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Abstract

We prove the folk theorem for discounted repeated games with anonymous ran-

dom matching. We allow non-uniform matching, include asymmetric payoffs, and

place no restrictions on the stage game other than full dimensionality. No record-

keeping or communication devices—including cheap talk communication and public

randomization—are necessary.
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1 Introduction

In a repeated game with anonymous random matching, a finite population of players re-

peatedly breaks into pairs to play 2-player games. Each period, a player observes only her

partner’s action—not his identity, and not any other player’s action. We prove the folk

theorem in this environment. In particular, when the players are sufficiently patient, they

can attain the same payoffs as if everyone’s identity and actions were publicly observed at

the end of each period.

Because players receive so little information under anonymous random matching, this en-

vironment has long been used as a benchmark against which to measure the value of various

record-keeping devices and institutions, such as fiat money, merchant coalitions and guilds,

credit bureaus, online rating systems, “standing” and “image scoring” in evolutionary biol-

ogy, and monitoring within ethnic groups.1 The main implication of our result is that, even

in this information-poor benchmark environment, patient players can obtain any feasible and

individually rational payoffs without any record-keeping devices or institutions beyond their

individual memories and the ability to count periods. Thus, any role for such institutions

must result from impatience of the players, or from the possibility of constructing “simpler,”

“more robust,” or “more realistic” equilibria when more information is available.2

Our folk theorem thus admits both positive and negative interpretations. The positive

interpretation is that a wide range of cooperative behaviors are possible despite minimal

information. The negative interpretation is that, in a finite population of patient long-run

players, it is difficult to justify the value of information-sharing institutions on efficiency

grounds alone. In particular, in these environments the assumptions that monitoring is

decentralized and players are anonymous—which might have been expected to restrict the

1On money, see Kiyotaki and Wright (1989, 1993), Kocherlakota (1998), Wallace (2001), Araujo (2004),
Aliprantis, Camera, and Puzzello (2007). On merchants, see Milgrom, North, and Weingast (1990), Greif
(1993), Greif, Milgrom, and Weingast (1994). On credit bureaus, see Klein (1992), Padilla and Pagano
(2000). On online rating systems, see Friedman and Resnick (2001). On standing and image scoring, see
Sugden (1986), Nowak and Sigmund, (1998). On ethnic conflict, see Fearon and Laitin (1996).

2Of course, our result first fixes the population size N and then takes δ → 1. If the population is very
large, the required discount factor is very close to 1. For example, if one extended our model by introducing
fiat money à la Kiyotaki and Wright (1989, 1993) or Wallace (2001), our theorem would immediately imply
that, for any fixed N , money is inessential for sufficiently high δ; however, for any fixed δ, for many stage
games money is essential for sufficiently high N . This observation generalizes the conclusion of Araujo (2004)
in the same way that our theorem generalizes the conclusions of Kandori (1992) and Ellison (1994).
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set of attainable payoffs in some games—turn out to be completely payoff-irrelevant.3

Our approach is to view the repeated random matching game as a single N -player re-

peated game with imperfect private monitoring and apply techniques from the literature on

the folk theorem with private monitoring. The main obstacle to this approach is that, when

viewed as a single repeated game, the random matching game fails standard statistical iden-

tifiability conditions (e.g., Fudenberg, Levine, and Maskin’s (1994) pairwise identifiability)

and full support conditions. To overcome this obstacle, we show that players can be given

incentives to truthfully share information—despite communicating only via payoff-relevant

actions—and that the aggregated information of a player’s opponents always identifies her

action. Our paper thus connects three literatures: repeated games with random matching,

repeated games with private monitoring, and secure communication in repeated games.

Random matching Kandori (1992), Ellison (1994), and Harrington (1995) show that

cooperation can be sustained in the repeated prisoners’ dilemma with anonymous random

matching via “contagion strategies,” where a single defection triggers the breakdown of coop-

eration throughout the population. This approach does not generalize beyond the prisoners’

dilemma, because spreading contagion may not be incentive compatible when punishing is

costly. Even within the prisoners’ dilemma, it cannot be used to support asymmetric equilib-

ria, where for example a subset of players are allowed to defect while others must cooperate.

In contrast, our theorem covers all games (subject to a mild full dimensionality condition)

and all feasible and individually rational payoffs.

Deb (2018) proves the folk theorem for asymmetric games where players from distinct

communities fill different player-roles, cheap talk communication between partners is allowed,

and all players from the same community receive the same payoff. We instead consider

random matching within a single population (though our approach generalizes to multiple

communities), allow asymmetric payoffs, and—most importantly—disallow cheap talk.4 Deb

and González-Dı́az (2019) also disallow cheap talk in the 2-community model, but they

impose some conditions on the stage game, restrict attention to symmetric payoffs that

3Another interpretation sometimes claimed by repeated games papers is that the constructed equilibrium
is a positive description of behavior. We do not make such a claim here, and indeed think our construction
is much too complicated to interpret this way. Our theorem is simply a benchmark possibility result.

4Ruling out cheap talk seems essential, as the point of our analysis is to see what outcomes are possible
in the absence of record-keeping and communication devices.
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Pareto dominate a Nash equilibrium (obtaining a “Nash threat” folk theorem), and require

the population to be sufficiently large. Their proof is completely different, as they generalize

the contagion approach, while we build on the block belief-free approach introduced by

Hörner and Olszewski (2006) to study repeated games with almost-perfect monitoring. We

compare these two approaches below. Deb, González-Dı́az, and Renault (2016) prove a

general folk theorem for N -community games without discounting. Another difference from

these papers is that our approach extends to non-uniform and even non-i.i.d. matching.

Other random matching models assume players directly observe some information about

their partners’ past play. Rosenthal (1979), Okuno-Fujiwara and Postlewaite (1995) and Dal

Bó (2007) consider finite population models; notably, the latter paper allows asymmetric

payoffs. Takahashi (2010), Dilmé (2016), Heller and Mohlin (2018), Bhaskar and Thomas

(2018), and Clark, Fudenberg, and Wolitzky (2019a,b) consider continuum models.

Private monitoring The literature on repeated games with imperfect private moni-

toring is too large to survey here. The folk theorem with public cheap talk communication

is proved by Compte (1998) and Kandori and Matsushima (1998). Piccione (2002), Ely

and Välimäki (2002), Matsushima (2004), Ely, Hörner and Olszewski (2005), Hörner and

Olszewski (2006), and Yamamoto (2012) develop belief-free techniques that we build on.

Sugaya (2019) proves a general folk theorem under identifiability and full support condi-

tions. These conditions are violated with anonymous random matching, but we use some

ideas from Sugaya’s proof.5 We explain the connection to this literature in Section 3.5.

Secure communication The most challenging part of our proof is providing incentives

for secure communication with anonymous random matching, when communication can be

executed only through payoff-relevant actions. As far as we know, ours is the first paper

to address this problem. Incentives for secure communication have been studied in the

related setting of repeated games played on fixed networks (Ben-Porath and Kahneman,

1996; Renault and Tomala, 1998; Lippert and Spagnolo, 2011; Laclau, 2012, 2014; Nava and

Piccione, 2014; Wolitzky, 2015). While the technical overlap with this literature is slight, our

non-uniform matching model can approximate a fixed network, as we allow the case where

5Fudenberg, Ishii, and Kominers (2014) also build on Hörner and Olszweski to prove a folk theorem in a
setting where Sugaya’s theorem does not apply, albeit a completely different one from ours.
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a player “almost always” interacts with the same partners.

2 Model and Folk Theorem

There is a finite set of players I = {1, ..., N}, with N ≥ 4 even. In every period t = 1, 2, . . .,

players match in pairs to play a finite, symmetric 2-player game with action set A and payoff

function u : A×A→ R, with |A| ≥ 2. Let a0, a1 ∈ A denote two arbitrary, distinct actions.

Pairs are formed as follows: (i) a matching µ is a partition of the population into pairs,

(ii) there is an exogenous distribution p over matchings, and (iii) the period-t matching µt

is drawn from p i.i.d. across periods.6 We assume p has full support and let ε̄ > 0 denote

the minimum of p(µ) over all matchings. Let µ (i) denote player i’s partner in matching µ.

Let pi,j =
∑

µ:µ(i)=j p (µ) denote the probability that players i and j are matched.

Players are anonymous—each player observes only the actions she faces and not her

opponents’ identities. Formally, letting ai,t ∈ A denote player i’s period-t action, player

i’s observation in period t is the pair (ai,t, ωi,t), where ωi,t = aµt(i),t. Say that a profile of

observations (ai, ωi)i∈I is feasible if there exists an action profile a = (a1, . . . aN) ∈
∏

i∈I A =

AN and a matching µ such that ωi = aµ(i) for all i ∈ I. Player i’s history at the beginning of

period t is denoted ht−1
i = (ai,τ , ωi,τ )

t−1
τ=1, with h0

i = ∅. Players maximize expected discounted

payoffs with common discount factor δ < 1. Let E (δ) denote the sequential equilibrium

payoff set with discount factor δ.7

For any action profile a ∈ AN , player i’s expected payoff at action profile a is given by

ûi (a) =
∑
j 6=i

pi,ju (ai, aj) .

Thus, the (convex hull of the) feasible payoff set in theN -player game is F = co
(
{û (a)}a∈AN

)
,

where û (a) = (û1 (a) , . . . , ûn (a)).8 Let ū = max(a,a′)∈A2 |u (a, a′)| be the greatest magnitude

6The extension to non-i.i.d. matching is discussed in Section 4.
7In defining sequential equilibrium, the choice of topology on the sets of beliefs and strategies does not

matter for us—for concreteness, take it to be the product topology. This is another point of contrast with
the approaches in Deb (2017) and Deb and González-Dı́az (2017), where choosing the product topology is
essential.

8The definition of the feasible payoff set accounts for anonymity. For example, if the stage game is the
prisoners’ dilemma, the payoff vector corresponding to everyone cooperating with player 1 and defecting
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of any feasible payoff, and let u = minα∈∆(A) maxa∈A u (a, α) be the minmax payoff. Let

αmin ∈ argminα∈∆(A) maxa∈A u (a, α) be a minmax strategy in the 2-player game; to minmax

player i in the N -player game, every player but i plays αmin. Denote the set of feasible and

individually rational payoffs by F ∗ = {v ∈ F : vi ≥ u ∀i ∈ I}. We assume F ∗ has dimension

N . This condition is generic: letting

ei =
(
u
(
a0, a1

)
,
(
(1− pj,i)u

(
a1, a1

)
+ pj,iu

(
a1, a0

))
j 6=i

)
∈ RN

be the payoff vector when player i plays a0 and all other players play a1, the vectors (ei)i∈I

are linearly independent for generic values of u (a0, a1), u (a1, a0), and u (a1, a1).9

In this setting, we establish the folk theorem:

Theorem 1 For all v ∈ int (F ∗), there exists δ̄ < 1 such that v ∈ E (δ) for all δ > δ̄.

3 Key Ideas of the Equilibrium Construction

We provide a constructive proof of the folk theorem. The proof is deferred to the appendix.

Here we describe the key ideas of the construction.

3.1 Overall Structure of the Construction

We view the repeated game as an infinite sequence of finite blocks of periods. Players follow

automaton strategies. In each block, each player i ∈ I has two possible states—denoted

xi ∈ {G,B}, for “good” and “bad.” A player’s state in the current block, her history in the

current block, and private randomization jointly determine her state in the next block. We

specify each player i’s block strategy in state xi—denoted σi(xi)—and the state transition

rules so that two properties hold. First, for every realization of the other players’ states

against everyone else is not feasible.
9Full-dimensionality of F ∗ and full-dimensionality of the underlying 2-player game are logically indepen-

dent. If the 2-player game is a pure coordination game (with payoff dimension 1) then F ∗ has full dimension.

Conversely, with N = 4 and uniform matching, the 2-player game
a0 a1

a0 4, 4 1, 3
a1 3, 1 0, 0

has full dimension, but

F ∗ has dimension 1.
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x−i ∈ {G,B}N−1, both σi(G) and σi(B) are optimal strategies for player i (that is, the

equilibrium is block belief-free, as in Hörner and Olszewski (2006)). Second, player i is

the “arbiter” of the payoff of player (i+ 1) (mod N), in that i’s state determines i + 1’s

equilibrium continuation payoff: whenever i’s state is G (B), i + 1’s expected continuation

payoff is higher (lower) than the target equilibrium payoff, so that the i + 1’s target payoff

can be exactly attained by tuning i’s state transition rule. For example, if the state profile

at the start of a block is x = (B,B,G,G, ..., G), so everyone except players 1 and 2 are

in state G, then the strategy profile to be played in the block is one that guarantees that

expected continuation payoffs are low for players 2 and 3 and high for everyone else. Full-

dimensionality of the payoff set guarantees that such a strategy profile exists. For instance,

in the prisoners’ dilemma, such a profile might require players 2 and 3 to cooperate for

99% of the block, while everyone else cooperates for 95% of the block. Note that, while i

is responsible for choosing i + 1’s continuation payoff via her state transition, she has no

special role in delivering this payoff: once the state profile x ∈ {G,B}N is chosen, all players

are equally responsible for following the prescribed equilibrium continuation.

Play within a block proceeds as follows. First, there is an “initial talk sub-block,” where

players communicate their states.10 This lets them coordinate on the block strategy profile

based on the state profile x ∈ {G,B}N . Then, players repeat the following “play-and-talk

sub-block” multiple times: they play actions that attain the target payoffs at state profile

x for many periods, and then communicate to see if anyone deviated. This is followed by

a “final talk sub-block,” where players communicate a summary of the entire block history.

Since all communication is executed via payoff-relevant actions, to attain the target payoffs

the players must spend most of their time in the “play” phases: in particular, they cannot

take the time to communicate about every play period. Instead, when players communicate

to identify deviations, player i chooses one period at random from the preceding play phase

and communicates this choice to the other players, who then share their information about

that period only. This information is used to check if player i + 1 deviated in the chosen

period. Since player i + 1 does not know in advance which period his arbiter i will choose,

this scheme can provide incentives for the entire play phase.

10Recall that all communication is executed via actions.
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If deviations are detected as a result of the communication among players (described in

Section 3.2 below), then deviators are punished in two ways. First, if communication reveals

that player i + 1 deviated, then everyone switches to mutual minmaxing for the rest of the

current block (starting with the next play-and-talk sub-block). Second, at the beginning of

the next block, player i+1’s arbiter (player i) adjusts her state transition probability so as to

reduce player i+1’s expected continuation payoff; and for each other player j 6= i+1, player

j’s arbiter (player j − 1) adjusts player j’s expected continuation payoff to compensate her

for any cost of punishing player i during the last block.11

An implication of this block structure is that each player’s continuation value is controlled

separately across blocks. Therefore, the challenge is providing incentives within each block

for correct on-path play and (especially) providing incentives for truthful communication.

This is unlike contagion equilibria, where all players’ payoffs are tied together, and so the

key challenge is in providing incentives to carry out punishments.

3.2 How Communication Works

In our construction, players communicate by taking turns broadcasting information. Which

player’s turn it is to “talk” in each period is pre-determined.12 We explain how a player

sends a binary message m ∈ {0, 1}. Longer messages are sent by binary expansion.

To send message 1, the sender plays a1 for T periods and then a0 for another T periods,

where T is a pre-determined large number. To send message 0, the order is reversed: first

a0 for T periods, then a1. The other players—the “receivers”—play only a0 with high

probability throughout the entire 2T -period interval. At the end of the interval, a receiver

who observed a1 during the first T periods only infers that the sender sent message 1. A

receiver who observed a1 during the last T periods only infers that the sender sent message

0. A receiver who observed any other pattern—that is, observed a1 at least once in each

half-interval, or never observed a1 at all—receives a message of error.

This protocol has several desirable properties. First, if T is large, with high probability

11This basic of idea of “rewarding the punishers” dates back to Fudenberg and Maskin (1986). As in that
paper, “rewards” compensate punishers for the cost of carrying out punishments, but a player may still be
left worse-off than she was before an opponent’s deviation.

12Here we rely on the implicit assumption that the players share a common sense of calendar time.
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the sender matches with each receiver at least once in each T -period half-interval, and

therefore the message transmits successfully when all players follow the protocol. Second,

a key obstacle to communication is that, since players are anonymous, a receiver may be

tempted to talk at the same time as the sender in an attempt to manipulate the message.

Our protocol makes such a manipulation very unlikely to succeed: no matter what a given

receiver does, every other receiver will either receive the correct message or receive error,

so long as she meets the sender at least once in the half-interval where the sender plays

a1—a very high-probability event. Hence, to deter this attempted manipulation, it suffices

to punish all players whenever anyone receives error.

There are however two important challenges to implementing this simple scheme.

First, in the course of communication, a receiver might learn that a low-probability

realization of the matching process has occurred, at which point her expected gain from

manipulation can be much larger. For example, suppose a single receiver happens to see a1

in all of the first T periods—this event is very unlikely, but it is not impossible. Since only

one receiver at a time sees a1, this receiver can infer that she is the only one to have received

the message successfully. This puts her at a large informational advantage over the other

players, and it is difficult to predict how she may exploit this advantage in continuation play.

We address this receiver-learning problem by introducing jamming, a key innovation in

our proof. Specifically, at the beginning of each block, with small probability each player

is designated a jamming player for the block. (We defer the details of how this designa-

tion is determined.) Jamming players differ from regular players in that, when they are

receivers, with small probability they continually play a1 (which we refer to as jamming

communication) rather than a0. Clearly, communication is very unlikely to succeed when

a jamming player is present and jams communication—however, since jamming players are

rarely present (and rarely jam communication when they are present), this has a negligi-

ble effect on equilibrium payoffs. Moreover, even a slight possibility that communication

may be jammed is enough to solve the receiver-learning problem: now, if a receiver sees a1

repeatedly, she infers that with high probability a jamming player is present and jammed

communication, rather than inferring that an low-probability match realization occurred. In

the former case, it is very likely that all players inferred that communication was jammed.
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Thus, the possibility of jamming greatly reduces the perceived informational advantage of a

receiver who repeatedly observes a1. The resulting gain from manipulation is small enough

that it can be offset by a small loss in continuation payoff at the start of the next block.

Second, when a receiver i receives error, the subsequent punishments must be incentive

compatible. How this is ensured depends on where in the block the error occurs. If i receives

error in the last communication phase in the block, she (costlessly) adjusts her transition

probability for the next block (putting on more weight on xi = B) so as to reduce player

i + 1’s continuation payoff only. If instead i receives error at a time when there are still

some play-and-talk sub-blocks remaining, mutual minmaxing commences at the start of the

next sub-block, incentivized by the promise of compensation at the start of the next block.

Thus, on equilibrium path, if there is no jamming and no low-probability match real-

izations occur, then there are no punishments within a block, and all required continuation

payoff adjustments are made across blocks. The structure of the different communication

phases within a block is described in more detail in Section 3.4.

3.3 How Identification Works

Another step in the proof is that, if player i’s opponents can successfully aggregate their in-

formation regarding a particular period of play, this information suffices to perfectly identify

player i’s action and observation in that period. This step is straightforward. Since match-

ing occurs in pairs, the total number of players who observe the same action they play (i.e.,

observe ωn = an) is always even. Therefore, if there exists a ∈ A such that the number of i’s

opponents for whom ωn = an = a is odd, then ωi = ai = a. If instead this number is even

for every a ∈ A, then ai 6= ωi. (Otherwise, the total number of players with ωn = an = ai

would be odd.) In this case, there is one action a such that more of i’s opponents observe

ωn = a than play an = a, and there is another action ω such that more of i’s opponents play

an = ω than observe ωn = ω. This pair (a, ω) must then equal (ai, ωi). Thus, if players −i

can aggregate their information, they can perfectly monitor player i.13

13This perfect monitoring property is not necessary for our approach: in the working-paper version (Deb,
Sugaya, and Wolitzky, 2018), we extend our proof to almost-perfect monitoring within matches. Nonetheless,
perfect monitoring simplifies the proof while letting us focus on its most novel element: incentivizing truthful
communication.
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3.4 A Closer Look at the Communication Sub-Blocks

Next, we provide a little more detail on the “initial talk,” “play-and-talk,” and “final talk”

sub-blocks noted above. “Talk” proceeds via communication protocols : finite repetitions of

the stage game in which players communicate via actions. Our analysis consists of stringing

Figure 1: Schematic of play within a block

PHASES:

“TALK”
Sub-block 0

✛ ✲ “TALK”
Final sub-block

✛ ✲

(0,jam)

❄
Choose
jamming
players

PROTOCOL USED:

Jamming

(0,i)

❄
Coordinate on
xi ∈ {G, B}

Verified

❄

(0,i ,con)

Suspicion
spreads

Verified

❄

(l ,Main)

Main phase play

Target payoff

(l ,i)

❄
Select period
to monitor

Verified

(l ,i ,n)

❄
Share info

Verified

(l ,i ,con)

❄
Suspicion
spreads

Verified

PLAY, “TALK”, REPEAT
Sub-blocks l ∈ {1, . . . , L}

✛ ✲

If i detects a deviation, she switches to

minmax from the next sub-block

(1, i)

❄
Confess
and select
monitoring
period

Verified

❄

(2, i)

Share non-
main phase
histories

Secure

❄

(3, i)

Share info
about final
phase (2,i)

Basic

❄

(4, i)

Cancel
discount-
ing

Basic

The game is an infinite sequence of such blocks

together analyses of different communication protocols. Since we verify incentive compati-

bility essentially by backwards induction, we describe the protocols backwards from the end

of a block.

Figure 1 provides a schematic of play within a block. The final talk sub-block comprises

four phases. In the last phase, for each i ∈ I, player i − 1 chooses one period t at random

from the previous periods in the block and communicates it to the other players, who then

communicate their period t information to player i− 1: intuitively, players −i “talk about”

player i’s play in period t. Player i− 1 then slightly adjusts her state transition probability

such that the effect of discounting in player i’s payoff is cancelled out: when player i − 1

chooses period t, she increases player i’s continuation payoff by 1
Pr(t is chosen)

(1− δt−1) ûi(at),

where at is the period-t action profile identified from communication. This makes player i
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indifferent about the timing of her actions within a block. Hence, in all earlier phases, we

may view the game as one without discounting, which is a substantial simplification.

Recall that player i − 1’s state affects player i’s payoff only. Thus, in the last commu-

nication phase, players −i are indifferent to the outcome of communication, and are thus

willing to report truthfully. Moreover, even player i has only a very small potential gain

from manipulating communication when δ is large (once we fix the length of the block).

Since it is always possible to provide small incentives without sacrificing much efficiency, we

do not need to rely on jamming players in this phase, and a very simple communication

protocol—the basic communication protocol, introduced in Section D.1—is sufficient.

In the penultimate and third-to-last talk phases, players −i aggregate their information

from all previous talk phases in the block. Player i − 1 uses this information to adjust her

state transition. As we will see, the impact of this adjustment on player i’s payoff can be

large, so player i may have a strong incentive to manipulate the communication. Hence, for

this phase we need a communication protocol where there is no history at which player i

believes she can manipulate the outcome of communication to her benefit. This requires the

secure communication protocol, introduced in Section D.2, which relies on jamming players.

In the first talk phase of the final talk sub-block, player i − 1 chooses one period tl at

random from each of the L main play sub-blocks and communicates it to the other players,

who then communicate their period tl information to player i − 1. Players also confess

whether they have deviated in the current block so far.14 Similarly, in the talk phases of

the play-and-talk sub-blocks, players communicate selected periods to monitor and share

information about the monitoring periods with the sub-block. Finally, talk phases in the

initial talk sub-block are used to determine jamming players for the block and to coordinate

on the state x ∈ {G,B}N . Communication in the initial sub-block and the play-and-talk

sub-blocks is especially challenging. This is because these phases affect not only continuation

payoffs at the end of the block but also continuation play within the block. Thus, all players

(not only the one “about whom the others are talking”) may have a strong incentive to

14Confessions incentivize punishment during the main phases. Once a player observes an off-path history,
she expects that the deviator (whoever he is) will confess in the final sub-block, and her own arbiter will adjust
her continuation payoff accordingly. Meanwhile, the deviator is willing to confess because his confession is
used only to adjust his opponents’ continuation payoffs; in particular, his own punishment during the main
phase is already sunk. This is as in Hörner and Olszewski (2006).
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manipulate communication. We therefore need a protocol that no player can profitably

manipulate. We construct the verified communication protocol (introduced in Section D.3)

to have this property. The key additional feature of this protocol is that each receiver

communicates the message she received back to the sender. This lets the players determine

whether or not they all received the same message.15

3.5 Relation to the Private Monitoring Literature

Some readers may wish to understand how our construction relates to existing work on

repeated games with private monitoring. Our goal is to construct a block belief-free equilib-

rium, as in Hörner and Olszewski (2006). To allow accurate communication under random

matching, we have players repeat actions and messages and apply a concentration inequality

(Lemma 3). In this sense, our construction joins the line of research combining belief-free

equilibria and review strategies, following Matsushima (2004). The closest papers in this

literature are Yamamoto (2012) and Sugaya (2019).

Yamamoto shows how to combine belief-free equilibria and review strategies in general

repeated games. There are several important differences with our approach, but a crucial

one is that Yamamoto assumes conditional independence: player i’s signal and player j’s

signal are independent conditional on actions. Thus, i cannot learn j’s inference from her

own signals. In contrast, with random matching signals are not conditionally independent.

This is the “receiver-learning problem” noted above, which we address via the innovation of

introducing jamming players.

Sugaya proves a general folk theorem by generalizing Yamamoto’s construction to condi-

tionally dependent monitoring. As in the current paper, mixed strategies are used to control

incentives after erroneous histories that arise with small ex ante equilibrium probability. In

particular, after observing such a history, a player believes this observation results from a

rare realization of her opponents’ mixed strategies. By specifying her continuation payoff to

be constant after such erroneous realizations, the player is incentivized to adhere to the same

continuation play as after non-erroneous histories. However, Sugaya’s construction assumes

15As indicated in Figure 1, we also use the verified communication protocol in the first talk phase of the
final talk sub-block.
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pairwise identifiability (i.e., each player can unilaterally identify other players’ deviations).

This makes communication straightforward, as when player i “sends a message” to player

j, player j can construct a statistic whose distribution depends on player i’s message but

is independent of unilateral deviations by players −i. With anonymous random matching,

pairwise identifiability is robustly violated.

4 Extensions

We have extended Theorem 1 to three more general environments: imperfect monitoring

within matches, non-pairwise matching, and non-i.i.d. matching. We summarize these ex-

tensions here—formal statements and proofs may be found in the working-paper version of

this article.

Almost-perfect within-match monitoring: It is not surprising that we can allow

almost-perfect monitoring within a match, since we build on Hörner and Olszewski (2006),

who prove the folk theorem with almost-perfect monitoring. The required modifications to

our proof are relatively minor. First, we have jamming players mix over all actions, rather

than just a0 and a1. This makes players attribute unexpected observations to randomiza-

tion by jamming players rather than monitoring errors. Second, reward functions must be

adjusted to account for monitoring errors. Third, it is useful to introduce a small proba-

bility that the block is extended to include a final “long communication phase” on which

the required reward adjustments can be based. Here we do allow public randomization, in

contrast to both Theorem 1 and Hörner and Olszewski’s theorem. It is used to decide when

to extend the block by including a long communication phase.

Non-pairwise matching and random player-roles: The assumption that matching

is pairwise is restrictive. For example, this requires that all players “play the game” the

same number of times, and thus rules out a distinction between frequent and infrequent

participants. The assumption that each player has the same “role” in each match is also

restrictive. It rules out games where each period one player in each match has an opportunity

to do a favor for her partner, as in “monetary” models à la Kiyotaki and Wright (1989, 1993).

13



Our approach can be extended to cover these settings, with some restrictions on the structure

of the game and the target payoff set. The required modifications to the proof are again

minor. For example, a player must now report her group size and player-role (if applicable)

in addition to her action and observation. Notably, with this additional information our

identification argument generalizes to non-pairwise matching.

Non-i.i.d. matching: Our approach also extends to situations where (pairwise) match-

ing is determined by a Markov process with a full-support transition kernel that depends on

both the current match and the current action profile. This encompasses models with en-

dogenous match separation, such as finite population versions of Shapiro and Stiglitz (1984),

Datta (1996), Kranton (1996), Carmichael and MacLeod (1997), Eeckhout (2006), Fujiwara-

Greve and Okuno-Fujiwara (2009), and Peski and Szentes (2013). The proof now requires

substantial modification. The basic idea is to use the fact that, for large enough T , any

two matches separated by T periods are almost independent. This lets us preserve the block

belief-free structure.

5 Discussion

Multiple communities and player-roles: Our result can also be extended to allow mul-

tiple communities, where each community has a fixed role. For example, in a stage-game

between a buyer and a seller, we can allow the case where each player is always either a

buyer or a seller, and also that where each player can play different roles.

Cheap talk and public randomization: The folk theorem would be easy to prove if

we allowed public cheap talk communication. This would make detecting deviations straight-

forward, and then cooperation could be sustained by punishing deviations through mutual

minmaxing. Deb (2018) considers a setting with private (within-match) cheap talk and

shows that it is possible to partially detect deviations, and then applies the perfect moni-

toring version of Hörner and Olszewski. On the other hand, allowing public randomization

would not simplify our construction much.16

16In the final talk phase of our construction, each player i randomly chooses a set of periods to monitor and
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Incomplete information: A concern with contagion equilibria is that they are not

robust to incomplete information, for instance the possibility of a few “commitment types’

who always defect. Our approach of considering a single N-player game and controlling

each player’s continuation payoff separately should be more robust to these considerations.

Incomplete information can undermine our communication protocols. Nonetheless, we con-

jecture that our approach combined with that in Fudenberg and Yamamoto (2010) may yield

a partial folk theorem for ex post equilibria in this setting.

Unknown population size: Another type of incomplete information is uncertainty

about the number of players in the game. Suppose there is an underlying population of

M players, any (even) number of whom may be selected by Nature to play the anonymous

random matching game. We conjecture that our approach can be extended to this setting by,

as in the ex post equilibrium approach of Fudenberg and Yamamoto (2010), having players

keep track of a vector of continuation payoff profiles, one for each possible realization of the

population playing the game; and augmenting our construction with a learning phase, where

each player in the underlying population has a chance to report if she is “present” in the

game. However, since one player can always pretend to be a different player (and will not

be caught if the other player is not present), the extent to which payoff asymmetries among

the players can be supported will be more limited than in the case with a known population.

Low discount factors: While block belief-free strategies let us establish a folk theorem,

they have the disadvantage of requiring a very high discount factor as a function of the

population size. In contrast, contagion strategies are remarkably effective (in the prisoners’

dilemma) even for fairly low δ.17 Nonetheless, following Hörner and Takahashi (2016), it can

be shown that the asymptotic rate of convergence of our equilibrium set to F ∗ is at least

(1− δ)−1/2 for generic stage games. Formalizing and investigating performance criteria for

low δ in general anonymous random matching games is an interesting future direction.

communicates this choice to her opponents. With public randomization, we could eliminate this phase by
letting nature select these random periods.

17See the calculations in Ellison (1994).
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librium in Repeated Anonymous Random Matching Games,” Games and Economic
Behavior, 100, 1-23.
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Appendix: Proof of Theorem 1

A Overview of the Proof and Notation

Section B presents the block belief-free equilibrium conditions, to reduce the infinitely re-

peated game to a finitely repeated game with final-period reward functions. Section C

defines target payoffs and presents preliminary lemmas. Section D defines the communi-

cation protocols. Section E provides an overview of the equilibrium strategies. Sections

F and G prove reduction lemmas to simplify the equilibrium conditions. We reduce the

game to an undiscounted game with final-period reward functions, and show that reward

functions can exhibit some dependence on other players’ histories. Section H constructs the

verified communication module, which augments the verified communication protocol defined

in Section D with a reward function. Section I uses this module to further simplify the

equilibrium conditions: we show that it suffices to establish optimality of a player’s strategy

only at histories consistent with her opponents’ equilibrium strategies. Section J completes

the description of the equilibrium strategies. Section K constructs the final reward func-

tion, which sums the rewards for main and non-main phases. Sections L and M verify the

equilibrium conditions. The Supplementary Appendix contains omitted proofs.

We use different terms to refer to sets of consecutive periods that are meaningful in the

construction. We define these below, from the longest (a block) to the shortest (a period).

Terminology Meaning

Block T ∗∗ periods, structured as in Section E.

Sub-Block
L+ 2 sub-blocks in each block: an initial talk sub-block, a final talk sub-block

and L sub-blocks in between that comprise both play and talk. See Section E.

Phase
A major component of a sub-block: either a complete play of a communication protocol,

or a set of periods where players take the targeted actions. See Section E.

Round A major component of the verified protocol. See Section D.3.

Interval 2T consecutive periods in the basic, secure, or verified protocol. See Section D.

Half-Interval T consecutive periods in the basic, secure, or verified protocol.

Period A single play of the game.

Table 1: Glossary of Terminology Describing Timing
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We also collect some additional notation that will be used repeatedly in the proof.

Notation Meaning

vi The target payoff.

vi(G) The lowest payoff when players coordinate on x with xi−1 = G (see (5)).

vi (B) The highest payoff when players coordinate on x with xi−1 = B (see (5)).

u The minmax payoff (see Section 2).

ū The greatest magnitude of any feasible payoff (see Section 2).

uG The smallest feasible payoff (see (55)).

uB The largest feasible payoff (see (55)).

Table 2: Glossary of Notation for Payoffs

Notation Meaning

πcancel
i (xi−1, a−i, ω−i) Reward to make player indifferent over actions with payoff vi(xi−1) (see (7)).

πai (a−i, ω−i) Reward to give payoff 0 if ai = a and −1 otherwise (see (8)).

−1{
aj,t 6=a∗j,t(h−j)

} Reward to give payoff 0 if player follows verified protocol in

checking rounds, and give payoff − 1 otherwise (see (42)).

πθ=Ei (xi−1, a−i, ω−i)
Reward to make player indifferent over actions with payoff uxi−1 ,

while satisfying self-generation (see (56)).

π
vi
i (xi−1, a−i, ω−i)

Reward to make player indifferent over actions with payoff vi (xi−1) ,

while satisfying self-generation if all players play ak(x) (see (56)).

π
vi
i (xi−1, a−i, ω−i|αmin)

Reward to make player indifferent over actions with payoff vi (xi−1)

when opponents play αmin (see (56)).

Table 3: Glossary of Notation for Reward Functions

We use standard asymptotic notation: “f (T ) = O (g (T ))” means “∃C > 0,∃T̄ > 0 : ∀T >

T̄ , |f (T )| ≤ Cg (T ).”

B Block Belief-Free Structure

We view the repeated game as an infinite sequence of T ∗∗-period blocks, with T ∗∗ to be

specified. At the beginning of each block, each player i selects a state xi ∈ {G,B}. Given xi,

player i plays a behavior strategy σ∗i (xi) (her block strategy) within the block: in every period

t = 1, . . . , T ∗∗ of a block, σ∗i (xi) specifies a mixed action as a function of player i’s extended

block history (Li, ht−1
i ), where Li encodes the result of a private randomization conducted by

player i at the beginning of the block (described below), and ht−1
i = (ai,τ , ωi,τ )

t−1
τ=1 ∈ H

t−1
i .
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Denote player i’s strategy set in the T ∗∗-period game by Σi.

We require that player i’s state xi is determined by a transition probability ρi(·|x̃i, h̃T
∗∗

i ) ∈

4({G,B}) that depends only on player i’s state in the previous block, x̃i, and her history

in the previous block, h̃T
∗∗

i . Moreover, we require that player i’s payoff at the beginning of

each block is determined solely by player (i− 1)’s state, xi−1 ∈ {G,B}, and denote it by

v∗i (xi−1) ∈ R. Hence, player i’s continuation payoff at the end of a block is a function only of

player (i− 1)’s state and extended history. Denote this continuation payoff by w∗i (xi−1, h
T ∗∗
i−1).

We present conditions under which a given payoff vector v ∈ RN is attainable in a block

belief-free equilibrium. These are similar to the conditions in Hörner and Olszewski (2006),

with one significant difference: Hörner and Olszewski assume monitoring has full support, so

in their model Nash and sequential equilibrium coincide, and there is no need to keep track

of players’ beliefs. In contrast, our model does not have full support, so we must introduce

beliefs, verify Kreps-Wilson consistency, and—most subtly—ensure that beliefs respect the

block belief-free equilibrium structure, in that sequential rationality is satisfied conditional

on each possible state vector x−i ∈ {G,B}N−1. To do this, we keep track of players’ beliefs

conditional on each vector x−i ∈ {G,B}N−1. This approach implicitly determines a complete,

unconditional belief system, but since sequential rationality is always imposed conditional

on x−i, these unconditional beliefs do not enter into our analysis.

Formally, an ex post belief system β = (βi)i∈I consists of, for each player i ∈ I, opposing

state vector x−i ∈ {G,B}N−1, period t ∈ {1, . . . , T ∗∗}, and block history ht−1
i ∈ H t−1

i , a

probability distribution βi
(
·|x−i, ht−1

i

)
∈ ∆

(
H t−1
−i
)
. Together with a block strategy pro-

file (σi (xi))i∈I,xi∈{G,B}, an ex post belief system is consistent if there exists a sequence

of completely mixed block strategy profiles
((
σki (xi)

)
i∈I,xi∈{G,B}

)
k∈N

converging pointwise

to (σi (xi))i∈I,xi∈{G,B} such that, for each i ∈ I, x−i ∈ {G,B}N−1, t ∈ {1, ..., T ∗∗}, and

ht−1 ∈ H t−1, we have β(ht−1
−i |x−i, ht−1

i ) = limk→∞ Pr(
σkj (xj))

j 6=i
(
ht−1
−i |x−i, ht−1

i

)
.18

We are now ready to present the equilibrium conditions. In what follows, Eσ [·] denotes

expectation with respect to strategy profile σ, and E(σ,β) [·|·] denotes conditional expectation

with respect to assessment (strategy profile and beliefs) (σ, β).

18With this definition, it is clear that, whenever an ex post belief system is consistent, the corresponding
unconditional belief system is consistent in the usual Kreps-Wilson sense.

22



For all v ∈ RN and δ < 1, if there exist T ∗∗ ∈ N, strategies (σ∗i (xi))i∈I,xi∈{G,B}, con-

sistent ex post belief system β∗, values (v∗i (xi−1))i∈I,xi−1∈{G,B}, and continuation payoffs(
w∗i (xi−1, h

T ∗∗
i−1)

)
i∈I,xi−1∈{G,B},hT

∗∗
i−1 ∈HT∗∗

i−1
such that the following conditions hold for all i ∈ I,

then we have v ∈ E(δ):

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,19

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
(1− δ)

T ∗∗∑
τ=1

δτ−1ûi (aτ ) + δT
∗∗
w∗i (xi−1, h

T ∗∗
i−1)|x−i, ht−1

i

]
.

(Here, the sum
∑T ∗∗

τ=1 could alternatively be written as
∑T ∗∗

τ=t, since payoffs already incurred

in ht−1
i are sunk. In addition, sequential rationality is imposed for every vector x−i ∈

{G,B}N−1. This is the defining feature of a block belief-free construction.)

2. [Promise Keeping] For all x ∈ {G,B}N ,

v∗i (xi−1) = Eσ∗(x)

[
(1− δ)

T ∗∗∑
t=1

δt−1ûi (at) + δT
∗∗
w∗i (xi−1, h

T ∗∗
i−1)

]
.

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT
∗∗

i−1 , we have w∗i (xi−1, h
T ∗∗
i−1) ∈ [v∗i (B), v∗i (G)].

4. [Full Dimensionality] Player i−1 can randomize her initial state to deliver player i’s target

payoff vi: v
∗
i (B) < vi < v∗i (G).

Defining π∗i (xi−1, h
T ∗∗
i−1) := δT

∗∗

1−δ

(
wi(xi−1, h

T ∗∗
i−1)− v∗i (xi−1)

)
, we rewrite the conditions below:

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T ∗∗∑
τ=1

δτ−1ûi (aτ ) + π∗i (xi−1, h
T ∗∗
i−1)|ht−1

i

]
. (1)

2. [Promise Keeping] For all x ∈ {G,B}N ,

v∗i (xi−1) = Eσ∗(x)

[
1− δ

1− δT ∗∗
T ∗∗∑
t=1

δt−1ûi (at) + π∗i (xi−1, h
T ∗∗
i−1)

]
. (2)

19Throughout, when we write “for all ht−1i ∈ Ht−1
i ,” this should be understood as applying for all i ∈ I

and all t.
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3. [Self-Generation] For all xi−1 ∈ {G,B} and hT
∗∗

i−1 ,

1− δ
δT ∗∗

π∗i (G, h
T ∗∗
i−1) ≤ 0,

1− δ
δT ∗∗

π∗i (B, h
T ∗∗
i−1) ≥ 0,

∣∣∣∣1− δδT ∗∗
π∗i (xi−1, h

T ∗∗
i−1)

∣∣∣∣ ≤ v∗i (G)− v∗i (B). (3)

4. [Full Dimensionality]

v∗i (B) < vi < v∗i (G). (4)

Lemma 1 (Hörner and Olszewski (2006)) For all v ∈ RN and δ ∈ [0, 1), if there exist

T ∗∗ ∈ N, (σ∗i (xi))i∈I,xi∈{G,B}, β
∗, (v∗i (xi−1))i∈I,xi−1∈{G,B}, and

(
π∗i (xi−1, h

T ∗∗
i−1)

)
i∈I,xi−1∈{G,B},hT

∗∗
i−1 ∈HT∗∗

i−1

such that Conditions (1)–(4) are satisfied, then v ∈ E(δ).

C Preliminaries

C.1 Target Payoff and Actions

Given v ∈ int (F ∗), there exist payoff vectors (v̄i (xi−1))i∈I,xi−1∈{G,B} ∈ R2N such that

(v̄i (xi−1))i∈I ∈ int (F ∗) ∀ (xi−1)i∈I ∈ {G,B}
N and u < v̄i (B) < vi < v̄i (G) ∀i ∈ I. Define

ε∗ :=
1

10
min
i

min {v̄i (G)− vi, vi − v̄i (B) , v̄i (B)− u} .

We approximate (v̄i (xi−1))i∈I,xi−1∈{G,B} by sequences of action profiles: for all ε∗ > 0,

there exist Kv ∈ N and a sequence of action profiles
(
ak (x)

)Kv

k=1
∈ ANKv ∀x ∈ {G,B}N

such that, for all i ∈ I, we have
∣∣∣ 1
Kv

∑Kv

k=1 ûi
(
ak (x)

)
− v̄i (xi−1)

∣∣∣ < ε∗. Let ûi (x) =

1
Kv

∑Kv

k=1 ûi
(
ak (x)

)
. Next, fix (vi (xi−1))i∈I,xi−1∈{G,B} ∈ R2N and sequences of action pro-

files
(
(ak (x))Kv

k=1

)
x∈{G,B}N ∈ A

2NKv such that, for all i ∈ I,

vi (G) = min
x:xi−1=G

ûi (x) , vi (B) = max
x:xi−1=B

ûi (x) > u+ 9ε∗, and

vi (B) + 9ε∗ < vi < vi (G)− 9ε∗. (5)
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Players will repeat the target action sequence (ak (x))Kv
k=1 over L “sub-blocks,” where

L :=

⌈
2ū

ε∗

⌉
(Kv + 1) . (6)

(Throughout, d·e denotes the “round-up” function.) For l > Kv, let ali (x) = a
l (mod Kv)
i (x).20

C.2 Identification

We record the observation made in Section 3.3 that the profile (a−i, ω−i) of i’s opponents’

actions and observations perfectly identifies player i’s action and observation, (ai, ωi).

Lemma 2 There exists a function ϕ : A−i×A−i → Ai×Ai such that, if (ai, ωi)i∈I is feasible,

then ϕ (a−i, ω−i) = (ai, ωi).

By Lemma 2, for each xi−1, there exists a function πcancel
i (xi−1, a−i, ω−i) : AN−1×AN−1 →

[−2ū, 2ū] such that, for each a ∈ AN , we have

ûi (a) + πcancel
i (xi−1, a−i, ω−i) = vi(xi−1). (7)

Thus, the function πcancel
i (xi−1, a−i,, ω−i) cancels player i’s instantaneous utility. Similarly,

for each a ∈ A, there exists πai (a−i, ω−i) : AN−1 ×AN−1 →R such that, for each a ∈ AN , we

have

πai (a−i, ω−i) =

 0 if ai = a

−1 if ai 6= a
. (8)

Thus, the function πai (a−i,, ω−i) punishes player i for deviating from a.

C.3 A Bound on the Probability of Matches

We repeatedly use the following exponential bound on the probability that a pair of players

fails to match even once during a set of T periods:

20Hörner and Olszewski (2006) and several subsequent papers present their constructions assumingKv = 1.
With random matching, this assumption is usually with loss. For example, in the prisoner’s dilemma, to
punish player 1 while keeping her opponents’ payoffs close to u (C,C), we must cycle through action profiles
where player 1 and most of her opponents cooperate, while different subsets of her opponents take turns
defecting. We thus present our construction for arbitrary Kv.
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Lemma 3 For any set of T periods T ∈ NT and any pair of distinct players i, j ∈ I, we

have Pr (µt(i) 6= j ∀t ∈ T) ≤ exp (−ε̄T ).

Proof. Pr (µt(i) 6= j ∀t ∈ T) ≤ (1− ε̄)T = exp (T log (1− ε̄)) ≤ exp (−ε̄T ).

Given a set of periods T, we say the realized matching process is erroneous over T if

there exists a pair of players who do not match with each other during T.

D Communication Protocols

A basic building block of the equilibrium strategy is a communication protocol : a strategy

profile for players to communicate via actions in a finitely repeated game. The description

of a communication protocol does not include payoff functions and thus entails no claims

about incentive compatibility. After constructing the equilibrium strategy, we will construct

a reward function and then verify sequential rationality.

We view each protocol as a distinct, finitely-repeated game. If T is the set of periods

comprising a protocol, a protocol history for player i is a vector hi = (ai,t, ωi,t)t∈T ∈ Hi.

Denote the set of protocol history profiles by H =
∏

i∈I Hi.

D.1 Basic Communication Protocol

The basic protocol lets a player i ∈ I broadcast a message mi from a set Mi = {1, . . . , |Mi|}.

We call player i the sender and call the other players receivers. The protocol takes 2Tb (Mi)

periods, where b (Mi) := dlog2 |Mi|e.21

Basic Communication Protocol for Player i to Send Message mi with Repetition

T :22

• Divide the 2Tb (Mi) periods into b (Mi) intervals of 2T periods each.

• For t ∈ {1, . . . , b (Mi)},
21We sometimes abusively write b (|Mi|) for b(Mi).
22In what follows, instructions of the form “play action a in period t” are to be read as unconditional on

a player’s past actions and observations. Thus, a communication protocol is formally a strategy profile, not
just a description of on-path play.
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– If the tth digit of the binary expansion of mi − 1 is 0, player i plays a0 for the first half

of the tth interval (i.e., the first T periods in the interval) and plays a1 for the second

half of the tth interval (i.e., the last T periods in the interval).

– If the tth digit of the binary expansion of mi − 1 is 1, player i plays a1 for the first half

of the tth interval and plays a0 for the second half of the tth interval.

We call a set of T periods where player i takes a constant action a half-interval.

• Each player j 6= i plays a0 throughout the protocol.

• At the end of the protocol, each player j 6= i makes an inference mi (j) ∈ Mi ∪ {0} as

follows (based on history (aj,t, ωj,t)
2Tb(Mi)
t=1 ). If mi (j) = 0, we say j fails to infer a message:

– If, for some t ∈ {1, . . . , b (Mi)}, ωj,τ 6∈ {a0, a1} for some period τ in the tth interval,

player j sets mi (j) = 0.

– If, for some t ∈ {1, . . . , b (Mi)}, ωj,τ 6= a1 for every period τ in the tth interval, player j

sets mi (j) = 0.

– If, for some t ∈ {1, . . . , b (Mi)}, ωj,τ = ωj,τ ′ = a1 for some period τ in the first half of the

tth interval and some τ ′ in the second half of the tth interval, player j sets mi (j) = 0.

– Otherwise, player j constructs a number m̂ ∈ {0, . . . , b (Mi)− 1} as follows:

∗ If ωj,τ = a1 for some period τ in the first half of the tth interval and ωj,τ = a0 for every

period τ in the second half of the tth interval, player j sets the tth digit of the binary

expansion of m̂ equal to 1.

∗ If ωj,τ = a1 for some period τ in the second half of the tth interval and ωj,τ = a0 for

every period τ in the first half of the tth interval, player j sets the tth digit of the binary

expansion of m̂ equal to 0.

– If m̂ ≤ |Mi| − 1, player j sets mi (j) = m̂+ 1. If m̂ ≥ |Mi| (which is possible if log2 |Mi|

is not an integer), player j sets mi (j) = 0.

When all players follow the protocol, mi (j) = mi if and only if player j matches with

player i at least once in every T -period half-interval where player i plays a1. Hence, by
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Lemma 3,

Pr (mi (j) = mi) ≥ 1− b(Mi) exp (−ε̄T ) ∀j 6= i. (9)

Moreover, when all players follow the protocol, either j’s inference is correct or j fails to

infer a message: if mi (j) 6= mi then mi(j) = 0.

D.2 Secure Communication Protocol

The secure protocol is a generalization of the basic protocol that lets player i send a message

so that it is harder for any receiver to manipulate. In addition to the parameters (i, mi, and

T ), the secure protocol takes as given a set of players Ijam ⊂ I\ {i}, called jamming players.

Secure Communication Protocol for Player i to Send Message mi with Repe-

tition T and Jamming Players Ijam:

• Divide the 2Tb(Mi) periods of the protocol into b(Mi) intervals of 2T periods each.

• Player i behaves as in the basic communication protocol.

• Each player j /∈ Ijam∪{i} behaves as in the basic communication protocol (i.e., plays a0).

• For each player j ∈ Ijam, in the first period of each T -period half-interval (i.e., in periods

t = kT+1 for k ∈ {0, 1, . . . , 2b (Mi)− 1}), player j plays a0 with probability 1−exp(−T 1
2 )

and plays a1 with probability exp(−T 1
2 ). She then repeats the chosen action for the

remainder of the half-interval (i.e., plays aj,t = aj,kT+1 for t ∈ {kT + 2, ..., (k + 1)T}).

• At the end of the protocol, each player j 6= i infers a message mi (j) ∈Mi ∪ {0} as in the

basic communication protocol.

For j ∈ Ijam and k ∈ {0, 1, . . . , 2b(Mi)− 1}, if aj,kT+1 = a0 we say player j plays REG

(“regular”) in the kth half-interval, and if aj,(k−1)T+1 6= a0 we say player j plays JAM (“jam-

ming”) in the kth half-interval. Thus, player j plays REG and JAM with probabilities

1− exp(−T 1
2 ) and exp(−T 1

2 ) in each half-interval, independently across each half-interval.

Denote the event that all jamming players play REG throughout the protocol by ALL-

REG. Conditional on ALLREG, all players behave identically in the secure and basic pro-

tocols. In particular, conditional on ALLREG, inequality (9) holds and mi (j) 6= 0 implies
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mi (j) = mi ∀j 6= i. Moreover,

Prσ
mi (mi (j) = mi ∀j 6= i ∩ ALLREG) ≥ 1−Nb(Mi)

(
exp (−ε̄T ) + 2 exp(−T

1
2 )
)
. (10)

The key new property of the secure protocol is that, for each player j 6= i with Ijam\ {j} 6=

∅ and every sequence of observations (ωj,t)
2Tb(Mi)
t=1 , either she believes with high probability

that communication was jammed, or she believes with probability that, conditional on the

event that communication was not jammed, the message is likely to have transmitted suc-

cessfully. Intuitively, the former case arises when player j observes a1 frequently, and the

latter case arises when she observes a1 less frequently. To formalize this, let

η̄ := max
γ∈[0,1]

min
i,j,j′

{
γ log

pi,j + pj′,j
pi,j

+ (1− γ) log
1− pi,j − pj′,j

1− pi,j
, ε̄ (1− γ)

}
> 0, (11)

and let γ̄ be the maximizer.

Lemma 4 For any player j 6= i with Ijam\ {j} 6= ∅ and any sequence of observations

(ωj,t)
2Tb(Mi)
t=1 that arises with positive probability when players −j follow the secure protocol,

1. If ωj,t = a1 for at least γ̄T periods in some half-interval then, for all (aj,t)
2Tb(Mi)
t=1 , we have

Pr
(
ALLREG| (aj,t, ωj,t)2Tb(Mi)

t=1

)
≤ exp

(
−η̄T + T

1
2

)
. (12)

2. If ωj,t = a1 for at most γ̄T periods in each half-interval, then

(a) For all (aj,t)
2Tb(Mi)
t=1 , we have

Pr
(
mi (j

′) ∈ {mi, 0} ∀j′ /∈ {i, j} | (aj,t, ωj,t)2Tb(Mi)
t=1 , ALLREG

)
≥ 1−Nb(Mi) exp (−η̄T )

(13)

(b) If aj,t = a0 for all t ∈ {1, . . . , 2Tb(Mi)}, we have

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} | (aj,t, ωj,t)2Tb(Mi)
t=1 , ALLREG

)
≥ 1−Nb(Mi) exp (−η̄T )

(14)
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Proof. Fix j 6= i with Ijam\ {j} 6= ∅. Suppose there is an half-interval S in which ωj,t = a1

for γ periods, with γ ≥ γ̄T . Fix a player j′ ∈ Ijam\ {j}. Let j′JAMS denote the event that,

in half-interval S, player j′ plays JAM and all other jamming players play REG. Let SREG

denote the event that all jamming players play REG in half-interval S. Let (aj,t, ωj,t)t∈S

denote the restriction of (aj,t, ωj,t)
2Tb(Mi)
t=1 to half-interval S. Then

Pr
(
(aj,t, ωj,t)t∈S |j

′JAMS
)

Pr
(
(aj,t, ωj,t)t∈S |SREG

) =

(
pi,j + pj′,j

pi,j

)γ (
1− pi,j − pj′,j

1− pi,j

)T−γ
≥ exp

((
γ̄ log

pi,j + pj′,j
pi,j

+ (1− γ̄) log
1− pi,j − pj′,j

1− pi,j

)
T

)
,

which is no less than exp (η̄T ). Hence, by Bayes’ rule,

Pr
(
SREG| (aj,t, ωj,t)t∈S

)
≤

[
1 +

Pr (j′JAMS) Pr
(
(aj,t, ωj,t)t∈S |j

′JAMS
)

Pr (SREG) Pr
(
(aj,t, ωj,t)t∈S |ALLREG

) ]−1

≤

[
1 + exp(−T

1
2 )

Pr
(
(aj,t, ωj,t)t∈S |j

′JAMS
)

Pr
(
(aj,t, ωj,t)t∈S |ALLREG

)]−1

≤
[
1 + exp

(
η̄T − T

1
2

)]−1

≤ exp
(
−η̄T + T

1
2

)
.

Since the event that a jamming player plays JAM is independent across half-intervals and

the behavior of players −j is independent of their past actions and observations, we have

Pr
(
ALLREG| (aj,t, ωj,t)2Tb(Mi)

t=1

)
≤ Pr

(
SREG| (aj,t, ωj,t)2Tb(Mi)

t=1

)
= Pr

(
SREG| (aj,t, ωj,t)t∈S

)
.

Combining the inequalities yields (12).

Next suppose ωj,t = a1 for at most γ̄T periods in every half-interval. Then, in each

half-interval where player i plays a1, player i matches with a player other than j in at least

(1− γ̄)T0 periods. Suppose player j plays a0 throughout the protocol. For all j′ /∈ {i, j},

if player i matches with player j′ at least once in each half-interval where player i plays a1,

and ALLREG occurs, then mi (j
′) = mi. Hence, by Lemma 3,

Pr
(
mi (j

′) = mi|
(
a0, ωj,t

)2Tb(Mi)

t=1
, ALLREG

)
≥ 1−b(Mi) exp (−ε̄ (1− γ̄)T ) ≥ 1−b(Mi) exp (−η̄T )
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Applying this bound repeatedly for each j′ 6= i, j, we obtain

Pr
(
mi (j

′) = mi ∀j′ /∈ {i, j} |
(
a0, ωj,t

)2Tb(Mi)

t=1
, ALLREG

)
≥ 1−Nb(Mi) exp (−η̄T ) .

This establishes (14). Similarly—regardless of player j’s behavior—if player i matches with

player j′ 6= i, j in some period in each half-interval where player i plays a1, then mi (j
′) ∈

{mi, 0}. (In particular, mi (j
′) = 0 if j ever matches with j′ while playing aj /∈ {a0, a1},

or if i and j match with j′ while playing a1 in different halves of the same interval, and

mi (j
′) = mi otherwise.) Hence, (13) also holds.

D.3 Verified Communication Protocol

In the verified communication protocol, player i first broadcasts a message mi ∈ Mi in

2b (Mi) periods using the basic communication protocol (with T = 1). Then, each player

(including player i herself) sequentially broadcasts her actions and observations from these

2b (Mi) periods using the secure communication protocol with repetition T (with T to be

specified). The verified protocol thus takes a total of T (Mi, T ) periods, where

T (Mi, T ) := 2b (Mi) + 2b
(
A4b(Mi)

)
NT. (15)

Verified Communication Protocol for Player i to Send Message mi with Rep-

etition T :

At the beginning of the verified protocol, each player j has two possible types, denoted

ζj ∈ {reg, jam}. A strategy in the protocol is thus a mapping from {reg, jam} and protocol

histories to actions. Let Ijam = {j : ζj = jam}. The protocol consists of N + 1 rounds.

• Message round

– Player i sends message mi ∈Mi as in the basic communication protocol with T = 1.23

– Each player j 6= i plays a0 throughout the round.

23To make following the verified communication protocol sequentially rational, we will subsequently slightly
modify player i’s prescribed behavior after she herself deviates from the protocol. See Section H.
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Let T (msg) denote the set of 2b (Mi) periods comprising the message round.

• j-checking round, for each j ∈ I. Each checking round consists of b
(
A4b(Mi)

)
intervals.

Each interval consists of 2T periods. Let T (j) denote the set of 2Tb
(
A4b(Mi)

)
periods

comprising the j-checking round.

– Player j sends message (aj,t, ωj,t)t∈T(msg) ∈ A4b(Mi) as in the basic protocol.

– Each player n /∈ Ijam ∪ {j} plays a0 throughout the round.

– In each half-interval, each player n ∈ Ijam \ {j} mixes between REG and JAM with

probabilities 1− exp(−T 1
2 ) and exp(−T 1

2 ), as in the secure protocol.

– Each player n 6= j infers message (aj,t(n), ωj,t(n))t∈T(msg) ∈ A4b(Mi) ∪ {0} as in the basic

protocol.

• At the end of the protocol, each player n ∈ I creates a final inference mi(n) ∈ Mi ∪ {0}

as follows:

– If (aj,t(n), ωj,t(n))t∈T(msg) = 0 for some j 6= n, then mi(n) = 0.

– Otherwise, if the vector (aj,t(n), ωj,t(n))t∈T(msg),j∈I is not feasible—that is, for some j′ ∈

I and t ∈ T (msg), (aj′,t(n), ωj′,t(n)) 6= ϕ((aj,t(n), ωj,t(n))j 6=j′) (see Lemma 2 for the

definition of ϕ)—then mi(n) = 0.

– If (aj,t(n), ωj,t(n))t∈T(msg),j∈I is feasible and (ai,t(n))t∈T(msg) corresponds to the binary

expansion of some m̂i ∈Mi, then mi(n) = m̂i.

– If (aj,t(n), ωj,t(n))t∈T(msg),j∈I is feasible but (ai,t(n))t∈T(msg) does not correspond to the bi-

nary expansion of some m̂i ∈Mi, then mi(n) is set equal to an arbitrary, pre-determined

element of Mi—for concreteness, let mi (n) = 1.

In the verified protocol, we call player i the initial sender, and we say player j ∈ I is a

sender in period t if t ∈ T (j) or [j = i and t ∈ T (msg)]. We say players coordinate on mi

if mi(n) = mi for all n ∈ I.

For each j ∈ I, say that player j is suspicious at protocol history hj, denoted susp (hj) =

1, if mi(j) = 0. Otherwise, susp (hj) = 0. Note that susp (hj) = 1 only if some player

32



deviates, some jamming player plays JAM, or the realized matching process is erroneous over

some half-interval. We will derive some key properties of the function susp (·) in Section H.

D.4 Jamming Coordination Protocol

Finally, we describe how players coordinate on the identities of the jamming players Ijam ⊂ I.

Jamming Coordination Protocol with Parameter T :

• In each of the two periods, each player i plays a1 with probability exp(−T 1
3 ) and plays

each a 6= a1 with probability (1− exp(−T 1
3 ))/ (|A| − 1), independently across periods.

Given a protocol history hi, we define ζi(hi) = jam if ωi,t = a1 for some t ∈ {1, 2}. That

is, a player becomes a jamming player if she observes a1 in either period.

Let Pi(hi) = Pr (ζj(hj) = jam ∀j 6= i|hi). For every protocol history hi, the probability

that all players in I \ {i, µt(i)} play a1 in both periods t and µ1(i) 6= µ2(i) is at least

ε̄ exp(− (N − 2)T
1
3 ). Conditional on this event, the probability that ζj(hj) = jam ∀j 6= i is

1. Hence,

Pi(hi) ≥ ε̄ exp(− (N − 2)T
1
3 ). (16)

E Equilibrium Strategies: Overview

We now define the equilibrium block strategies, deferring some details to Section J. The

length of a block is parameterized by a number T0 ∈ N. We fix T0 sufficiently large such

that the following three inequalities hold:
2+ū

ε̄min{ε∗,1}300L2N4 |A| log2 T0 ≤ (T0)
1
10 ,

(T0)4
(

exp(− (T0)
1
6 ) + exp

(
−ε̄T0 + 2 (T0)

5
6

))
≤ 1,

(T0)4 exp(− (T0)
1
3 ) ≤ ε∗

2
.

(17)

Below, we give a precise description of how play proceeds within a block (and an intuitive

description in parentheses).

1. Sub-block 0: This sub-block consists of the following 2 + 2N phases.
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(a) Jamming coordination phase (0, jam): Players play the jamming coordination protocol

for 2 periods. (“The players coordinate on who will be jamming players.”)

(b) Coordination phase (0, i) (repeat for each i = 1, . . . , N): Player i sends xi ∈ {G,B}

using the verified communication protocol with repetition T0. Since the message set

Mi = {G,B} has cardinality 2, this phase takes T (Mi, T ) = 2b (2) + 2b
(
A4b(2)

)
NT0 ≈

4 + 16NT0 log2 |A| periods.24 (“The players coordinate on x.”)

(c) Contagion phase (0, i, con) (repeat for i = 1, . . . , N): Player i sends susp (hi) ∈ {0, 1}

using the verified protocol with repetition T0. This phase also takes ≈ 4+16NT0 log2 |A|

periods. (“If any player is suspicious, her suspicion spreads.”)

2. Sub-block l = 1, ..., L: This sub-block consists of the following 1 + 3N phases.

(a) Main phase (l,main): This phase takes (T0)3 periods, and is described in Section J.

Roughly, if player i is not suspicious, she plays ali (x (i)) in every period; otherwise, she

plays αmin in every period.

Let T(l,main) denote the set of (T0)3 periods in main phase (l,main). At the end of the

phase, each player i selects a period ti (l) ∈ T(l,main), uniformly at random. (“Each

player selects a random period to monitor.”)

(b) Communication phase (l, i) (repeat for i = 1, ..., N): Player i sends ti(l) ∈ T(l,main)

using the verified protocol with repetition T0. Since the message set has cardinality

|T(l,main)| = (T0)3, this phase takes 2b
(
(T0)3) + 2b

(
A4b((T0)3)

)
NT0 ≈ 6 log2 T0 +

24NT0 log2 T0 log2 |A| periods. (“Players communicate selected monitoring periods.”)

(c) Communication phase (l, i, n) (repeat for i = 1, ..., N and n = 1, ..., N): Player n sends

(an,t, ωn,t) using the verified protocol with repetition T0, where t equals player n’s infer-

ence of ti(l) in phase (l, i). Since the message set has cardinality |A|2, this phase takes

2b
(
|A|2

)
+ 2b

(
A4b(|A|2)

)
NT0 ≈ 4 log2 |A| + 16NT0 (log2 |A|)

2 periods. (“Players share

information about the monitoring periods.”)

24Throughout this section, we use ≈ to indicate equality up to rounding up all log2 terms: formally, we
write f (x) ≈ g (log2 y1, . . . , log2 ym) if g (log2 y1, . . . , log2 ym) ≤ f (x) ≤ g (dlog2 y1e , . . . , dlog2 yme).
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(d) Contagion phase (l, i, con) (repeat for i = 1, ..., N): A repetition of phase (0, i, con),

but for the current histories hi. Again, this phase takes ≈ 4 + 16NT0 log2 |A| periods.

(“Suspicion spreads.”)

Let Li = (ti (l))
L
l=1 be the collection of random monitoring periods selected by player i.

Let T ∗ be the final period of the last contagion phase, phase (L,N, con). Let T∗ =

{1, ..., T ∗} be the set of periods up to period T ∗. Let T′ be the set of non-main phase

periods up to period T ∗:

T′ = T∗ \
⋃L

l=1
T (l,main) . (18)

Given that T0 satisfies (17), it can be checked that |T′| ≤ (T0)1.1.25 (In what follows, all

comparisons of numbers of periods involving T0 assume (17).)

Let χn ∈ {0, 1} be a function of (xn, h
T ∗
n ), where χn = 1 if and only if there exists

t ∈ {1, ..., T ∗} such that an,t /∈ supp(σ∗n(xn)|ht−1
n

) (i.e., player n deviated from σ∗n(xn) in

the first T ∗ periods).

3. Final Talk Sub-block : This sub-block consists of the following 4N phases.

(a) Phase (final, 1, i) (repeat for i = 1, ..., N): Player i − 1 sends the list of periods Li−1 ∈

{1, ..., (T0)3}L using the verified protocol with repetition T0. Next, sequentially, each

player n 6= i, i − 1 sends the following two messages using the secure protocol with

repetition T0: (i) χn ∈ {0, 1} (i.e., player n “confesses” if she deviated in the first T ∗

periods). (ii) (an,t, ωn,t)t∈Li(n), where Li(n) is player n’s inference of Li. (If Li(n) = 0

then player n sends (an,t, ωn,t) = (a0, a0).) (“Players confess any deviations and re-send

25In particular,

T′(T0) = 2 + 2N
(

2b (2) + 2b
(
A4b(2)

)
NT0

)
+ L


N
(

2b
(

(T0)
3
)

+ 2b
(
A4b((T0)

3)
)
NT0

)
+N2

(
2b
(
|A|2

)
+ 2b

(
A4b(|A|2)

)
NT0

)
+N

(
2b (2) + 2b

(
A4b(2)

)
NT0

)


= 2 + 8N + 64 dlog2 |A|eN2T0 + 12LN dlog2 T0e+ 96 dlog2 |A|eLN2 dlog2 T0eT0
+8LN2 dlog2 |A|e+ 64 dlog2 |A|e

2
LN3T0 + 4NL+ 32 dlog2 |A|eLN2T0

≤ (T0)
1.1

(by (17)).

Elsewhere in the proof, similar calculations show that (17) guarantees a sufficiently high value of T0. We
omit such calculations going forward.
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their information about the monitoring periods.”26) Player i’s message set has cardinality

(T0)3L and the message set of each player n 6= i, i− 1 has cardinality 2A2L. Hence, the

length of this phase is

T (final, 1, i) = 2b
(

(T0)3L
)

+ 2b
(
A4b((T0)3L)

)
NT0 + (N − 2) 2b

(
2 |A|2L

)
T0

≈ 6L log2 T0 + 24NT0L log2 T0 log2 |A|+ 2 (N − 2)LT0 (1 + 2 log2 |A|) .

Let T1 be the final period of phase (final, 1, N). Let T1 = {1, ..., T1}. Let

T′′ = T1 \
⋃L

l=1
T (l,main) . (19)

It can be checked that |T′′| ≤ (T0)1.1. Let T (final, 1, i) be the set of periods in phase

(final, 1, i).

(b) Phase (final, 2, i) (repeat for i = 1, ..., N): Sequentially, each player n 6= i, i− 1 sends xn

and (an,t, ωn,t)t∈T′′ using the secure protocol with repetition T0. (“Players share their non-

main phase histories.”) The length of this phase is T (final, 2) = (N − 2) 2b
(
2A2T′′

)
T0 ≈

2 (N − 2)T0 log2

(
2A2T′′

)
. Let T2 be the final period of phase (final, 2, N). Let T2 =

{1, ..., T2}. It can be checked that T2 ≤ L (T0)3 + (T0)2.1. Let T (final, 2, i) be the set of

periods in phase (final, 2, i).

(c) Phase (final, 3, i) (repeat for i = 1, ..., N): Sequentially, each player n 6= i, i − 1 sends

(an,t, ωn,t)t∈∪j∈IT(final,2,j) using the basic protocol with repetition T0. (“Players share their

information about each other’s non-main phase histories.”) The length of this phase is

T (final, 3) = (N − 2) 2b (N × T (final, 2))T0 ≈ 2 (N − 2)T0 log2 (N × T (final, 2)). Let

T3 be the final period of phase (final, 3, N). It can be checked that T3 ≤ L (T0)3 +(T0)2.1.

(d) Phase (final, 4, i) (repeat for i = 1, ..., N): Player i− 1 selects a period ti−1 ∈ {1, ..., T3},

uniformly at random. Player i− 1 sends the realization of ti−1 using the basic protocol

with repetition T0. Next, sequentially, each player n 6= i − 1, i sends her inference

ti−1(n) ∈ {0, 1, ..., T3} and
(
an,ti−1(n), ωn,ti−1(n)

)
using the basic protocol with repetition

26Confessing deviations and re-sending past messages play a similar role here as in Hörner and Olszewski
(2006) and Yamamoto (2012).
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T0. (If ti−1(n) = 0 then n sends
(
an,ti−1(n), ωn,ti−1(n)

)
= (a0, a0)). (“Each player monitors

one extra period to cancel the effects of discounting.”) The length of the phase is

T (final, 4) = 2b (T3)T0 + (N − 2) 2b
(
(T3 + 1)× A2

)
T0

≈ 2T0 log2 (T3) + (N − 2) 2T0 (log2 (T3 + 1) + 2 log2 |A|) .

Finally, we have T ∗∗ = T3 + T (final, 4). It can be checked that T ∗∗ ≤ L (T0)3 + (T0)2.1.

F Reduction Lemmas: Phases (final, 3, i) and (final, 4, i)

F.1 Basic Communication Module

We analyze the equilibrium block strategies by backwards induction. Since the basic com-

munication protocol is used in the last phases (phases (final, 3, i) and (final, 4, i)), we start

by considering payoffs and reward functions for this protocol. We call the resulting finitely

repeated game the basic communication module.

For each player n ∈ I, payoff functions in the module take the form

∑
t∈T

δt−1ûn (at) + πn (xn−1, hn−1) + wn (h) , (20)

where ûn is the stage-game payoff function; πn is a reward function that depends only on

player n − 1’s state and module history (where the state vector (xn)n∈I is taken as fixed

and commonly known); and wn is a continuation payoff function that depends on the entire

module history. We wish to construct a reward function such that, when viewed as a strategy

profile in this finitely repeated game, the basic protocol is a belief-free equilibrium.

Definition 1 A strategy profile σ is a belief-free equilibrium (BFE) if, for each player i and

history hi, the continuation strategy σi|hi is a best response against σ−i|h−i for every opposing

history profile h−i.

We say that the premise for basic communication with magnitude K is satisfied if the

following conditions hold:
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1. Player i is indifferent about the result of communication: wi (h) = 0 for all h.

2. For all n 6= i, the range of wn (h) is bounded by K: maxh,h̃

∣∣∣wn (h)− wn(h̃)
∣∣∣ ≤ K.

Lemma 5 For each i ∈ I, xi−1, Mi, T , w, and K ≥ 2ū/ε̄ satisfying the premise for basic

communication with magnitude K, there exists a family of functions
(
πn(xi−1, ·) : HT

n−1 → R
)
n∈I

such that the following hold:

1. With payoff functions (20), the basic protocol is a BFE for every δ ∈ [0, 1].

2. For each n ∈ I and mi ∈Mi, E
[∑

t∈T δ
t−1ûn (at) + πn (xn−1, hn−1)

]
= Tvn(xn−1).

3. For each n ∈ I and t ∈ T,

max
hn−1,h̃n−1

∣∣∣πn (xn−1, hn−1)− πn
(
h̃n−1

)∣∣∣ ≤ (ū+ 2
ū+K

ε̄

)
T. (21)

The proof is relegated to Section N (as are all other omitted proofs). Here is a sketch:

For each receiver n 6= i, player n − 1 rewards player n every time she observes a0, which

incentivizes player n to play a0 throughout the module. Although whether player i (the

sender) plays a0 or a1 also affects the probability that player n − 1 observes a0 in a given

period (since i and n− 1 may match), the expected number of rewards is independent of mi

because player i plays a0 and a1 with the same frequency for every mi. In addition, whether

player i plays a0 in the first or second half-interval affects player n’s instantaneous utility

through discounting, so we must adjust the rewards to cancel this effect.

For player i, player i−1 makes her indifferent between playing a0 and a1 in every period.

This is straightforward since player i−1’s observations statistically identify player i’s actions.

Note that Lemma 5 concerns the complete information game where the states and con-

tinuation payoff functions (xn, wn)n∈I are known. However, as the statement of the lemma

holds for each realization of (xn, wn)n∈I , the same argument applies for the incomplete infor-

mation game where (xn, wn)n∈I is unknown but the premise for communication is satisfied

for each (xn, wn)n∈I . The same remark applies for Lemmas 8, 13, and 17 introduced later.
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F.2 Reduction Lemma 6: Undiscounted, Finitely Repeated Game

We show that the equilibrium conditions of Lemma 1 can be replaced by corresponding

undiscounted conditions:

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T3∑
τ=1

ûi (aτ ) + π∗i (xi−1, h
T3
i−1)|x−i, ht−1

i

]
. (22)

2. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) =
1

T3

Eσ∗(x)

[
T3∑
τ=1

ûi (aτ) + π∗i (xi−1, h
T3
i−1)

]
. (23)

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT3
i−1 ∈ H

T3
i−1,

sign(xi−1)π∗i (xi−1, h
T3
i−1) ≥ −7ε∗T3, (24)

where, for xi−1 ∈ {G,B}, define sign(xi−1) :=

 −1 if xi−1 = G,

1 if xi−1 = B.

Note that Condition (4) is omitted, as vi(xi−1) is fixed to satisfy it by (5). The third

inequality in (3) (which here would be
∣∣1−δ
δT3
π∗i (xi−1, h

T3
i−1)
∣∣ ≤ vi(G)− vi(B)) is also omitted,

as we have fixed T3, π∗i (xi−1, h
T3
i−1), and vi(G) > vi(B) (by (5)) and will take δ → 1.

Lemma 6 Suppose that, in the T3-period finitely repeated game, there exist strategies (σ∗i (xi))i,xi,

consistent ex post belief system β∗, and reward functions
(
π∗i (xi−1, h

T3
i−1)
)
i,xi−1,h

T3
i−1

such that

Conditions (22)–(24) are satisfied. Then there exists δ̄ < 1 such that v ∈E (δ) for all δ > δ̄.

The proof shows that, for any strategies (σ∗i (xi))i,xi in the T3-period game satisfying

the conditions of the lemma, the T ∗∗-period game that results from concatenating these

strategies with the Phase (final, 4, i)i∈I strategies described in Section E (in which players

share information about a random past period) satisfies the equilibrium conditions of Lemma

1. To prove this, we augment the reward functions from the T3-period game by giving each
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player a small reward if the newly monitored period reveals that she took an action yielding

a higher payoff later in the block, so as to leave her indifferent to the timing of her actions

within the first T3 periods. Condition (22) then ensures sequential rationality for the first

T3 periods. Moreover, as δ → 1, the size of the new reward goes to 0. Hence, Lemma 5

guarantees the existence of a reward function that incentivizes players to follow the basic

communication protocol in the last T ∗∗ − T3 periods. Finally, since (T ∗∗ − T3) /T3 is small,

communication takes a short enough time that Conditions (23) and (24) imply Conditions

(2) and (3), given the slack in (5).

F.3 Lemma 7: Letting Rewards Depend on h−i

Next, consider phase (final, 3, i), during which players n 6= i, i−1 send messages (an,t, ωn,t)t∈∪jT(final,2,j)

using the basic communication protocol. Player i−1 then uses her history in phase (final, 3, i)

to compute player i’s reward for phase (final, 2, j)j∈I so that, at the end of phase (final, 2, N),

player i’s expected reward is equal to

∑
j 6=i

∑
T(final,2,j)

πcancel
i (xi−1, a−i,t, ω−i,t)+

∑
t∈T(final,2,i)

(
πcancel
i (xi−1, a−i,t, ω−i,t) + πa

0

i (a−i,t, ω−i,t)
)
.

(25)

Given Conditions (7) and (8), player i’s expected payoff in phases ((final, 2, j))j∈I equals

∑
t∈T(final,2,i)

vi(xi−1)−
∑

t∈T(final,2,i)

1ai,t 6=a0 . (26)

Note that player i has a strict incentive to play a0 during phase (final, 2, i). Based on this

construction, we further reduce the conditions for Lemma 6:

1. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

 ∑T1

τ=1 ûi (aτ ) +
∑

t∈T(final,2,i) vi(xi−1)−
∑

t∈T(final,2,i) 1ai,t 6=a0

+π∗i (xi−1, h
T2
i−1)|x−i, ht−1

i

 .
(27)
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2. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) =
1

T2

Eσ∗(x)

 T1∑
τ=1

ûi (aτ ) +
∑

t∈T(final,2,i)

vi(xi−1)−
∑

t∈T(final,2,i)

1ai,t 6=a0 + π∗i (xi−1, h
T2
i−1)

 .
(28)

3. [Self-Generation] For all xi−1 ∈ {G,B} and hT2
i−1 ∈ H

T2
i−1,

sign(xi−1)π∗i (xi−1, h
T2
i−1) ≥ −6ε∗T2. (29)

Note that the slack in the self-generation constraint has been reduced to 6ε∗T2, com-

pared to 7ε∗T3 in Condition (24). This is because some slack is “used up” when replacing

π∗i (xi−1, h
T1
i−1) with (25) and π∗i

(
x−i, h

T2
i−1

)
.

Lemma 7 Suppose that, in the T2-period finitely repeated game, there exist strategies (σ∗i (xi))i,xi

consistent ex post belief system β∗, and reward functions
(
π∗i (xi−1, h

T2
i−1)
)
i,xi−1,h

T2
i−1

such that

Conditions (27)–(29) are satisfied. Then there exists δ̄ < 1 such that v ∈E (δ) for all δ > δ̄.

The proof shows that, for any strategies (σ∗i (xi))i,xi in the T2-period game satisfying the

conditions of the lemma, the T3-period game that results from concatenating these strate-

gies with the Phase (final, 3, i)i∈I strategies described in Section E satisfies the equilibrium

conditions of Lemma 6. Since the Phase (final, 3, i)i∈I strategies are used only to compute

the rewards πcancel
i and πa

0

i , and these rewards are of order ū, Lemma 5 with K of order ū

guarantees the existence of a reward function that incentivizes players to follow the basic

communication protocol in the last T3 − T2 periods.

G Reduction Lemma: Phase (final, 2, i)

G.1 Secure Communication Module

In phase (final, 2, i), the secure protocol is used. We consider payoffs and reward functions

for this protocol. The resulting finitely repeated game is the secure communication module.
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We need only consider the case where Ijam is a singleton. Fix the sender i and another

player i∗ with i 6= i∗, i∗ − 1. Let Ijam = {i∗ − 1}. Intuitively, we consider a situation where

player i must communicate a message mi to player i∗ − 1, but player i∗ may gain if player

i∗ − 1 infers some m′i 6= mi, while other players are indifferent.

For each n ∈ I, payoff functions in the secure communication module are given by

−1{n=i∗}
∑
t∈T

1{an,t 6=a0} + wn (h) , (30)

for some function wn : HT → R. Let (σmii , σ−i)mi∈Mi
denote the strategy profile in the secure

protocol. Note that only the sender’s strategy depends on mi. We will give conditions on

(wn)n∈I under which (σmii , σ−i)mi∈Mi
is an “i∗-quasi-belief-free equilibrium” of the resulting

finitely repeated game. Intuitively, this means that the strategy of each player n 6= i∗ is

sequentially rational for every opposing history profile, and player i∗’s strategy is sequentially

rational for some consistent belief system. In addition, sequential rationality for player i∗

is imposed ex post with respect to mi. This ensures that the module remains incentive

compatible when viewed as one part of the infinitely repeated game.

Definition 2 A family of strategy profiles (σmii , σ−i)mi∈Mi
is an i∗-quasi-belief-free equilib-

rium (i∗-QBFE) if (i) for each player n 6= i∗ and history hn, the continuation strategy

σn|hn is a best response against σ−n|h−n for every opposing history profile h−n and every

possible message mi, and (ii) for player i∗, there exists a sequence of families of completely

mixed strategy profiles
(

(σmi,ki , σk−i)mi∈Mi

)∞
k=1

and a corresponding family of belief systems

β(h−i∗|mi, hi∗) (where β(h−i∗|mi, hi∗) is the limit of conditional probabilities derived from((
σmi,ki , σk−i

))∞
k=1

) such that, for each mi and ht−1
i∗ ,

σi∗ ∈ argmax
σ̃i∗∈Σi∗

−
∑
t∈T

1{ai∗,t 6=a0} + E(σ̃i∗ ,σ
mi
−i∗)

[
wi∗ (h) |mi, h

t−1
i∗
]
,

where the expectation is taken with respect to β(ht−1
−i∗ |mi, h

t−1
i∗ ).

We say that the premise for secure communication for player i∗ with magnitude K is

satisfied if the following conditions hold:
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1. All players but player i∗ are indifferent about the result of communication: wn (h) = 0

for all h and n 6= i∗.

2. If player i∗− 1 deviates from σi∗−1 or ALLREG does not occur,27 then wi∗ (h) = 0 for all

h.

3. If player i∗ − 1 follows σi∗−1 and ALLREG occurs, then the following conditions hold:

(a) If mi (i
∗ − 1) ∈Mi∪{0} is the same at protocol histories h and h̃, then wi∗ (h) = wi∗(h̃).

Under this condition, we abuse notation and write wi∗ (h) = wi∗ (mi (i
∗ − 1)).

(b) The range of wi∗ (mi (i
∗ − 1)) is bounded by K:

max
mi,m̃i∈Mi∪{0}

|wi∗ (mi)− wi∗ (m̃i)| ≤ K. (31)

(c) wi∗ (0) ≤ wi∗ (mi (i
∗ − 1)) for all mi (i

∗ − 1) ∈Mi.

We now specify player i∗’s beliefs. In particular, we specify that, after any off-path

observation, she assigns probability 1 to the event that player i∗ − 1 deviated (and hence,

if the above premise holds, wi∗ (h) = 0). This belief is clearly consistent: for concreteness,

define ((σmi,ki , σk−i)mi∈Mi
)∞k=1 by letting player i∗ − 1 tremble uniformly over all actions with

probability k−1 at each history, and letting every other player tremble uniformly over all

actions with probability k−k at each history.

Lemma 8 For each i∗ ∈ I, i ∈ I\ {i∗ − 1, i∗}, Mi, w, and K satisfying the premise for

secure communication for player i∗ with magnitude K, if

b(Mi)K exp
(
−η̄T + T

1
2

)
≤ 1, (32)

then with payoff functions (30) the secure communication protocol, together with the above

belief system for player i, is an i∗-QBFE.

27Player i∗ − 1 follows σi∗−1 if, for each τ , her action ai∗−1,τ is in the support of σi∗−1 given
(ai∗−1,t, ωi∗−1,t)t≤τ−1. Since i∗ − 1 6= i, the support is independent of mi. Player i∗ − 1 deviates from
σi∗−1 if she does not follow σi∗−1.
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Proof. By construction, players other than i∗ are indifferent over all actions throughout

the module. For player i∗, fix a period t ∈ T and history (ai∗,τ , ωi∗,τ )τ∈T,τ≤t−1. Suppose

ωi∗,τ ∈ {a0, a1} for each τ ≤ t− 1. By the same argument as for Lemma 4, for every possible

continuation history (ai∗,τ , ωi∗,τ )τ∈T,τ≥t, with probability at least

1− b(Mi) exp
(
−η̄T + T

1
2

)
(33)

conditional on (ai∗,τ , ωi∗,τ )τ∈T, either ALLREG does not occur or [mi (i
∗ − 1) ∈ {mi, 0},

and mi (i
∗ − 1) = mi if ai∗,τ = a0 for all τ ∈ T]. Moreover, if (ωi∗,τ )τ∈T is such that

[mi (i
∗ − 1) ∈ {mi, 0}, and mi (i

∗ − 1) = mi if ai∗,τ = a0 for all τ ∈ T], then by definition

of mi(i
∗ − 1), we have mi (i

∗ − 1) = mi if and only if player i∗ takes a0 whenever she meets

player i∗−1 in a half-interval where player i takes a0. Hence, since wi∗ (0) ≤ wi∗ (mi (i
∗ − 1))

for all mi (i
∗ − 1) ∈ Mi, taking ai∗,τ = a0 for each τ ≥ t maximizes wi∗ (h) with probability

at least (33). Given this, conditions (31) and (32) imply that the reward term −1{ai∗,t 6=a0} in

payoff (30) outweighs any possible benefit to player i∗ from playing a 6= a0 in an attempt to

manipulate mi (i
∗ − 1). If instead ωi∗,τ 6∈ {a0, a1} for some τ ≤ t−1, then by construction of

the belief system player i∗ believes wi∗ (h) = 0 with probability 1. Hence, player i∗ maximizes

the reward term −1{ai∗,τ 6=a0} in payoff (30), so playing a0 as prescribed is optimal.

G.2 Reduction Lemma 9: Letting Rewards Depend on Other

Players’ Non-Main Phase Histories

We now use phases ((final, 2, n))n∈I to further simplify equilibrium conditions. Player i− 1

uses the result of this communication to construct the reward function so that the expected

reward at the end of phase (final, 1, N) is the same as if player i − 1 knew the histories

of players − (i− 1, i) for all non-main phase periods. We write the reward function as

πi
(
x−i, h

T ∗
i−1, h

T′′
−i
)
, where T′′ is the set of non-main phase periods, from (19). We wish to

replace π∗i (xi−1, h
T2
i−1) with π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i
)

in Conditions (27)–(29), yielding the following:
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1. [Range Restriction] The range of the reward function is bounded by 8ūT1:

sup
x−i,hT

∗
i−1,h

T′′
−i

∣∣∣π∗i (x−i, hT ∗i−1, h
T′′
−i

)∣∣∣ ≤ 8ūT1. (34)

2. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

[
T1∑
τ=1

ûi (aτ ) + π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i

)
|ht−1
i

]
. (35)

3. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1) =
1

T1

Eσ∗(x)

[
T1∑
t=1

ûi (at) + π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i

)]
. (36)

4. [Self-Generation] For all x−i, h
T ∗
i−1, and hT

′′
−i ,

sign(xi−1)π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i

)
≥ −5ε∗T1. (37)

Lemma 9 Suppose that, in the T1-period finitely repeated game, there exist strategies (σ∗i (xi))i,xi,

consistent ex post belief system β∗, and reward functions
(
π∗i
(
x−i, h

T ∗
i−1, h

T′′
−i
))
i,x−i,hT

∗
i−1,h

T′′
−i

such

that Conditions (34)–(37) are satisfied. Then there exists δ̄ < 1 such that v ∈E (δ) for all

δ > δ̄.

H Verified Communication Module

In phase (final, 1, i) and earlier communication phases, the verified communication protocol

is used. We now establish some key properties of this protocol, and then augment it with

payoffs and reward functions. The resulting verified communication module is the most

complicated of our modules.

Let σ∗,mi =
(
σ∗,mii , σ∗−i

)
denote the prescribed protocol strategy profile when player i

sends message mi. For each j, j′ ∈ I, player j’s equilibrium strategy in the j′-checking round

is determined by (aj,t, ωj,t)t∈T(msg) and ζj ∈ {reg, jam} (independently of mi). We say player
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j follows σ∗j in the j′-checking round if, for each τ ∈ T(j′), her action aj,τ is in the support

of σ∗j given (aj,t, ωj,t)t∈T(msg), ζj ∈ {reg, jam}, and (aj,t, ωj,t)t∈T(j′),t≤τ−1. Let H<j′ denote the

set of protocol history profiles at the beginning of T(j′) that arise with positive probability

under some strategy profile σ. Given h<j
′ ∈ H<j′ , let H

T(j′)
j |h<j′ denote the set of protocol

history profiles during T(j′) that are reached from h<j
′

with positive probability under some

strategy profile (σj, σ
∗
−j) with σj ∈ Σj (i.e., when players −j follow the protocol).

H.1 Regular and Erroneous Opponents’ Histories

We classify each of player j’s opponents’ history profiles as regular or erroneous, θj (h−j, ζ) ∈

{R,E}. Roughly, a profile of player j’s opponents’ histories h−j is “erroneous” if it arises

whenever some jamming player plays JAM or the realized matching process is erroneous.

This classification—which will affect player j’s reward function—depends on players −j’s

protocol history h−j and the type profile ζ = (ζn)n∈I . By Lemma 9, player j’s reward function

can depend on her opponents’ non-main phase histories. As verified communication protocol

histories and jamming coordination protocol histories (which will determine ζ) are non-main

phase histories, player j’s reward function can depend on h−j and ζ.

For j, j′ ∈ I, we first define θj (h−j, ζ, j
′) = E (“j’s opponents’ histories in the j′-checking

round are erroneous”) if and only if one or more of the following four conditions holds:

1. ζj = jam.

2. There exists n ∈ Ijam \ {j, j′} who plays JAM in some half-interval in T (j′).

3. [Condition FAIL] j 6= j′ and there exist a half-interval S in T (j′) and a player n 6= j′

such that player j′ plays a1 throughout S but ωn,t = a0 for all t ∈ S. (Whether this event

occurs is determined by h−j, as Lemma 2 implies that hj is uniquely determined by h−j.)

4. [Condition FAILj’] j = j′, player j′ follows σ∗j′ in the j′-checking round, and there exist a

half-interval S in T (j′) and a player n 6= j′ such that player j′ plays a1 throughout S but

ωn,t = a0 for all t ∈ S. (Again, this event is determined by h−j, by Lemma 2.)

(Note that θj (h−j, ζ, j
′) depends on h−j only through h

T(j′)
−j and h

T(msg)
−j , the latter because

46



whether player j′ follows σ∗j′ in the j′-checking round (in [Condition FAILj’]) depends on

(aj′,t, ωj′,t)t∈T(msg).)

We define θj (h−j, ζ) = E if and only if either θj (h−j, ζ, j
′) = E for some j′ ∈ I or some

player j′ 6= j deviates from σ∗j′ in any checking round. Otherwise, define θj (h−j, ζ) = R. In

addition, for each j′ ∈ I, let JAMj′,−j denote the event that there exists n ∈ Ijam\{j, j′} who

plays JAM in some half-interval in T(j′). Let REGj′,−j denote the complementary event.

Lemma 10 For each player j ∈ I, each type profile ζ ∈ {reg, jam}N , and each history

profile h<j
′ ∈ H<j′,

1. If all players follow σ∗ in the j′-checking round, then Pr
(
θj (h−j, ζ, j

′) = E|h<j′ , ζ
)

is the

same for every h<j
′ ∈ H<j′.

2. σ∗j′ ∈ argmaxσj′∈ΣT
j′

Pr

(
σj′ ,σ

∗
−j′
) (
θj′ (h−j′ , ζ, j

′) = E|ζ, h<j′
)
.

3. If all players follow σ∗ in the j′-checking round and (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg)

for some n ∈ I, then (aj′,t(n), ωj′,t(n))t∈T(msg) = 0 and θj (h−j, ζ, j
′) = E.

4. If player j′ follows σ∗j′ in the j′-checking round, (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg)

for some n ∈ I, and θj (h−j, ζ, j
′) = R, then (aj′,t(n), ωj′,t(n))t∈T(msg) = 0.

5. If j 6= j′, players −j follow σ∗−j in the j′-checking round, and (aj′,t(j), ωj′,t(j))t∈T(msg) 6=

(aj′,t, ωj′,t)t∈T(msg), then θj (h−j, ζ, j
′) = E.

Proof.

1. For any message (aj′,t, ωj′,t)t∈T(msg), player j′ plays a1 the same number of times in

each interval. Hence, the probability that FAIL (or FAILj’) holds is independent of

(aj′,t, ωj′,t)t∈T(msg).

2. If player j′ deviates from σ∗j′ then FAILj’ does not hold. Moreover, Conditions 1 and 2

for θj (h−j, ζ, j
′) = E are independent of σj, and FAIL only applies when j 6= j′. Hence,

the conclusion holds.
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3. If j ∈ Ijam or a player in Ijam\{j, j′} plays JAM in some half-interval, then θj (h−j, ζ, j
′) =

E by construction. If j /∈ Ijam and all players Ijam\{j, j′} play REG in every half-interval,

then (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) only if player n does not observe a1 in

some half-interval where player j′ plays a1. Hence, (aj′,t(n), ωj′,t(n))t∈T(msg) = 0 and FAIL

or FAILj’ holds.

4. If θj (h−j, ζ, j
′) = R then each n 6= j′ observes a1 in each half-interval where player j′ plays

a1. So, (aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) implies (aj′,t(n), ωj′,t(n))t∈T(msg) = 0.

5. When players −j follow σ∗−j, (aj′,t(j), ωj′,t(j))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) only if player j

does not observe a1 in some half-interval where player j′ plays a1. Hence, FAIL holds.

H.2 Statistical Properties of the Verified Protocol

Lemma 11 Suppose that

2N (N − 1) b(A4b(Mi)) exp(−T
1
2 ) +N (N − 1) b(A4b(Mi)) exp (−ε̄T ) ≤ exp(−T

1
3 ). (38)

Then the following claims hold for every mi ∈Mi and every type profile ζ ∈ {reg, jam}N :

1. For any j 6= i and any σj ∈ ΣT
j , given strategy profile

(
σj, σ

∗,mi
−j
)
, either (i) mi (n) = mi

for all n ∈ I, (ii) susp (hn) = 1 for some n 6= j, or (iii) θj (h−j, ζ) = E. Moreover,

susp (hj) = 1 implies θj (h−j, ζ) = E.

2. For any σi ∈ ΣT
i , given

(
σi, σ

∗
−i
)
, either (i) there exists m̂i ∈Mi with mi (n) = m̂i for all

n ∈ I, (ii) susp (hn) = 1 for some n 6= i, or (iii) θi (h−i, ζ) = E. Moreover, susp (hi) = 1

implies θi (h−i, ζ) = E.

3. Given σ∗,mi, for any j ∈ I, either (i) mi (n) = mi and susp (hn) = 0 for all n ∈ I, or (ii)

θj (h−j, ζ) = E.

4. Given σ∗,mi, with probability at least 1 − exp(−T 1
3 ), all the following events occur: (i)

mi (n) = mi for all n ∈ I, (ii) susp (hn) = 0 for all n ∈ I, and (iii) θn (h−n, ζ) = R for

all n 6∈ Ijam.
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5. For any mi,m
′
i ∈Mi and j ∈ I, Prσ

∗,mi (θj (h−j, ζ) = R|ζ) = Prσ
∗,m′i (θj (h−j, ζ) = R|ζ).

The intuition is that θj (h−j, ζ) = E only if some player plays JAM or matching is

erroneous, which is unlikely. Moreover, since the sender plays a1 with the same frequency

for all mi, the probability of this event is independent of mi.

The next lemma is analogous to Lemma 4. Unlike Lemmas 10 and 11, this lemma involves

conditions on players’ beliefs about the type profile (ζn)n∈I ∈ {reg, jam}N . To express these

conditions, we assume each player n has a prior probability distribution over (ζn)n∈I at the

beginning of the protocol. Let Prn (·|·) denote conditional probability under player n’s prior.

Lemma 12 Fix any j ∈ I, j′ 6= j, and h<j
′ ∈ H<j′. Suppose that, for all h

T(j′)
j ∈ HT(j′)

j |h<j′ ,

we have Prj

(
ζj′ = jam ∀j′ 6= j|mi, h

<j′ ,h
T(j′)
j

)
≥ exp(−T 1

2 ). Then, for all h
T(j′)
j ∈ HT(j′)

j |h<j′ ,

at least one of the following two conditions holds:

1. We have

Prj

(
JAMj′,−j|mi, h

<j′ , h
T(j′)
j

)
≥ 1− exp

(
−η̄T + 2T

1
2

)
. (39)

2. The following two conditions hold:

(a) For all (aj,t)t∈T(j′),

Prj

 (aj′,t(n), ωj′,t(n))t∈T(msg) ∈
{

0, (aj′,t, ωj′,t)t∈T(msg)

}
∀n 6= j

|mi, h
<j′ , h

T(j′)
j , REGj′,−j


≥ 1−Nb(|A|4b(Mi)) exp

(
−η̄T + 2T

1
2

)
. (40)

(b) If aj,t = a0 for all t ∈ T(j′), then

Prj

 (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) ∀n 6= j

|mi, h
<j′ , h

T(j′)
j , REGj′,−j


≥ 1−Nb(|A|4b(Mi)) exp

(
−η̄T + 2T

1
2

)
. (41)

Proof. The same as Lemma 4, except that 2T
1
2 replaces T

1
2 in the inequality (12), as now

Ijam\ {j} is non-empty with probability at least exp(−T 1
2 ) rather than 1.
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H.3 Payoffs and Incentives

Throughout this subsubsection, fix m∗i ∈Mi and let σ∗ = σ∗,mi .

For each j ∈ I and t ∈ T (j), given (aj,t, ωj,t)t∈T(msg) identified from h−j by Lemma 2,

calculate the equilibrium action a∗j,t(h−j). Suppose each player j’s payoff equals

−1{ζj=reg}
∑

t∈T\T(j)

1{aj,t 6=a0} −
∑
t∈T(j)

1{aj,t 6=a∗j,t(h−j)} + wj (h, ζ) . (42)

(This is similar to (30), but now player j is rewarded for following the equilibrium strategy

a∗j,t(h−j) in round T (j).)

We say that the premise for verified communication to send message m∗i ∈ Mi with

magnitude K is satisfied if there exist
(
vEj
)
j∈I ∈ RN , and

(
vmij
)
j∈I,mi∈Mi∪{0}

∈ RN such

that, for all j ∈ I and h ∈ H, the following conditions hold:

1. If θj (h−j, ζ) = E, then wj (h, ζ) = vEj .

2. If θj (h−j, ζ) = R and susp (hn) = 1 for some n 6= j, then wj (h, ζ) = v0
j .

3. If θj (h−j, ζ) = R , susp (hn) = 0 for all n 6= j, and ∃m̂i ∈ Mi such that mi (n) = m̂i for

all n ∈ I, then wj (h, ζ) = vm̂ij .

4. v0
j ≤ min

{
minmi∈Mi

vmij , vEj
}

.

5. v
m∗i
i ≥ vm̂ii for all m̂i ∈Mi ∪ {0}.

6. The range of wj(h, ζ) is bounded by K: K ≥ maxj∈I

{
max

{
vEj ,
(
vmij
)
mi∈Mi

}
− v0

j

}
.

The interpretation is that vEj is player j’s continuation payoff after erroneous opposing

histories; v0
j is player j’s punishment payoff (which results if θj (h−j, ζ) = R and susp (hn) = 1

for some n 6= j); and vmij is j’s continuation payoff after players coordinate on message mi.

We modify player i’s strategy in the message round after she herself deviates as follows:

Recall that we define mi(n) = 1 if player n infers some (ai,t)t∈T(msg) not corresponding to

the binary expansion of any message. We can thus view the play of such (ai,t)t∈T(msg) as

sending message mi = 1. With this interpretation, for each ht−1
i , let Mi(h

t−1
i ) ⊂ Mi be the
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(non-empty) set of messages m̃i such that (ai,τ )
t−1
τ=1 is consistent with the binary expansion

of m̃i; and let M∗
i (ht−1

i ) = argmaxmi∈Mi(h
t−1
i ) v

mi
i be the elements that maximize vmii . Given

ht−1
i , if m∗i ∈ M∗

i (ht−1
i ), player i plays ai,t corresponding to the binary expansion of m∗i ;

otherwise, she plays ai,t corresponding to the binary expansion of some mi ∈M∗
i (ht−1

i ).

Call a history σ-consistent if it is reached with positive probability under strategy profile

σ. Recall that H<j′ is the set of module history profiles at the beginning of T(j′) that are

σ-consistent for some σ ∈ Σ, and let H
T(j′)
j |h<j′ be the set of module histories during T(j′)

that are (σj, σ
∗
−j)-consistent for some σj ∈ Σj given h<j

′
. We assume that, for every player

j, j′ ∈ I, module strategy σj, h
<j′ ∈ H<j′ , and hj ∈ H

T(j′)
j |h<j′ , player j believes that all

other players are jamming players with probability at least exp(−T 1
2 ):

Prj

(
n ∈ Ijam ∀n 6= j|h<j′ , hj

)
≥ exp(−T

1
2 ). (43)

Lemma 13 Suppose that T is sufficiently large such that

KNb(A4b(Mi)) exp
(
−η̄T + 2T

1
2

)
≤ 1. (44)

If the premise for verified communication with magnitude K and (43) hold for each j ∈ I,

then with payoff functions (42) the verified communication protocol is a sequential equilib-

rium. In addition, if there exists i∗ ∈ I \ {i} such that Ijam = I\ {i∗} and vEj = vmij for all

j 6= i∗ and mi ∈Mi ∪ 0, while for player i∗ the premise for verified communication and (43)

hold, then with payoff functions (42) the verified communication protocol is an i∗-QBFE.

Intuitively, if the prior probability that players jam is not too low, whenever player j

observes an erroneous history she believes that JAM is played and θj (h−j, ζ) = E. Otherwise,

she believes that all other players match with the sender at least once in each half-interval.

Hence, if she deviates and changes some player’s inference, this induces susp (hn) = 1 and

yields the punishment payoff v0
j . It will be useful to remember that all the lemmas in this

section hold if Conditions (38), (43), and (44) are satisfied.
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I Reduction Lemmas: Phase (final, 1, i)

This section further simplifies Lemma 9, using phase (final, 1, i)i∈I .

I.1 Reduction Lemma 14: Letting Rewards Depend on Other

Players’ Main Phase Histories

Recall that, for each main phase l = 1, ..., L, player i randomly selects a monitoring period

ti (l) ∈ T(l,main). We show that player i’s reward function in the T ∗-period repeated game

can be made to depend on players −i’s histories in periods in Li−1 = (ti (l))
L
l=1: that is, on

h
Li−1

−i :=
(
a−i,ti−1(l), ω−i,ti−1(l)

)
l=1,...,L

. (45)

Recall that T′ := {1, ..., T ∗}\
⋃L
l=1 T(l,main). The reward function takes the form π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
,

where χn ∈ {0, 1} was defined in Section E.28 We wish replace π∗i (xi−1, h
T ∗
i−1, h

T′′
−i) with

π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
in Conditions (35)–(37). In the following conditions, we also cancel

the instantaneous utilities outside of the main phases (which can be accomplished by using

the reward function (7)).

1. [Range Restriction] The range of the reward function is bounded by 7ūT ∗:

max
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i , χ−i

)∣∣∣ ≤ 7ūT ∗. (46)

2. [Sequential Rationality] For all x ∈ {G,B}N and ht−1
i ∈ H t−1

i ,

σ∗i (xi) ∈ argmax
σi∈Σi

E((σi,σ∗−i(x−i)),β∗)

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
|ht−1
i

 .
(47)

28Relative to Lemma 9, the argument hL−i has been added to the reward function and the argument hT
∗

i−1
has been removed, as hL−i contains enough information about player i − 1’s main phase history to provide
incentives for player i.
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3. [Promise Keeping] For all x ∈ {G,B}N ,

vi(xi−1)− 2ε∗ =
1

L (T0)3E
σ∗(x)

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

) . (48)

4. [Self-Generation] For all x−i, h
T′
−i, and h

Li−1

−i ,

sign(xi−1)π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
≥ −2ε∗T ∗. (49)

Lemma 14 Suppose that,in the T ∗-period repeated game, there exist strategies (σ∗i (xi))i,xi,

consistent ex post belief system β∗, and reward functions
(
π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

))
i,x−i,hT

′
−i,h

Li−1
−i ,χ−i

such that Conditions (46)–(49) are satisfied. Then there exists δ̄ < 1 such that v ∈E (δ) for

all δ > δ̄.

I.2 Reduction Lemma 15: “Ignoring” Other Players’ Deviations

We further simplify Lemma 14. Consider the following conditions:

1. [ti (l) Not Revealed Until End of Main Phase l] For all xi ∈ {G,B}, l ∈ {1, ..., L},

t ∈ {1, ..., T ∗}, (Li, ht−1
i ), and (L̃i, h̃t−1

i ), if t ≤ τ for some τ ∈ T(main(l)), ti(l̂) = t̃i(l̂) for

each l̂ = 1, ..., l − 1, and ht−1
i = h̃t−1

i , then

σ∗i (xi)|(Li,ht−1
i ) = σ∗i (xi)|(L̃i,h̃t−1

i ). (50)

2. [Reward Bound]

sup
x−i,hT

′
−i,h

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i

)∣∣∣ ≤ 5ūT ∗. (51)

3. [Incentive Compatibility] Let Hi(x−i) denote the set of histories that arise with positive

probability under some strategy profile (σi, σ
∗
−i(x−i)) with σi ∈ ΣT ∗

i . For all x ∈ {G,B}N
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and ht−1
i ∈ Hi(x−i),

σ∗i (xi) ∈ argmax
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
|ht−1
i

 . (52)

Note that we do not need to define “trembles” to define E [·|·] in (52).

4. [Promise Keeping] For all x ∈ {G,B}N ,

vi(G)− 2ε∗ ≤

vi(B) + 2ε∗ ≥

 1

L (T0)3E
σ∗(x)

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i

) . (53)

5. [Self-Generation] The same as (49).

Lemma 15 Suppose that, in the T ∗-period repeated game, there exist strategies (σ∗i (xi))i,xi

and reward functions
(
π∗i

(
x−i, h

T′
−i, h

Li−1

−i

))
i,x−i,hT

′
−i,h

Li−1
−i

such that Conditions (49)–(53) are

satisfied. Then there exists δ̄ < 1 such that v ∈E (δ) for all δ > δ̄.

As in Lemma 14, players −i communicate their history profile in Li−1, χ−i. Since Li−1

is random and is not revealed until main phase l is over, by giving a reward based on the

history profile in Li−1, player i can be made indifferent over actions after another player

“confesses” that she deviated in or before main phase l.

J Equilibrium Strategies: Remaining Details

We now complete the construction of the equilibrium strategies (σ∗i (xi))i∈I in sub-block

0, ..., L. From now on, we abbreviate “the verified communication protocol with repetition

T0” to simply “the communication protocol.”Recall the different phases of each sub-block

defined in Section E. We let λ represent a generic phase. That is,

λ ∈ {0× ({jam} ∪ I ∪ (I × {con}))} ∪
{
{1, . . . L} × {main} ∪ I ∪ I2 ∪ (I × {con})

}
.

In this notation, the first coordinate of λ is l throughout sub-block l ∈ {0, . . . , L}. The

second coordinate of λ is (i) jam for the jamming coordination phase (for l = 0), (ii) i ∈ I
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for phase (l, i) (for l ≥ 0), (iii) (i,con) for phase (l, i,con) (for l ≥ 0), (iv) main for main

phase l (for l ≥ 1), or (v) (i, n) for phase (l, i, n) (for l ≥ 1).

For l ∈ {0, . . . , L} we write λ ≤ l (resp., λ < l) if the first coordinate of λ is ≤ l (resp.,

< l), and similarly for λ ≥ l and λ > l. Similarly, for two phases λ and λ′, we say λ ≤ λ′ if

and only if phase λ precedes or equals phase λ′.

Given λ, let hλi be player i’s history (ai,t, ωi,t)t∈T(λ) within phase λ. Let h<λi and h≤λi be

player i’s history at the beginning and the end of phase λ, respectively. Define h<λ, h≤λ,

h<λ−i , and h≤λ−i similarly. We now define equilibrium strategies in each phase.

J.1 Sub-Block 0

J.1.1 Jamming Coordination Phase

At the beginning of the block, player i randomly selects a period ti (l) ∈ T(main(l)) for each

l = 1, ..., L. This is encoded in Li as defined in Section I.1.

Then the jamming coordination protocol is played in phase (0, jam). Denote player i’s

protocol history by h
(0,jam)
i = (ai,t, ωi,t)

2
t=1. Recall from Section D.4 that ζi(h

(0,jam)
i ) = jam

if ωi,t = a1 for some t ∈ {1, 2}; otherwise, ζi(h
(0,jam)
i ) = reg. In subsequent communication

protocols, let i ∈ Ijam if and only if ζi(h
(0,jam)
i ) = jam.

J.1.2 Initial Communication Phase

For each i ∈ I, in phase (0, i), player i sends xi by the communication protocol. As a result,

for each j ∈ I, player j’s history h
(0,i)
j in phase (0, i) determines an inference xi (j) ∈ {G,B, 0}

and a realization susp(h
(0,i)
j ) ∈ {0, 1}. After phase (0, i) is concluded for all i ∈ I, the history

of each player j ∈ I determines an inferred state profile x (j) = (xi (j))i∈I ∈ {G,B, 0}N .

Further, for i ∈ I, given h≤(0,i), let

ID(h≤(0,i)) :=
{
j ∈ I : susp(hλj ) = 1 for some phase λ ≤ (0, i)

}
be the set of players who reach suspicious histories by the end of the phase (0, i).29

29If λ = (0, jam), define susp
(
hλj
)

= 0
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J.1.3 Contagion Phase 0

For each i ∈ I, in phase (0, i, con), player i communicates whether her history is suspicious.

In particular, given ID(h<(0,1,con)) (which equals ID(h≤(0,N))), in phase (0, i, con) player i

sends m
(0,i,con)
i = 1 if i ∈ ID(h<(0,i,con)) and m

(0,i,con)
i = 0 otherwise. For each j ∈ I,

player j’s history h
(0,i,con)
j determines an inference m

(0,i,con)
i (j) ∈ {0, 1} and a realization

susp(h
(0,i,con)
j ) ∈ {0, 1}. For the history h≤(0,i,con) at the end of phase (0, i, con), let

ID(h≤(0,i,con)) := ID(h<(0,i,con)) ∪
{
j ∈ I : m

(0,i,con)
i (j) = 1 or susp

(
h

(0,i,con)
j

)
= 1
}
. (54)

J.2 Sub-Block l

For l = 1, . . . , L, strategies in sub-block l depend on the variables ID
(
h<(l,main)

)
⊂ I.

We have already defined ID
(
h<(l,main)

)
for l = 1. As we will see, the outcome of sub-

block l together with ID
(
h<(l,main)

)
determines ID

(
h<(l+1,main)

)
. This inductively determines

ID
(
h<(l,main)

)
for each l.

J.2.1 Main Phase l

If i ∈ ID
(
h<(l,main)

)
, player i plays αmin in every period. If i /∈ ID

(
h<(l,main)

)
, then xj (i) ∈

{G,B} for all j ∈ I, and hence the action profile al (x (i)) is well-defined. In this case, in

every period player i plays ali (x (i)), the i-th component of action profile al (x (i)). Given a

history profile h≤(l,main) at the end of main phase l, let ID
(
h≤(l,main)

)
= ID

(
h<(l,main)

)
. That

is, ID remains constant in main phase l.

J.2.2 Communication Phase l, Part 1

For each i ∈ I, player i − 1 sends the number ti−1 (l) by the communication protocol in

phase (l, i). For each j ∈ I, player j’s history h
(l,i)
j in phase (l, i) determines ti−1 (l) (j) ∈

T(l,main) ∪ {0} and susp(h
(l,i)
j ) ∈ {0, 1}.
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J.2.3 Communication Phase l, Part 2

For each i ∈ I and n ∈ I, player i sends the message (ai,tn−1(l)(i), ωi,tn−1(l)(i)) by the com-

munication protocol in phase (l, i, n). (If tn−1 (l) (i) = 0, she sends (ai,tn−1(l)(i), ωi,tn−1(l)(i)) =

(a0, a0).) For each j ∈ I, player j’s history h
(l,i,n)
j in phase (l, i, n) determines an inference(

ai,tn−1(l) (j) , ωi,tn−1(l) (j)
)
∈ A2 ∪ {0} and a realization susp(h

(l,i,n)
j ) ∈ {0, 1}.

After phase (l, i, n) has concluded for each i ∈ I and n ∈ I, the history of each player j ∈ I

determines an inferred vector of outcomes (ai,tn−1(l) (j) , ωi,tn−1(l) (j))i∈I ∈
∏

n∈I (A2 ∪ {0}).

Players identify deviations as follows: Given n ∈ I, x ∈ {G,B}N , and (a, ω) ∈ A2N ,

let devln (x, a, ω) = 1 denote the event that either (an, ωn) 6= ϕ(a−n, ω−n) (Lemma 2 im-

plies (an, ωn) is infeasible given players −n’s history) or an 6= aln(x). In addition, let

devln
(
x (i) , atn−1(l) (i) , ωtn−1(l) (i)

)
= 1 if x(i) 6∈ {G,B}N or

(
atn−1(l) (i) , ωtn−1(l) (i)

)
6∈ A2N .

Thus, devln
(
x (i) , atn−1(l) (i) , ωtn−1(l) (i)

)
= 1 means that the outcome of the communication

in phases (l, j, n)j∈I implies that either player n deviated in the main phase, some player

deviated in the communication phase, or the players failed to coordinate on some message.

Let h be a history at the end of phase (l, i) or (l, i, n). Let ID (h) be the set of players

who infer susp = 1 or dev = 1 by the end of the phase: that is, for phase (l, i), we define

ID (h) := ID(h≤(l,main)) ∪
{
j ∈ I : max

λ≤(l,i)
susp

(
hλj
)

= 1

}
,

and for phase (l, i, n), the set ID (h) is defined as

ID(h≤(l,main))∪

j ∈ I : max

 maxλ≤(l,i,n) susp(hλj ),

max(l,N,n′)≤(l,i,n) devln′
(
x (j) , atn′−1(l) (j) , ωtn′−1(l) (j)

)
 = 1

 .

J.2.4 Contagion Phase l

For each i ∈ I, in phase (l, i, con), player i sends whether i ∈ ID(h<(l,i,con)), as in phase

(0, i, con). We define ID
(
h≤(l,i,con)

)
as in phase (0, i, con).

Finally, for a general h, let ID−i (h−i) = ID (h) \ {i}. Note that ID−i is a function of players

−i’s histories only, since whether j ∈ ID (h) is determined by hj.
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K Reward Function

This section constructs the reward function (ignoring for the moment the jamming coordi-

nation phase, which is addressed in Lemma 19).

K.1 Statistics Used to Construct the Reward Functions

We first define some statistics, (θi)i∈I . For phase (0, jam), since Lemma 2 implies that h
(0,jam)
−i

uniquely identifies h
(0,jam)
i , we can equally view (ζn)n∈I as a function of h

(0,jam)
−i , denoted by

ζ(h
(0,jam)
−j ). Let θi(h

(0,jam)
−j ) = R if ζi(h

(0,jam)
−i ) = reg and θi(h

(0,jam)
−j ) = E if ζi(h

(0,jam)
−i ) = jam.

By Lemma 14, player i’s reward function can be conditioned on ζ(h
(0,jam)
−j ) and θi(h

(0,jam)
−j ).

For non-main phases λ > (0, jam), players follow the verified communication module.

Define θj(h
λ
−j, ζ(h

(0,jam)
−j )) ∈ {E,R} as in Section H.1. Given the history h≤λ at the end of

phase λ, define θj(h
≤λ
−j ) = E if there exists a phase λ′ ≤ λ such that θj(h

λ′
−j, ζ(h

(0,jam)
−j )) = E.

(If λ = (0, jam), define θj

(
hλ−j, ζ(hjam

−j )
)

= θi(h
(0,jam)
−j ).) Otherwise, define θj(h

≤λ
−j ) = R.

For main phase (l,main), let θj(h
≤(l,main)
−j ) = θj(h

<(l,main)
−j ). That is, θj remains constant.

We make some immediate observations. For each player i ∈ I, regardless of her strategy,

either all her opponents successfully infer the state x, or they all become suspicious, or

θi (h−i) = E. In addition, if some player became suspicious in one sub-block, then either

everyone becomes suspicious or θi (h−i) = E in the next sub-block. Finally, a deviation by

player i from ai(x(i)) in period ti−1(l) is detected for sure.

Lemma 16 For any i ∈ I, x ∈ {G,B}, σi ∈ Σi, l ∈ {1, . . . , L}, l ≤ λ < l + 1, and(
σi, σ

∗
−i (x−i)

)
-consistent history h<λ at the beginning of phase λ, the following claims hold:

1. Either (i) x (n) = x(i− 1) ∀n ∈ I with xj(n) = xj for each j 6= i, (ii) ID−i(h
<λ
−i ) = I\{i},

or (iii) θi
(
h<λ−i
)

= E.

2. If ID−i(h
<(l̃,main)
−i ) 6= ∅ for some l̃ ≤ l − 1, then either ID−i(h

<λ
−i ) = I\{i} or θi

(
h<λ−i
)

= E.

3. If ai,ti−1(l) 6= ai(x(i)), then either ID−i(h
<(l+1,main)
−i ) = I\{i} or θi(h

<(l+1,main)
−i ) = E.

Proof. Claims 1 and 2: By Claims 1 and 2 of Lemma 11, either (i) x (n) = x̂ ∈ {G,B}N

∀n ∈ I with x̂j = xj for each j 6= i, (ii) suspn(h
(0,j)
n ) = 1 for some n 6= i and j ∈ I, or (iii)
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θi(h
(0,j)
−i , ζ(h

(0,jam)
−i )) = E for some j ∈ I. By the same claim applied to the contagion phase,

if ID−i(h
<(l̃,main)
−i ) 6= ∅ for some l̃ ≤ l − 1, then ID−i(h−i) = I\{i} or θi (h−i) = E at the end of

contagion phase l̃.

Claim 3: Suppose ai,ti−1(l) 6= ai(x(i)). By Claim 1, either ai,ti−1(l) 6= ai(x(i − 1)),

ID−i(h
<(l,main)
−i ) = I\{i}, or θi(h

<(l,main)
−i ) = E. If ai,ti−1(l) 6= ai(x(i − 1)), then by Claim 1 of

Lemma 11, at the beginning of contagion phase l, either (i) devli
(
x (i− 1) , ati−1(l) (i− 1) , ωti−1(l) (i− 1)

)
=

1, (ii) suspn(hλ̃n) = 1 for some n 6= i and λ̃ ∈ (l, i)∪{(l, n′, i)}n′∈I , or (iii) θi (h−i) = E. Since

the former two conditions imply ID−i (h−i) 6= {∅} at the beginning of contagion phase l, we

have ID−i(h
<(l+1,main)
−i ) = I\{i} or θi(h

<(l+1,main)
−i ) = E as a result of contagion phase l by

Claim 1 of Lemma 11.

K.2 Construction of the Reward Function

Let uG = min(a,a′)∈A2 u (a, a′) and uB = max(a,a′)∈A2 u (a, a′). By (5), for all i ∈ I, we have

max
{
vi(G), uB

}
−min

{
uG, vi(B)

}
≤ 2ū. (55)

Recall that, by Lemma 2, the history (a−i, ω−i) perfectly identifies a. So, we define

πθ=Ei (xi−1, a−i, ω−i) = uxi−1 − ûi (a) , πvii (xi−1, a−i, ω−i) = vi(xi−1)− ûi (a), and

πvii (xi−1, a−i, ω−i|αmin) = vi(xi−1)− u(ai, α
min). Given this, for each a ∈ AN , we have

E
[
ûi (a) + πcancel

i (xi−1, a−i, ω−i)|a
]

= uxi−1 , E [ûi (a) + πvii (xi−1, a−i, ω−i)|a] = vi(xi−1)

E
[
ûi (a) + πvii (xi−1, a−i, ω−i|αmin)|ai, αmin

−i
]

= vi(xi−1).

(56)

Moreover, since uxi−1 and vi(xi−1) are feasible payoffs,

sign(xi−1)πθ=Ei (xi−1, a−i, ω−i) ≥ 0,

maxxi−1,a−i,ω−i max
{∣∣πθ=Ei (xi−1, a−i, ω−i)

∣∣ , |πvii (xi−1, a−i, ω−i)| ,
∣∣πvii (xi−1, a−i, ω−i|αmin)

∣∣} ≤ 2ū.

(57)

Moreover, letting ϕA(a−i, ω−i) be the unique action ai ∈ A such that ϕ(a−i, ω−i) = (ai, ωi)

59



for some ωi ∈ A, we have, by (5),

sign(xi−1) 1
Kv

∑Kv

k=1 π
vi
i (ak−i(x), ω−i,k) ≥ 0 if ϕA(ak−i(x), ω−i,k) = aki (x) ∀k ∈ {1, . . . , Kv} ,

2ū ≥ πvii (xi−1, a−i, ω−i|αmin) ≥ 0 for all (xi−1, a−i, ω−i).

(58)

The reward function is the sum of rewards for the main phases, πmain
i , and rewards for

the communication and contagion phases, πnon-main
i . Define

πnon-main
i (hT

′
−i) = 1{

ζi(h
(0,jam)
−i )=reg

}∑
t∈T′

πi,t(h
T′
−i) ∈ [− |T′| , |T′|], (59)

where πi,t(h
T′
−i) is the reward for the verified communication module in (42). Next, define

πmain
i (x−i, h

T′
−i, h

Li−1

−i ) =
L∑
l=1

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ),

where, for each l, we define

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ) (60)

=
∑

t∈T(main(l))

1{ti−1(l)=t} (T0)3



1{
θi(h

<(l,main)
−i )=E

}πθ=Ei (xi−1, a−i,t, ω−i,t)

+1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i )6=I\{i}

}πvii (xi−1, a−i,t, ω−i,t)

+1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i )=I\{i}

}πvii (xi−1, a−i,t, ω−i,t|αmin)

−1{
θi(h

<(l,main)
−i )=R

}1{
ID−i(h

<(l,main)
−i ) 6=∅

}1{xi−1=G}2ū


.

In total, the reward function following the jamming coordination phase is defined as

π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)
= πmain

i (x−i, h
T′
−i, h

Li−1

−i ) + πnon-main
i (hT

′
−i).

Note that we have

∣∣∣π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)∣∣∣ ≤ 4ūL (T0)3 + |T′| ≤ 4ūT ∗. (61)
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L Reduction Lemma: Phase (0, jam)

L.1 Jamming Coordination Module

We consider payoffs and rewards for the jamming coordination protocol. For each i ∈ I,

payoff functions take the form

2∑
t=1

πindiff
i,t (h−i) + wi(h). (62)

Again, as in (30), we ignore player i’s instantaneous payoffs.

We say that the premise for jamming coordination with magnitude K is satisfied if there

exist K ≥ 1 and (vi (Ijam))Ijam⊂I ∈ R2N satisfying the following conditions:

1. wi (h) = vi (Ijam) for every history h such that Ijam = {n ∈ I : ζn(hn) = jam}.

2. vi (Ijam) = vi(Ĩjam) for all Ijam and Ĩjam such that i ∈ Ijam ∩ Ĩjam.

3. For Ijam such that i 6∈ Ijam, the range of vi(Ijam) is at most K:

max
i∈I,Ijam,Ĩjam:i 6∈Ijam,i 6∈Ĩjam

∣∣∣vi (Ijam)− vi(Ĩjam)
∣∣∣ ≤ K. (63)

Lemma 17 Take (wi(h))i∈I and K such that the premise for jamming coordination with

magnitude K is satisfied. There exists a function
(
πindiff
i,t (h−i)

)
t∈{1,2} such that (i) we have

maxh−i
∣∣∑2

t=1 π
indiff
i,t (h−i)

∣∣ ≤ 2K and (ii) with payoffs (62), the jamming coordination protocol

is a sequential equilibrium.

L.2 Equilibrium Condition: Final Statement

The main remaining step in the proof is verifying the equilibrium conditions given each

history in the jamming coordination phase. It suffices to establish incentive compatibility

and promise keeping, as self-generation is addressed in the proof of Lemma 19.

Lemma 18 For all i ∈ I, all x ∈ {G,B}N , and all jamming coordination phase histories

h
(0,jam)
i , we have
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1. [Incentive Compatibility] For each t ≥ 3 and ht−1
i ∈ Hi(x−i),

σ∗i (xi) ∈ argmax
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π≥3
i

(
x−i, h

T′
−i, h

Li−1

−i

)
|h(0,jam)
i , ht−1

i

 .
(64)

2. [Promise Keeping after ζi(h
(0,jam)
−i ) = reg] If ζi(h

(0,jam)
−i ) = reg and

vi (x−i, Ijam\ {i}) :=
1

L(T0)3
Eσ∗(x)

 ∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + π≥3
i (x−i, h

T′
−i, h

Li−1

−i )|Ijam

 ,
(65)

then, for all Ijam\{i}, ˜Ijam\{i} ⊂ I\{i}, we have

vi (x−i, Ijam\{i})

 ≥ vi(xi−1)− ε∗ if xi−1 = G

≤ vi(xi−1) + ε∗ if xi−1 = B
, and (66)

∣∣∣vi (x−i, Ijam\{i})− vi(x−i, ˜Ijam\{i})
∣∣∣ ≤ N#half exp(− (T0)

1
2 )2ūT ∗, (67)

where #half = 2Nb
(
A4b(2)

)
+2Nb

(
A4b(2)

)
+L

(
2Nb

(
A4b((T0)3)

)
+ 2N2b

(
A4b(|A|2)

)
+ 2N2b

(
A4b(2)

))
is the number of half-intervals in sub-blocks from 0 to L.

The theorem now follows easily from Lemmas 15, 17, and 18.

Lemma 19 Suppose Lemma 18 holds. Then there exists δ̄ < 1 such that v ∈E (δ) for all

δ > δ̄.

Proof. By definition of σ∗(x) in Section J, (50) holds. Hence, putting together Lemmas 6–15,

it suffices to construct reward functions π∗i that, together with σ∗(x), satisfy equations (49)

and (51)–(53). We first construct the reward for the jamming coordination phase, denoted

πindiff
i (x−i, h

(0,jam)
−i ), using Lemma 17. So, we verify the premise for jamming coordination.

The probability that any jamming player other than i plays JAM during sub-blocks

0, ..., L is at most N#half exp(− (T0)
1
2 ). (i) The range of π≥3

i is at most 4ūT ∗ (by (61)), (ii)

once a jamming player takes a jamming strategy, the reward is bounded by 2ūT ∗, and (iii)
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per-period payoffs are bounded by [−ū, ū]. Hence, we have

max
i∈I,Ijam,Ĩjam:i 6∈Ijam,i 6∈Ĩjam

∣∣∣vi (Ijam)− vi(Ĩjam)
∣∣∣ ≤ N#half exp(− (T0)

1
2 )6ūT ∗.

Hence, by Lemma 17, there exists πindiff
i (x−i, h

(0,jam)
−i ) such that the jamming coordination

protocol is incentive compatible and

max
x−i,h

(0,jam)
−i

∣∣∣πindiff
i (x−i, h

(0,jam)
−i )

∣∣∣ ≤ N#half exp(− (T0)
1
2 )12ūT ∗. (68)

We now define the total reward function as πi(x−i, h
T′
−i, h

Li−1

−i ) = πindiff
i (x−i, h

(0,jam)
−i ) +

π≥3
i (x−i, h

T′
−i, h

Li−1

−i ). It remains to verify (49)–(53).

First, the bound (51) follows from (61) and (68), since (17) implies that #half ≤ (T0)0.1

and (T0)0.1 exp(−(T0)
1
2 )12ūT ∗ ≤ ε∗T ∗.

Note that, by the construction of πi,t(h
T′
−i) in (42), for all x ∈ {G,B}N and hT

′
−i, we have

sign (xi−1) πnon-main
i (hT

′
−i) ≥ − |T′| . (69)

To derive a similar equation for πmain
i , if θi(h

<(l,main)
−i ) = E, then (57) implies that

πmain
i is non-positive if xi−1 = G and non-negative if xi−1 = B. If θi(h

<(l,main)
−i ) = R and

ID−i(h
<(l,main)
−i ) = I\ {i}, then the same conclusion holds by (58).

We now show that, in all other cases, we have sign (xi−1) πmain
i (l, x−i, h

T′
−i, h

Li−1

−i ) < 0 in at

most (1 +Kv) sub-blocks. To see this, note that if ID−i(h
<(l,main)
−i ) 6= ∅ then Lemma 16 implies

that, as a result of contagion phase l+1, either ID−i(h
<(l+1,main)
−i ) = I\ {i} or θi(h

<(l+1,main)
−i ) =

E (regardless of player i’s behavior). If both θi(h
<(l,main)
−i ) = R and ID−i(h

<(l,main)
−i ) = ∅, then

Lemma 16 implies that, for each n ∈ I, we have x(n) = x̂ for some x̂ ∈ {G,B}N with

x̂i−1 = xi−1. Hence, by (58),we have sign(xi−1) 1
Kv

∑Kv
k=1 π

vi
i (xi−1, a−i,ti−1(l), ω−i,ti−1(l)) ≥ 0 as

long as ali(x(i− 1)) = ϕA(a−i,ti−1(l), ω−i,ti−1(l)) = ai,ti−1(l). Moreover, if ai,ti−1(l) 6= ali(x(i− 1)),

then Lemma 16 implies that either ID−i(h
<(l+1,main)
−i ) = I\ {i} or θi(h

<(l+1,main)
−i ) = E.

It follows that, there exists a subset L ⊂ {1, ..., L} with |L| ≥ L − (Kv + 1) such that
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∑
l∈L sign (xi−1) πmain

i (l, x−i, h
T′
−i, h

Li−1

−i ) ≥ 0. Since πui and πvii are bounded by (57), we have

sign (xi−1) πmain
i (x−i, h

T′
−i, h

Li−1

−i ) ≥ −2ū (1 +Kv) (T0)3 ≥by (6) −ε∗L (T0)3 ∀x−i, hT
′
−i, h

Li−1

−i .

(70)

Now, by (68), (69), and (70), for all xi−1, h
T′
−i, h

Li−1

−i , we have

sign(xi−1)
(
πindiff
i (x−i, h

(0,jam)
−i ) + π≥3

i (x−i, h
T′
−i, h

Li−1

−i )
)
≥ −N#half exp(− (T0)

1
2 )12ūT ∗−|T′|−ε∗L (T0)3 .

By (17), #half ≤ (T0)0.1 and N (T0)0.1 exp(− (T0)
1
2 )12ūT ∗ + |T′| + ε∗L (T0)3 ≤ 2ε∗T ∗. Com-

bining these inequalities yields (49).

Next, Lemma 18 implies that there is no profitable deviation from σ∗i (xi) after the jam-

ming coordination phase. Given this, Lemma 17 implies that there is also no profitable

deviation from σ∗i (xi) during the jamming coordination phase. Hence, (52) holds.

Finally, since (i) Ijam 6= ∅ with probability no more than 1−
(

1− exp(− (T0)
1
3 )
)2N

, (ii)

π≥3
i (x−i, h

T′
−i, h

Li−1

−i ) is bounded by 4ūT ∗, (iii) once a jamming player takes a jamming strategy,

the reward is bounded by 2ūT ∗, and (iv)
∑

t∈
⋃L
l=1 T(l,main) ûi (at) is bounded by 2ūL(T0)3, the

total payoff satisfies

Eσ∗(x)

[∑
t∈
⋃L
l=1 T(l,main)

ûi (at) + πi(x−i, h
T′
−i, h

Li−1

−i )

]
−vi (x−i, ∅) ≤

(
1−

(
1− exp(− (T0)

1
3 )
)2N

)
6ūT ∗.

Since (17) implies

(
1−

(
1− exp(− (T0)

1
3 )
)2N

)
6ūT ∗ ≤ ε∗L(T0)3, this inequality together

with (65) implies (53).

M Proof of Lemma 18

M.1 Notation

In this section, for any strategy σi and history h, we assume h to be
(
σi, σ

∗
−i (x−i)

)
-consistent.

For l ∈ {0, . . . , L} and l ≤ λ < l + 1, let L≤λ := (tn(l̃))n∈I,l̃≤l be the randomizations

that have been realized in phase λ. Similarly, let L<λ := (tn(l̃))n∈I,l̃≤l if l < λ and L<λ :=

(tn(l̃))n∈I,l̃<l if λ = (l,main). For each λ, at the end of phase λ, if player i knew L≤λ and
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h≤λ, she could attain a continuation payoff of

wi(x−i,L≤λ, h≤λ) := max
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑L
l̃=l+1

∑
t∈T(l̃,main) ûi (at) +

∑L
l̃=l+1

πmain
i (l̃, x−i, h

T′
−i, h

Li−1

−i )

+1{
ζi(h

(0,jam)
−i )=reg

}∑
t∈T′:t%λ πi,t(h

T′
−i)

|L≤λ, h≤λ


(71)

where t % λmeans period t follows or is within phase λ. On the other hand, let vi(x,L≤λ, h≤λ)

denote player i’s continuation payoff from strategy σ∗i (xi). We will show that, for any phase

λ and history (L≤λ, h≤λ), wi(x−i,L≤λ, h≤λ) = vi(x,L≤λ, h≤λ).

M.2 Equilibrium Properties

First, we show that there is no instantaneous deviation gain from σ∗i (xi):

Lemma 20 For any i ∈ I, x ∈ {G,B}N , σi ∈ Σi, l ∈ {1, ..., L}, L<(l,main), and history

h<(l,main) at the beginning of phase (l,main),

max
σi∈Σi

E(σi,σ∗−i(x−i))

 ∑
t∈T(l,main) ûi (at) + πmain

i (l, x−i, h
T′
−i, h

Li−1

−i )

+1{
ζi(h

(0,jam)
−i )=reg

}∑
t∈T′:t in sub-block l πi,t(h

T′
−i)
|L<(l,main), h<(l,main)


= Eσ∗(x)

 ∑
t∈T(l,main)

ûi (at) + πmain
i (l, x−i, h

T′
−i, h

Li−1

−i )|L<(l,main), h<(l,main)


=

 (T0)3

(
vi(xi−1)− 1{xi−1=G}1{ID−i(h<(l,main)

−i ) 6=∅
}2ū

)
if θi(h

<(l,main)
−i ) = R,

(T0)3 uxi−1 if θi(h
<(l,main)
−i ) = E.

Proof. Playing σ∗i (xi) yields the highest value of πi,t(h
T′
−i): 0. Hence, we focus on

∑
t∈T(l,main) ûi (at)

and πmain
i . If θi(h

<(l,main)
−i ) = R, then, by (60), the reward function satisfies

πmain
i (l, x−i, h

T′
−i, h

Li−1

−i )

= (T0)3 ×

 πvii (xi−1, a−i,t, ω−i,t)− 1{xi−1=G}1{ID−i(h<(l,main)
−i )6=∅

}2ū if ID−i(h
<(l,main)
−i ) 6= I \ {i},

πvii (xi−1,t, a−i,t, ω−i,t|αmin)− 1{xi−1=G}2ū if ID−i(h
<(l,main)
−i ) = I \ {i}

for t = ti−1(l) (and 0 for other t’s). For each t ∈ T(main(l)) and ai,t, the random variable

ti−1(l) equals t with probability (T0)−3 (recall that L<(l,main) does not include ti−1(l) and the
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condition (50) holds), and players −i play a−i(x(i− 1)) when ID−i(h
<(l,main)
−i ) = ∅ (by Lemma

16) and play αmin when ID−i(h
<(l,main)
−i ) = I\{i}. Hence, the per-period expected payoff is

vi(xi−1)−1{xi−1=G}1{ID−i(h<(l,main)
−i )6=∅

}2ū, by (56). If instead θi(h
<(l,main)
−i ) = E, then the result

follows from (56) and (60).

Second, for each phase λ, if i ∈ ID(hλ) then ID−i(h
<λ
−i ) 6= ∅ or θi(h

<λ
−i ) = E.

Lemma 21 For any i ∈ I, λ, and history h<λ at the beginning of phase λ, if i ∈ ID(h<λ)

then ID−i(h
<λ
−i ) 6= ∅ or θi(h

<λ
−i ) = E.

Proof. By definition, i ∈ ID(h<λ) only if suspi(hi) = 1 or devln
(
x (i) , atn−1(l) (i) , ωtn−1(l) (i)

)
=

1 for some n ∈ I as the result of communication phases preceding λ. We show that both

these cases imply ID−i(h
<λ
−i ) 6= ∅ or θi(h

<λ
−i ) = E. In each communication phase, by Claims

1 and 2 of Lemma 11, if suspi(hi) = 1 then θi(h
<λ
−i ) = E for each subsequent phase. In

addition, we have, either all players infer the same message, suspn(hn) = 1 for some n 6= i,

or θi(h−i) = E. If devln
(
x (i) , atn−1(l) (i) , ωtn−1(l) (i)

)
= 1 for some n ∈ I, then each of these

three cases implies either ID−i(h
<λ
−i ) 6= ∅ or θi(h

<λ
−i ) = E.

Third, the distribution of θi(h−i) is independent of the history in previous phases, and

θi(h−i) = E is rare.

Lemma 22 For any i ∈ I, λ, and l ≥ λ, there exists p(Ijam\{i}, λ, θi(h≤λ−i ), l) such that, for

any x ∈ {G,B}N , L≤λ, and history h≤λ at the end of phase λ, we have

Prσ
∗(x)
(
θi(h

<(l,main)
−i ) = E|L≤λ, h≤λ

)
= pi(Ijam\{i}, λ, θi(h≤λ−i ), l).

Moreover, for θi(h
≤λ
−i ) = R, we have pi(Ijam\{i}, λ, θi(h≤λ−i ), l) ≤ exp(− (T0)

1
3 ).

Proof. By Claim 5 of Lemma 11, the distribution of θi in each communication phase is deter-

mined by Ijam\{i}, independent of the message sent. In addition, since θi(h
≤λ
−i ) = R implies

ζi(h
(0,jam)
−i ) = reg, in each communication phase the probability of θi(h−i, ζi(h

(0,jam)
−i )) = E

is at most #half

(
exp(− (T0)

1
2 ) + exp (−ε̄T0)

)
(by Claim 4 of Lemma 11). By (17), this

probability is less than exp(− (T0)
1
3 ).
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M.3 Verification of Promise Keeping and Incentive Compatibility

In equilibrium, by Lemma 20, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, we have

vi(x,L≤λ, h≤λ) =
∑
l̃≥l+1

(T0)3


pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃)uxi−1

+(1− pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃))
(
vi(xi−1)− 1{xi−1=G}1{ID−i(h<(l̃,main)

−i )6=∅
}2ū

)  .

(72)

By Claim 3 of Lemma 11, the event ID−i(h
<λ
−i ) 6= ∅ implies θi(h

λ
−i) = E on path. Since (17)

implies #half ≤ (T0)0.1 and (T0)0.1 exp(− (T0)
1
3 )3ū ≤ ε∗L (T0)3, with λ = (0, jam), by Lemma

22, we have (65)–(67). It tremains to verify (64). This involves verifying the premise for

verified communication, which requires a lower bound on the probability of JAM:

Lemma 23 For any i ∈ I, x−i ∈ {G,B}N−1, L, σi ∈ Σi, h
t
i, and history h3:t from period 3

to t, we have

Pr
(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|L, h3:t, hti

)
≥ exp(− (T0)

1
2 ). (73)

Proof. By iterated expectations, it suffices to prove the lemma for t = T ∗. For any jamming

coordination phase history h
(0,jam)
i , let pi(h

(0,jam)
i ) denote the conditional probability that

each player j 6= i observes a1 during the jamming coordination phase. By (16), we have

pi(h
(0,jam)
i ) ≥ ε̄ exp(− (N − 2)T

1
3 ). It remains to account for updating from h3:t between

periods 3 and T ∗ (recall that the jamming coordination phase ends in period 2).

Suppose player i could perfectly observe whether her opponents play REG or JAM in ev-

ery half-interval. (Note that the other information in (L, h3:t) does not update the probability

of ζj(h
(0,jam)
j )). Then Pr

(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|hT ∗i

)
would be minimized when REG is

always played. As the probability that REG is always played is at least 1−N#half exp(−T 1
2 )

(conditional on any realization of
(
ζj(h

(0,jam)
j )

)
j∈I

), we have

Prσ
∗
−i(x−i)

(
ζj(h

(0,jam)
j ) = jam ∀j 6= i|hT ∗i

)
≥

ε̄ exp(− (N − 2) (T0)
1
3 )
(

1−N#half exp((T0)−
1
2 )
)

ε̄ exp(− (N − 2) (T0)
1
3 )
(

1−N#half exp((T0)−
1
2 )
)

+ 1

≥ by (17) exp(− (T0)
1
2 ).
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It will also be useful to simplify equation (72). By Lemma 22, there exists a payoff

vi(x, Ijam\{i}, λ, θi(h≤λ−i ), D) (where D stands for “Deviation is Detected”) such that, for

each h<λ−i with ID−i(h
<λ
−i ) 6= ∅, we have vi(x,L≤λ, h≤λ) = vi(x, Ijam\{i}, λ, θi(h≤λ−i ), D); and for

each h<λ−i with ID−i(h
<λ
−i ) = ∅, we have (since vi(G)− 2ū ≤ uG and vi(B) ≤ uB by (55))

vi(x,L≤λ, h≤λ) ≥ vi(x, Ijam\{i}, λ, θi(h≤λ−i ), D). (74)

In addition, on the equilibrium path, either ID−i(h
<(l,main)
−i ) = ∅ or θi(h

<(l,main)
−i ) = E.

Hence, for each λ with l ≤ λ < l + 1, L≤λ, and h≤λ, on-path payoffs are given by

vi(x,L≤λ, h≤λ) = vi(x, Ijam\{i}, λ, θi(h≤λ−i ), N) :=
∑
l̃≥l+1

(T0)3

 pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃)uxi−1

+(1− pi(Ijam\{i}, λ, θi(h≤λ−i ), l̃))vi(xi−1)

 .

M.3.1 Proof of (64) (Incentive Compatibility)

The proof is by induction. For λ ≥ L, vi(x,L≤λ, h≤λ) = wi(x−i,L≤λ, h≤λ) = 0, since there is

no main phase following λ and playing σ∗i (xi) yields πi,t(h
T′
−i) = 0. Given this observation,

it suffices to establish the following claim:

Inductive hypothesis: For each x, λ, L<λ, and h<λ, if the equilibrium continua-

tion payoff given (L≤λ, h≤λ) equals vi(x,L≤λ, h≤λ), then σ∗i (xi) is sequentially rational given

(x,L<λ, h<λ).

If θi(h
<λ
−i ) = E, then the claim follows from Lemma 20 and the fact that θi(h

<λ
−i ) = E

implies θi(h
<(l,main)
−i ) = E for all l ≥ λ. So assume θi(h

<λ
−i ) = R.

For communication phase λ, we use vEi , (vmii )mi∈Mi
, and v0

i as in Section H. By Lemma 23,

we have (43). Moreover, in what follows, (17) implies (38) and (44) with relevant continuation

payoffs. Hence, we focus on proving the premise. Note that (74) implies, for each x,L≤λ, h≤λ,

vi(x,L≤λ, h≤λ) ≥ v0
i = vi(x, Ijam\{i}, λ, R,D).

Contagion Phase (l, i, con): For the equilibrium message mi (equal to 0 if i 6∈ ID(h<λ)

and 1 if i ∈ ID(h<λ)) and the alternative message m̂i ∈ {0, 1} \ {mi}, we have

• vmii ≥ vm̂ii = v0
i if ID−i(h

<λ
−i ) = ∅ and i 6∈ ID(h<λ) (by (74)),

• vmii = vm̂ii = v0
i if ID−i(h

<λ
−i ) 6= ∅ or i ∈ ID(h<λ), and

68



• K ≤ 2ū (as uxi−1 and vi(xi−1) are feasible payoffs,

since the event {θi(h<λ−i ) = R and i ∈ ID(h<λ)} implies ID−i(h
<λ
−i ) 6= ∅ by Lemma 21.

Given vEi = uxi−1 , the premise holds. Hence, σ∗i (xi) is sequentially rational.

Contagion Phase (l, j, con) with j 6= i: Since v
mj
i ≥ v0

i for all mj ∈ Mj by (74), the

premise holds.

Communication phase (l, i, n) with n 6= i: In phases (l, n) and (l, j, n) with j <

i, Claim 1 of Lemma 11 implies that either players coordinate on both tn(l − 1) and

(aj,tn(l−1), ωj,tn(l−1))j, or we have ID−i(h
<λ
−i ) 6= ∅ (given θi(h

<λ
−i ) = R). By the inductive hy-

pothesis, players will follow σ∗(x) in later phases, and therefore, by Claim 4 of Lemma 11,

either players coordinate on (aj,tn(l−1), ωj,tn(l−1))j>i or θi(h
<(l+1,main)
−i ) = E. If θi(h

λ
−i) = E

in some later phase, then player i’s payoff is independent of the message in the current

phase. If θi(h
λ
−i) = R in all later phases, we have θi(h

<(l+1,main)
−i ) = R. Given this event, for

each message m̂i 6= (ai,tn(l−1)(i), ωi,tn(l−1)(i)), coordinating on m̂i induces devn = 1. Hence,

vmii ≥ vm̂ii = v0
i . Since vEi = uxi−1 , the premise holds.

Communication phase (l, j, n) with j 6= i: The same as phase (l, j, con).

Communication phase (l, i): If ID−i(h
<λ
−i ) 6= ∅, then vmii = v0

i for each mi ∈Mi, so the

premise holds. So assume ID−i(h
<λ
−i ) = ∅.

Suppose first that ai,ti−1(l) = ali(x(i)). Given ID−i(h
<λ
−i ) = ∅ and θi(h

<λ
−i ) = R, by Claim

1 of Lemma 11, players coordinated on tj(l − 1) with j − 1 < i. Since players will follow

σ∗(x) in later phases, Claim 4 of Lemma 11 implies that either players coordinate on the

true message or θi(h
<(l+1,main)
−i ) = E in later sub-phases. Hence, for any t ∈ T(l,main), as

long as ti(l − 1)(n) = t for each n ∈ I, we have ID−i(h
<(l+1,main)
−i ) = ∅ or θi(h

<(l+1,main)
−i ) = E.

Therefore, for each message mi, the continuation payoff is vmii = vi(x, Ijam\{i}, λ+1, R,N) ≥

v0
i = vi(x, Ijam\{i}, λ+ 1, R,D), so the premise holds.

Suppose instead ai,ti−1(l) 6= ali(x(i)). Then Lemma 16 implies that ID−i(h
<(l+1,main)
−i ) 6= ∅

or θi(h
<(l+1,main)
−i ) = E, regardless of player i’s behavior. Hence, for each message mi, the

continuation payoff is vmii = v0
i . Again, the premise holds.

Communication phase (l, j) with j 6= i: The same as phase (l, j, con).

Main Phase: If ID−i(h
<(l,main)
−i ) 6= ∅, then the continuation payoff is independent of player

i’s main phase behavior, so Lemma 20 implies the result. If ID−i(h
<λ
−i ) = ∅, then Lemma 20
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ensures there is no instantaneous deviation gain. It remains to show that the continuation

payoff decreases if player i deviates. Given history profile (L≤λ, h≤λ) at the end of main

phase l, by Lemma 16, the probability that ID−i(h
<(l+1,main)
−i ) 6= ∅ is determined by and

increasing in
|{t∈T(main(l)):ai,t 6=ali(x(i))}|

(T0)3 . Since the distribution of θi(h
<(l+1,main)
−i ) is independent

of i’s behavior in main phase l by Lemma 22, continuation payoff is maximized by playing

ai,t = ali(x(i)) for each t.
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N Supplementary Appendix: Omitted Proofs

The omitted proofs rely on two simple lemmas, which are used to adjust the reward functions

to correct for unlikely errors in communication. Let M ⊂ N be a finite set, let F ∈ R++, let

f : M → [−F, F ] be a function of mi ∈M , and let m̃i ∈M ∪{0} be a random variable such

that, for each mi ∈ M , Pr (m̃i = mi|mi) = p(mi) and Pr (m̃i = 0|mi) = 1− p(mi). Applied

to the remainder of the proof, M will be a message set, f will be a reward function bounded

by F , and p(mi) will be the probability that message mi is received when message mi is sent.

Lemma 24 With ε̂ = maxmi∈M
1−p(mi)
p(mi)

, there exists a function g : M∪{0} → [− (1 + ε̂)F, (1 + ε̂)F ]

such that maxmi∈M |f (mi)− g (mi)| ≤ ε̂F , and E [g(m̃i)|mi] = f(mi) for all mi ∈M.

Proof. Define g (0) = 0 and g (mi) = 1
p(mi)

f (mi) ∀mi ∈M . The claims follow directly.

A similar result holds if we account for self-generation. For xi−1 ∈ {G,B}, recall that

sign(xi−1) = −1 if xi−1 = G and sign(xi−1) = 1 if xi−1 = B. For each xi−1 ∈ {G,B}, let

fxi−1 : M → [−F, F ] be a function of mi ∈M such that there exists c ≥ 0 satisfying

max
mi∈M,xi−1∈{G,B}

sign (xi−1) fxi−1 (mi) ≥ −c. (75)

Lemma 25 With ε̂ = maxmi∈M
1−p(mi)
p(mi)

, for all xi−1 ∈ {G,B}, there exists a function gxi−1 :

M ∪ {0} → [−(1 + 2ε̂)F, (1 + 2ε̂)F ] such that

(i) maxxi−1∈{G,B},mi∈M |fxi−1 (mi)− gxi−1 (mi) | < ε̂F ,

(ii) E [gxi−1(m̃i)|mi] = fxi−1(mi) for all mi ∈M ,

(iii) minmi∈M sign (xi−1) gxi−1 (mi) ≥ −(1 + ε̂)c− ε̂F , and

(iv) minmi∈M gxi−1 (mi) ≥ gxi−1 (0).

Applied to the remainder of the proof, condition (iii) helps satisfy self-generation, and

condition (iv) helps satisfy the premises for the secure and verified modules.

Proof. Without loss, assume F ≥ (1 + ε̂) c (otherwise, F := (1 + ε̂) c).30 For xi−1 = G,

Define gxi−1 (0) = −Fand gxi−1 (mi) =
1

p(mi)
fxi−1 (mi) +

1− p(mi)

p(mi)
F ∀mi ∈Mi.

30Wherever Lemma 25 is applied, we have F ≥ (1 + ε̂) c.
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Then, for allmi, we have (1) E [gxi−1(m̃i)|mi] = fxi−1(mi), (2) g
xi−1

T (mi) ∈ [−(1 + 2ε̂)F, (1 + 2ε̂)F ],

(3) |fxi−1 (mi)− gxi−1 (mi)| ≤ 2ε̂F , (4) sign (xi−1) gxi−1 (m̃i) ≥ − (1 + ε̂) c − ε̂F , and (5)

gxi−1 (mi)− gxi−1 (0) = 1
p(mi)

(fxi−1 (mi) + F ) ≥ 0.

For xi−1 = B, define

gxi−1 (0) = − (1 + ε̂) c, and gxi−1 (mi) =
1

p(mi)
fxi−1 (mi) +

1− p(mi)

p(mi)
(1 + ε̂) c ∀mi ∈Mi.

Then, for allmi, we have (1) E [gxi−1(m̃i)|mi] = fxi−1(mi), (2) g
xi−1

T (mi) ∈ [−(1 + 2ε̂)F, (1 + 2ε̂)F ],

(3) |fxi−1 (mi)− gxi−1 (mi)| ≤ 2ε̂F , (4) sign (xi−1) gxi−1 (m̃i) ≥ − (1 + ε̂) c, and (5) gxi−1 (mi)−

gxi−1 (0) = 1
p(mi)

(fxi−1 (mi) + c) ≥ 0 (the last inequality follows from the condition (75)).

N.1 Proof of Lemma 5

Let a1 ∈ AN be the action profile where player i plays a1 and all other players play a0. Let

a0 ∈ AN be the action profile where all players play a0. Let T1st :=
⋃b(Mi)
k=1 {2(k − 1)T +

1, ..., 2(k − 1)T + T} denote the set of periods in the first half of each interval. For n 6= i,

define

π̂n (hn−1) =
∑
t∈T

2K1{ωn−1,t=a0}

pn−1,n

+
∑
t∈T1st

1{ωn−1,t=a1}
(
1− δT

)
δt−1 (ûn (a0)− ûn (a1))

pn−1,i

and πn (xn−1, hn−1) = π̂n (hn−1) + vn(xn−1) − cn, where cn is a constant to be determined.

We will show that, for n 6= i, Claims 1 and 3 of the lemma hold for any cn, and that

E
[∑

t∈T δ
t−1ûn (at) + π̂n (hn−1)

]
is a constant independent of mi.

Setting cn = E
[∑

t∈T δ
t−1ûn (at) + π̂n (hn−1)

]
then implies that Claim 2 also holds.

For Claim 1, we require that playing a0 throughout the module is optimal with payoff

function (20). This follows immediately from the facts thatK ≥ 2ū
ε̄

and maxh,h̃

∣∣∣wn (h)− wn(h̃)
∣∣∣ <

K, which imply that the first term of π̂n (hn−1) dominates any difference in
∑

t∈T δ
t−1ûn (at)

and wn (h). Claim 3 is also immediate.

To see that E
[∑

t∈T δ
t−1ûn (at) + π̂n (hn−1)

]
is independent of mi, note that player i

plays a1 the same number of times regardless of mi. Therefore, E
[∑

t∈T

2K1{ωn−1,t=a
0}

pn−1,n

]
is
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independent of mi. It remains to show that

∑
t∈T

δt−1ûn (at) +
∑
t∈T1st

E
[
1{ωn−1,t=a1}

] (
1− δT

)
δt−1 (ûn (a0)− ûn (a1))

pn−1,i

(76)

is independent of mi.

We show that payoff (76) is independent of mi for each interval, i.e., for each k ∈

{1, . . . , b(Mi)}, when the sums in (76) are restricted to τ ∈ {2(k − 1)T + 1, . . . , 2kT}, they

are the same when player i plays a1 in the first half of the kth interval as when she plays a1

in the second half. When player i plays a1 in the second half of the kth interval, (76) equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a1
)
,

while when player i plays a1 in the first half of the kth interval, the payoff (76) equals

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a0
)

+
(
1− δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn
(
a0
)
− ûn

(
a1
))

=

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+ δT
2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
(
1− δT

) 2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1
(
ûn
(
a0
)
− ûn

(
a1
))

= δT
2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a1
)

+

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

=

2(k−1)T+T∑
τ=2(k−1)T+1

δτ−1ûn
(
a0
)

+
2kT∑

τ=2(k−1)T+T+1

δτ−1ûn
(
a1
)
.

Finally, for player i, define

π̂i (hi−1) =
∑

t∈T
1

pi−1,i

(
δt−11{ωi−1,t=a1} (ûi (a

1)− ûi (a0)) + 1{ωi−1,t∈{a0,a1}}2ū
)
. The first term

in the sum makes player i indifferent between playing a0 and a1, and the second term

makes her not want to play a 6∈ {a0, a1}. Since player i is indifferent between a0 and a1,

it follows that ci = E
[∑

t∈T δ
t−1ûi (at) + π̂i (hi−1)

]
is independent of mi. Hence, letting

πi,t (xi−1, hi−1) = π̂i,t (hi−1) + vi(xi−1)− ci, Claims 1-3 of the lemma hold for n = i.
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N.2 Proof of Lemma 6

By Lemma 1, it suffices to show that, for sufficiently large δ < 1, there exist (σ∗∗i (xi))i,xi , β
∗∗,

(v∗∗i (xi−1))i,xi−1
and

(
π∗∗i (xi−1, h

T ∗∗
i−1)

)
i,xi−1,hT

∗∗
i−1

such that (1)–(4) are satisfied in the T ∗∗-period

discounted repeated game.

Construction of σ∗∗i (xi)

Play within the first T3 periods is given by (σ∗i (xi))i∈I . Play from periods T3 +1 to T ∗∗ is

given by the Phase (final, 4, i)i∈I strategies defined in Section E. Denote player i’s strategy

for periods T3 + 1, ..., T ∗∗ by σT
∗∗

i |hT3
i

(indicating its dependence on hT3
i ).

At the end of phase (final, 4, i), for each n 6= i, i − 1, denote player i − 1’s inferences of

ti−1 (n) and hn,ti−1(n) by ti−1 (n) (i− 1) ∈ {0, 1, ..., T3} and hn,ti−1(n) (i− 1) ∈ A2∪{0}, respec-

tively. We say that communication succeeds if ti−1 (n) (i− 1) = ti−1 and hn,ti−1(n) (i− 1) 6= 0

for all n 6= i, i− 1. Denote the event that communication succeeds (resp., fails) by si−1 = 1

(resp., si−1 = 0). Note that, if si−1 = 1 and all players follow σT
∗∗ |hT3 , then h−i,ti−1

(i− 1) =

h−i,ti−1
.

Construction of β∗∗

As will be seen, for periods T3 + 1, ..., T ∗∗, the equilibrium is belief-free. Hence, any

consistent beliefs suffice. For periods 1, ..., T3, let β∗∗ = β∗.

Construction of π∗∗i (xi−1, h
T ∗∗
i−1)

Since h−i,ti−1
uniquely identifies ai,ti−1

by Lemma 2, there exists π̃δi,t
(
ti−1, h−i,ti−1

)
such

that, for all at ∈ AN and t ∈ {1, ..., T3},

π̃δi,t
(
ti−1, h−i,ti−1

)
= 1{ti−1=t}T3

(
1− δt−1

)
ûi (at) . (77)

Note that

lim
δ→1

max
t,ti−1,h−i,ti−1

π̃δi,t
(
ti−1, h−i,ti−1

)
= 0. (78)

We use Lemma 24 to adjust π̃δi,t
(
ti−1, h−i,ti−1

)
to account for errors in communication.

Claim 1 There exist
(
πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
))
i,t,ti−1,si−1,h−i,ti−1

(i−1)
such that
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1. For all i ∈ I, ti−1 ∈ {1, . . . , T3}, and hT3 ∈ HT3,

E
[
πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
)
|hT3 , ti−1

]
= π̃δi,t

(
ti−1, h−i,ti−1

)
. (79)

2. limδ→1 maxi,t,ti−1,si−1,h−i,ti−1
(i−1) π

δ
i,t

(
ti−1, si−1, h−i,ti−1

(i− 1)
)

= 0.

Proof. Let h̃−i,ti−1
= h−i,ti−1

(i− 1) if si−1 = 1 and h̃−i,ti−1
= 0 otherwise. Since si−1 = 1 im-

plies h−i,ti−1
(i− 1) = h−i,ti−1

, we have Pr
(
h̃−i,ti−1

= h−i,ti−1
|ti−1

)
+ Pr

(
h̃−i,ti−1

= 0|ti−1

)
=

1. Moreover, by Lemma 3, we have

Pr
(
h̃−i,ti−1

= h−i,ti−1
|ti−1

)
≥ 1− (b (T3) + (N − 2) (b (T3 + 1) + b(A2))) exp(−ε̄T0).

The right hand side is no less than 1/2 by the definition (17). Hence, the claim follows from

(77), (78), and Lemma 24 (with ε̂ ≤ 1).

Given (77) and (79), since ti−1 is drawn uniformly at random from {1, ..., T3}, we have

E

[
T3∑
t=1

πδi,t
(
ti−1, si−1, h−i,ti−1

(i− 1)
)
|hT3

]
=

T3∑
τ=1

(
1− δt−1

)
ûi (at) . (80)

Let πδi (xi−1, h
T ∗∗
i−1) :=

∑T3

t=1 π
δ
i,t

(
ti−1, si−1, h−i,ti−1

(i− 1)
)
. Let T(final, 4) =

⋃
i∈I T(final, 4, i).

Note that, for all j 6= i, πδj (xj−1, h
T ∗∗
j−1) does not depend on the outcome of phase (final, 4, i).

Hence, by Lemma 5, there exist
(
πt

(
h
T(final,4)
i−1

))
i∈I

such that σT
∗∗|hT3 is a BFE in T(final, 4)

conditional on each realized hT3 , when payoffs are given by

E

∑
n∈I

∑
t∈T(final,4,n)

δt−1ûi (at) + πδi (xi−1, h
T(final,4)
i−1 ) + πt

(
h
T(final,4)
i−1

)
| hT3

i

 . (81)

Moreover, since limδ→1 maxxi−1,hT
∗∗

i−1

∣∣πδi (xi−1, h
T ∗∗
i−1)

∣∣ = 0, we have

lim
δ→1

max
h
T(final,4)
i−1

∣∣∣πt (hT(final,4)
i−1

)∣∣∣ ≤ (ū+ 2
ū

ε̄

)
(T ∗∗ − T3) ≤ ε∗

2
T3, (82)

where the last inequality follows from (17). Finally, we define

π∗∗i (xi−1, h
T ∗∗
i−1) := π∗i (xi−1, h

T3
i−1) +πδi (xi−1, h

T(final,4)
i−1 ) +πt

(
h
T(final,4)
i−1

)
+ sign(xi−1)8ε∗T3. (83)
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We now verify conditions (1)–(4).

[Sequential Rationality:] Ignoring sunk payoffs and the constant term sign(xi−1)8ε∗T3,

player i maximizes the payoff (81) in T(final, 4). By construction of
(
πt

(
h
T(final,4)
i−1

))
i∈I

, (1)

holds for all t ∈ T(final, 4) for any consistent belief system, since by Lemma 5 the basic

protocol is a BFE.

Next, by Lemma 5, the expected payoff E
[∑

t∈T1
δt−1ûi (at) + πt

(
h
T(final,4)
i−1

)
|hT3

]
does

not depend on hT3 . Therefore, in period t ≤ T3, player i maximizes

E

[
T3∑
τ=1

δt−1ûi (aτ ) + π∗i (xi−1, h
T3
i−1) + πδi (xi−1, h

T(final,4)
i−1 )|ht−1

i

]

= E

[
T3∑
τ=1

δt−1ûi (aτ ) + π∗i (xi−1, h
T3
i−1) + E

[
πδi (xi−1, h

T(final,4)
i−1 )|hT3

]
|ht−1
i

]

= E

[
T3∑
τ=1

ûi (aτ ) + π∗i (xi−1, h
T(final,4)
i−1 )|ht−1

i

]
, (84)

where the first equality follows by iterated expectation, and the second follows from (80).

Since (84) equals the objective in (22), (22) implies (1).

[Promise Keeping:] Equation (2) is satisfied with v∗∗i (xi−1) defined by

v∗∗i (xi−1) =
1− δ

1− δT1
E

 ∑T1

t=1 δ
t−1ûi (at) + π∗i (xi−1, h

T3
i−1) + πδi (xi−1, h

T(final,4)
i−1 )

+πt

(
h
T(final,4)
i−1

)
+ sign(xi−1)8ε∗T3


=

1− δ
1− δT1

E

 ∑T3

t=1 ûi (at) +
∑T4

t=T3+1 vi (xi−1)

+π∗i (xi−1, h
T3
i−1) + sign(xi−1)8ε∗T3

 (85)

for xi−1 ∈ {G,B}, where we have used the fact that the expected value of
∑T4

t=T3+1 δ
t−1ûi (at)+

πt

(
h
T(final,4)
i−1

)
equals

∑T4

t=T3+1 vi (xi−1), by Lemma 5.

[Self-Generation:] Since limδ→1 max
xi−1,h

T(final,4)
i−1

∣∣∣πδi (xi−1, h
T(final,4)
i−1 )

∣∣∣ = 0, we have

lim
δ→1

sign(xi−1)
(
π∗i (xi−1, h

T3
i−1) + πδi (xi−1, h

T(final,4)
i−1 ) + πt

(
h
T(final,4)
i−1

)
+ sign(xi−1)8ε∗T3

)
≥ sign(xi−1)π∗i (xi−1, h

T3
i−1)− lim

δ→1

∣∣∣πt (hT(final,4)
i−1

)∣∣∣+ 8ε∗T3 > 0.

where the first inequality follows by (21), and the second by (24) and (82). Hence, for
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sufficiently large δ, (3) holds.

[Full Dimensionality:] Since 1−δ
1−δT∗∗ →

1
T ∗∗ as δ → 1 and T ∗∗ > T3, (85) implies

lim
δ→1

v∗∗i (xi−1) → 1

T ∗∗
E

[
T3∑
t=1

ûi (at) + π∗i (xi−1, h
T3
i−1) + sign(xi−1)8ε∗T3

]
 ≥ T3

T ∗∗vi(xi−1)− 8ε∗ if xi−1 = G,

≤ T3

T ∗∗vi(xi−1) + 8ε∗ if xi−1 = B ≥ vi(xi−1)− T ∗∗−T3

T ∗∗ 2ū− 8ε∗ if xi−1 = G,

≤ vi(xi−1) + T ∗∗−T3

T ∗∗ 2ū+ 8ε∗ if xi−1 = B.

The second line follows from (23), and the third follows from ū ≥ maxa∈AN |û (a)| and

v(x) ∈ F ∗. By (5), we have vi (B) + 9ε∗ < vi < vi (G)− 9ε∗. With (17), the last line implies

lim
δ→1

v∗∗i (xi−1)

 ≥ vi(xi−1)− 9ε∗ if xi−1 = G,

≤ vi(xi−1) + 9ε∗ if xi−1 = B.

Hence, for sufficiently large δ, we have v∗∗i (B) < vi < v∗∗i (G).

N.3 Proof of Lemma 7

By Lemma 6, it suffices to show that there exist (σ∗∗i (xi))i,xi , β
∗∗, (v∗∗i (xi−1))i,xi−1

and(
π∗∗i (xi−1, h

T3
i−1)
)
i,xi−1,h

T3
i−1

such that Conditions (22)–(24) are satisfied in the T3-period dis-

counted repeated game.

Construction of σ∗∗i (xi)

Play within the first T2 periods is given by (σ∗i (xi))i∈I . Play from periods T2 + 1 to T3

is given by the Phase (final, 3, i)i∈I strategies defined in Section E. Denote player i − 1’s

inference of (an,t, ωn,t)t∈∪j∈IT(final,2,j) by (an,t (i− 1) , ωn,t (i− 1))t∈∪j∈IT(final,2,j). Note that, by

(17) and Lemma 3, for each t ∈ ∪j∈IT (final, 2, j), we have

Pr
(

(an,t (i− 1) , ωn,t (i− 1))n6=i,i−1 = (an,t, ωn,t)n6=i,i−1 | (an,t, ωn,t)n6=i,i−1

)
≥ 1

2
. (86)

Construction of β∗∗
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As will be seen, for periods T2 + 1, ..., T3, the equilibrium is belief-free. Hence, any

consistent beliefs suffice. For periods 1, ..., T2, let β∗∗ = β∗.

Construction of π∗∗i (xi−1, h
T3
i−1)

Since (a−i,t, ω−i,t) uniquely identifies ai,t by Lemma 2, there exists π̃i,t (a−i,t, ω−i,t) such

that, for all at ∈ AN and t ∈
⋃
n∈I T(final, 2, n),

π̃i,t (xi−1, a−i,t, ω−i,t) =

 vi(xi−1)− ûi (at) if t 6∈ T(final, 2, n),

vi(xi−1)− ûi (at)− 1{ai,t 6=a0} if t ∈ T(final, 2, n).
.

We use Lemma 24 to adjust π̃i,t (xi−1, a−i,t, ω−i,t) to account for errors in communication.

Claim 2 There exist (πi,t (xi−1, a−i,t (i− 1) , ω−i,t (i− 1)))i,t∈∪n∈IT(final,2,n),xi−1,a−i,t(i−1),ω−i,t(i−1)

such that

1. For all i ∈ I, t ∈ ∪n∈IT(final, 2, n), xi−1, and hT2 ∈ HT2,

E
[
πi,t (xi−1, a−i,t (i− 1) , ω−i,t (i− 1)) |xi−1, h

T2
]

= π̃i,t (xi−1, a−i,t, ω−i,t) . (87)

2. maxi,t,a−i,t(i−1),ω−i,t(i−1) |πi,t (xi−1, a−i,t (i− 1) , ω−i,t (i− 1))| ≤ 2 (ū+ 1).

Proof. We construct πi,t from π̃i,t as we constructed πδi,t from π̃δi,t in Claim 1. The bound

(86) and Lemma 24 imply the result.

Let πT3
i (xi−1, h

T3
i−1) :=

∑
t∈∪n∈IT(final,2,n) πi,t (xi−1, a−i,t (i− 1) , ω−i,t (i− 1)). Let T(final, 3)

be the set of periods in (final, 3, i)i∈I . Note that, for all j 6= i, the reward πT3
j (xj−1, h

T3
j−1)

does not depend on the outcome in phase (final, 3, i). Hence, by Lemma 5, there exist(
πt

(
h
T(final,3)
i−1

))
i∈I

such that σT3 is a BFE in T(final, 3) when payoffs are given by

E

 ∑
t∈T(final,3)

ûi (at) + πT3
i (xi−1, h

T3
i−1) + πi

(
h
T(final,3)
i−1

)
| hT2

i

 . (88)

Moreover, since the reward πT3
i is additively separable across t ∈ ∪n∈IT(final, 2, n), we have

max
i,h

T(final,3)
i−1

∣∣∣πi (hT(final,3)
i−1

)∣∣∣ ≤ 2
ū+ 2 (ū+ 1)

ε̄
(T3 − T2) .
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Together with Claim 2, we have

max
i,h

T3
i−1

∣∣πT3
i (xi−1, h

T3
i−1)
∣∣+ max

i,h
T(final,3)
i−1

∣∣∣πi (hT(final,3)
i−1

)∣∣∣ ≤ 2 (ū+ 1) (T2 − T1)+2
ū+ 2 (ū+ 1)

ε̄
(T3 − T2) ≤ ε∗T3,

(89)

where the last inequality follows from (17).

Finally, we define

π∗∗i (xi−1, h
T3
i−1) := π∗i (xi−1, h

T2
i−1) + πT3

i (xi−1, h
T3
i−1) + πi

(
h
T(final,3)
i−1

)
+ sign(xi−1)7ε∗T3.

The verification of Conditions (1)–(4) is now the same as in Lemma 6.

N.4 Proof of Lemma 9

We construct strategies σ∗∗i (xi), beliefs β∗∗, and reward functions π∗∗i
(
xi−1, h

T2
i−1

)
in the

T2-period game that satisfy the premise of Lemma 7.

Construction of σ∗∗i (xi)

Play within the first T1 periods is given by (σ∗i (xi))i∈I . Play from periods T1 + 1 to T2

is given by the Phase (final, 2, i)i∈I strategies defined in Section E, with Ijam = {i− 1} in

Phase (final, 2, i). For each i ∈ I and n 6= i, i− 1, denote player i− 1’s inference of mi−1 (n)

by mi−1 (n) (i− 1). If mi−1 (n) (i− 1) = 0 for some n 6= i, i − 1, or if player i − 1 plays

JAM during a round where she receives a message via the secure protocol, let si−1 = 0

(“communication fails”). Otherwise, si−1 = 1 (“communication succeeds”).

Construction of β∗∗

For periods T1 + 1, . . . , T2, specify beliefs as in Lemma 8 given the sender’s equilibrium

message. For periods 1, ..., T1, let β∗∗ = β∗.

Construction of π∗∗i
(
xi−1, h

T2
i−1

)
Fix xi−1 ∈ {G,B} arbitrarily. If si−1 = 1, denote player i − 1’s inference of player n’s

message during phase (final, 2, i) by
(
xn (i− 1) , hT

′′
n (i− 1)

)
. We first construct a function

π̃∗i
(
x−i (i− 1) , hT

∗
i−1, h

T′′
−i (i− 1)

)
as follows: Define

(
x̃−i, h̃

T′′
−i

)
=
(
x−i (i− 1) , hT

′′
−i (i− 1)

)
if
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si−1 = 1 and
(
x̃−i, h̃

T′′
−i

)
= 0 otherwise. Note that (i) (10) implies

min
x−i,hT

′′
−i

Pr
(
si−1 = 1|x−i, hT

′′
−i

)
≥ 1−Nb

(
2 |A|2(T1−L(T0)3)

)(
exp (−ε̄T0) + 2 exp

(
− (T0)

1
2

))
,

(90)

(ii) si−1 = 1 implies
(
x−i (i− 1) , hT

′′
−i (i− 1)

)
=
(
x−i, h

T′′
−i
)
, and (iii) π∗i satisfies (37). Hence,

in the notation of Lemma 25,

ε̂ =
Nb
(

2 |A|2(T1−L(T0)3)
)(

exp (−ε̄T0) + 2 exp
(
− (T0)

1
2

))
1−Nb

(
2 |A|2(T1−L(T0)3)

)(
exp (−ε̄T0) + 2 exp

(
− (T0)

1
2

)) ,
F = max

x̃−i,hT
∗

i−1,h̃
T′′
−i

∣∣∣π∗i (x̃−i, hT ∗i−1, h̃
T′′
−i

)∣∣∣ ≤by (34) 8ūT1, c = 5ε∗T1.

Lemma 25 implies that there exists π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
such that

max
x̃−i,hT

∗
i−1,h̃

T′′
−i

∣∣∣π̃∗i (x̃−i, hT ∗i−1, h̃
T′′
−i

)∣∣∣ ≤ (1 + 2ε̂)F, (91)

E
[
π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
|x−i, hT

∗
i−1, h

T′′
−i

]
= π∗i

(
x−i, h

T ∗
i−1, h

T′′
−i

)
, (92)

sign (xi−1) π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
≥ −(1 + ε̂)c− ε̂F, and (93)

π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
is minimized when si−1 = 0. (94)

Finally, we define the reward function π∗∗i
(
xi−1, h

T2
i−1

)
= π̃∗∗i

(
xi−1, h

T2
i−1

)
. It remains to

verify the premise of Lemma 7.

[Sequential Rationality:] We verify (22) for all t = 1, . . . , T2 by backward induction. In

phase (final, 2, i), player i maximizes the conditional expectation of

−
∑

t∈T(final,2,i)

1{ai,t 6=a0} + π̃∗i

(
x̃−i, h

T ∗
i−1, h̃

T′′
−i

)
.

Given (91) and (94), the premise for secure communication with magnitude (1 + 2ε̂)F for

player i is satisfied, for each x ∈ {G,B}N . Moreover, (32) holds by inequalities (17) and

(34). Hence, Lemma 8 implies (27) for t = T1 + 1, ..., T2.

80



Since (92) implies that π∗i and π̃∗i are equal in expectation given x̃−i, h
T ∗
i−1, h̃

T′′
−i (assuming

players follow σ∗∗ in phases (final, 3, i)i∈I , as we have shown is optimal), (35) implies (27).

[Promise Keeping:] Let

v̂i (xi−1) :=
1

T2

Eσ∗(x)

 T1∑
t=1

ûi (at) +

T2∑
t=T1+1

vi(xi−1)−
∑

t∈T(final,2,i)

1{ai,t 6=a0} + π̃∗∗i
(
x−i, h

T2
i−1

) .
Equation (36) implies v̂i (xi−1) = vi (xi−1).

[Self-Generation:] By (17), (93) implies (29).

N.5 Proof of Lemma 11

Claim 1: If susp (hn) = 1 for some n 6= j, then (ii) holds. If θj (h−j, ζ, j
′) = E for some

j′ ∈ I, then (iii) holds. So assume otherwise.

In light of the definition of FAIL, this implies that, for each j′ 6= j and n 6= j′, player

n observes a1 in each half-interval in T (j′) where player j′ plays a1. For n = j, since play-

ers −j follow the equilibrium strategy and take REG, we have (aj′,t(j), ωj′,t(j))t∈T(msg) =

(aj′,t, ωj′,t)t∈T(msg). Moreover, for each player n 6= j, j′, since susp (hn) = 0, she does

not observe a1 in any other half-interval in T (j′) than those in which player j′ takes a1.

Hence, (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg). Combining these observations, we have

(aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) for each j′, n ∈ I. Therefore, mi(n) = mi (n
′)

for all n ∈ I. Finally, as player i follows the protocol, this message must equal mi.

For the last part of the claim, consider each event that induces susp (hj) = 1: If

(an,t(j), ωn,t(j))t∈T(msg) = 0 for some n 6= j, then (an,t(j), ωn,t(j))t∈T(msg) 6= (an,t, ωn,t)t∈T(msg).

Hence, either some player j′ 6= n, j played JAM or player j did not match with player n

in a half-interval in T (n) where player n played a1. In either case, θj (h−j, ζ, n) = E. If

(aj,t(n), ωj,t(n))t∈T(msg),j∈I is not feasible, then again there exists n 6= j with (an,t(j), ωn,t(j))t∈T(msg) 6=

(an,t, ωn,t)t∈T(msg).

Claim 2: Same as Claim 1, except that the commonly inferre m̂i may differ from mi.

Claim 3: Follows from Claim 3 of Lemma 10.

Claim 4: Given Claim 3, it suffices to show Prσ
∗,mi (θj (h−j, ζ) = E) ≤ exp(−T 1

3 ). For
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each j′ ∈ I, if no one plays JAM in T (j′), then θj (h−j, ζ, j
′) = E only if some player n 6= j′

fails to observe a1 in a half-interval in T (j′) where player j′ plays a1. By Lemma 3, this

event occurs with probability at most (N − 1) b(A4b(Mi)) exp (−ε̄T ). In total, θj (h−j, ζ) = E

occurs with probability at most

2N (N − 1) b(A4b(Mi)) exp(−T
1
2 )︸ ︷︷ ︸

∃j′∈I,n 6=j: player n plays JAM in T(j′)

+N (N − 1) b(A4b(Mi)) exp (−ε̄T )︸ ︷︷ ︸
∃j′∈I,n 6=i:n fails to observe a1 in T(j′)

. (95)

By (38), this sum is at most exp(−T 1
3 ).

Claim 5: Follows from Claim 1 of Lemma 10.

N.6 Proof of Lemma 13

We prove the first part of the lemma by backward induction. We assume throughout that

ζj = reg; if instead ζj = jam, then (42) equals wj (h, ζ) and θj (h−j, ζ) = E, so player j is

indifferent over all protocol strategies by Condition 1 of the premise for communication.

Final Checking Round Let j′ be the index of the final checking round. Fix h ∈ H<j′ .

The following lemma verifies the receivers’ incentives, since both ûj(aτ ) − 1{aj,τ 6=a0} and

ûj(aτ )− 1{aj,τ 6=a∗j,τ (h−j)} for τ 6∈ T (j′) are sunk.

Lemma 26 Assume j 6= j′ and ζj = reg. For every history h<j
′ ∈ H<j′ and ht−1

j with

t ∈ T (j′), and every action aj,t ∈ A, when player j follows her optimal continuation strategy

after taking action aj,t, we have

E

− ∑
τ∈T(j′)

1{aj,τ 6=a0} + wj (h, ζ) |h<j′ , ht−1
j , aj,t = a0

 ≥ E

− ∑
τ∈T(j′)

1{aj,τ 6=a0} + wj (h, ζ) |h<j′ , ht−1
j , aj,t 6= a0

 .
(96)

Proof. If θj (h−j, ζ, j
′′) = E for some j′′ 6= j′, the result follows immediately from (8) and

(42), given ζj = reg. So suppose θj (h−j, ζ, j
′′) = R for all j′′ 6= j′. Since a deviation by any

player j′′ 6= j induces θj (h−j, ζ) = E, we also assume players −j follow σ∗−j in every checking

round. Hence, θj (h−j, ζ, j
′) = E if and only if (i) some player n 6= j′ does not observe a1 in

a half-interval where player j′ plays a1 or (ii) some player n 6= j, j′ plays JAM in T(j′). In
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particular, let Rj′,−j denote the event that each player n 6= j, j′ is matched with player j′ in

every half-interval where player j′ takes a1. Then Pr(θj (h−j, ζ, j
′) = E|Rj′,−j, h

<j′ , ht−1
j ) is

independent of σj.

With i replaced by j′, i∗ replaced with j, T replaced with T(j′), and Lemma 4 replaced

with Lemma 12, by the same argument as for Lemma 8, with probability at least

1−Nb(A4b(Mi)) exp
(
−η̄T + 2T

1
2

)
, (97)

conditional on (aj,τ , ωj,τ )τ∈T(j′), either θj (h−j, ζ, j
′) = E or [for each n 6= j, (aj′,t (n) , ωj′,t(n))t∈T(msg) ∈

{(aj′,t, ωj′,t)t∈T(msg), 0}, and (aj′,t (n) , ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) if and only if aj,τ =

a0 for each τ ∈ T such that µτ (j) = n and τ is in a half-interval where player j′ plays a0].

The latter event implies Rj′,−j.

Since Pr(θj (h−j, ζ, j
′) = E|Rj′,−j, h

<j′ , ht−1
j ) is independent of σj and (aj′,t (n) , ωj′,t(n))t∈T(msg) =

0 induces suspn(hn) = 1, playing aj,τ = a0 for each τ ≥ t maximizes wj (h, ζ) with prob-

ability at least (97). Together with (44), this implies that the reward term −1{aj,t 6=a0}

outweighs any possible benefit to player j from playing a 6= a0 in an attempt to manipulate

(aj′,t (n) , ωj′,t(n))t∈T(msg),n6=j.

We next verify the sender’s incentive:

Lemma 27 Assume ζj′ = reg. For every history h<j
′ ∈ H<j′ and ht−1

j′ with t ∈ T (j′), and

every action aj′,t ∈ A, when player j′ follows her optimal continuation strategy after taking

action aj′,t, we have

E

− ∑
τ∈T(j′)

1{
aj′,τ 6=a∗j′,τ (h−j′ )

} + wj′ (h, ζ) |h<j′ , ht−1
j′ , aj′,t = a∗j′,t(h−j′)


≥ E

− ∑
τ∈T(j′)

1{
aj′,τ 6=a∗j′,τ (h−j′ )

} + wj′ (h, ζ) |h<j′ , ht−1
j′ , aj′,t 6= a∗j′,t(h−j′)

 .
Proof. Again, we assume θj′(h−j′ , ζ, j

′′) = R for all j′′ 6= j′ and players −j′ follow σ∗−j′ in

all checking rounds. In addition, assume REGj′,−j′ , as otherwise θj′(h−j′ , ζ, j
′) = E. Given

the reward −1{
aj′,t 6=a∗j′,t(h−j′ )

}, it suffices to show that following σ∗j′ maximizes wj′ (h, ζ).
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By Claims 4 and 5 of Lemma 10, for each j′′ 6= j′, since we have assumed θj′(h−j′ , ζ, j
′′) =

R, we have (aj′′,t (n) , ωj′′,t(n))t∈T(msg) ∈ {(aj′′,t, ωj′′,t)t∈T(msg), 0} for all n ∈ I.

Fix t ∈ T (j′), h<j
′
, and ht−1

j′ . If (aj′′,t (n) , ωj′′,t(n))t∈T(msg) = 0 for some j′′ 6= j′ and n ∈ I,

then Claim 1 of Lemma 11 implies that suspn′(hn′) = 1 for some n′ 6= j. Hence, maximizing

wj′ (h, ζ) is equivalent to maximizing the probability that θj (h−j, ζ, j
′) = E. If player j′

followed σ∗j′ until period t− 1 within T (j′), then following σ∗j′ maximizes θj′(h−j′ , ζ, j
′) = E,

by Claim 1 of Lemma 10. Otherwise, θj′(h−j′ , ζ, j
′) = R given REGj′,−j′ and any strategy

maximizes wj′ (h, ζ). In total, it is optimal to follow σ∗j′ .

Now suppose (aj′′,t (n) , ωj′′,t(n))t∈T(msg) = (aj′′,t, ωj′′,t)t∈T(msg) for each j′′ 6= j′ and n ∈

I. Suppose player j′ followed σ∗j′ until period t − 1 within T (j′). On the one hand, if

player j′ deviates from σ∗j′ in period t, then θj′(h−j′ , ζ, j
′) = R given REGj′,−j′ . Since

(aj′,t(n), ωj′,t(n))t∈T(msg) 6= (aj′,t, ωj′,t)t∈T(msg) for some n 6= j′ induces susp (hn) = 1, player

j′’s payoff is P (σj′ |h<j
′
,ht−1
j′ )vmij′ +(1−P (σj′ |h<j

′
,ht−1
j′ ))v0

j′ , wheremi corresponds to (ai,t)t∈T(msg)

and P (σj′|h<j
′
,ht−1
j′ ) is the probability that (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) for

all n 6= j′. On the other hand, if player j′ follows σ∗j′ in period t, then her equilibrium

payoff is P (σ∗j′|h<j
′
,ht−1
j′ )vmij′ + (1 − P (σ∗j′ |h<j

′
,ht−1
j′ ))vEj′ , since (aj′,t(n), ωj′,t(n))t∈T(msg) 6=

(aj′,t, ωj′,t)t∈T(msg) implies θj′(h−j′ , ζ, j
′) = E. As min{vmij′ , vEj′} ≥ v0

j′ by premise and P (σ∗j′ |h<j
′
,ht−1
j′ ) ≥

P (σj′|h<j
′
,ht−1
j′ ) by definition, it is optimal to play σ∗j′ .

Suppose instead player j′ deviated from σ∗j within T (j′) before period t − 1 . Then

θj′(h−j′ , ζ, j
′) = R givenREGj′,−j′ , so her payoff is P (σj′ |h<j

′
,ht−1
j′ )vmij′ +(1−P (σj′ |h<j

′
,ht−1
j′ ))v0

j′ .

Again, following σ∗j′ for the rest of the round maximizes P (σj′|h<j
′
,ht−1
j′ ).

Backward Induction: Given that players will follow σ∗ in subsequent rounds and Claim 1

of Lemma 10, we can assume θj (h−j, ζ, j
′′) = R for each j′′ for which the j′′-checking round

follows the current round. Hence, the same proof as for Lemmas 26 and 27 establish each

player’s incentive to follow σ∗ after any history.

Message Round: Again, given that players will follow σ∗ in the checking rounds and

Claim 1 of Lemma 10, we can assume θj (h−j, ζ, j
′) = R for each j′ ∈ I, and therefore as-

sume (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) and suspn(hn) = 0 for all n, j′ ∈ I. Given

this, the strategy of each player j 6= i does not affect wj(h, ζ), so incentives are satisfied.
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For player i, given (aj′,t(n), ωj′,t(n))t∈T(msg) = (aj′,t, ωj′,t)t∈T(msg) for all n, j′ ∈ I, mi(n) will

equal m̂i if player i plays (ai,t)t∈T(msg) corresponding to the binary expansion of m̂i (with

the interpretation that, if (ai,t)t∈T(msg) does not correspond to the binary expansion of any

m̂i ∈Mi, then mi(n) = 1). Hence, σ
∗,m∗i
i is optimal after any history.

i∗-QBFE: The last part of the lemma is immediate: Since vEj = vmij = vpunish
j for each

mi ∈Mi and j 6= i∗, players −i∗’s incentives are satisfied. For player i∗, the proof of the first

part of the lemma applies.

N.7 Proof of Lemma 14

We construct strategies (σ∗∗i (xi))i,xi and reward functions
(
π∗∗i
(
x−i, h

T′
−i
))
i,x−i,hT

′
−i

in the T1-

period game that satisfy the premise of Lemma 9.

Construction of σ∗∗i (xi)

Play for the first T ∗ periods is given by (σ∗i (xi))i. Play from periods T ∗+1 to T1 is given

by the Phase (final, 1, i)i∈I strategies outlined in Section E. More precisely:

• Player i− 1 (mod N) sends ti−1 (1) , ..., ti−1 (L) using the verified protocol with repetition

T0 and Ijam = −i. Each player n ∈ I infers a message (ti−1 (1) (n) , ..., ti−1 (L) (n)).

• Sequentially, each player n 6= i, i − 1 sends hn,ti−1(l)(n) =
(
an,ti−1(l)(n), ωn,ti−1(l)(n)

)
l=1,...,L

and χn ∈ {0, 1} using the secure protocol with repetition T0 and Ijam = {i− 1}. For each

n 6= i, i− 1, player i− 1 infers a message
(
hn,ti−1(l)(n) (i− 1) , χn(i− 1)

)
.

• If there exists a player n 6= i with susp (hn) = 1 or θi (h−i) = E in the verified protocol, or if

player i−1 infers 0 or plays JAM during a round where she receives a message in the secure

protocol, let si−1 = 0 (“communication fails”). Otherwise, si−1 = 1 (“communication

succeeds”). Note that si−1 is a function of hT
′
−i. Here, ζn is assumed to equal jam for each

n 6= i and reg for i, and so is omitted from θi.

Construction of β∗∗

In periods where player n sends a message via the secure protocol, specify trembles as

in Lemma 8. In periods where players use the verified protocol, any consistent belief system

suffices. For periods 1, ..., T ∗, let β∗∗ = β∗.
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Construction of π∗∗i
(
x−i, h

T′
−i
)

Fix xi−1 arbitrarily. If si−1 = 1, we denote player i− 1’s inference of player n’s message

during phase (final, 1, i) by h
Li−1
n (i− 1) and χn(i − 1). As in the proof of Lemma 9, define

h̃
Li−1

−i = h
Li−1

−i (i− 1) and χ̃−i = χ−i(i − 1) if si−1 = 1, and define h̃
Li−1

−i = 0 and χ̃−i =

0 otherwise. Since Mi = {1, ..., (T0)3}L for the verified communication, Condition (17)

implies (38), and therefore Claim 4 of Lemma 11 holds for verified communication. In

addition, (10) implies that the secure communication is successful with probability at least

(N − 2) b(2A2L)
(

exp(−T0) + 2 exp(−(T0)
1
2 )
)

. In total, we have

min
h
Li−1
−i

Pr
(
si−1 = 1|hLi−1

−i

)
≥ 1− exp(−(T0)

1
3 )− (N − 2) b(2A2L)

(
exp(−T0) + 2 exp(−(T0)

1
2 )
)

: = 1− p1
error(T0). (98)

Moreover, the event si−1 = 1 implies h
Li−1

−i (i− 1) = h
Li−1

−i and χ−i(i − 1) = χ−i, and the

reward π∗i satisfies the condition (49). Hence, in the notation of Lemma 25,

ε̂ =
p1

error(T0)

1− p1
error(T0)

, and F = max
x−i,hT

′
−i,h̃

Li−1
−i

∣∣∣π∗i (x−i, hT′−i, hLi−1

−i , χ−i

)∣∣∣ ≤by (46) 7ūT ∗, c = 2ε∗T ∗.

(99)

Therefore, Lemma 25 implies that there exists π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
such that

max
x−i,hT

′
−i,h̃

Li−1
−i

∣∣∣π̃∗i (x−i, hT′−i, h̃Li−1

−i , χ̃−i

)∣∣∣ ≤ (1 + 2ε̂)F, (100)

E
[
π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
|x−i, hT

′
−i, h

Li−1

−i χ−i

]
= π∗i

(
x−i, h

T′
−i, h

Li−1

−i χ−i

)
, (101)

sign (xi−1) π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
≥ −(1 + ε̂)c+ ε̂F ∀x−i, hT

′
−i, h̃

Li−1

−i , χ̃−i, and (102)

π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
is minimized when si−1 = 0. (103)
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We define the reward function

π∗∗i

(
x−i, h

T′′
−i

)
= π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
+

∑
t=1,...,T1

t6∈
⋃L
l=1 T(main(l))

π̃cancel
i (xi−1, a−i,t, ω−i,t)

+
∑

t∈T(final,1,i):
verified protocol

πverify
i (hT

′′
−i) +

∑
t∈T(final,1,i):

secure protocol

πsecure
i (hT

′′
−i).

Here, the rewards πverify
i (hT

′′
−i) and πsecure

i (hT
′′
−i) are defined analogously to (42) and (30) for the

periods where players −i communicate by the verified and secure communication modules in

phase (final, 1, i). Note that these rewards depend only on the history in phase (final, 1, i),

and the per-period reward is bounded by 1. Also, π̃cancel
i is bounded by [−ū, ū]. So, we have

∣∣∣π∗∗i (x−i, hT′′−i)∣∣∣ ≤ |T′′| (1 + ū) + (1 + 2ε̂) 7ūT ∗ ≤by (17) 8ūT ∗. (104)

Since π∗∗i
(
x−i, h

T′′
−i
)

satisfies (37) (given (104)), it remains to verify the other three conditions

of Lemma 9.

[Sequential Rationality:] We verify (35) for t = 1, . . . , T1 by backward induction. Given

π̃cancel
i , for periods t′ = T ∗ + 1, . . . , T1, player i maximizes the conditional expectation of

π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
+

∑
t∈T(final,1,i):

verified

πverify
i (hT

′′
−i) +

∑
t∈T(final,1,i):

secure

πsecure
i (hT

′′
−i).

Since the reward π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
depends only on the histories in T(final, 1, i), player

i follows the equilibrium strategy in phases (final, 1, j)j 6=i.

For phase (final, 1, i), given (100) and (103), the premise for secure communication

with magnitude (1 + 2ε̂)F for player i is satisfied for all x ∈ {G,B}N . In addition, as

vEi = v0
i = [value of π̃∗i given si−1 = 0], the premise for verified communication with mag-

nitude (1 + 2ε̂)F for player i is satisfied for all x ∈ {G,B}N . Since Ijam = −i for verified

communication, Condition (17) implies Conditions (38), (43), and (44) (for verified commu-

nication), as well as Condition (32) (for secure communication). In total, Lemmas 8 and

13 imply sequential rationality for t′ ∈ T(final, 1, i). Finally, since π∗i and π̃∗i are equal in
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expectation given x−i, h
T′
−i, h

Li−1

−i , χ−i, (47) implies (35) for t = 1, . . . , T ∗.

[Promise Keeping:] Since π∗i and π̃∗i are equal in expectation given x−i, h
T′
−i, h

Li−1

−i , (48) holds.

[Self Generation:] By (17) and (102), sign (xi−1) π̃∗i

(
x−i, h

T′
−i, h̃

Li−1

−i , χ̃−i

)
≥ −3ūT ∗. Other

terms in π∗∗i
(
x−i, h

T′′
−i
)

are bounded by (1 + ū) |T′′| + 2ε∗L(T0)3 ≤by (17) −2ūT ∗. So, (37)

holds.

N.8 Proof of Lemma 15

Compared to Lemma 14, we introduce (50) and replace (46) with (51) (a more restrictive

condition), (47) with (52) (less restrictive) and (48) with (53) (less restrictive). We show

that the third replacement is without loss, and then show the same for the second. Given

(52), let v̂i (x−i) := 1
L(T0)3Eσ

∗(x)
[∑

t∈
⋃L
l=1 T(main(l)) ûi (at) + π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)]
.

Since vi(xi−1) ∈ [−ū, ū], Conditions (49) and (53) imply

v̂i (x−i)− (vi(xi−1) + 2sign(xi−1)ε∗) ∈ [−2ū, 2ū] . (105)

Define π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
= π∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
−(v̂i (x−i)− (vi(xi−1) + 2sign(xi−1)ε∗))T ∗.

Note that changing the reward function from π∗i to π̃∗i only subtracts a constant and thus does

not affect sequential rationality. In addition, since sign(xi−1) (v̂i (x−i)− (vi(xi−1) + sign(xi−1)2ε∗)) ≥

0 by (53), (49) implies sign(xi−1)π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
≥ −2ε∗T ∗. Hence, self-generation

also holds with reward function π̃∗i . Finally, since (v̂i (x−i)− (vi(xi−1) + 2sign(xi−1)ε∗))T ∗ is

bounded by 2ūT ∗ by (105), (51) implies

sup
x−i,hT

′
−i,h

Li−1
−i ,χ−i

∣∣∣π̃∗i (x−i, hT′−i, hLi−1

−i , χ−i

)∣∣∣ ≤ 7ε∗T ∗.

Hence, (46) also holds with reward function π̃∗i . Therefore, the premise of Lemma 14 holds.

We now show that it is also without loss to replace (47) with (52). We assume that, before the

end of main phase l, player i believes that ti−1(l) is uniformly distributed over T(main(l)).31

Define π̃cancel
i (xi−1, a−i, ω−i) := πcancel

i (xi−1, a−i, ω−i)+sign(xi−1) maxx̃i−1,ã−i,ω̃−i π
cancel
i (x̃i−1, ã−i, ω̃−i) .

31This belief results if trembles in periods t = 1, ..., T ∗ are independent of (Li, ht−1i ), and thus is consistent.
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We have π̃cancel
i (xi−1, a−i, ω−i) ∈ [−2ū, 2ū], by (7). Note that

E
[
ûi (a) + πcancel

i (xi−1, a−i, ω−i) |a
]

= vi(xi−1) + sign(xi−1) max
x̃i−1,ã−i,ω̃−i

πcancel
i (x̃i−1, ã−i, ω̃−i)

(106)

and sign(xi−1)π̃cancel
i (xi−1, a−i, ω−i) ≥ 0. Since T ∗ ∈ T′, we can define

π̃∗i

(
x−i, h

T′
−i, h

Li−1

−i , χ−i

)
:=


π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
if χn = 0 for all n 6= i,∑

t∈T′ π̃
cancel
i (xi−1, a−i, ω−i)

+ (T0)3∑L
l=1 π̃

cancel
i

(
xi−1, a−i,ti−1(l), ω−i,ti−1(l)

) if χn = 1 for some n 6= i.

The (T0)3 term cancels the probability that ti−1 (l) = t for each t ∈ T(main(l)), so with this

reward function player i is indifferent over all action profiles when χn = 1 for some n 6= i.

Given reward function π̃∗i , (47) and (49) hold. Moreover, given (51) for π∗i

(
x−i, h

T′
−i, h

Li−1

−i

)
,

sup
x−i,hT

′
−i,h

Li−1
−i ,χ−i

∣∣∣π̃∗i (x−i, hT′−i, hLi−1

−i , χ−i

)∣∣∣ ≤ max {7ūT ∗, 2ūT ∗} ≤ 7ūT ∗.

Therefore, the premise of Lemma 14 holds.

N.9 Proof of Lemma 17

Definition of the Reward Function

We must define πindiff
i,t (h−i). Given h−i, fix hi uniquely identified from h−i by Lemma 2.

Let H0
i be the set of histories for player i with ωi,1 6= a1 and ωi,2 6= a1. Given the resulting

profile h = (hi, h−i), for t = 2, we define ∆vi,t (h−i) as follows:

1. If ωi,t−1 = a1, then ∆vi,t (h−i) := 0.

2. Otherwise, define Pr (Ijam \ {i}|ht−1, H0
i , ai) as the conditional probability that the real-

ized set of jamming players other than i at the end of the protocol equals Ijam \{i}, given

that players −i follow the protocol, hi ∈ H0
i , and player i plays ai in period t. Let

∆vi,t (h−i) =
∑
Ijam\{i}

 Pr (Ijam \ {i}|ht−1, H0
i , a

1)

−Pr (Ijam \ {i}|ht−1, H0
i , a

0)

 vi (Ijam \ {i}) .
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Note that |∆vi,t (h−i)| ≤ K, by the bound (63).

Finally, for t = 2, we define

πindiff
i,t (h−i) = −1{ai,t=a1}∆vi,t (h−i) . (107)

For t = 1, define Pr (Ijam \ {i}|ht−1, H0
i , ai) as the conditional probability that the realized

set of jamming players other than i at the end of the protocol equals Ijam \ {i}, given that

players −i follow the protocol, hi ∈ H0
i , and player i plays ai in period t and a0 in period

t+ 1. The resulting definitions of ∆vi,t (h−i) and πindiff
i,t (h−i) are the same as for t = 2.

Note that
∣∣πindiff
i,t (h−i)

∣∣ ≤ K for t = 1, 2. Hence, condition (i) holds.

Incentive Compatibility

We show that, for every player i and period t = 1, 2, it is optimal to follow the protocol in

period t given that she will follow the protocol in every later period. Recall that Pr (hi ∈ H0
i )

is independent of player i’s strategy, and Condition 2 of the premise implies that wi(h) =

wi(h̃) for all h and h̃ satisfying hi 6∈ H0
i and h̃i 6∈ H0

i . Moreover, wi(h) = vi (Ijam \ {i}) if hi ∈

H0
i . Hence, player i maximizes her payoff by maximizing

∑2
t=1 π

indiff
i,t (h−i) + vi (Ijam \ {i})

conditional on hi ∈ H0
i .

For t = 2, ignoring sunk payoffs, player i maximizes πindiff
i,t (h−i) + vi (Ijam \ {i}) condi-

tional on hi ∈ H0
i . By (107), player i is indifferent between a0 and a1. Moreover, she is also

indifferent between a0 and any a 6∈ {a0, a1}, since (i) the distribution of Ijam \{i} is the same

whether she takes a0 or a 6∈ {a0, a1}, and (ii) (107), πindiff
i (h−i) is the same as well.

For t = 1, noting that her period 1 action does not affect the distribution of anyone’s

action in period 2, player i again maximizes payoff πindiff
i,t (h−i) + vi (Ijam \ {i}) conditional

on hi ∈ H0
i . Again, (107) implies she is indifferent among all actions.
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