight, we adopt an asymptotic approximation simi-
lar to the one in the previous section, and investigate conditions under which the 
approximate finite sample bias or the MSE of 2SLS is smaller than the correspond-
ing statistics for the OLS estimator. We again find that 2SLS does better than OLS 
under a wide range of conditions, which we characterize as functions of observable 
statistics and one unobservable statistic.

To do asymptotic approximations we need to specify the correlation of the instru-
ment with the stochastic disturbance in the structural equation (1.1). We use a local 
specification:

(3.3)	

We assume that (e1, ν2) is homoscedastic and zero mean normally distributed with 
covariance matrix:

	

Throughout this section, we also assume that  is fixed.
First, we derive the asymptotic distribution of the 2SLS estimator with locally 

invalid instruments7:

	T heorem 3: Under Condition 1, 

The first term Ξ in the numerator of the mean arises from failure of the orthogonal-
ity condition. The second term is the usual finite sample bias term and it decreases 
with the sample size. The variance continues to be V2SLS under instrument invalid-
ity because of the local departure in equation (3.3) similar to Hausman ([1978], 
p. 1256).

We use Theorem 3 to calculate the approximate bias of the 2SLS estimator with 
invalid instruments is:

(3.4)	

where we use the previous normalizations and set  Using 
Theorem 3 we find the approximate MSE of 2SLS to be:

(3.5)	

7	 See Appendix for proof of Theorem 3.



	 Estimation with Valid and Invalid Instruments	 33

We now derive the asymptotic distribution of the OLS estimator with locally 
invalid instruments8:

	T heorem 4: Under Condition 1,

 	

The distribution is centered around the usual OLS bias, as before, and the numera-
tor of the mean of the distribution arises from the instrument invalidity. Again, 
the variance continues to be VOLS under instrument invalidity because of the local 
departure in equation (3.3). Using Theorem 4 and the previous normalizations, we 
find the approximate MSE of OLS to be:

(3.6)	    

The first term in parentheses is the “usual” simultaneous equation bias of OLS that 
does not decrease with the sample size.

We now compare the bias of 2SLS under instrument invalidity with the bias of 
OLS given similar circumstances. We re-write the bias of OLS using the normal-
ization:

(3.7)	

As before, we take the ratio of (3.4) and (3.7):

(3.8)	

The ratio of the biases is homogeneous of degree zero in the correlation coefficient 
ρ, so we can simplify terms. We plot the ratio of the biases in Figure 1 for the case 
of n = 100 and K = 5 and α = 0.1.

We find that the 2SLS bias is less than the OLS bias if:

(3.9)	

8	 See Appendix for proof of Theorem 4.
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Equation (3.9) is very easy to interpret. We calculate a “critical a” in Figure 2, and 
note that it increase quite rapidly, so that the bias of 2SLS with invalid instruments 
remains less than the bias of OLS so long as F exceeds 1.0 by a small amount. The 
straightforward relationship of equation (3.9) allows for an easy interpretation on 
which the econometrician may well have some a priori knowledge.

Note that the common empirical finding that the 2SLS coefficient is larger than 
the OLS coefficient can arise because of the OLS bias when the instruments are 
valid or because of an improper instrument. Thus, even if the instrument is “almost 
uncorrelated” so that  substantial bias can still arise because R2 is often 
quite small in the weak instruments situation. Thus, comparing equation (3.4) to 
the bias of OLS in equation (3.7), the empirical finding that the 2SLS estimate 
increases compared to the OLS estimate may indicate that the instrument is not 
orthogonal to the stochastic disturbance. The resulting bias can be substantial. 
Indeed, it could exceed the OLS bias, leading to an increase in the estimated 2SLS 
coefficient over the estimated OLS coefficient.

Returning to the general situation and using the normalizations the ratio of the 
MSEs is

(3.10)      

No straightforward condition can be derived where the ratio is less than one. In 
order to gain some insight, we calculated the ratio (3.10) for various values of R2 
and ρ fixing α = 0.1, K = 5, and n = 100. The ratio (3.10) is below 1.0 except in the 
situation where R2 becomes quite small (as with weak instruments) and ρ becomes 
small (which decreases the OLS bias).

Figure 1
Ratio of 2SLS Bias to OLS Bias with Invalid Instruments
N = 100, K = 5, α = 0.1

R2
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In our comparisons of 2SLS with OLS, two sources of bias arise. The first source 
of bias is from the use of estimated parameters,  in equation (1.2), in forming 
the instruments. This source of bias disappears as the sample becomes large. The 
second source of bias is from the use of invalid instruments, γ ≠ 0 in equation (3.3). 
This source of bias does not disappear sufficiently fast with the sample size to 
cause 2SLS to be consistent. An interesting question would be about how the com-
parison of IV to OLS would change if the first source of bias were eliminated. We 
can eliminate this source of bias (to second order) by using the Nagar estimator

	

We derive the asymptotic distribution of the Nagar estimator with locally invalid 
instruments9:

	T heorem 5: Under Condition 1, 

9	 See Appendix for proof of Theorem 5.

Figure 2
Critical Values for Alpha
n = 100 and K = 5, 10, 30

R2
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Thus to compare the MSE of the Nagar estimator to the MSE of the 2SLS estimator 
with invalid instruments, we see that the variance of the two estimators is the same, 
but that the bias differs as explained above. However, when we compare the bias 
square of 2SLS from equation (3.4) with the Nagar estimator we find that

(3.11)	       

Equation (3.11) can be less than or greater than zero. Thus, we cannot conclude that 
using the Nagar estimator to compare with OLS would make the comparison more 
favorable to an IV estimator.

4  Sensitivity analysis

Card [2001] discusses possible concerns that the instruments may be invalid in 
discussing the empirical literature that estimates the return to additional education. 
The use of instrumental variables in this situation began with Griliches’ [1977] 
well known paper. To investigate the possible effect of invalid instruments, we 
consider the specification:

(4.1)	

Note that we have added zθ to the error ε which causes the instruments to be  
invalid.10 We derive the maximal asymptotic bias for a small violation of the exclu-
sion restriction, where ψ is the correlation between ziπ and  so that ψ2 is the R2 of 
between ziπ and  We find the maximal asymptotic bias11 to be:

	T heorem 6: 

Note that the maximal asymptotic bias can be consistently estimated by

(4.2)	

10	 Imbens [2003] considers the question of sensitivity analysis, but not in the context of instrumental 
variables.

11	 See Appendix for proof of Theorem 6.
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The maximal asymptotic bias in (4.2) can be used to conduct a “bound analysis”. 
The bound can often be quite large in “weak instrument” situations. This bound 
can sometimes conflict with the bound produced by Manski’s [1990, 2003] non-
parametric approach, since the Manski approach does not allow for errors in 
variables.

5  Bias in estimated standard errors

We have previously discussed the biases in the 2SLS estimator in equation (2.1) 
and Theorem 1. In the “weak instruments” situation this bias may be quite large. 
A further problem arises in that the 2SLS estimator is biased in the same direc-
tion as the OLS estimator as equation (2.4) and Theorem 2 demonstrate. Thus, 
Hausman [1978] specification type test will be biased towards not rejecting the 
null hypothesis of lack of orthogonality between ε1 and ν2 in equations (1.1) and 
(1.2). However, another problem has been recognized in the weak instruments situ-
ation. The estimated standard errors for the 2SLS estimator are downward biased, 
sometimes leading to the mistaken inference that the 2SLS estimate are much more 
precise than they actually are. From analysis based on first order asymptotics the 
usual conclusion would be that with “weak instruments” that the reported standard 
error of the 2SLS estimator would be sufficiently large to signal the finding that 
so much uncertainty exists with the estimate that it would not be of much use. 
However, researchers have found that, to the contrary, often the 2SLS estimator in 
the presence of weak instruments leads to a reasonably small standard error. Thus, 
the researcher may be unaware of the weak instruments problem. The source of 
the problem of small reported standard errors of the 2SLS estimator has not been 
discussed in the literature. Here we derive the source of the problem and offer a 
possible approach to fixing it.

The variance of 2SLS is derived in Theorem 1 and takes the usual form of 
V2SLS = σεεΘ

-1 where Θ = π'z'zπ/n is assumed to be fixed. Now  is not difficult to 
estimate since unbiased estimated of π follow from OLS on equation (1.2). Thus, 
the downward bias in the estimated 2SLS standard errors must arise from a down-
ward biased estimate of σεε. We now derive the bias. The intuition follows from the 
fact that 2SLS is biased towards the OLS estimator, which minimizes  Thus, 
we find that the bias of the 2SLS estimator of β creates a bias in the 2SLS estimate 
of σεε. We find the bias to be:

	T heorem 7: 

Note that the leading term in the bias calculation of Theorem 5 is 2 times the bias of 
the 2SLS estimator from equation (2.1). As either the number of instruments grows 
or the covariance between the structural and reduced term stochastic disturbances 
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becomes large, the bias in the estimation of σεε will also become large. We now 
apply the normalization that we used above to find:

(5.1)	

The bias can be quite substantial as demonstrated by equation (5.1). The final term 
in equation (4.2) will typically be small so that it can be ignored. Equation (5.1) 
demonstrates that the downward bias can be substantial; in Monte-Carlo12 results 
reported in Table 2, we find that for R2 = .01 and ρ = 0.9 that the mean bias of 
the 2SLS estimate of the variance varies from -70% to -80% as K, the number of 
instruments, increases from 5 to 30. Thus, we note that the bias in the estimation 
even when K = 5 can be quite large. This finding explains the result that when 
weak instruments are present, the estimated standard errors of 2SLS can appear to 
be near those of OLS and small enough to allow the researcher to make conclu-
sions about the likely true parameter value. However, with weak instruments these 
conclusions could be erroneous because of the substantial bias in the estimated 
standard error of the 2SLS estimator13.

We now consider the finding that the often used test of over identifying restric-
tions (OID test) rejects “too often” when weak instruments are present, i.e. the 
actual size of the test is considerably larger than the nominal size. The OID test 
can be quite important since it tests the economic theory embodied in the model 
as discuss by e.g. Hausman [1983]. In the weak instrument situation it may have 
increased importance given the substantial bias in the 2SLS estimator and the large 
MSE that we calculation in equations (3.4) and (3.5). We may write the OID test 
as14:

(5.2)	

W is distributed as chi-square with K - 1 degrees of freedom under conventional 
asymptotics. From equation (5.2), we see that a downward biased of σεε can lead to 
substantial over-rejection and an upward biased size of the OID test. Thus, correct-
ing for this problem can have an important effect on test results.

12	 The Monte-Carlo design is the same as in Hahn-Hausman [2002a].
13	 We note recent development on the correctly sized confidence intervals of β, including Kleibergen 

[2002], may be of importance in detecting these problems. The new confidence intervals may be 
subject to a power problem. See, e.g., Andrews, Moreira and Stock [2004].

14	 See, e.g., Hausman [1983].
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6  Conclusions

We derive second order approximations for the bias and MSE of 2SLS (and 
the Nagar estimator) with both valid and invalid instruments. The derivation for 
invalid instruments is new, to the best of our knowledge. We find that substantial 
finite sample bias can occur when weak instruments exist which arises when the 
R2 of the reduced form regression is low, the number of instruments is high, or the 
correlation between the structural and reduced form stochastic terms ρ is high.

We then compare the bias and MSE of 2SLS with OLS. The OLS estimator is 
biased and inconsistent, but its smaller variance may make it preferable to 2SLS 
in a weak instruments situation. We determine straightforward and easily checked 
conditions under which 2SLS has smaller bias than OLS. These bias conditions 
carry over, in large part, to the MSE comparisons because changes in the bias 
term are quite important in changes in the MSE term given typical sample sizes of 
n = 100 or larger. We find that 2SLS is generally the preferred estimator. However, 
the econometrician can use our formulae to check the expected performance of 
2SLS and OLS in a given situation given some a priori knowledge about likely 
parameter values.

We also find that the estimated standard errors for the 2SLS estimator are down-
ward biased, sometimes leading to the mistaken inference that the 2SLS estimate 
are much more precise than they actually are. Such bias explains why the actual 
size of the often used test of over identifying restrictions (OID test) is considerably 
larger than the nominal size.� ■
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APPENDIX

Bekker asymptotic distribution of 2SLS, OLS, and 
nagar under misspecification

Suppose that

	

where

	

Following is the Lemma reproduced from Hahn and Hausman [2001]:

	L emma: Let  Assume that  and that  

is fixed at Θ. Let  and  We then have

	

	 where  and Λ⊥ denote symmetric 3 × 3 matrices such that
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	 and

 	

Remark: The ωs in the Lemma correspond to the “reduced form”. It would be 
convenient to rewrite the above with structural form parameters. Because

	 we can see that

	L emma: Suppose that  Then we have

	

	 Proof: Suppose that α = 0. Using the previous Lemma, we obtain
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and

Therefore, using Delta method, we obtain the following:

	

where we used the fact that

	

Because  we can see that

	

and
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Asymptotic distribution of 2SLS under misspecification

Note that

	

But

	

so that

	

It follows that

	

Asymptotic distribution of OLS under misspecification

Note that
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But

	

so that

	

It follows that

Asymptotic distribution of nagar under 
misspecification

Note that

	

But

	

so that
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It follows that

	

Sensitivity analysis

Consider a model with one endogenous regressor where other included exog-
enous variables are partialled out. The model takes the form where

	

Denote the available instrument as zi, and write the first stage regression as

	

2SLS estimator is obviously given by

	

where

	

What is the property of b if the exclusion restriction is in fact violated? In order 
to implement violation exclusion restriction, we add a little noise to εi, and consider 
a new model

	

where
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Let

	

and

	

We would like to examine the maximal asymptotic bias |b2SLS(θ)| for a small viola-
tion of exclusion restriction, i.e., the violation such that the correlation between 

 and  is some small number ψ. We argue that

	

provides such measure of sensitivity. Here,  denotes the R2 in the first stage.

It can be shown that

	

where

	

Note that

	

which is maximized when θ ∞ π. We therefore focus on the type of violation such 
that θ = ξ  π for some scalar ξ. Without loss of generality, we will write

	

Note that the population R2 in the regression of ε* on z, which is equal to the 
square of the correlation ψ between  and  is equal to
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and

	

We can solve ξ2 as a function of ψ2 ,and obtain

	

Now, note that the population R2 in the first stage  is equal to

	

which can be solved for π'Φπ as

	

We therefore obtain

	

or

	

We note that  can be approximated by the empirical counterpart

	

Digression: robustness of 2SLS

In general, we estimate β by
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and the counterpart under small misspecification is

	

so that

	

Note that

	

and

	

Instead of dealing with a normalization involving the weight matrix Φ, it is  
convenient to use assume that Φ = I. We then have

	

and

	

Remark: If there is only one instrument, then  Therefore, small π 
indicates that 2SLS is sensitive to misspecification.
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Remark: If there are multiple components in π, and if the first component of π is 
small relative to other components of π, then  would be small, i.e., 2SLS 

is not very sensitive to the violation of the exclusion restriction in zi,1.

Remark: Note that

	

and

	

Therefore, 2SLS is the most robust estimator among the class of IV estimators 
bA.

Higher order bias of 

Our model is given by

	

where (εi, ui)’ is homoscedastic and normal. We consider the 2SLS

	

and the related estimator for the variance of εi:
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We have the following characterization of 

	

where

	

	L emma:

	

	 for
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Proof: Note that 2SLS is a special case of the k-class estimator

	

for

	

and θ is the “eigenvalue”. Note that 2SLS corresponds to a = 0 and b = 0. The 
result follows from Donald and Newey [1998].
We therefore obtain

	 Lemma:

	

Proof: We have

	

Because
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and

	

we obtain

	

Now, note that

	

We therefore obtain

	

and

	

It follows that
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or

	

Assume that we can ignore the  term in Lemma expansion in calculation 
of expectation. We then obtain.

	

where

	

This result can be proved in the following way. From the immediately preceding 
lemma, we have

	

Because expected values of the  terms in the second line are zero, it suf-

fices to consider the  in the third line. First, we note that
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from which we obtain

	

Second, we note that

	

due to symmetry. Third, we note that

	

from which we obtain

	

We therefore obtain

	

Remark: In order to understand this result, imagine a counter-factual situation 
where the first order asymptotic approximation for  is exact, i.e., 
write

	

We would then have
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and

	

Therefore, our result implies that the approximate mean of  is smaller by

	

than would be expected out of first order asymptotic approximation.

Remark: our result can be understood from a different perspective. Note that the 
approximate bias of 2SLS is equal to

	

Roughly speaking, 2SLS is biased toward OLS, which minimizes 

 with respect to b. If the 2SLS  is close to the OLS 

 then we should expect

	




