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Abstract

This paper considers the finite sample distribution of the 2SLS estimator and derives bounds on its

exact bias in the presence of weak and/or many instruments. We then contrast the behavior of the

exact bias expressions and the asymptotic expansions currently popular in the literature, including

a consideration of the no-moment problem exhibited by many Nagar-type estimators. After deriving

a finite sample unbiased k-class estimator, we introduce a double k-class estimator based on Nagar

(1962) that dominates k-class estimators (including 2SLS), especially in the cases of weak and/or

many instruments. We demonstrate these properties in Monte Carlo simulations showing that our

preferred estimators outperforms Fuller (1977) estimators in terms of mean bias and MSE.
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1. Introduction

The failure of standard first-order asymptotic theory to provide a reliable guide to estimation
in the widely used simultaneous equations model in the presence of weak and/or many
instruments has led to renewed interest in the finite sample properties of estimators for these
models. Weak instruments refers to the situation where in finite samples the endogenous
regressor is only weakly correlated to the instrument set, while the many instruments case
refers to situations where the dimensionality of the instrument set is large relative to the
sample size.
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Faced with the failure of the traditional asymptotic framework in these models, econometri-
cians have turned their attention to alternative asymptotic frameworks such as higher-order
expansions (Hahn, Hausman and Kuersteiner, 2004), local-to-zero asymptotics (Staiger and
Stock, 1997; Poskitt and Skeels, 2006) and Bekker asymptotics (Bekker, 1994; Hansen,
Hausman and Newey, 2008). While all these methods have provided valuable insights, we
are nevertheless faced with uncertainty as to how successful these approximations can be
in the difficult cases of to weak and/or many instruments. As with all approximations, we
face the choice of how many expansion terms to include before we can be confident in the
accuracy of estimations.

Exact finite sample results on the distribution of instrumental variable estimators (IV) have
been known for many years but have largely remained outside the grasp of practitioners
due to the lack of computational tools for the evaluation of the complicated functions on
which they depend in practical time (Anderson and Sawa, 1979; Nagar, 1959; Richardson,
1968; Richardson and Wu, 1971; Sawa, 1972; Phillips, 1980, 1983). Recent computational
advances have removed this constraint, and we are now able to employ the exact finite
sample methodology to better understand the statistical behavior of these models in the
case of weak and/or many instruments. Still, Hirano and Porter (forthcoming) show that
a finite sample unbiased estimate is unattainable without imposing further assumptions on
the structure of the problem. An example of this, Andrews and Armstrong (2015) develop
an unbiased estimator when the sign of the first stage is known, although it appears the
estimator does not do as well as Fuller (1977) but there is no absolute ranking.

In this paper, we approach the problem of estimating simultaneous equations models from
the perspective of the exact finite sample properties of these estimators. Furthermore,
we consider broad classes of estimators such as the k-class estimators and evaluate their
promises and limitations as methods to correctly provide finite sample inference on the
structural parameters in simultaneous equations.

In Section 2, we start by considering the exact finite sample bias of the 2SLS estimator and
analyze its dependence on the goodness of fit as measured by the concentration parameter in
the first stage regression and the number of instruments employed. We show that the finite
sample bias is strictly increasing in the number of instruments K and is always positive for
K > 1. The bias decreases exponentially with the concentration parameter and is negligible
for values of the concentration parameter greater than 60. Furthermore, we show that the
maximum finite sample bias for weak and/or many instruments cannot exceed the ratio of
the covariance between the first stage and the structural equation and the variance of the
first stage.
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We also derive the exact finite sample unbiased estimator as a member of the k-class of
IV estimators. Additionally, we show that by employing the k-class we face a fundamental
trade-off. Estimators which aim to limit the finite sample bias are also estimators which
lack finite sample moments and are thus infeasible in practice. We show using a Monte
Carlo design that for severe cases of many and weak instruments there is no member of the
k-class that also has moments which can adequately minimize the effect of finite sample
bias.

In order to address this problem we consider a modification of the k-class, originally due to
Nagar (1962), which allows for distinct parameters (k1, k2) to enter the estimating equations.
We use a Monte Carlo design to show that this class of estimator is rich enough to allow
for estimators with finite sample moments which are also unbiased and have very attractive
MSE properties. We derive the optimal choice of parameters for a set of double k-class
estimators based on 2SLS.

In Section 3, we resurrect the “double k-class” of estimators and extend Nagar (1962) to
consider how finite sample bias and MSE are affected by choice of the double k-class param-
eters (k1, k2) in the presence of weak and/or many instruments. Section 4 derives double
k-class estimators with certain optimality properties (e.g. in terms of their finite sample
bias and MSE) in such circumstances. Section 5 presents Monte Carlo results contrasting
the performance of our preferred double k-class estimators with 2SLS and Fuller. We find
that our preferred bias-minimizing double k-class estimator outperforms 2SLS and Fuller’s
minimum-bias estimator (“Fuller1”) even in the presence of weak and/or many instruments
and that our preferred MSE-minimizing double k-class estimator generally outperforms
Fuller’s minimum-MSE estimator (“Fuller4”) in MSE, especially in many-instrument set-
tings. Section 6 concludes.

2. Finite Sample Behavior of k-class Estimators

We consider the following specification for a system of equations with two endogenous
variables y1 and y2:

(2.1)
y1 = βy2 + ε = βzπ + w

y2 = zπ + v,

where w = βv + ε. We let y1 and y2 be N × 1 vectors of observations on the endoge-
nous variables and denote by z the N × K matrix of observations on the predetermined
(or exogenous) variables. The first equation is the (structural) equation of interest which
measures the association between the two endogenous variables while the second equation
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is more commonly referred to as “the first stage regression”. The number of instruments is
dim(π) = K.

This system of equations admits the reduced form:

(2.2) (y1 y2) = z(βπ π) + (w v),

where the rows of (w v) are independently and identically distributed as N(0, Ω) for

(2.3) Ω =

(
σww σwv

σwv σvv

)

.

Furthermore, we denote the variance of the error term in the structural equation by σεε and
the covariance between the structural equation for y1 and the reduced form equation for y2

by σεv.

An important statistic for the finite sample behavior of IV estimators is the concentration
parameter μ2, where

(2.4) μ2 =
π′z′zπ

σvv
.

The concentration parameter is a measure of non-centrality and will play a quintessential
role in the bias expressions for IV estimators we shall encounter throughout this paper.
It is occasionally informative to impose the normalization σεε = σvv = 1. Using this
normalization, a simple approximation of μ2 is given by:

(2.5) μ2 ≈
E(π̂′z′zπ̂)

E(v̂′v̂)/(N − K)
=

(N − K)R2

1 − R2
,

where R2 is the (theoretical) first stage coefficient of determination. Note that there is a
close connection between the expression above and the first stage F -statistic implying that
μ2 ≈ KF (Hansen, Hausman and Newey, 2008).

Before proceeding we need to define the confluent hypergeometric function 1F1 given by the
expansion:

(2.6) 1F1(a; b; c) =
∞∑

j=1

(a)j

(b)j

cj

j!
.

This function is one of the independent solutions to the differential equation cd2q/dc2 +(b−
c)dq/dc− ac = 0 and is commonly used to characterize the non-central χ2 distribution. As
we shall see, it emerges in the expression for the bias of the 2SLS estimator below. Note
that the confluent hypergeometric function is defined in terms of Pochammer’s symbol (a)j
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corresponding to the ascending factorial (Abadir, 1999):

(2.7) (a)j =
j−1∏

k=0

(a + k) = a(a + 1)(a + 2)...(a + j − 1) for (a)0 = 1.

The series expansion of the confluent hypergeometric function 1F1(a; b; c) converges for all
finite c and a > 0 and b > 0 (Muller, 2001). While analytically attractive, its computation
presents a number of numerical challenges for some regions of the parameter space (a, b, c).
In particular, the efficient computation of hypergeometric functions has to be addressed
with care (Koev and Edelman, 2006).

If we define the commonly used projection operators Pz = z′(z′z)−1z′ and Qz = I − Pz we
can derive the 2SLS estimator of β as:

(2.8) β̂2SLS =
y′2Pzy1

y′2Pzy2
.

Recently, econometricians have devoted considerable attention to the behavior of this esti-
mator in the presence of weak and/or many instruments (Nelson and Startz, 1990; Staiger
and Stock, 1997; Hahn and Hausman, 2002a; Hahn, Hausman and Kuersteiner, 2004;
Hansen, Hausman and Newey, 2008; Hirano and Porter, forthcoming).

To better understand the issues involved let us consider the exact finite sample bias of the
2SLS estimator, as derived by Richardson (1968) and Richardson and Wu (1971):

(2.9) E(β̂2SLS) = β −

(

β −
σwv

σvv

)

exp

(

−
μ2

2

)

1F1

(
K

2
− 1;

K

2
;
μ2

2

)

.

Equivalent expressions are also found in Chao and Swanson (2003) and Ullah (2004). Note
in particular that since σwv = βσvv + σεv, we have

(2.10) E(β̂2SLS − β) =
σεv

σvv
exp

(

−
μ2

2

)

1F1

(
K

2
− 1;

K

2
;
μ2

2

)

.

The exact finite sample bias of 2SLS is linear in the correlation between the structural
equation and the first stage, σεv and nonlinear in the concentration parameter μ2 and the
number of instruments K. Let us now direct our attention to the non-linear part of the
bias expression which we shall denote by B(μ2,K) = exp(μ2/2)1F1(K/2 − 1; K/2; μ2/2).

In Figure 1 we plot the term B(μ2,K) for a range of parameters μ2 ∈ [0, 70] and K ∈
{1, 2, 3, 5, 15, 100} in order to illustrate the effect of weak instruments (low μ2) and many
instruments (high K) on the bias of the 2SLS estimator. Notice that the expression for B

does not depend on additional sampling information beyond μ2 and K. For all values of K

the bias term B goes to 0 for values of μ2 > 60. For low values of μ2 the weak instruments
bias is compounded in the presence of many instruments. The bias resulting from the use of
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many instruments is eliminated by high values of the concentration parameter. As Equation
2.4 shows, for a given sample size we obtain a high value of the concentration parameter
if the value of the first stage R2 is large. Many instruments can thus be safely used if the
first stage is strongly identified by those instruments.

Furthermore, notice that for any given value of the concentration parameter the bias is
increasing with the number of instruments, but nevertheless, it remains the case that the
bias term B is bounded and less than 1. For K > 1 the bias term B is always positive
and decreases monotonically with μ2. The just-identified case allows for both positive and
negative bias. In fact, it appears that for most cases with a low first stage R2 it is safer
to choose two weak instruments than a single one. The bias does however increase rapidly
as one adds further weak instruments. Recall however that the exact final sample bias for
2SLS is scaled by σεv

σvv
and thus the extent of the correlation between the first stage and the

structural equation, σεv plays a central role.

It is possible to derive the exact bias expression for the 2SLS estimator for the over-identified
case with K = 2. In this case we have

(2.11) E(β̂2SLS − β) =
σεv

σvv
exp

(

−
μ2

2

)

,

which shows that the bias decreases exponentially with the concentration parameter, thus
emphasizing the importance of the first stage fit. While no equally simple expression can be
derived for the just-identified case with K = 1, we can nevertheless obtain an approximation
for small values of μ2:

(2.12) E(β̂2SLS − β) =
σεv

σvv
exp

(

−
μ2

2

)(

μ2 −
μ4

6

)

+ O

(√
μ2

2

)5

The additional polynomial terms in the bias expression allow for both positive and negative
bias at different levels of the concentration parameter.

We can ask how big the bias due to weak and/or many instruments can be by looking at the
limits of the term B(μ2,K). The bias is strictly increasing in the number of instruments
K. Furthermore, we can derive the following limits:

(2.13) limμ2→0B(μ2,K) = limK→∞B(μ2,K) = 1.

This implies that the maximum finite sample bias for weak and/or many instruments cannot
exceed σεv/σvv. Hahn and Hausman (2002b) show that under no identification π = 0 the
bias of the OLS estimator is approximately equal to σεv/σvv. Thus, the weak instruments
bias of the 2SLS estimator cannot exceed the corresponding OLS bias.

Nagar (1959) derived a large N expansion of the bias in a fairly complicated fashion, while
a simpler derivation was given in Hahn and Hausman (2002b). In fact, the same second
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Figure 1. Finite Sample Bias Term B as a Function of the Concentration

Parameter μ2 for Different Numbers of Instruments K

order approximation to the bias can be directly obtained from the properties of the bias
term B(μ2,K) above. Let us consider a large μ2 approximation of B. Using expression
13.1.4 in Slater (1964) we have:

(2.14) B(μ2,K) = 2
Γ(K/2)

Γ(K/2 − 1)

(
1
μ2

)

+ O

(
μ2

2

)−2

.

But since Γ(K/2) = (K/2 − 1)Γ(K/2 − 1) we have

(2.15) B(μ2,K) =
K − 2

μ2
+ O

(
μ2

2

)−2

.
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Returning to the 2SLS bias expression we obtain:

(2.16) E(β̂2SLS − β) ≈
σεv

σvv

K − 2
μ2

=
σεv

σvv

(K − 2)(1 − R2)
(N − K)R2

,

where R2 corresponds to the R2 of the first stage regression. This expression is basically
the same as the approximate bias expression given in Hahn and Hausman (2002 a,b) and
which can be employed to derive a bias corrected estimator:

(2.17) βBC =
β̂2SLS − σwv

σvv
B(μ2,K)

1 − B(μ2,K)
.

In order to operationalize this estimator one would additionally require an estimate of the
concentration parameter μ2. Since in finite samples this estimator itself will be biased,
Hansen, Hausman and Newey (2008) suggest the unbiased estimator μ2

∗ = μ̂2 − K.

Alternatively, we can proceed from equation 2.10 and employ the approach of Hahn and
Hausman (2002b) by first noting that:

(2.18) σεv = E[
1

N − K

(
y′2Qz)(y1 − y2β)

]
.

Then we have,

(2.19) E(β2SLS) = β + E

[
N − K

y′2Qzy2

(
1

N − K
y′2Qzy1 −

1
N − K

y′2Qzy2β

)

B(μ2,K)

]

(2.20) E(β2SLS) = E

[

β +
y′2Qzy1

y′2Qzy2
B(μ2,K) − βB(μ2,K)

]

.

Hence we can solve for β as:

(2.21) βBC =
y′2Pzy1 − κy′2Qzy1

y′2Pzy2 − κy′2Qzy2
,

where

(2.22) κ = B(μ2,K)
y′2Pzy2

y′2Qzy2
= B(μ2,K)

μ2

N − K
= B(μ2,K)

R2

1 − R2
.

This estimator has zero finite sample bias by construction. Its actual sample performance
however will depend on the extent to which we can accurately determine the concentration
parameter in a given sample. The performance of this particular estimator was found
to be unreliable in simulations—it greatly outperformed all other estimators apart from
infrequent, extreme outliers. Still, it is worth noticing that the finite sample bias corrected
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estimator derived above is a member of the Nagar (1959) k-class family of estimators, which
generalizes the 2SLS estimator.5

Recent work has devoted significant attention to the behavior of k-class estimators. This
remarkable class of estimators includes many of the commonly used estimators for simulta-
neous equations. Thus, using the notation introduced above we obtain the k-class estimator
βkIV as:

(2.23) βkIV =
y′2Pzy1 − ky′2Qzy1

y′2Pzy2 − ky′2Qzy2
,

for different values of the parameter k. By setting k = −1 we obtain the OLS estimator
and k = 0 leads to the 2SLS estimator. But other leading estimators can be obtained as a
member of the k-class. Thus, LIML corresponds to the estimator with k = φ where φ is set
to the smallest eigenvalue of W ′PzW (W ′QzW )−1 for W = (y1, y2). The estimator of Fuller
(1977) corresponds to k = φ− 1/(N −K) while the Nagar (1959) estimator corresponds to
k = (K − 2)/(N − K).6

Sawa (1972) shows that for k ≤ 0 the k class estimators have moments while for k > 0 they
may not even have the first moment. Unfortunately, the estimators we are interested in
such as LIML, Nagar or the exact finite sample unbiased estimator derived above all have
values of k greater than 0. This explains why these estimators, while theoretically capable
of removing the 2SLS finite sample bias, will fail in practice to do so due to the lack of
moments, a problem often exacerbated by the presence of weak and/or many instruments.
As Fuller (1977) realized however there is a small region of values of k > 0 for which the
estimators do in fact have moments. An estimator using a value of k > 0 but less than the
values of k prescribed by LIML or Nagar will remove some of the finite sample bias while
retaining their moments. This explains the popularity of Fuller as a solution to the weak
and/or many instruments problem.

We do however face the question as to how useful k-class estimators ultimately are given
that we face a trade-off between bias reduction and the lack of moments. In order to gain

5Simulation results for this estimator are not reported in this paper, but are available from the authors. A

two-part estimator that uses the βBC when the bias-corrected concentration parameter estimate is positive

(μ̂2 − K > 0) and Fuller otherwise significantly outperforms other estimators in both mean bias and MSE.
6See Hahn, Hausman and Kuersteiner (2004) for a detailed review of the performance of these estimators

and their corresponding higher-order bias and MSE approximations. Note however that there is a minor

but sometimes confusing difference in the way these estimators are defined in the recent literature (including

this paper) relative to the notation employed in earlier research such as Nagar (1959) or Sawa (1972) who

define the k parameter as 1 + k for the values of k discussed above. Furthermore, it is important to keep in

mind that some of the values of k are fixed while others are stochastic, which leads to subtle differences in

the way we think about the properties of these estimators.
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further insight into this problem we introduce a simple Monte Carlo simulation design for
the model in equations 2.1. For a choice of values for the parameters N, K, ρ and R2

we simulate the model 50,000 times and estimate the structural parameter β using all the
k-class estimators for values of k between kl < 0 < ku. In practice we choose 300 values of
k on the line [kl, ku]. Thus each value of k on this line defines a k class estimator which
is then applied to all the simulated samples. Furthermore, for each value of k we compute
the mean bias, MSE, median bias and interquartile range of the estimates for β.

In order to better understand the finite sample behavior of the k-class estimators, we plot
the above summary statistics over a range of k-class estimators for three cases of interest
to us: a benign case that does not exhibit weak instruments and employs only a small
number of instruments, and two more pathological cases, one with weak instruments and
the other with weak and many instruments. The figures discussed below were generated
using a typical choice of parameter values, but it is easy to replicate the same qualitative
properties for other parameter values falling within the same three cases of interest. Thus,
in the simulations we use N = 250 and ρ = 0.9. The value of ρ is higher than what we
would expect in typical applications. As we have seen from our discussion of the bias earlier
on, ρ scales the bias upward. This allows us to better visualize the results in the figures
below without changing their interpretation. Lower values of ρ lead to very similar results.

Let us first consider the “normal” case which does not exhibit either weak or many in-
struments. To simulate this case we use K = 5 and choose a value of R2 = 0.3 for the
theoretical first stage fit. This leads to a value of the concentration parameter of μ2 = 105
which we deem to be large enough to avoid the weak instruments problem. We plot our
summary statistics for the k-class estimators for k ∈ [−0.1, 0.1] in Figure 2. We notice
that the mean bias and median bias are monotonically decreasing over the chosen range of
k. In particular, note that at the value of k = 0 that corresponds to the standard 2SLS
estimator, the estimator still has some small amount of finite sample bias of just under
5%. Notice however that if we choose a value of k = 0.012 which corresponds to the value
recommended by the Nagar estimator, the bias is eliminated altogether. Furthermore, the
MSE is small at values of k close to 0, but it increases as k deviates from 0 in either direc-
tion. The interquartile range increases with k over this range. Notice that for this range of
values of k all the estimators have moments. However, as we increase k away from 0 both
the mean bias and the MSE will diverge. This example shows that the range of values of
k > 0 for which the estimators have moments is nevertheless large enough to allow for the
unbiased estimation of the structural parameter β by employing a member of k-class such
as the Nagar estimator or the exact finite sample unbiased estimator derived above. As we
decrease k towards −1 which corresponds to the OLS estimator, both the mean bias and
MSE will continue to increase but remain bounded.
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Figure 2. Monte Carlo simulation of k-class estimators for the “normal”

case with a high value of the concentration parameter and K = 5 instruments

Let us now turn our attention to the weak (but not many) instruments case. To simulate
this case we use K = 5 and choose a value of R2 = 0.1 for the theoretical first stage fit.
This leads to a value of the concentration parameter of μ2 = 27.2 which we deem to be
small enough to lead to the weak instruments problem. We plot our summary statistics for
the k-class estimators for k ∈ [−0.1, 0.1] in Figure 3. The 2SLS estimator at k = 0 now has
substantial finite sample bias of about 15%. Furthermore, perhaps the most striking aspect
of this figure is that the estimators lose moments for values of k > 0. As k increases the
first moment becomes unstable (hence the oscillations visible in the numerical simulations)
and eventually diverges. Similarly, the MSE explodes for the value of k used by the Nagar
estimator. Notice however that if we were to choose a value of k less than that prescribed by
the Nagar estimator it would still be possible to eliminate most of the finite sample bias of
2SLS. The Fuller estimator does in fact choose such a value of k > 0 allowing the estimator
to have moments. This is the type of situation for which the Fuller estimator performs
very well. Notice however that the interquartile range increases sharply with values of k,
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Figure 3. Monte Carlo simulation of k-class estimators for the weak-

instruments case with a low value of the concentration parameter and K = 5

instruments

which is confirmed in simulations by the fact that the Fuller estimator exhibits a fairly wide
distribution relative to the 2SLS estimator.

Finally, let us focus our attention on the weak and many instruments case. To simulate this
case we use K = 30 and choose a value of R2 = 0.1 for the theoretical first stage fit. This
leads to a value of the concentration parameter of μ2 = 27.2 which we deem to be small
enough to lead to the weak instruments problem. The resulting finite sample problem is
amplified by the presence of a large number of instruments. We plot our summary statistics
for the k-class estimators for k ∈ [−0.1, 0.15] in Figure 4. The 2SLS estimator at k = 0 now
has very substantial finite sample bias of at least 45%. As we increase k above 0 the bias
decreases but very soon, at value of k of about 0.06 the estimators loose moments. Both
the first and second moments diverge rapidly and the interquartile range explodes too. The
value of k recommended by the Nagar estimator which would be required to eliminate the
bias altogether is well within the “no moments” range of values of k and thus this estimator
is no help. Furthermore, notice that an estimator such as Fuller which does have moments
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Figure 4. Monte Carlo simulation of k-class estimators for the many-

instruments case with a low value of the concentration parameter and K = 30

instruments

cannot remove the bias since the range of values of k for which such a k-class estimator
retains moments still corresponds to a bias of at least 30%. There is thus no range of values
of k for which a k-class estimator has moments while also successfully removing the bias.

These results, while purely computational in nature, reveal a serious limitation of k-class
estimators. Values of the parameters k which would be required to eliminate the finite
sample bias due to many weak instruments lie outside the range of values for which this
class of estimators has moments. Thus, unfortunately, no member of the k-class can achieve
the dual goal of removing bias while maintaining moments.

This is a serious concern that prompts us to investigate alternatives to the k-class of esti-
mators as a solution to the weak and many instruments problem. In the next section we
explore a modification of the k-class due to Nagar (1972) as a solution to the finite sample
unbiased estimation of the structural parameters in a system of simultaneous equations.
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3. Finite Sample Bias Correction in the Double k-class

In the previous section we have uncovered a fundamental problem with the k-class of esti-
mators for simultaneous equations. The use of a single parameter k to adjust for the finite
sample bias in the weak and/or many instruments case is too restrictive and leads to esti-
mators with no moments. To illustrate, consider the 2SLS case with k = 0, by construction
the estimator has moments but also substantial finite sample bias. On the other hand,
although the Nagar estimator is second-order unbiased (through an appropriate choice of
k = (K − 2)/(N − K)), for the case where π = 0, it is easy to see that the denominator of
the expression for the estimator will also equal 0 in expectation since

(3.1) E

[

y′2Pzy2 −
K − 2
N − K

(y′2Qzy2)

]

= (K − 2)σvv −
K − 2
N − K

(N − K)σvv = 0.

Intuitively, the k-class is too restrictive since the same parameter k enters both sides of the
estimating equations. Manipulating this one parameter we cannot achieve the two goals of
reducing bias and estimators with finite sample moments.

In a now largely forgotten contribution, Nagar (1962) suggested a minor change to the
estimating equations of IV estimators by allowing for two distinct values of k to enter the
expression for the k-class IV estimators:

(3.2) β2kIV (k1, k2) =
y′2Pzy1 − k2y

′
2Qzy1

y′2Pzy2 − k1y′2Qzy2
.

We denote the resulting class of estimators the double k-class indexed by (k1, k2). Thus the
case of k = k1 = k2 becomes a special case on which we hope to improve upon by choosing
different values of k1 and k2.

We can immediately rewrite Equation 3.2 as,

(3.3) β2kIV (k1, k2) = βkIV (k1) + (k1 − k2)
y′2Qzy1

y′2Pzy2 − k1y′2Qzy2
,

where βkIV (k1) is the k-class IV estimator with a value of k = k1. For any given k-class
estimator with k = k1 we can construct a corresponding double k-class estimator by moving
k2 away from k1 by some fixed amount. Intuitively, we can see from Equation 3.3 that for
k1 6= k2 the additional term on the right may potentially offset the finite sample of the
k-class estimator on which it is based.

The double k-class of IV estimators has received very limited attention over the years
(Nagar, 1962; Srivastava, Agnihotri and Dwivedi, 1980; Dwividi and Srivastava, 1984; Gao
and Lahiri, 2002) and to our knowledge has never been considered as an option for the
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estimation of systems of equations with weak and/or many instruments. The double k-
class is also a generalization of a now-forgotten class of estimators proposed by Theil (1958)
and called the h-class, and which appears to correspond to the case of k1 = h2 and k2 = h

for a real valued parameter h.

We first wish to evaluate the finite sample performance of double k-class estimators using
2SLS as the benchmark, leaving the discussion of the fully general case for future research.
Thus we will look at two particular subsets of the double k-class,

(3.4) β2kIV (Δ, 0) =
y′2Pzy1

y′2Pzy2 − Δy′2Qzy2
= βkIV (Δ) + Δ

y′2Qzy1

y′2Pzy2 − Δy′2Qzy2
.

and

(3.5) β2kIV (0, Δ) =
y′2Pzy1 − Δy′2Qzy1

y′2Pzy2
= β2SLS − Δ

y′2Qzy1

y′2Pzy2
.

We will employ Monte Carlo simulations to show that both of these modifications of 2SLS
can be successful in solving the weak and/or many instruments problem for well-chosen
values of Δ. Note that these simulations are constructed under the assumption that the
underlying parameters are known. In practice some of these parameters themselves need
to be estimated and thus the finite sample performance of these estimators will differ.
Therefore, in this section we document that a solution exists, while in the next section we
discuss procedures for implementing these solutions in practice.

Let us first consider the baseline case which does not exhibit either weak or many instru-
ments. To simulate this case we use K = 5 and choose a value of R2 = 0.3 for the theoretical
first stage fit. This leads to a value of the concentration parameter of μ2 = 105 which we
deem to be large enough to avoid the weak instruments problem. We plot our summary sta-
tistics for the double k-class estimators in Figure 5. In the left panel we plot our summary
statistics for the double k-class estimator with k1 = Δ and k2 = 0 (Equation 3.4), while in
the second panel we plot the statistics for the double k-class estimators with k1 = 0 and
k2 = Δ (Equation 3.5). We choose a range of Δ ∈ [−0.1, 0.1]. We notice that for Δ = 0
which corresponds to the 2SLS case we have a small amount of finite sample bias. This
finite sample bias can be removed by choosing a small negative value of k1 in the left panel
or a small positive value of k2 in the second panel. Furthermore, this can be achieved at
a modest cost in MSE, which increases slowly as Δ increases or decreases away from 0. It
appears that the resulting estimators maintain moments over the the chosen range on Δ.
Notice that a particularly attractive feature of the estimator in Equation 3.5 is that the
bias is linear in Δ while the MSE is quadratic.

Let us now turn our attention to the “weak instruments” case which does not employ too
many instruments. To simulate this case we use K = 5 and choose a value of R2 = 0.1
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Figure 5. Monte Carlo simulation of double k-class estimators for the “nor-

mal” case with a high value of the concentration parameter and K = 5

instruments

for the theoretical first stage fit. This leads to a value of the concentration parameter of
μ2 = 27.2 which we deem to be small enough to lead to the weak instruments problem.
We plot our summary statistics for the double k-class estimators in Figure 6. In the left
panel we plot our summary statistics for the double k-class estimator with k1 = Δ and
k2 = 0 (Equation 3.4), while in the second panel we plot the statistics for the double k-class
estimators with k1 = 0 and k2 = Δ (Equation 3.5). We choose a range of Δ ∈ [−0.1, 0.1].
We notice that for Δ = 0 which corresponds to the 2SLS case we now have a substantial
amount of finite sample bias. This finite sample bias can be removed by choosing a small
negative value of k1 in the left panel or a small positive value of k2 in the second panel.
Furthermore, this can be achieved at a modest cost due to increasing MSE. Notice that
while the estimators in the right panel maintain moments for all values of Δ, those in the
left panel do not for Δ > 0. It is important to note, however, that the values of Δ required
to address the finite sample bias of 2SLS are such that Δ < 0 and thus we avoid the moment
problem as well.
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Figure 6. Monte Carlo simulation of double k-class estimators for the

“weak instruments” case with a low value of the concentration parameter

and K = 5 instruments

Finally, let us return to the “weak and many instruments” case. As before, we simulate
this case using K = 30 and set the theoretical first stage R2 = 0.1. We plot our summary
statistics for the double k-class estimators in Figure 7. In the left panel we plot our summary
statistics for the double k-class estimator with k1 = Δ and k2 = 0 (equation 3.4), while in
the second panel we plot the statistics for the double k-class estimators with k1 = 0 and
k2 = Δ (Equation 3.5). We choose a range of Δ ∈ [−0.1, 0.1]. We note that for Δ = 0,
which corresponds to the 2SLS case, we now have a very substantial amount of finite sample
bias. This finite sample bias can be removed by choosing a small negative value of k1 in
the left panel or a small positive value of k2 in the second panel. Furthermore, this can be
achieved at a modest cost due to increasing MSE.

Qualitatively, these three cases are very similar in the sense that we can find values of Δ
for each case such that the bias is completely eliminated while avoiding the no-moments
problems of the estimators in the k-class. Having shown that the double k-class estimators
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Figure 7. Monte Carlo simulation of double k-class estimators for the

“many instruments” case with a low value of the concentration parameter

and K = 30 instruments

can provide a satisfactory solution to the weak and/or many instruments problem of the
baseline 2SLS estimator in theory, we now need to discuss the choice of Δ.

4. Optimal Parameter Choice for Double k-class Estimators

Dwividi and Srivastava (1984) derive the exact finite sample bias expression for the double
k-class estimators. Define m = N/2 and n = (N − K)/2. As before, denote by μ2 the first
stage concentration parameter. Then for non-negative integers a, b, c, d we can define,

(4.1) φ(a, b) = exp

(
−μ2

2

) ∞∑

j=0

Γ(m − n + j − a)
Γ(m − n + j + b)

(μ2/2)j

j!
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and
(4.2)

ψd(a; b; c) = exp

(
−μ2

2

) ∞∑

α=0

∞∑

j=0

(dα + 1)(k1 + 1)α Γ(m + j − a − 1)Γ(n + α + b)
Γ(m + j + α + c)Γ(n)

(μ2/2)j

j!
.

Then, Dwividi and Srivastava (1984) show that the bias of the double k-class is,

(4.3) E(β̂2kIV ) − β =

(

β −
σwv

σvv

)(
μ2

2
ψ0(1; 0; 1) − 1

)

+ (k1 − k2)
σwv

σvv
ψ0(1; 0; 1).

Furthermore, if K > 1 and k1 = 0 we also have,

(4.4) E(β̂2kIV ) − β =

(

β −
σwv

σvv

)(
μ2

2
φ(0; 1) − 1

)

− k2
σwv

σvv
nφ(1; 0).

4.1. Mean Unbiased Estimation

Using the properties above, for a given value of k1 we can derive the value of k2 such that
the resulting double k-class estimator is unbiased. If k1 6= 0, then,

(4.5) k∗
2 = k1 +

σvv

σwv

(

β −
σwv

σvv

)[ μ2

2 ψ0(1; 0; 1) − 1

ψ0(1; 0; 1)

]

,

while if k1 = 0 this reduces to,

(4.6) k∗
2 =

σvv

σwv

(

β −
σwv

σvv

)[ μ2

2 φ(0; 1) − 1

nφ(1; 0)

]

.

Then, using the fact that

(4.7) −

[
μ2

2 φ(0; 1) − 1

nφ(1; 0)

]

=
K − 2
N − K

.

we have a simplified version of k∗
2 that does not require estimating μ2:

(4.8) k∗
2 = −

(
K − 2
N − K

)
σvv

σwv

(

β −
σwv

σvv

)

Notice that the optimal choice of the k2 depends on the unknown value of the structural
parameter β. This suggests a two-step estimation approach in order to operationalize this
estimator. In the tables, we denote this as the “2-step k∗

2” estimator, which simply estimates
σvv, σwv from the reduced form and β by Fuller:

(4.9) k̂2−step
2 = −

(
K − 2
N − K

)
σ̂vv

σ̂wv

(

β̂Fuller −
σ̂wv

σ̂vv

)
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The resulting estimator is the double k-class estimator with k1 = 0 and k2 = k̂2−step
2 .

4.2. Minimum MSE Estimation

Alternatively, we can choose the value of k2 which minimizes the MSE . Using the expressions
in Dwividi and Srivastava (1984) we can define,

(4.10) σ̄ = σww −
σ2

wv

σvv
.

Then the parameter choice which minimizes the MSE of the estimator is given by

(4.11) k∗
2 =

σwv
σvv

(
β − σwv

σvv

)(
μ2

2 φ(1; 1) − φ(1; 0)
)

σ̄
4σvv

φ(2; 0) + n+1
2

(
σwv
σvv

)2
φ(1; 0)

Again, note that the optimal choice of k2 depends on unknown parameters β, σvv, and σwv

and additionally on μ2. Mirroring the solution strategy discussed before we can construct
a feasible two-step estimator by plugging in the Fuller estimator of β (this time setting the
Fuller parameter κ = 4 so that kFuller = φ − 4/(N − K) to minimize MSE) and the using
reduced-form estimates of the remaining parameters (bias correcting μ2 by K) to obtain
k̂2−step

2 (κ = 4).

5. Monte Carlo Simulations

We now explore the finite sample performance of the two feasible double k-class estimators
introduced above that either minimize the bias or MSE. Since these choices are functions
of the unknown structural parameter β, the feasible estimators plug in an initial estimate
obtained from Fuller’s estimator.

Following the simulation design in Hahn and Hausman (2002a), we generate data using the
following design with two endogenous variables y1 and y2:

(5.1)
y1 = βy2 + ε = βzπ + w

y2 = zπ + v,

where w = βv + ε. We let y1 and y2 be N × 1 vectors of observations on the endogenous
variables and denote by z the N × K matrix of K instruments.

If we define:

(5.2) Ω =

(
σww σwv

σwv σvv

)

,
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then our design has σvv = σww = 1 and we let σwv = −0.3. The parameter of interest β is

given by β = 2σwv, which pins down σεv = 0.3. Each element of π =
√

μ2

(N−K)K , where μ2

corresponds to the theoretical concentration parameter

(5.3) μ2 =
π′z′zπ

σvv
.

In the Monte Carlo experiments below we consider permutations of μ2 ∈ {8, 12, 24, 32},
K ∈ {8, 24}, and N ∈ {200, 800}. Both of the sample sizes we consider are quite small,
highlighting the problems with traditional IV estimators in finite samples. The various
values of μ2 and K allow us to consider the case of weak and many instruments, respectively,
potentially occurring simultaneously. We use a log normal distribution for the instrumental
variables standardized with mean zero and variance one, and the stochastic disturbance
is either normally distributed or has a t-distribution with 12 degrees of freedom, again
standardized to have mean zero and variance one.

Table 1 reports Monte Carlo simulation results for the data-generating process with nor-
mally distributed disturbances. The top panel reports results for N = 800 and the bottom
panel reports results for N = 200, while the left-hand columns display mean bias results
and the right-hand columns indicate the MSE of each estimator. Given that the true co-
efficient is β = −0.6, the 2SLS mean bias results are large. For example, the mean bias of
2SLS for weak but not many instruments (μ2 = K = 8) is 0.147, which represents a bias
of nearly 25%. Fuller1 (which denotes Fuller’s k-class estimator with k = φ − 1/(N − K))
consistently outperforms 2SLS in mean bias, sometimes by an order of magnitude. Our
preferred estimator to minimize mean bias is labeled “2-step k∗

2 min bias” and is defined in
equation (4.9) above. This estimator uses the Fuller1 estimate of β to construct k∗

2 and does
not require estimating μ2. In mean bias, this estimator generally has almost 50% less mean
bias than Fuller1, especially in the rows corresponding to weak instruments, and failing to
have lower mean bias than Fuller1 only in a few specifications.

Turning to minimum MSE estimation, the Fuller estimator that has been shown to perform
best in terms of MSE is k = φ − 4/(N − K), and we benchmark our results against this
estimator, which we label Fuller4. As a general rule, 2SLS has low MSE because its variance
is so small despite its location being badly biased. Fuller4, by contrast, has mean bias that
is around half of the mean bias of 2SLS but MSE that is up to 20% higher than the MSE
of 2SLS. Our preferred estimator for minimizing MSE is labeled “2-step k∗

2 min MSE.”
While this estimator dominates 2SLS in terms of mean bias, it generally has similar or
higher mean bias as Fuller4. The MSE comparison between Fuller4 and this optimal double
k-class estimator is more nuanced. When many instruments is an issue (i.e. K = 24),
the feasible double k-class estimator has MSE nearly 50% less than Fuller4. When many
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Table 1. Monte Carlo Results for Normally Distributed Errors

μ 2 K 2SLS Fuller1 Fuller4 2SLS Fuller1 Fuller4
8 8 0.147 0.048 0.027 0.122 0.111 0.088 0.246 0.313 0.106 0.141
8 24 0.224 0.076 0.051 0.141 0.205 0.080 0.438 0.564 0.174 0.093
12 8 0.115 0.015 0.008 0.083 0.088 0.066 0.163 0.178 0.080 0.089
12 24 0.199 0.034 0.016 0.099 0.180 0.066 0.301 0.351 0.132 0.072
24 8 0.068 -0.005 0.001 0.037 0.059 0.037 0.064 0.061 0.043 0.040
24 24 0.148 -0.002 -0.005 0.042 0.135 0.041 0.111 0.109 0.066 0.042
32 8 0.053 -0.005 0.001 0.026 0.048 0.029 0.043 0.041 0.033 0.030
32 24 0.126 -0.003 -0.002 0.029 0.117 0.033 0.066 0.063 0.046 0.033

μ 2 K 2SLS Fuller1 Fuller4 2SLS Fuller1 Fuller4
8 8 0.149 0.048 0.028 0.123 0.115 0.089 0.245 0.318 0.107 0.138
8 24 0.220 0.078 0.054 0.138 0.204 0.079 0.440 0.563 0.177 0.091
12 8 0.116 0.016 0.010 0.085 0.091 0.066 0.163 0.178 0.080 0.086
12 24 0.193 0.038 0.020 0.096 0.177 0.064 0.302 0.344 0.134 0.070
24 8 0.070 -0.002 0.004 0.038 0.061 0.037 0.065 0.061 0.043 0.039
24 24 0.141 0.000 -0.003 0.040 0.131 0.040 0.109 0.106 0.065 0.040
32 8 0.055 -0.002 0.004 0.027 0.050 0.028 0.043 0.040 0.032 0.029
32 24 0.120 -0.003 -0.003 0.027 0.112 0.031 0.065 0.062 0.045 0.031

2-step k2*
min bias

2-step k2*
min MSE

Mean Bias

Notes: Table shows mean bias (left-hand columns) and MSE results (right-hand columns) for estimation of β from 10,000 
Monte Carlo simulations using the estimators described in the text. Panel I reports results for N = 800 and panel II reports 
results for N = 200. The data generating process is described in the text with the true β = -0.6 and the true σεv = 0.3.

I. Results with N = 800
MSE

2-step k2*
min bias

2-step k2*
min MSE

2-step k2*
min MSE

2-step k2*
min bias

2-step k2*
min MSE

2-step k2*
min bias

II. Results with N = 200

instruments are not a problem (i.e. in the K = 8 specifications), the two-step double k-class
estimator has mean similar or slightly higher MSE.

To test whether these results rely on the relatively thin tails of the normal distribution, in
Table 2, we show Monte Carlo results when the stochastic disturbances have thicker tails,
which we simulate by drawing from a t-distribution with 12 degrees of freedom. The results
are broadly consistent with Table 1. 2SLS is badly biased, and Fuller1 shows tremendous
finite sample bias reduction. Our preferred estimator for minimizing bias almost always
dominates Fuller1 in mean bias. While Fuller4 offers a nice alternative to 2SLS in terms
of minimizing MSE (mainly because Fuller4 is less badly biased than 2SLS), when many
instruments are an issue, the feasible double k-class estimator that minimizes MSE outper-
forms Fuller4 in MSE.
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Table 2. Monte Carlo Results for Thick-Tailed Errors

μ 2 K 2SLS Fuller1 Fuller4 2SLS Fuller1 Fuller4
8 8 0.152 0.053 0.034 0.126 0.116 0.091 0.246 0.339 0.106 0.152
8 24 0.225 0.077 0.055 0.142 0.207 0.081 0.447 0.577 0.177 0.095
12 8 0.120 0.022 0.015 0.089 0.093 0.068 0.165 0.196 0.081 0.097
12 24 0.199 0.032 0.016 0.098 0.181 0.066 0.312 0.362 0.135 0.073
24 8 0.073 0.000 0.005 0.041 0.063 0.037 0.066 0.064 0.044 0.041
24 24 0.148 -0.007 -0.008 0.039 0.135 0.042 0.117 0.114 0.068 0.042
32 8 0.057 0.000 0.005 0.030 0.052 0.029 0.044 0.042 0.033 0.030
32 24 0.126 -0.007 -0.005 0.026 0.116 0.033 0.071 0.066 0.048 0.033

μ 2 K 2SLS Fuller1 Fuller4 2SLS Fuller1 Fuller4
8 8 0.150 0.052 0.032 0.125 0.117 0.090 0.250 0.331 0.108 0.143
8 24 0.217 0.067 0.038 0.131 0.199 0.077 0.436 0.568 0.171 0.088
12 8 0.119 0.024 0.015 0.088 0.094 0.068 0.169 0.194 0.083 0.093
12 24 0.190 0.026 0.006 0.089 0.174 0.063 0.299 0.348 0.130 0.068
24 8 0.073 0.002 0.007 0.042 0.063 0.038 0.069 0.066 0.045 0.042
24 24 0.140 -0.008 -0.010 0.035 0.129 0.039 0.112 0.109 0.065 0.039
32 8 0.058 0.001 0.006 0.031 0.052 0.030 0.046 0.044 0.034 0.031
32 24 0.118 -0.007 -0.007 0.024 0.110 0.031 0.068 0.064 0.046 0.031

2-step k2*
min MSE

2-step k2*
min bias

Notes: Table shows mean bias (left-hand columns) and MSE results (right-hand columns) for estimation of β from 10,000 
Monte Carlo simulations using the estimators described in the text. Panel I reports results for N = 800 and panel II reports 
results for N = 200. The data generating process is described in the text with thick-tailed errors (a t-distribution with 12 
degrees of freedom), the true β = -0.6 and true σεv = 0.3.

Mean Bias

2-step k2*
min MSE

II. Results with N = 200
2-step k2*
min bias

I. Results with N = 800
MSE

2-step k2*
min bias

2-step k2*
min MSE

2-step k2*
min bias

2-step k2*
min MSE

6. Conclusion

In this paper, we present new tools for addressing the finite sample bias of instrumental
variable estimators in the presence of weak and/or many instruments. Currently practition-
ers have a number of estimators at their disposal, but the most commonly used ones such
as 2SLS suffer from substantial bias. Fuller (1977) performs reasonably well in the case of
weak and many instruments but is not unbiased.

We reintroduce Nagar’s double k-class estimators to construct optimal estimators that min-
imize mean bias or MSE. To do so, we derive the exact finite sample bias of the estimators
in terms of hypergeometric functions and employ recent computational advances in the
speed with which hypergeometric functions can be evaluated to develop a computationally
attractive estimator that weakly dominates k-class estimators, including 2SLS. Monte Carlo
results demonstrate that in simulations our estimator has lower mean bias than Fuller and
does comparably well for MSE, outperforming Fuller in terms of MSE in the case of many
instruments. Additional research may suggest further solutions to the problem of weak and
many instruments in the double k-class of estimators.
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APPENDIX A: Derivations of Expressions in Section 2

In a few of these derivations, we use the fact that

B(m, k) = e−m/2
1F1(k/2 − 1; k/2; m/2)

= e−m/2em/2
1F1(k/2 − (k/2 − 1); k/2;−m/2) = 1F1(1; k/2;−m/2).

The second equality is by equation (25) in Abadir.

part (a)

B(m, 2) = e−m/2
1F1(0; 1; m/2) = e−m/2

∞∑

j=0

(0)j

(1)j

(m/2)j

j!
= e−m/2

since the first term of the series is 1 and (0)j = 0 for j ≥ 1.

part (b)

lim
k→∞

B(m, k) = lim
k→∞

1F1(1; k/2;−m/2)

= lim
k→∞

1 +
∞∑

j=1

((k/2)j)
−1 (−m/2)j

j!

= 1 +

∞∑

j=1

lim
k→∞

((k/2)j)
−1 (−m/2)j

j!
= 1

part (c)

B(m, k) is continuous in m, so

(6.1) lim
m→0

B(m, k) = B(0, k) = e0
1F1(k/2 − 1; k/2; 0) = 1

since hypergeometric functions evaluated at zero are equal to 1, the first term in the infinite series.

part (d)

When we do the substitution we get 1 + (1/6)e−m/2(−6 − m)m (the last minus sign in this expression is a

plus sign in the corresponding equation). To derive this, expand e−m/2 as 1 − m/2 + O(m2). Then

1+(1/6)e−m/2(−6 − m)m = 1 − (1/6)m(6 + m)(1 − m/2 + O(m2))

= 1 − (1/6)m(6 − 3m + m − m2/2) + O(m3) = 1 − (1/3)m(3 − m) + O(m3).

B(m, 1) can be expanded as

B(m, 1) = 1F1(1; 1/2;−m/2) = 1 +
1

1/2
(−m/2) +

1 ∙ 2
(1/2)(3/2)

(−m/2)2

2
+ O(m3)

= 1 − m +
2 ∙ 2
3 ∙ 4

m2 + O(m3) = 1 − (1/3)m(3 − m) + O(m3)
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so B(m, 1) = 1 + (1/6)e−m/2(−6 − m)m + O(m3).

part (e)

It suffices to show that 1F1(k/2 − 1; k/2; m/2) is strictly increasing in k, which will follow if we can show

that each term in the infinite series is strictly increasing in k. The jth term is

(6.2)
(k/2 − 1)j

(k/2)j

(m/2)j

j!
=

k/2 − 1

k/2 + j − 1

(m/2)j

j!

which is strictly increasing in k for m ≥ 0 since

(6.3)
d

dk
(

k/2 − 1

k/2 + j − 1
) =

(1/2)(k/2 + j − 1) − (k/2 − 1)(1/2)

(k/2 + j − 1)2
=

j

2(k/2 + j − 1)2
> 0.


