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ELEVEN

ExtrapoLATE-ing: External Validity and
Overidentification in the LATE Framework

Joshua D. Angrist and Ivan Ferndndez-Val

1.0 Introduction

Local Average Treatment Effects (LATE) capture the causal effect of an
instrument-induced shift in treatment. This effect is necessarily tied to
the instrument that generates the shift. The interpretation of instrumental
variable (IV) estimates as instrument-specific should not be surprising or
troubling — when this point is cast in terms of specific examples, we wonder
how it could be otherwise. Quarter-of-birth instruments for a wage equation
reveal the payoff to schooling induced by compulsory-attendance laws and
not the value of a bought-and-paid-for MBA. Still, a clear statement of the
nature of causal effects revealed by any instrument raises questions about
the external validity of this estimate. Can we use a given IV estimate to
identify the effects induced by another source of variation? What about an
unconditional average effect? Can we go from average effects on compliers
to average effects on the entire treated population?

The usual answer to these questions is “no.” Except in special cases, we
cannot go farther, at least not without additional assumptions. As described
by Angrist, Imbens, and Rubin (1996), the treated population includes
two groups: (1) compliers whose behavior is affected by the instrument
at hand, and (2) always-takers who are treated irrespective of whether a
Bernoulli instrument is switched off or on. The nontreated are likewise
composed of compliers and never-takers; the latter group avoids treatment

Our thanks to Alberto Abadie, Manuel Arellano, Gary Chamberlain, Victor Chernozhukov,
Guido Imbens, Frank Vella, participants in the 2010 Econometric Society World Congress,
and seminar participants at Boston College, Boston University, Carnegie Mellon, Georgetown,
Michigan, and the Harvard-MIT Econometrics Workshops for helpful discussions and
comments.
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402 Joshua D. Angrist and Ivan Ferndndez-Val

no matter what. In the absence of strong homogeneity or distributional
assumptions, the data are uninformative for always-takers and never-takers.
Moreover, each instrument typically generates its own compliant sub-
population. Effects for one group of compliers need not generalize to
another.

One route to external validity is structural. A latent-index choice frame-
work sometimes allows us to fill gaps in the data. For example, Heck-
man, Tobias, and Vytlacil (2001, 2003) and Angrist (2004) used para-
metric latent-index models to identify and compare alternative causal
effects. Chamberlain (2010) developed a Bayesian semiparametric pro-
cedure for extrapolation that relies on models for variation in outcome
distributions as a function of the first stage. In a recent paper, Heck-
man (2010) summarized a literature on IV that establishes theoretical links
between parameters such as LATE and effects on the treated. There is no
free lunch, however; these links provide nonparametric identification of
effects other than LATE only with instruments that drive the probability
of treatment over a wide range (in fact, from zero to one if we hope to
recover the population average causal effect). Such “super-instruments”
are rare if not unknown in applied work. In practice, most instruments
that identify casual effects are discrete with finite support, and many are
Bernoulli.

These theoretical challenges notwithstanding, the predictive value of a
particular set of IV estimates may be revealed empirically when a researcher
succeeds in isolating multiple instruments for the same underlying causal
relation. A pioneering effort in this direction is the Oreopoulos (2006) study
of the economic returns to schooling. Oreopoulos compared IV estimates of
the returns to schooling across instruments of different strengths. Some of
Oreopoulos’s instruments are derived from compulsory-attendance policies
that had modest effects on schooling. However, two of his policy experi-
ments generate instruments with large first-stage effects, close to a half-year
increase in schooling. Moreover, in these examples, there are few never-
takers, so LATE is the average effect of treatment on the nontreated. As
it turns out, Oreopoulos’s IV estimates of the returns to schooling using
marginal and full-bore instruments are similar, suggesting a robust causal
effect that is likely to have considerable predictive value. Angrist, Lavy, and
Schlosser (2010) made a similar homogeneity argument for IV estimates
of the causal effects of family size on human capital (a relationship known
as the “quantity—quality trade-off”). Sex-composition instruments, which
have a modest first stage, generate causal effects similar to those found
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ExtrapoLATE-ing 403

using twins instruments, for which the first stage is larger by an order of
magnitude, with no never-takers.!

These examples are encouraging because they suggest that in a number
of important applications, IV estimates are reasonably stable across instru-
ments. In many applications, however, heterogeneous effects are likely to
be important. For example, Ichino and Winter-Ebmer (1999) documented
substantial heterogeneity in alternative IV estimates of the returns to school-
ing in Germany. The range of variation in this case far exceeds that which
can be attributed to sampling variance.

In this chapter, we ask whether instrumental variable estimates using
different instruments, possibly with very different compliant subpopula-
tions, can be reconciled solely by differences in the observed characteristics
of compliers. An important consequence of the Abadie (2003) weight-
ing theorem is that the distribution of complier characteristics is identi-
fied and easy to describe empirically. A natural first step when comparing
alternative IV estimates is to compare and contrast the observed char-
acteristics of compliers. Assuming that treatment-effect heterogeneity is
limited in a way that we make precise below, we can use the distribu-
tion of complier characteristics to construct an estimator that converts
covariate-specific LATEs into broader parameters such as the effect of
treatment on the treated and LATE using alternative instruments. Our
first contribution is to explain and illustrate this approach to external
validity.?

The second item on our agenda is the use of overidentification tests in
pursuit of external validity. In the classical simultaneous equation frame-
work, statistically significant differences between alternative IV estimates
signal a failure of internal validity, perhaps due to violations of the exclusion
restriction. In the LATE framework, by contrast, different (internally valid)
instruments capture different causal effects. At the same time, covariate-
specific overidentification tests and summary conditional tests weighted
across covariate cells indicate whether differences in the observed charac-
teristics of compliant subpopulations are enough to explain differences in

! See also Ebenstein (2009), who compared LATEs generated by first stages of varying
strength for the effect of fertility on labor supply in the United States and Taiwan; and
Cruces (2005) and Cruces and Galiani (2007), both of which explored the external validity
of the fertility estimates generated by the Angrist and Evans (1998) sex composition
instruments using data from Latin America.

2 Other efforts in this direction include Angrist (2004) and Aronow and Sovey (2010), both
of which focused on the possibility of using LATE to learn about unconditional average
treatment effects.
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404 Joshua D. Angrist and Ivan Ferndndez-Val

unconditional effects. If so, it seems fair to say that the IV estimates at hand
meet an empirically useful standard of external validity.

In practice, the question of whether covariates explain the difference
between two sets of IV estimates need not have a simple answer. For some
covariate values, or perhaps over a certain range, there may be a good
match. In other cases, the match will be poor and the underlying estimates
essentially unreconciled. We therefore use overidentification test statistics
to design a hybrid testing-and-weighting scheme that isolates covariate-
defined subsamples for which alternative IV estimates can be reconciled.
We think of these samples as coming from a subpopulation for which
heterogeneity in treatment effects is a function solely of observed character-
istics. For this subpopulation, the predictive value of IV estimates is likely
to be especially high.

The ideas in this chapter are illustrated through a comparison of alterna-
tive IV estimates of the labor supply consequences of childbearing. As in the
study by Angrist and Evans (1998), the instruments are constructed from
twin births and sibling sex composition. These instruments have very dif-
ferent first stages and produce significantly different estimates of the causal
effect of a third birth. We show here that differences in the characteristics of
instrument-specific complier subpopulations can account for most of the
difference between the two sets of IV estimates.

2.0 Framework

We imagine that each individual is associated with two potential outcomes,
Yo and v;, which describe outcomes realized under alternative assignments
of a Bernoulli treatment, p. The observed outcome, v, is linked to potential
outcomes as follows:

Y = Yo + (¥; — Yo)D. (1
A random-coefficients notation for this is:
Y=o+rp+7n

wherea = E[vq], n = Yo — a,and r = Y| — Ygisan individual-level causal
effect.

We also define potential treatment status indexed against a Bernoulli
instrument, z. Potential treatment status is pf when the instrument is
switched on and b} when the instrument is switched off. The variables b7
and D} are superscripted to signal the fact that they are tied to z. Observed
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ExtrapoLATE-ing 405

treatment status is:
D = D + (D] — Dj)z
or, in random-coefficients notation,
D=y + pz+v

where y = E[p§], v = D} — y,and p = b} — D}.

IV using z as an instrument for the effect of b on vy with no covari-
ates is the Wald (1940) estimator. The Wald estimand can be interpreted
as the effect of p on those whose treatment status can be changed by the
instrument. Assuming, as we do here, that the instrument can make treat-
ment move only in one direction (e.g., make treatment more likely), those
whose treatment status is changed by z have b7 = 1 and p§ = 0. The causal
effect on this group is LATE (Imbens and Angrist 1994). Formally, we
have:

Assumption 1 (LATE):

(a) Independence and Exclusion: (Y1, Yo, D}, D}) L z.
(b) First-stage: E[D} — D}] # 0and0 < Plz=1] < 1.
(d) Monotonicity: D} > D§ a.s., or vice versa.

Theorem 1 (LATE): Under Assumption 1:

Ely|z=1]-E[v|z=0] ] . e
Elp|z=1]—-E[p|z=0] =Elvi —vo | o] > pg] = E[r | p > 0] =: A"

Proof: See Imbens and Angrist (1994). ]

As noted by Angrist, Imbens, and Rubin (1996), the LATE framework
partitions the population exposed to an instrument into three instrument-
dependent groups. These groups are defined by the way people react to the
instrument.

Definition 1 (Groups Defined by Instrument z):

(a) z-Compliers: The subpopulation with pf = 1 and b} = 0.
(b) z-Always-takers: The subpopulation with pf = p§j = 1.
(c) z-Never-takers: The subpopulation with b} = b} = 0.

LATE using z as an instrument is the effect of treatment on the group of
z-compliers.
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406 Joshua D. Angrist and Ivan Ferndndez-Val

Table 1. Wald Estimates of the Effects of Family Size on Labor Supply

Twins Same-Sex
Instrument Instrument Both

First Wald First Wald 2SLS

Dependent OLS Stage Estimates Stage Estimates Estimates
Variable Mean (1) (2) (3) (4) (5) (6)
Weeks worked 20.83 —8.98 0.603 —3.28 0.060 —6.36 —3.97
0.072) (0.008) (0.634) (0.002) (1.18) (0.558)
Overid: x%(1) — — — — — 5.3
(p-value) (0.02)
Employment  0.565 —0.176 —0.076 —0.132 —0.088
(0.002) (0.014) (0.026)  (0.012)
Overid: x%(1) — — — — — 3.5
(p-value) (0.06)

Note: The table reports OLS, Wald, and 2SLS estimates of the effects of a third birth on labor supply using
twins and sex composition instruments. Data are from the Angrist and Evans (1998) extract from the 1980
U.S. census 5 percent sample, including women aged 21-35 with at least two children. OLS models include
controls for mother’s age, age at first birth, ages of the first two children, and dummies for race. The sample
size is 394,840.

3.0 Covariate-Driven Heterogeneity

3.1 Two Instruments for One Effect

The case for omitted variables bias in the relationship between fertility
and labor supply is clear: Mothers with weak labor force attachment or
low earnings potential may be more likely to have children than moth-
ers with strong labor force attachment or high earnings potential. This
makes the observed association between family size and employment dif-
ficult to interpret because mothers who have big families work less any-
way. Angrist and Evans (1998) solved this omitted-variables problem using
two instruments, both of which lend themselves to Wald-type estimation
strategies.

The first Wald estimator uses twin births, an instrument for the effects
of family size introduced by Rosenzweig and Wolpin (1980). The twins
instrument in Angrist and Evans (1998) is a dummy indicating multiple
second births in a sample of mothers with at least two children. The twins
first stage is about 0.6, an estimate reported in Column 2 of Table 1. This
means that 40 percent of mothers with two or more children would have had
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ExtrapoLATE-ing 407

a third birth anyway; a multiple third birth increases this proportion to 1.
The twins instrument rests on the idea that the occurrence of a multiple birth
is essentially random — unrelated to potential outcomes or demographic
characteristics — and that a multiple birth affects labor supply solely by
increasing fertility.

The second Wald estimator in Table 1 uses a dummy for same-sex sibling
pairs as an instrument. This is motivated by the fact that American parents
with two children are more likely to have a third child if the first two are
same-sex than if sex composition is mixed. This is illustrated in Column 4 of
Table 1, which shows that parents of same-sex siblings are about 6 percentage
points more likely to have a third birth than those with a mixed-sex sibship
(the probability of a third birth among parents with a mixed-sex sibship is
0.38). Internal validity of the same-sex instrument rests on the claim that
sibling sex composition is essentially random and affects mothers’ labor
supply solely by increasing fertility.

Twins and sex-composition IV estimates both suggest that the birth of
a third child substantially reduces weeks worked and employment. Wald
estimates using twins instruments show a precisely estimated reduction
in weeks worked of a little more than three weeks, with an employment
reduction of about 0.8. These results, which appear in Column 3 of Table 1,
are smaller in absolute value than the corresponding ordinary least squares
(OLS) estimates reported in Column 1 (the latter include a set of controls
listed in the table). This suggests that the OLS estimates are exaggerated by
selection bias. It is interesting and perhaps surprising that Wald estimates
constructed using a same-sex dummy, reported in Column 5, are larger
in magnitude than the twins estimates. The juxtaposition of twins and
sex-composition instruments suggests that different instruments need not
generate similar estimates of causal effects even if both instruments are
valid.

The last column of Table 1 reports 2SLS estimates of childbearing using
both twins and same-sex instruments, along with the associated overidenti-
fication test statistic. The overidentification test statistic generates p-values
0f 0.02 and 0.06, implying that the twins and sex-composition IV estimates
are at least marginally significantly different from one another.

Twins and same-sex IV estimates reflect behavior in different compliant
subpopulations. To show this, we let x be a Bernoulli-distributed char-
acteristic — for example, a dummy indicating college graduates. Are sex-
composition compliers more or less likely to be college graduates than
other women with two children? This question is answered by the following
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408 Joshua D. Angrist and Ivan Ferndndez-Val

complier characteristics ratio:

Plx=1|p}>p5] P[p}>Dp§|x=1]
Px=1 _ P[p’> pi
Ep|lz=1,x=1]-E[p|z=0,x=1]
- Ep|z=1] —E[p|z=0]

where the first equality follows by Bayes rule. This second equality shows
that the relative likelihood that a z-complier is a college graduate is given
by the ratio of the first stage for college graduates to the overall first stage.

This calculation is illustrated in Table 2, which reports compliers’ char-
acteristics ratios for the age of the second-born and mother’s schooling
as described by dummies for high school graduates, some college, and
college graduates. Twins compliers have younger second-born children,
reflecting the fact that few women who recently had their second child
will have had time to have a third child. The birth of a third child in
this group is therefore especially likely to have been caused by a multi-
ple pregnancy. (Among second-borns who are less than about a year old,
the only explanation for a third birth in the family is a multiple birth.)
This is important because the birth of a third child may matter less if the
second child is young, helping explain the finding that twins-IV estimates
are smaller than same-sex estimates (Gelbach 2002 showed that the pres-
ence of a child younger than age 5 in the household is a key labor-supply
mediator).

Twins compliers are more likely to be college graduates than the average
mother, whereas sex-composition compliers are less educated. This fact also
helps explain the smaller Wald estimates generated by twins instruments
because Angrist and Evans (1998) showed that the labor-supply conse-
quences of childbearing decline with mother’s schooling.

A general method for constructing the mean or other features of the dis-
tribution of covariates for compliers uses Abadie’s (2003) kappa-weighting
scheme. A consequence of Theorem 3.1 in Abadie (2003) is that:

E VA
E[x | p; > pg] = ﬁ (2)

where:

K(x)=1-— (1 —z) — (1-p)z
- 1-Plz=1|x=x] Plz=1|x=x]
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Table 2. Complier Characteristics for Twins and Sex Composition Instruments

Variable

Population
Mean Mean for Twins Compliers Mean for Same-Sex Compliers

E[x;] E[xi|Dii > Doil  El[xii|Dyi > Doil/El[x1;]]  El[xii|Dyi > Doj]l  E[x1i|Dyi > Dyil/E[x:]

Age of second child is less
than or equal to 4 years

High school graduate

Some college

College graduate

Age of second child
Mother’s schooling

(1) (2) (3) (4) (5)
A. Dummy characteristics
0.343 0.449 1.31 0.194 0.565
0.488 0.498 1.02 0.515 1.06
0.202 0.212 1.05 0.212 1.05
0.132 0.151 1.14 0.092 0.702
B. Discrete, ordered characteristics
6.59 5.51 0.835 7.14 1.08
12.13 12.43 1.03 12.09 1.00

Note: The table reports an analysis of complier characteristics for twins and sex composition instruments. The ratios in columns 3 and 5 in Panel A give the
relative likelihood that compliers have the characteristic indicated at left. The values in columns 2 and 4 in Panel B represent Abadie’s (2003) kappa-weighted
means. Data are from the 1980 census 5 percent sample including mothers aged 21-35 with at least two children, as in Angrist and Evans (1998). The sample

size is 394,840.
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410 Joshua D. Angrist and Ivan Ferndndez-Val

Intuitively, this works because, as Abadie showed, the weighting function,
k*(x), “finds compliers,” even though it is not a simple indicator for com-
pliers. Estimates of E[x | p; > pg] for age of second child and mother’s
education are reported in the last two rows of Table 2. These estimates show
a marked difference in the average second-child age and a smaller differ-
ence in schooling. The main difference between the schooling of twins and
same-sex compliers is in the proportion of college graduates.

3.2 Covariates and Extrapolation

Covariates play two roles in our analysis. First, they may be necessary for
identification. For example, we might want to control for race and maternal
age when using twins instruments because the probability of multiple births
varies by race and increases with maternal age. Second, we use covariates for
extrapolation. Specifically, we argue that in some cases, including the twins
and same-sex comparisons, variation in causal effects across covariate cells
is sufficient to explain differences between IV estimates.

The foundation of our analysis with covariates is a conditional indepen-
dence assumption. This assumption expresses the idea that we think of
the instruments as being “as good as randomly assigned,” conditional on
covariates, x. Generalizing Assumption 1, we have:

Assumption 2 (Conditional LATE):

(a) Independence and Exclusion: (Y1, Yo, D}, D§) LIz | x a.s.:
(b) First-stage: E[D} — D% | x] #0and0 <Pl[z=1]|x] < 1 a.s.
(c) Monotonicity: P[p¥ > p§ | x] =1 a.s,, or P[D} < D§ | x] =1 a.s.

For each value of x, we define covariate-specific LATE using z as an
instrument:
A*(x) :=El[y; — vo | o] > D, x = x]. (3)

Asnoted by Frolich (2007), when conditioning is required for identification,
unconditional LATE can be constructed by averaging A”*(x):

A” =E[A*(x) | p] > Dj] = / A*(x)d Fx(x | o] > Dg)

N )E[D|z=1,x=x]—]E[D|Z=O,x=x]
_/ x Eb|z=1] —E[b|z=0]

dFx(x) (4)
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ExtrapoLATE-ing 411

where Fi(- | b} > D) is the distribution of x for z-compliers and Fy(-) is
the distribution of x in the population.

We first show how to construct average causal effects such as the effect
on the treated, E[y; — vo | D = 1], from A*(x). This is possible because
we assume that heterogeneity in causal effects across instruments is entirely
due to changes in the observable characteristics of compliers. Specifically,
we start with:

Assumption 3 (CEI): Conditional Effect Ignorability for an instrument z:

Ely; — vo | 0}, D, x] = E[v; — vo[x] a.s.

A sufficient condition for CEI is:
Y1 =Y+ g(x)+v

where g(x) is any function and v is mean-independent of (p%, p§j) condi-
tional on x. In other words, heterogeneity in average causal effects is solely
due to observed covariates.’

To see what this assumption means in a latent-index specification, sup-
pose that:

p = 1[h(x, z) > 7]

where 1 is a random factor involving unobserved costs and benefits of p
assumed to be independent of z conditional on x. This latent-index model
characterizes potential treatment assignments as:

pj = 1[h(x, 0) > n] and b} = 1[A(x, 1) > n].
The associated model for potential outcomes is:
Yo = go(X) + €9
Y1 = g1(x) + €

where the errors here have mean zero conditional on the covariates and
instrument. Assuming h(x, 1) > h(x, 0) a.s., conditional LATE can be
written:

A (x) =E[y; —vo | X, h(x,1) > n > h(x, 0)]
= g1(x) — go(x) + E[e; — €o | X, D] > D] (5)

3 This is a conditional-on-covariates version of Restriction 2 in Angrist (2004) and is sim-
ilar to the Frangakis and Rubin (2002) notion of principal stratification, which isolates
covariate-defined subpopulations in which selection bias is likely to be minimal.
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412 Joshua D. Angrist and Ivan Ferndndez-Val

The CEI assumption implies that €; — €( is mean independent of (b7, bf)
conditional on x, so that Equation (5) simplifies to:

A*(x) = Elv1 — Yo | x] = g1(x) — go(x).

In the language of Rubin (1977), CEl is a type of ignorability assumption
for treatment effects. Given this ignorability, we might wonder whether we
need to be concerned about selection bias in the first place. Under CEI,
selection bias arises due to correlation between 7 and €(. For example, a
latent-index specification compatible with the CEl sets €; =0 +&;, j =
0, 1, where 6 is correlated with  but &; is not.* CEI rules out Roy (1951)—
type selection into treatment. In other words, 1 is assumed to be independent
of unobserved gains, denoted by €; — €, in the latent-index specification.
CEI does not rule out selection bias, but it eliminates an important source of
heterogeneity in average causal effects.” Although the empirical importance
of Roy selection has yet to be established, the Roy model is an important
econometric benchmark. Here, however, we focus on an effort to manage
the treatment-effect heterogeneity driven by observable characteristics.

The latent-index specification can be used to formulate a structural jus-
tification for the CEI assumption in our empirical application. We start
by combining elements of selection models in Olsen (1980) and Vytlacil
(2002):

Ele; —€o | n,x] = p(x)(n —1/2) and n | x,z ~ U(0, 1).
Conditional LATE then becomes:

A*(x) = g1(x) — go(x) + p(X)E[n — 1/2 | h(x, 1) > n > h(x, 0), X]
= g1(x) — go(x) + p(x)[h(x, 1) + h(x, 0) — 1]/2.

For each x = x, CEI turns on whether p(x) = 0.® Following Imbens and
Newey (2009), we assume that treatment (i.e., fertility) decisions are based
on a comparison of predicted benefits and costs of childbearing. Specifically,
women choose to have a third child if:

1[h(x, z) > n] = HAKE[Y1 — Yo | X, 7] > ¢(x, 2)}

4 See Appendix A for an illustrative limited dependent-variable model with selection bias
that satisfies CEI

5 This has been noted by others working with models of this type; see, e.g., Vella and Verbeek
(1999).

® Interestingly, this example has the property that LATE is the unconditional average treat-
ment effect when the first stage is symmetric (ie., h(x, 1) = 1 — h(x, 0)). See Angrist
(2004) for other selection models with this property.
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ExtrapoLATE-ing 413

where A(x) is the weight given to outcome gaps; ¢(x, z) is the expected cost
of having a third child; the instrument, z, is a cost-shifter independent of
potential outcomes; and 7 is private information about Y; — Y, orthogonal
to X. Then, p(x) is close to zero when either A(x) is small (i.e., labor-supply
consequences are of little import), or  matters little given x (e.g., for women
with a young second-born who are already at home or for relatively educated
women who more easily can afford to pay for child care). Variation in p(x)
also offers a possible explanation for why CEI might be satisfied for some
women but not for others. We consider econometric models in which CEI
is partially satisfied in Section 3.4.

3.3 Reweighting LATE

Our covariate-based strategy reweights conditional treatment effects across
covariate cells. This is similar to matching estimators designed to control for
selection bias; such estimators reweight the conditional-mean function for
outcome variables, capturing causal effects when identification is based on a
selection-on-observables story (see, e.g., Hahn 1998). In this case, however,
we rely on instrumental variables to control for selection bias while using
covariates to manage treatment-effect heterogeneity.

Theorem 2 (LATE-Reweight): Let z be an instrument that satisfies Assump-
tion 3 and let s* = s(D}, DY, z) be an indicator for any group defined by z. For
example, for z-compliers, we have s* = D} — Dj; for the treated, s* = (1 —
z)p§ + zp% = D; for the nontreated, s* = (1 — z)(1 — bj) + z(1 — DY) =
1 — p; and for the entire population, s* = 1. Under Assumption 2 and
E[|¥|] < oo:

Elvy; — v | s*=1] = E[A*(x) |s*=1] = / A*(x)dFy(x|s*=1)
= [ Mwazodr
where %(x) = P[s* =1 | x = x]/P[s* = 1] andfa)ﬁ(x)de(x) =1.

Proof: By the law of iterated expectations:

Elvi—vo|s* =1 =E[E[y; — Y| s*=1,x] | s* = 1]
=E[E[y; —vo | x] | s" = 1] = E[A*(x) | s" = 1]
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where the second and third equalities follow from CEI. By Bayes rule

/Az(x)de(x |s"=1)= / A*(x)wi(x)d Fy(x)

where 0%(x) =P[s* =1 | x = x]/P[s* = 1] and

/w?(x)dFX(x) =E{Ps*=1|x=x]}/P[s"=1] =1
by the law of iterated expectations. |

The LATE-Reweight theorem allows us to go from LATE to the population
average treatment effect (ATE), the effect of treatment on the treated (TOT),
and the effect of treatment on the nontreated (TNT). The relevant weighting
functions, w%(x), can be written in terms of observed variables as:

Ep|lz=1,x=x]—E[p|z=0,x = x]

Wi (x) = Elp|z=1]-E[p|z=0] ©

for effects on z-compliers;
Wsor(x) = E[p | x = x]/E[p] 7)
for effects on the treated;
whnr(x) =E[1 — b | x = x]/E[1 — D] (8)
for effects on the nontreated; and
wyrp(x) =1 9)

for the population.

3.4 Overidentification

Differences in the observable characteristics of twins and same-sex com-
pliers may explain the difference between the Wald estimates constructed
using these two instruments. If so, we can reweight covariate-specific LATEs
to go from one to the other. We show this for two instruments, z and w.
The difference between the LATE generated by each can be decomposed as:

- 8% = [1870) - A"l (W E)

/AW( x)[w} (x) — wj (x)]d Fx(x). (10)
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The first term reflects differences in conditional LATEs between z-compliers
and w-compliers, while the second term captures differences in complier
characteristics. If z and w satisfy CEl, the following compatibility condition
holds:

AV (x) = A*(X) a.s. (11)

and the first term of the decomposition (10) is zero.” In other words,
CEI for both instruments implies that the instruments w and z satisfy
overidentifying restrictions conditional on x. The following theorem shows
that in such cases, we can use the distribution of compliers for a hypothetical
instrument to construct the treatment effects that might be generated by
instruments other than those we have.

Theorem 3 (LATE-Overid): Let z and w be two instruments that satisfy
Assumptions 2 and 3. Let AV (x) be defined as in Equation (3) using the instru-
ment w. Let s = s(py, DY, w) be an indicator for any group defined by the
instrument w with corresponding potential treatment assignments (py, D).

IfE[]Y|] < oo:

Elv; —v | sV =1] = / AV (x)wy (x)dFyx(x) = / A*(x)wy (x)d Fy(x).
(12)

Proof: The first equality in Equation (12) follows from Theorem 2 applied
to w. To establish the second equality, note that the law of iterated expecta-
tions and CEI for z give

Elv; — v | s¥ =11 =E[E[v; — v | x] | s¥ =1] = E[A%*(x) | s¥ = 1].

The result then follows by Bayes rule. ]

The LATE-Overid theorem allows us to determine whether differences in
the distribution of complier covariates are enough to explain differences in
IV estimates across instruments. If so, it seems fair to say that the underlying
covariate-specific results have predictive value for subpopulations defined
by these covariate values and therefore some claim to external validity.

7" A weaker alternative to CEI that implies the compatibility condition is E[y; — v, | 0¥ >
p§, x| = E[y; — Yo | D} > Dy, X] a.s.; in other words, equality of conditional LATEs only
for compliers. We find the stronger CEI assumption more appealing because it seems hard
to imagine a mechanism or model that generates this more limited sort of independence
without generating full CEI.
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CEI also implies that the conditional LATEs, A*(x), are overidentified if
we observe both zand w. We can therefore construct more precise estimators
for conditional LATEs using cell-by-cell GMM procedures that use both z
and w to form moment conditions. Moreover, GMM overidentification
tests can be used to statistically assess the LATE compatibility condition,
(11). Comparisons of estimates of the two expressions on the right-hand
side of Equation (12) also serve as a test of compatibility.

In practice, of course, covariates need not account fully for the difference
between two LATEs. For some covariate values, there may be a good match,
while for others, CEI fails. A rationale for partial fulfillment of CEI emerges
in our latent-index example. In this context, partial CEI is like saying that
some types of women select on gains while others do not. The values for
which CEI is satisfied define a subpopulation for which heterogeneous
treatment effects can be understood to be solely a function of observable
characteristics. For this subpopulation, we can define an average causal effect
for which the predictive value of IV estimates is likely to be especially high.

Definition 2 (CATE): The Compatible Average Treatment effect is:

APV = f A*(x)dFy(x | A*(x) = AY(x)).

If the compatibility condition, A*(x) = A¥(x), holds for all values of x,
CATE is ATE. However, if compatibility holds for only some values of x,
CATE is ATE for the subpopulation defined by these values.

The compatible subpopulation may be of interest for a number of rea-
sons. First, we might be looking for the largest and most representative
subpopulation for which a given set of IV estimates has predictive value.
This might be, for example, a compatible subset of the treated. Second, we
may be interested in constructing a precise estimate of covariate-specific
treatment effects. CATE difines a subpopulation where it is possible to use
two instruments to construct more precise estimates.

4.0 Estimation and Inference

We assume that the effects of interest are to be estimated in a random sample
of size n.

Assumption 4 (Sampling): {r; = (Y, D, X;, i, W;), i=1, ..., n}arei.i.d.
observations of the random vector R = (Y, D, X, Z, W).
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We also assume that the covariates, x, take on a finite and fixed number of
values. The education and age covariates in the empirical example satisfy this
condition. Generalization to continuous covariates seems straightforward
but requires additional technical machinery. For example, it seems likely
that with continuous covariates, we should allow for a gradual failure of
CEI as opposed to discrete cutoffs. We therefore leave this extension for
future work.

Assumption 5 (Discrete Covariates): For a finite set, X = {x, ..., Xk},
Plxe X] =1.

The effects in Theorems 2 and 3 can be written as follows:
Ay = E[A"(X)w] (X)], wf(x) =P[s"=1|x = x]/P[s" = 1]

where L = U = z for Theorem 2 and L = z and U = w or vice versa for
Theorem 3. More generally, superscript L indexes the group where condi-
tional LATEs are obtained and s is an indicator for the group with the
covariate distribution of interest, defined using instrument u.

Estimation is straightforward in our finite-dimensional setting. We
replace expectations [E and probabilities P by empirical analogs
E, and P,, where E,[g(r)] =n"! Z?:l g(®r;) and P,[g(r) € C] =
n~' "' 1[g(r;) € C]forany function g and set C. For conditional expec-
tations and probabilities, weletE,[- | x = x, u = u]andP,[- | x = x, U =
u] denote empirical analogs in the covariate cell, where x = x and v = u
for u € {z, w} and u € {z, w}. This gives:

AL =By [AY ()oY (0], &f(x) = Pyls” = 1] x = x]/P,[s" = 1] (13)

where A(x) is any consistent estimator of A*(x). For example, A*(x) can
be the Wald estimator with instrument L € {z, w} in cell x = x, or 2SLS
using both z and w as instruments in cell x = x. For treated, nontreated,
and the entire population, the indicator s’ is observed, so construction
of the empirical @{ (x) is straightforward. For compliers, we can estimate
Y (x) using the sample analog of Equation (6):

E,plu=Lx=x]—E,[p|u=0,x=x]
En[D|U:1]_En[D|U=O]

WA (x) = , U € {z, w}.

(14)
Consistency of AL, follows from the law of large numbers and the Slutsky
theorem.
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Theorem 4 (Consistency): Let z and w be two instruments that satisfy
Assumptions 2 and 3. Under Assumptions 4 and 5, and E[|Y|] < oo:

AL =E,[A*x)0Y(x)] =, AL =E[v; —vo | sV = 1]; 1, U € {z, w}

where &7 (x) and A (x) are any consistent estimators of w_(x) and A*(x),
forallx € X.

The estimators developed from Theorems 2 and 3 are smooth func-
tions of GMM-type estimators and are therefore asymptotically normal
under general conditions. The following result uses the delta method to
characterize the relevant limiting distributions. In particular, we show that
(A7, AY) are asymptotically jointly normal, allowing us to draw infer-
ences about the effects of interest and to test some of the implications of
CEL Let pr = P(x = x¢), 97 (x) = P[sY =1 | x = x] (i.e., the numerator
of w!(x)), and let ﬁ:(x) be an estimator of ¥J(x).

Theorem 5 (Asymptotic Distribution): Let z and w be two instruments
that satisfy Assumptions 2 and 3. Assume that pp > & > 0 for all k €
{1,..., K}, and fork € {1, ..., K} andu € {z, w}:

B4 () — 2 (xe)
V| A%(x) — A%(x)
A (x) — A¥(xz)
[ VE(x)/px CE(x)/pe CUY(xk)/ pr
Cax)/pr VR(x)/pr  CRA(xk)/ pr
| CoA (x)/pe - CRA(x)/ pre - VA (%) / pi

where (ZY, ..., ZY) are independent. Under Assumptions 9 and 10, for
U € {z, w}:

A%, — A7, 0 |4 i
AS N N , S S
I(A—A)* (M [C V“”D

—)dZ]I;’\’N

S O© O

where:
K
Vi =Y prlof ()’ + V2 () + 20 (0) Cox (x) 1A (x) — AL)?
k=1
K
+ Z pro? (x1)* Vi (xx),
k=1
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fore € {z, w), VE(a) = VO () /[y ot ()% CiA () = Clk ()
Zf:l prvy (xx), and
K

Crr =" pelod(x)” + V7 (i) + ¥ (0){CX (k)
k=1

K
+ C (e [A%(x) — ALIAY () — A%]+ Y preo? () CRA (3e).
k=1

Proof: Let pr = P,(x = x¢). By a standard Central Limit Theorem for
multinomial sequences, /n(p; — p1, ..., px — px) converges in distri-
bution to a multivariate normal with zero mean, variances py(1 — px) and
covariances — pi p;, fork, j =1, ..., K, k # j. Write, for L € {z, w}:

PONED 3y L NCOVNED YK P ) A ()

ot Ry and Ay, = e - .
DI JUNEY D ke PR (k)

Let 7 = (71,...,7x), U= (v1,...,vx), and 8 = (81, ..., 8x). If
Yy Tk # 0, the function f(77, 0, 8) = Y, mxvkdi/ Y, T kUK is contin-
uously differentiable in (77, U, §) with partial derivatives:

Af(7,0,8) _ . Of(# 0,9) T8k Af(7, D, 9)

T Uk(Sk, = >

Ak vk Yk TkVUk 09

= Uk

for Oy = vy/ Zk Tk Uk andSk =6 — Zk T Uibk.
Set wr = pr, vk = V7 (xx), and 8 = A"(xP). The result then follows
using the delta method. ]

The joint normality assumption for the components of our reweighting
estimators holds under standard regularity conditions. In particular, this
follows for the estimators of the weighting function by the Central Limit
Theorem for binary sequences. For IV, GMM, and other moment-based
estimators of the conditional LATEs, such as generalized empirical likeli-
hood, existence of second moments (i.e., E[Y?] < 00) is sufficient. The first
term in the expressions for V3, V., and CZ" reflects sampling variation due
to the estimation of the covariate-cell probabilities, pi, and the weighting
functions, whereas the second term arises from the estimation of condi-
tional LATEs. The first term is zero if, for example, the conditional LATEs
are constant (i.e.,, A"(x) = A forall x € X).

In practice, there are two routes to asymptotic inference. We can estimate
asymptotic distributions analytically using sample analogs or approximate
them numerically by resampling or simulation. We use bootstrap methods
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in the empirical application. Resampling methods are convenient and save
us from having to estimate complicated analytical formulas for asymptotic
variances and covariances. Consistency of a bootstrap approximation to the
distributions of our reweighting estimators follows from Hall and Horowitz
(1996), Hahn (1996), and Brown and Newey (2002) theorems for GMM,
and application of the delta method for the bootstrap (see, e.g., Theorem
23.5 in van der Vaart 1998).

There are many ways to bootstrap. We use the empirical likelihood (EL)
bootstrap proposed by Brown and Newey (2002) for GMM estimators. This
method resamples from the empirical likelihood distribution (ELD) that
imposes the moment conditions in the sample, instead of from the empirical
distribution (ED). Let E[¢(R, )] = 0 be the moment conditions that define
the conditional LATEs, weighting functions, and effects of interest, where 6
includes all unknown parameters. The ELD (7, ..., 7 ,,) is the solution to:

n

n n
max Zln(ni), s.t. ZJ‘[,’g(R,‘, 0) =0, Zni =1,m7;>0
Ty Ty
i i=1 i=1

i=1

where @ is the EL or another consistent estimator of 8.8 ELD therefore is the
closest to ED in terms of Kullback-Leibler distance. ELD and ED are equal
in exactly identified models, but they generally differ under overidentifica-
tion. In practice, the difference between the EL bootstrap and the standard
nonparametric bootstrap is that the former resamples from the data with
probabilities 7 ; instead of 1/ .

Consistent estimation of CATE requires that we condition on the
unobservable events {A*(x) = A¥(x)}. In finite samples, we never have
A%(x) = A¥(x). We therefore use cell-by-cell overidentification tests to find
compatible values of x. Instead of discarding cells that fail the identification
test for some small significance level, we reweight estimates of conditional
LATE by a decreasing function of the overidentification test statistic. Letting
J(x) denote the overidentification test statistic for the instruments z and w
in the cell x = x, the resulting estimator of CATE is:

APV = E,[A*Y(x)@care(X)],
@care(x) = exp{—J(x)/an(x)}/Eylexp{—J(x)/a,(x)}]  (15)
where A»¥(x) is the GMM estimate in cell x = x that uses z and w as

instruments or any other moment estimator (e.g., 2SLS), and a,(x) is a
sequence such that a,(x) — oo and a,(x) = o(n), for x € &.

8 In the empirical application, we use the EL estimator of # to obtain the ELD.

Downloaded from Cambridge Books Online by IP 128.197.82.105 on Wed Dec 17 22:16:33 GMT 2014.
http://dx.doi.org/10.1017/CB09781139060035.012
Cambridge Books Online © Cambridge University Press, 2014




ExtrapoLATE-ing 421

The sequences a,(x) guarantee the consistency of the reweighting estima-
tor (15) for CATE. These sequences play a role similar to the penalty terms
used in Andrews (1999) to obtain consistent model-selection procedures
for GMM estimators. To formally establish consistency, it is convenient to
introduce additional notation. Let Xy = {x € X : A%*(x) = AV (x)} denote
the set of covariate values that satisfy the compatibility condition, with
complement Xy = {x € X : A*(x) # AV (x)}.

Theorem 6 (CATE Consistency): Let z and w be two instruments that
satisfy Assumption 2. Let a,(x) be sequences such that a,(x) — oo and
ay(x) = o(n) for all x € X. Assume that A»V(x) —p A*(x) and ] (x) =
O,(1) for all x € Xy, and A»Y(x) = O,(1) and J(x) = Oy(n) for all
x € Xy. Under Assumptions 4 and 5, P{x € Xy} > 0, and E[|v|] < oo:

AP = B [A*Y ()dcare(x)] =, AN = E[A*(x) | x € X

where ¢t (x) = exp{—] (x)/an(x)}/Ey[exp{—T (x)/an(x)}].

Proof: We write:

K
AP = 3" peA" (xi)deare () and
k=1

K K
APV =) peA (i) U € Xo}/ > prlix € ).
P P

By the Law of Large Numbers, py —, pr. For x; € A, APY (x1) -5
A*(xi), J(xx) = Op(1) and exp{—J (xx)/an(xx)} = 1. For x € Xo,
APY(x) = Op(1),  J(xx) = Op(n) and exp{—] (xx)/an(xx)} — O.
Hence, A»" (x) exp{—J (xi)/an(x1)} = p A%(x)1{x; € Xp}.

The result follows by the Slutsky Theorem, noting that:

K
E,[exp{~J(x)/a,(x)}] = ) prexpl=J(xe)/an(x0))
k=1
K
—p Z pil{x; € X} = P{x € Ay} > 0.
k=1 -

For both x € X, and x € A}, the convergence-rate assumptions for
A»Y(x)and J(x) in the statement of the theorem are satisfied by GMM-type
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estimators under standard regularity conditions for asymptotic normality
(see, e.g., Assumption 1 in Andrews 1999).

Although consistency of our CATE estimator is relatively easy to show,
inference is challenging. As with the reweighting estimators in Theorem 5,
the limiting distribution of A»" depends on the limiting distributions of the
weighting functions. Here, however, the limiting distribution of @¢ a7g(x)
converges at nonstandard rates, complicating the analysis. Slow convergence
in this case is a by-product of the need for a term like a,(x) in the weighting
function to ensure consistency and the fact that, in practice, we choose
this to grow more slowly than /7. ° Moreover, convergence to the limiting
distribution cannot be uniform in the data-generating process because
the CATE estimator implicitly conditions on a pretest (see, e.g., Leeb and
Potscher 2008). In a related setting, Andrews and Guggenberger (2009)
addressed a pretest problem using subsampling. Subsampling is imprecise
in our application due to small cell sizes. We have no easy solution in this case
other than to caution that convergence to the relevant limiting distribution
may be slow and to conjecture the pointwise validity of bootstrap methods.

A second and less serious inference complication arises from the fact
that the EL bootstrap imposes CEI at all covariate values, while the pur-
pose of CATE is to allow deviations from CEI. In the empirical application,
therefore, we supplement the standard errors obtained from the EL boot-
strap with standard errors obtained by a nonparametric bootstrap that does
not impose the compatibility condition on the bootstrap data generating
process.

5.0 Results

Our empirical exploration of covariate-reweighting focuses on a categorical
representation of second-child age and mother’s schooling. As shown in
Table 2, these covariates are strongly related to compliance probabilities.
A younger second child in the household reduces the likelihood of a third
birth, if only because less time has passed since the birth of the second.
Education matters because college-educated women are less likely to choose
to have a third child than less-educated women. Twins compliers therefore
are relatively more likely to have a young second-born and to be highly
educated. Sex-composition compliers, by contrast, are relatively unlikely

® Asin Crump, Hotz, Imbens, and Mitnik (2009), we could simplify here by doing inference
conditional on the sample. We do not take this route because we are interested in predictive
population inference as opposed to sample-specific causal inference.
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to be college graduates or to have a third child soon after the birth of the
second. Labor supply effects also are likely to vary with second-child age and
mother’s schooling. The birth of a third child has little effect on the work
behavior of a woman with a young second-born who is at home anyway.
Likewise, a relatively educated woman should be affected less by the birth of
a child than other women because for women earning higher wages, it makes
sense to pay for child care in the market. Differences in twins and same-sex
complier subpopulations therefore might account for the fact that twins
instruments generate a smaller effect of childbearing than sex-composition
instruments.

In an effort to see whether this conjecture is substantiated empirically,
Table 3 reports IV estimates in each of 12 cells defined by second-child age
and mother’s schooling. The age categories are less than or equal to 4 years,
greater than 4 and less than or equal to 8, and greater than 8. The schooling
categories are high school dropout, high school graduate, some college,
and college graduate. The first column of the table reports the probability
mass function in the contingency table generated by these categories. The
next two columns describe the distribution of covariates for the treated and
untreated, relative to the entire population. Women who do and do not
have a third child are clearly very different.

Cell-specific IV estimates are fairly imprecise, as shown in Columns 4 and
6 of Table 3. From these noisy cell-by-cell estimates alone, it is difficult to see
how the causal effect of a third birth varies with individual characteristics. A
clearer pattern emerges, however, once the cells are “weighted-up,” a point
we return to in Table 4.

Table 3 also reports estimates of:

the weighting function for twins compliers (Column 5) and same-sex com-
pliers (Column 7). This is the ratio of the relevant first stage in the cell to
the overall first stage of Equation (6). The distribution of twins and same-
sex compliers over cells clearly is different from the cell distribution in the
random sample. As suggested by the summary comparisons in Table 2, the
complier distributions for the two instruments also are very different from
one another. Specifically, twins compliers are much more likely to have a
young second-born child, while few same-sex compliers are in this group.
Twins compliers also are relatively educated, while the schooling gradient
in compliance probabilities for same-sex is less pronounced.
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Table 3. LATE Decompositions

IV Estimates and Weighting Functions

Covariate Covariate pmf Twins Instrument Same-Sex Instrument Both Instruments

P(X) P(X|ID=1)/P(X) P(X|D=0)/P(X) A*(X) oi(X) A"(X) wx(X) A>"(X) J-pvalue wcarp(X)

Age Education (1) (2) (3) (4) (5) (6) (7) (8) 9) (10)
A. Weeks worked

[0,4] HSdrop 0.06 0.65 1.24 —4.63 1.23 —1.26 0.77 —4.35 0.55 1.45
(1.84) (5.49) (1.60)

HS grad 0.15 0.46 1.36 —4.24 1.36 —2.66 0.59 —4.17 0.76 1.99
(1.15) (5.00) (1.04)

Some col 0.06 0.46 1.36 —3.79 1.36 —4.93 0.66 —3.86 0.87 2.14
(1.69) (6.86) (1.59)

Col grad 0.05 0.41 1.40 —5.36 1.40 —2.21 0.54 —5.24 0.75 1.95
(1.99) (9.77) (1.84)

(4.8] HSdrop 0.07 1.29 0.81 —4.43 0.81 —9.35 1.20 —6.29 0.25 0.47
(2.65) (3.36) (2.06)

HS grad 0.17 0.93 1.05 —3.07 1.05 —5.59 1.38 —3.94 0.33 0.79
(1.52) (2.09) (1.23)

Some col 0.07 0.91 1.06 —1.02 1.06 —7.39 1.13 —2.59 0.16 0.21
(2.22) (3.91) (1.93)

Colgrad 0.04 0.89 1.08 —1.52 1.08 —2.88 0.94 —1.72 0.83 2.09
(2.63) (5.97) (2.32)

(8+] HSdrop 0.10 1.79 0.47 0.29 0.47 —12.04 0.80 —5.53 0.06 0.04
(4.47) (4.74) (3.24)

HSgrad 0.17 1.40 0.73 —2.41 0.73 —9.76 1.30 —6.15 0.02 0.01
(2.22) (2.25) (1.60)

Some col  0.06 1.33 0.78 —4.40 0.78 —4.72 1.10 —4.52 0.96 2.20
(3.55) (4.54) (2.82)

Col grad 0.02 1.15 0.90 6.78 0.90 17.90 1.12 9.48 0.28 0.44
(4.99) (9.01) (4.17)
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B. Employment

[0,4] HSdrop 0.06 0.65 1.24 —0.154 123 —0.035 0.77 —0.143 043 115
(0.048) (0.143) (0.043)

HSgrad 0.15 0.46 1.36 —0.081 136 —0.123 0.59 —0.083 0.73  2.14
(0.027) (0.117) (0.026)

Some col  0.06 0.46 1.36 —0.089 136 —0.035 0.66 —0.086 074  2.15
(0.038) (0.157) (0.037)

Colgrad  0.05 0.41 1.40 —0.130 140 —0.023 0.54 —0.125 0.65  1.90
(0.047) (0.231) (0.046)

(4.8] HSdrop 0.07 1.29 0.81 —0.140 0.81 —0.150 1.20 —0.144 0.92  2.42
(0.064) (0.082) (0.051)

HSgrad 0.17 0.93 1.05 —0.081 1.05 —0.156 1.38 —0.108 0.19  0.39
(0.034) (0.046) (0.028)

Some col  0.07 0.91 1.06 —0.034 1.06 —0.161 1.3 —0.066 0.19 034
(0.048) (0.084) (0.042)

Colgrad  0.04 0.89 1.08 0.075 1.08 —0202 094 0.028 006 0.3
(0.061) (0.134) (0.054)

(84] HSdrop 0.10 1.79 0.47 0.047 047 —0.188 0.80 —0.064 0.11  0.13
(0.101) (0.106) (0.073)

HSgrad 0.17 1.40 0.73 —0.066 0.73 —0.167 130 —0.117 0.13  0.20
(0.046) (0.047) (0.033)

Some col  0.06 1.33 0.78 —0.110 0.78 —0.023 110 —0.075 0.47  1.32
(0.071) (0.092) (0.058)

Colgrad  0.02 1.15 0.90 0.034 090 0224 112 0082 033  0.68
(0.098) (0.171) (0.081)

Note: Standard errors for estimates in parentheses. The p-value for the joint J-statistic for all covariate values is 0.25 for weeks and 0.29 for LFP. The sample size is
394,840.
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Table 4. Reweighting LATE

Weeks Worked Employment
Population Instrument Weighting Estimate |t| for Diff Estimate t| for Diff
Represented (effect) Used for A(X) Function w(X) (1) (2) 3) (4)
Twins compliers twins twins —3.15 —0.075
(LATE) (0.62) 1.32 (0.014) 0.93
same-sex —2.71 —0.068
(0.81) (0.018)
Same-sex compliers same-sex same-sex —6.30 —0.131
(LATE) (1.15) 1.44 (0.026) 0.77
twins —5.08 —0.115
(1.58) (0.037)
Everyone twins 1 —2.84 —0.067
(ATE) (0.76) 1.99 (0.017) 1.58
same-sex —5.88 —0.123
(1.35) (0.031)
Treated twins P(X|D=1)/P(X) —2.38 —0.056
(TOT) (1.07) 2.85 (0.024) 2.14
same-sex —7.08 —0.136
(1.28) (0.029)
Nontreated twins P(X|D=0)/P(X) —3.15 —0.075
(TNT) (0.62) 1.15 (0.014) 1.02
same-sex —5.08 —0.115
(1.58) (0.037)
Compatible twins exp[—12*J (X)/n(X)] —3.80 —0.099
(CATE) (0.80) 0.18 (0.018) 0.17
[0.64] [0.09] [0.015] [0.08]
same-sex —3.66 —0.095
(1.01) (0.023)
[0.96] [0.021]
twins, same-sex —4.00 —0.101
(0.77) (0.017)
[0.62] [0.014]

Note: Standard errors for estimates in parentheses. T-statistics are for the difference between same-sex and twins estimates. Standard errors and t-statistics obtained by Brown and Newey
(2002) GMM bootstrap with 1,000 repetitions. Standard errors and t-statistics reported in brackets were obtained by nonparametric bootstrap with 1,000 repetitions. The sample size is
394,840.
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Table 4 reports LATE-reweighted estimates combining conditional LATEs
and weighting functions for twins compliers and same-sex compliers. The
first and fifth row weight conditional LATE estimates to produce an overall
unconditional effect using the sample analog of Equation (4). For example,
in the first row, cell-by-cell twins estimates are weighted across cells using
the probability of twins compliance in each cell. This is close to the Wald
estimate using twins instruments in Table 1; compare —3.15 to —3.28 and
—0.075 to —0.076. Likewise, the marginalized same-sex estimates using
the probability of same-sex compliance are —6.30 for weeks worked and
—0.132 for employment, close to the corresponding Wald estimates. The
fact that weighted conditional LATE comes out close to Wald estimates that
ignore covariates suggests that covariates are unnecessary for identification
of LATE, although they are helpful for extrapolation.

Reweighting conditional same-sex estimates using twins weights brings
these estimates remarkably close to the marginalized twins estimates. Com-
pare, for example, the estimate of the effect on weeks worked of —3.15
using twins in each cell to the estimate of —2.71 using same-sex instru-
ments in each cell. Reweighting conditional twins and same-sex estimates
using same-sex weights also produces a good match. In this case, the esti-
mate of —6.30 using same-sex instruments in each cell can be compared
to an estimate of —5.08 using twins instruments in each cell in the fifth
and seventh rows of Table 4. In other words, differing LATE estimates
generated using twins and same-sex instruments can be reconciled by
reweighting covariate-specific estimates using a set of common compliance
weights.

This reconciliation is an encouraging finding which suggests that external
validity is an attainable goal in this context. On the other hand, Table 4
also shows that ATE and TOT using twins and same-sex instruments are
not well matched. This is disappointing because, by the same argument
that reconciles twins and same-sex estimates of LATE, we should be able
to generate similar estimates of ATE and TOT using either instrument to
construct cell-specific IV estimates. At the same time, the match for TNT
is not as bad as that for ATE and TOT. The fact that some parameters can
be matched more easily across instruments than others suggests that a few
poorly matched cells are what drives the cross-instrument imbalance in
estimates of ATE and TOT - that is, a handful of cells generate estimates
that depend on the instrument.

CATE, shown at the bottom of Table 4, solves this problem, and produces
a good match for the average treatment effect in compatible cells by down-
weighting cells where CEI is most at odds with the data. CATE estimates
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are —3.80 to —3.66 for effects on weeks worked and —0.099 to —0.095
for effects on employment. The estimates of CATE reported in Table 4 set
a,(x) = logn(x)/K, where n(x) is the number of individuals with x = x
and K is the number of covariate cells. This relatively slow normalization
works well in our application because the cell-level overidentification test
is never very large. Still, by applying the most weight to cells in which CEI
appears to be satisfied, CATE generates remarkably similar estimates of the
population ATE, whether the underlying cell-level IV estimates use twins
or same-sex instruments.

The match generated by CATE is for a subpopulation that need not be
representative of the entire population of interest. Figure 1 describes the
compatible subpopulation by plotting the weighting functions used by dif-
ferent estimators. CATE essentially discards the two low-education cells for
women with an older second-born, with weights something like the his-
togram for twins compliers. Because twins instruments induce one-sided
noncompliance, the group of twins compliers is the same as the nontreated
population (Angrist, Lavy, and Schlosser 2010). Thus, the compatible sub-
population is similar to the population of nontreated women, although
not exactly the same (Table 3 shows that reweighting to estimate effects
on TNT is not very successful). Still, like the nontreated population, the
subpopulation for which IV estimates of the effects of childbearing appear
to have strong predictive value consists mainly of mothers who have a
young second-born child and are somewhat more likely to have gone to
college.

6.0 Summary and Directions for Further Work

In the LATE framework, differences in IV estimates need not signal a failure
of the exclusion restriction. Rather, these differences may be attributable
to differences in the type of people who are affected by the underlying
experiments implicit in any IV identification strategy. At the same time, we
often hope to use one set of IV estimates to predict causal effects in settings
other than the one generating the estimates; the question of external validity
turns on our ability to do this reliably.

Here, we begin with the idea that differences in IV estimates of LATE for
the same causal relation might be driven by a combination of treatment-
effect heterogeneity across covariate cells and differences in covariate
distributions for instrument-specific—compliant subpopulations. Limit-
ing heterogeneity across cells and instruments to be a function solely of
observed characteristics, we can reweight one set of IV estimates to generate
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Figure 1. The distribution of compliers and related subpopulations across covariate cells: Y1 = weeks worked, Y2 = employment.
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effects for compliant subpopulations other than the one defined by the
instrument at hand. This approach turns out to do a good job of explaining
why twins instruments produce smaller estimates of the labor supply con-
sequences of childbearing than sex-composition instruments in the Angrist
and Evans (1998) dataset.

The CEI assumption that lies at the heart of our approach rules out Roy
(1951)—type selection into treatment on the basis of outcome gains. “No
Roy selection” is unlikely to be compelling in many settings; gain-driven
selection motivates a wide range of theoretical discussions of causal effects
in labor economics and other applied fields (see, e.g., Rosen and Willis 1979
for a Roy model of schooling). At the same time, it seems hard to argue with
the idea that any analysis of treatment-effect heterogeneity should begin
with effect variation that is associated with the characteristics we observe.

In an effort to bridge the gap between heterogeneity associated with
observed characteristics and latent gains, we also have explored an approach
that allows some covariate values to satisfy our CEI assumption, while
others — perhaps only a few — do not. This idea seems to work well in
our application, generating, for example, remarkably similar estimates of
population ATE using twins and same-sex instruments when the sample
is reweighted toward cells that appear to satisfy CEIL. At the same time,
we acknowledge that brazen pretesting induces a complicated limiting dis-
tribution that we have not yet succeeded in characterizing and that may
not always be useful for applied work. The development of robust and
convenient inference procedures for CATE-type estimators seems a natural
direction for further work on the external validity of IV estimates.

APPENDIX A: CEI IN AN ILLUSTRATIVE LDV MODEL

Because the text illustration of CEI uses a linear additive structure for poten-
tial outcomes, this example shows how we might have CEI in a nonadditive
model with nonrandom selection into treatment and a Bernoulli outcome.
To simplify, we drop covariates.

Suppose that treatment is determined by:

p=1[h(1—-2z)+hz>n], n]z~U0,1/2), 0<hy, <h <1/2
so that potential assignments are:

p; = 1[h, > n]and ] = 1[h; > n].
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The associated model for potential outcomes also has the latent-index
representation:

vi=1n+g;>vjl, vjlnz~U(01), 0=<g; <1/2, je{o,1}.
Iterating expectations, we can show that E[y,] = gy + 1/4 and

1k} + (B3 — )Pz = 1]

E =1] = — .
o o= = g0t S o = ho)Plz = 1]

Selection bias arises because the conditional mean of vy is a function of b.
However, CEI holds because:

A* = E[y, — v | ], pj] = E[E[y, — o | D], D, 0, Z] | DT, D§] = g1 — go-
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