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Abstract

We consider estimation in moment condition models and show that under any bound on identification

strength, asymptotically admissible (i.e. undominated) estimators in a wide class of estimation

problems must be uniformly continuous in the sample moment function. GMM estimators are in

general discontinuous in the sample moments, and are thus inadmissible. We show, by contrast,

that bagged, or bootstrap aggregated, GMM estimators as well as quasi-Bayes posterior means

have superior continuity properties, while results in the literature imply that they are equivalent to

GMM when identification is strong. In simulations calibrated to published instrumental variables

specifications, we find that these alternatives often outperform GMM.
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1 Introduction

Generalized method of moments (GMM) estimators are ubiquitous in empirical economics,

and many popular estimation methods including linear and nonlinear instrumental variables,

moment-matching, and many examples of maximum likelihood can be cast as special cases.

Appropriately constructed GMM estimators are known to be efficient in large samples, in

the sense of minimizing mean squared error over a large class of estimators, provided model

parameters are strongly identified (i.e. the data are sufficiently informative) and other regularity

conditions hold (see Hansen 1982, Chamberlain 1987).

Unfortunately, in many contexts of economic interest the data provide only limited

information about model parameters (Mavroeidis et al. 2014, Armstrong 2016, Andrews et al.

2019). In such cases asymptotic results assuming strong identification can be unreliable, and

weak-identification approximations, which model the informativeness of the data as limited even
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in large samples, often provide a better description of finite-sample behavior (Staiger and Stock

1997, D. Andrews and Cheng 2012, Andrews and Mikusheva 2022). Standard arguments for the

efficiency of GMM no longer apply under weak identification, raising the question of whether

GMM estimators should be used in such settings and, if not, what alternatives we should prefer.

We study asymptotic optimality under weak identification using a limit experiment derived

in Andrews and Mikusheva (2022). This limit experiment implies that there generally exists

no single best estimator under weak identification, since optimizing performance over different

parts of the parameter space leads to different estimators. A minimal requirement for reasonable

estimators in this setting is that they be admissible, which means there exists no alternative

estimator which performs at least as well for all parameter values and strictly better for some.

Our main result shows that GMM estimators are inadmissible in decision problems where (i) the

loss function is bounded and uniformly convex and (ii) identification strength is bounded. Since

these results hold for a wide class of loss functions and any bound on identification strength,

they establish a strong sense in which GMM performs poorly under weak identification.

Our proof for inadmissibility is non-constructive, in the sense that it does not deliver a

dominating estimator, but nonetheless suggests directions for improvement. Specifically, we

show that admissible estimators in the limit experiment must be uniformly continuous in the

sample moments. To prove this result we first note that by a complete class theorem any

admissible estimator under a convex loss function must be equal to the limit of Bayes decision

rules for some sequence of priors. We prove, however, that under bounds on identification

strength Bayes decision rules for bounded, uniformly convex loss functions are uniformly

continuous in the sample moments, so small changes in the moments lead only to small changes

in the estimator. Since uniform continuity is preserved under limits, admissible estimators

inherit this property. GMM estimators, by contrast, change discontinuously in the sample

moments when the minimizer of the sample GMM objective function is non-unique, and so

fail to satisfy this necessary condition for admissibility.3

Motivated by the necessity of continuity for admissibility, we next explore more continuous

3The results of Guggenberger and Smith (2005) imply that under regularity conditions all Generalized

Empirical Likelihood (GEL) estimators are first-order asymptotically equivalent to continuously updated

GMM under weak identification. Consequently, all of our results for GMM also apply to GEL estimators,

so the latter are likewise inadmissible under weak identification. Motivated by this equivalence, we do not

separately discuss GEL approaches for the remainder of the paper.
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alternatives to GMM. To derive positive results we focus on squared error loss, for which we

show that admissible estimators much be Lipschitz in the sample moments. We discuss two

estimators: first a bagged (or bootstrap aggregated) GMM estimator, and second a quasi-Bayes

posterior mean. While we do not claim these estimators are admissible, we show that they have

better continuity properties than GMM under weak identification, while existing results imply

that both are asymptotically equivalent to GMM under strong identification and standard

regularity conditions.

The first alternative estimator we discuss, bagged GMM, corresponds to the average of

the GMM estimator across bootstrap realizations. Bagging smooths the discontinuities in the

GMM estimator, and we show that bagged GMM is Lipschitz in many cases. Bagged GMM

has a Bayesian interpretation, corresponding to the posterior mean of the GMM estimand

under an uninformative prior that does not impose correct specification of the GMM model.

Standard results on bootstrap bias correction (see e.g. Horowitz, 2001, Chen and Hall 2003)

imply that bagged GMM is asymptotically equivalent to GMM in the strongly-identified case.4

Quasi-Bayes puts a prior on the structural parameters, treats the GMM objective as a

negative log-likelihood, and combines the two to compute a quasi-posterior distribution. This ap-

proach was initially proposed by Chernozhukov and Hong (2003) for settings where minimization

is computationally intractable, and they showed that quasi-Bayes is asymptotically equivalent

to GMM under strong identification. More recently, Andrews and Mikusheva (2022) showed

that quasi-Bayes arises as the limit of a sequence of Bayes decision rules under weak identifica-

tion. In the present paper, we show that quasi-Bayes posterior means are Lipschitz in the GMM

objective function. While quasi-Bayes is not in general Lipschitz in the moments, we show that

it is Lipschitz in the special case where (i) the structural parameter takes only a finite number

of possible values and (ii) the J-statistic for testing over-identifying restrictions is bounded.

We compare these estimators in simulation designs (from Andrews et al., 2019) calibrated

to linear instrumental variables specifications published in the American Economic Review.

These published specifications show substantial evidence of weak instruments, with 56 of

the 121 specifications we consider having an expected first-stage F statistic smaller than 10.

We find that bagged GMM estimators for bounded target parameters typically have smaller

4As Chen and Hall (2003) showed for estimating equation models, however, bagging is essentially the

opposite of standard bias-correction, and so will increase higher-order bias in the well-identified case.
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mean squared error than their conventional counterparts, consistent with poor performance

for GMM under weak identification. We further find that the performance of quasi-Bayes

depends strongly on the prior. Specifically, quasi-Bayes estimators with a flat prior perform

the worst of all estimators considered, while quasi-Bayes estimators with a novel invariant

prior (motivated by invariance in the spirit of Jeffreys, 1946) are much more competitive.

Section 2 describes the estimation problem we consider, the limit experiment (based on

Andrews and Mikusheva 2022) in which we conduct our analysis, and defines a theoretical

measure of identification strength. Section 3 shows that admissible estimators under bounds on

identification strength must be uniformly continuous in the moments, and shows that GMM

fails to satisfy this condition. Section 4 turns to alternative estimators, discussing bagged

GMM in Section 4.1 and quasi-Bayes in Section 4.2. Section 5 compares the performance of

these estimators in simulation.

2 Setting

Consider a researcher who observes a sample of independent and identically distributed obser-

vations Xn={Xi,i=1,...,n} with Xi∈X . The distribution of the data is related to a structural

parameter θ∗∈Θ, which we assume satisfies a moment condition E[ϕ(Xi,θ
∗)]=0 for ϕ(·,·) a

known Rk-valued function of the data and parameters.

This researcher wants to choose an action a from a compact and convex set of possible

actionsA⊆Rp, where the loss from taking action a when the true parameter value is θ∗ is given

by L(a,θ∗). We assume that L is bounded, as well as continuous and uniformly convex in a.

Definition 1 Loss function {L(a,θ):θ∈Θ} is uniformly convex in a if there exists a strictly

increasing non-negative function κ :R+→R+ such that for all a,a′∈A, θ∈Θ, and t∈ [0,1] the

following inequality holds:

L(t·a+(1−t)·a′,θ)≤t·L(a,θ)+(1−t)·L(a′,θ)−t(1−t)κ(∥a−a′∥).

A canonical example of a loss function is squared error loss for a transformation r of θ∗:

L(a,θ∗)=(r(θ∗)−a)′(r(θ∗)−a). (1)
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The loss function (1) satisfies our assumptions so long as the function r(·):Θ→Rp is bounded.

More generally, any loss of the form L(a,θ∗)=ℓ(r(θ∗)−a) with r(·) bounded and ℓ(·) strictly

convex satisfies our conditions, though the class of uniformly convex loss functions, and hence

the class of decision problems covered by our results, is much larger. The researcher’s goal is to

select a decision rule δn :Xn→A that yields low risk, or expected loss, E[L(δn(Xn),θ∗)], where

θ∗ and the distribution of X are both unknown. Since convex loss functions are commonly

used in point-estimation problems we interpret δn as an estimator.

GMM estimators are popular in this setting. GMM estimates θ∗ by minimizing the norm

of the scaled sample moments gn(θ)=
1√
n

∑n
i=1ϕ(Xi,θ),

θ̂n=argminθ∈Θgn(θ)
′Ξn(θ)gn(θ),

for a potentially data- and parameter-dependent weighting matrix Ξn(θ). We will interpret

the GMM decision rule as selecting an action a through the plug-in method, δGMM
n (Xn)∈

argmina∈AL(a,θ̂n).
5 For instance, under squared-error loss (1), GMM uses the plug-in estimator

δGMM
n (Xn)=r(θ̂n). Well-known asymptotic arguments (see Hansen 1982) provide conditions

under which r(θ̂n) is consistent for r(θ
∗) and asymptotically normal as n→∞. These results

further establish that if Ξn(θ
∗) is proportional to the inverse of the variance of gn(θ

∗) then the

GMM estimator is asymptotically efficient under squared error loss, in the sense that δGMM
n

minimizes the asymptotic risk limn→∞n·E[L(δn(Xn),θ∗)] over a large class of estimators.6

Standard asymptotic results for GMM require, among other assumptions, that θ∗ be point

identified and strongly identified. Specifically, the moment condition E[ϕ(Xi,θ)]=0 should

be uniquely solved at θ∗, and the sample moment function gn(θ) should be well-separated

from zero, asymptotically, outside infinitesimal neighborhoods of θ∗. These point- and strong-

identification assumptions are a poor fit for many economic applications, so Andrews and

Mikusheva (2022) derived an alternative asymptotic efficiency theory for moment condition

models with weak and partial identification.

The weak identification asymptotics of Andrews and Mikusheva (2022) models the sample

of size n as generated by a distribution Pn, where Pn→P0 at a
√
n rate as n→∞, and identi-

fication fails completely at P0 in the sense that {θ :EP0[ϕ(Xi,θ)]=0}=Θ. Hence, identification

5Manski (2021) termed decision rules of this type “as-if optimization.”
6Uniform integrability conditions are needed to ensure that limn→∞n·E[L(δn(Xn),θ∗)] is well-behaved.

Absent such conditions, analogous results hold for trimmed losses.
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fails in the limit.7 For finite n, by contrast, the model of Andrews and Mikusheva (2022)

implies that EPn[ϕ(Xi,θ)]=
1√
n
m(θ)+o

(
1√
n

)
, wherem satisfiesm(θ∗)=0. Consequently, under

mild regularity conditions the scaled sample moments converge in distribution to a Gaussian

process, gn(·)⇒g(·) where

g(·)∼GP(m,Σ), (2)

for an unknown mean function m satisfying m(θ∗)=0 and a consistently estimable covariance

function Σ, with Σ(θ,θ̃) =Cov(ϕ(Xi,θ),ϕ(Xi,θ̃)). We treat the structural parameter θ∗ as

a well-defined economic quantity that may or may not be point-identified by the moment

conditions. Hence, it is meaningful to discuss the “true” value of θ∗ even when m has more

than one zero so θ∗ is set-identified.

For estimators, including GMM, that can be written as a function of the sample moments

and the estimated covariance function Σ̂, it follows that δn(X
n)= δ(gn,Σ̂)⇒ δ(g,Σ) under

mild continuity conditions. Hence, in order to understand the large-sample behavior of these

estimators it suffices to study their behavior in the limit problem. This implies that, consistent

with the results of e.g. Stock and Wright (2000), GMM estimators are inconsistent when

identification is weak, with non-normal limit distributions. Consequently, standard efficiency

arguments for GMM no longer apply.

To provide an alternative efficiency criterion, Andrews and Mikusheva (2022) further

showed that (2) is the “limit experiment” in this setting. In the limit experiment, as in the

finite-sample problem, the goal is to choose an estimator δ which now maps realizations of

g(·) to estimates δ(g,Σ)∈A, in a way which yields a low risk Em[L(δ(g,Σ),θ
∗)], where Em[·]

denotes the expectation taken under (2). Andrews and Mikusheva (2022) showed that the risk

in the limit experiment lower-bounds the (appropriately scaled) asymptotic risk in the original

problem. Thus, if we can find an optimal estimator δ(g,Σ) in the limit experiment, the plug-in

estimator δn(X
n)=δ

(
gn,Σ̂

)
will be asymptotically optimal under weak identification.

Motivated by the results of Andrews and Mikusheva (2022), the following sections focus

on properties for the limit experiment (2). First, however, we introduce two special cases and

characterize the parameter space for the limit experiment.

7The results of Andrews and Mikusheva (2022) allow that the parameter space in the finite-sample model

may be a larger set Θ̃⊃Θ. Any θ∈Θ̃\Θ is eventually ruled out by the data with probability one, however,

so here we take Θ̃=Θ to simplify the exposition.
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Special Case: Linear IV For our first special case we consider the linear IV model.

Suppose Xi=(Yi,Di,Z
′
i) for Yi∈R an outcome of interest, Di∈R an endogenous regressor,

and Zi∈Rk a vector of instruments. The familiar linear IV estimators correspond to GMM

with moment condition ϕ(Xi,θ)=(Yi−Diθ)Zi and different choices of weighting matrix, for

instance Ξn=( 1
n

∑
ZiZ

′
i)
−1 for two-stage least squares.

Weak-identification asymptotics in this case correspond to weak IV asymptotics as in

Staiger and Stock (1997), and model the first-stage parameter as shrinking with the sample

size to ensure that it cannot be distinguished from zero with certainty, with EPn[DiZi]=
1√
n
π∗

for a fixed vector π∗. The Rk-valued Gaussian process g(·) is linear in θ, and so is fully

characterized by its intercept g(0)=ξ0 and slope ∂
∂θ
g(θ)=−ξ1, where

(ξ′0,ξ
′
1)

′∼N((π∗′θ∗,π∗′)′,Ωξ), Ωξ=Var((Z′
iYi,Z

′
iDi)

′). (3)

Intuitively, ξ0 corresponds (up to a linear tranformation) to the reduced-form coefficient from

regressing Yi on Zi, while ξ1 corresponds to the first-stage regression ofDi on Zi. The two-stage

least squares estimator for θ is

θ̂=argminθ∈Θ(ξ0−ξ1θ)′Ξ(ξ0−ξ1θ)=
ξ′1Ξξ0
ξ′1Ξξ1

, (4)

for Ξ=E[ZiZ
′
i]
−1, and the corresponding GMM estimator for r(θ) under squared error loss

(1) is δ(g,Σ)=r(θ̂). □

Special Case: Finite Θ For our second special case we consider a potentially nonlinear

moment condition ϕ(Xi,θ) but restrict the structural parameter space to contain a finite, but

potentially very large, number of points Θ={θ1,...,θs}. While theoretical models in economics

are typically written using continuous parameterizations, computational implementation is

limited by machine precision, so the case with a finite parameter space Θ is arguably a better

description of empirical practice.

Weak-identification asymptotics in this setting correspond to the weak-GMM asymptotics

of Stock and Wright (2000), and imply that the mean of the moments is of the same order

as sampling uncertainty, EPn[ϕ(Xi, θ)] =
1√
n
m(θ) + o

(
1√
n

)
, so EPn[gn(θ)] = m(θ) + o (1).

The limit experiment thus corresponds to observing the sk-dimensional normal vector

g = (g(θ1)
′, ...,g(θs)

′)′ ∼ N(m,Σ) for m ∈ Rsk and Σ an (sk)× (sk) matrix. We assume
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for this example that Σ has full rank. The GMM estimator θ̂ for θ solves

g(θ̂)′Ξ(θ̂)g(θ̂)=min{g(θ1)′Ξ(θ1)g(θ1),...,g(θs)′Ξ(θs)g(θs)},

and the GMM estimator for r(θ) under squared error loss (1) is δGMM(g,Σ)=r(θ̂). □

2.1 Parameter Space for the Limit Experiment

To complete our description of the limit experiment (2) we need to specify the parameter space.

As in the finite sample problem, we take the parameter space for the structural parameter θ∗

to be Θ. We assume that Θ is compact under a topology that renders Σ(θ,θ̃) is continuous on

the product space Θ×Θ, that Σ(θ,θ) has full rank for all θ, and that g(·) is continuous almost

surely.8 Andrews and Mikusheva (2022) shows that the parameter space for the functional

parameterm in the limit experiment is related to the reproducing kernel Hilbert space (RKHS)

associated with Σ, which we denote by H.9 This is the largest set of mean functions such that

we cannot tell with certainty whether a given draw g was generated by GP(m,Σ) or GP(0,Σ)

(see e.g. Theorem 54 of Berlinet and Thomas-Agnan, 2004). Since m=0 corresponds to the

case of complete non-identification of θ∗, H is thus the largest parameter space for m such

that the data never rule out complete identification failure.

For the purposes of the present paper, it is helpful to work with a particular representation

of H. Consider the mean-zero Gaussian process G∼GP(0,Σ) corresponding to the noise in the

moment process, G=g−m. Denote by C(Θ,Rk) the space of Rk-valued continuous functions

on Θ with norm ∥f∥∞=maxj=1,...,ksupθ∈Θ|fj(θ)| for f ∈C(Θ,Rk), and note that under our

assumptionsG∈C(Θ,Rk) with probability one. Let ηj denote the point-evaluation functional at

point θj, ηj(f)=f(θj), and note that E[G(·)ηj(G)′]=Σ(·,θj). If we consider linear combinations

of such functionals η(·)=
∑

jηj(·)′aj, one can show that E[G(·)η(G)]=
∑

jΣ(·,θj)aj is a function

8Almost sure continuity is a mild regularity condition in our setting. As noted in Section 2.1.2 of Van

der Vaart and Wellner (1996), almost-sure continuity with respect to a particular Σ-induced seminorm, and

total boundedness of Θ in the same seminorm, is necessary for the sample moments to satisfy a uniform

central limit theorem, gn(·)⇒g(·)∼GP(m,Σ), while Lemma 1.3.1 in Adler and Taylor (2007) implies that

continuity under this seminorm is equivalent to continuity in θ.
9For finite sets of vectors {ai}si=1⊂Rk and {θi}si=1⊂Θ, consider functions of the form

∑s
i=1Σ(·,θi)ai, with

scalar product
〈∑s

i=1Σ(·,θi)ai,
∑s∗

j=1Σ
(
·,θ∗j
)
bj

〉
H
=
∑s

i=1

∑s∗

j=1a
′
iΣ
(
θi,θ

∗
j

)
bj. The RKHS H is the completion

of
{∑s

i=1Σ(·,θi)ai :ai∈Rk,θi∈Θ,s<∞
}
under ⟨·,·⟩H.
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in H and, moreover, that all functions in H may be written as E[G(·)η(G)] for some η.

Formally, let H be the space of continuous linear functionals on C(Θ,Rk) with the

norm ∥η∥∗ = supf∈C(Θ,Rk),∥f∥∞≤1 |η(f)|. For each η ∈ H we define the Pettis integral of η

as mη(·)≡E[G(·)η(G)]. The RKHS H is the image of H under the Pettis integral.

Lemma 1 The image of H under the Pettis integral transformation coincides with the RKHS:

H={mη :η∈H}. Furthermore, the transformation is continuous with ∥mη∥∞≤σ2(G)∥η∥∗,

where σ2(G)=sup∥η∥∗≤1E[η(G)2] is finite.

Since the mean function must be zero at the true parameter value, m(θ∗)=0, we can write

the parameter space in the limit experiment as

Γ={(θ∗,mη):θ
∗∈Θ,η∈H,mη(θ

∗)=0}.

Bounding Identification Strength Our main result concerns parameter spaces that bound

the norm of η, which we interpret as a measure of identification strength. To understand this in-

terpretation, consider a restricted parameter space with ∥η∥∗ bounded by a positive constantW ,

ΓW ={(θ∗,mη):θ
∗∈Θ,η∈H,∥η∥∗≤W,mη(θ

∗)=0}.

At one extreme, if W=0, Γ0=Θ×{0} implies that m(θ)=0 for all θ, so θ∗ is completely

unidentified. At the other extreme Γ∞ =
⋃

W ΓW = Γ, so for unrestricted W we recover

the original parameter space Γ. Between these two extremes, Lemma 1 shows that for any

(θ∗,m)∈ΓW , ∥m∥∞≤σ2(G)W. Since we observe only a noisy measure of m, g(·)∼GP(m,Σ),

bounds on ∥m∥∞ limit the ease with which we can distinguishm(θ) from 0 for any θ value and

so limit how informative the data can be about θ∗. Thus, we can interpret ΓW as a parameter

space which imposes a uniform upper bound on the strength of identification.

In infinite-dimensional settings bounds on ∥η∥∗ imply upper, but not in general lower,

bounds on ∥m∥∞. Consequently, bounding ∥η∥∗ is more restrictive than bounding ∥m∥∞, so

weak identification neighborhoods defined using ∥η∥∗ are “weaker” in that sense. The choice of

the norm ∥·∥∗ as our measure of identification strength is natural, since we show in the proof

of our main result that this is the norm that translates changes in the moments ∥g−g′∥∞
to changes in the likelihood. In the finite dimensional case, however, the choice of norm is

unimportant since the norms ∥·∥∗ and ∥·∥∞ are equivalent.
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Finite-Dimensional Limit Experiments In many cases of empirical interest the limit

experiment is finite-dimensional, in the sense that g(·) can be written as a function of a

finite-dimensional normal random vector or, equivalently, that the covariance function Σ has

a finite number of nonzero eigenvalues.

Definition 2 The limit experiment is finite-dimensional if the covariance function Σ has

finitely many nonzero eigenvalues.

Most of our results apply to both finite- and infinite-dimensional limit experiments, but the in-

terpretation of some conditions is simpler in the finite-dimensional case. Finite-dimensional limit

experiments can arise in many ways, for instance because the support X of the data is finite, be-

cause the moments are additively or multiplicatively separable in the data, ϕ(Xi,θ)=ϕ1(X)ϕ2(θ)

for ϕ1(θ)∈Rk×d and ϕ2(x)∈Rd, or because the parameter space is finite. Whatever the source

of finite dimension, our bounds on identification strength are particularly easy to interpret in

this case. Specifically, since all norms are equivalent on finite-dimensional spaces, there exists

a (Σ-dependent) constant λ such that λ−1∥mη∥∞≤∥η∥∗≤λ∥mη∥∞, so bounds on ∥η∥∗ not

only imply, but are also implied by, bounds on ∥m∥∞.

Special Case: Linear IV (continued) Recall that in the linear IV model g(θ)=ξ0−ξ1θ

for (ξ0,ξ1) a Gaussian vector in R2k. This is therefore a finite-dimensional setting. The mean

function is m(θ)=π∗(θ∗−θ), so bounding ∥m∥∞ is equivalent to bounding the first-stage π∗.

Consequently, for π∗η the first-stage implied by η and ∥π∗η∥ its Euclidean norm, there exists a

constant λ∗ such that λ∗−1∥π∗η∥≤∥η∥∗≤λ∗∥π∗η∥, and bounding ∥η∥∗ is equivalent to bounding

the first-stage coefficient π∗. □

Special Case: Finite Θ (continued) In this example the process g reduces to a Gaussian

vector in Rsk, so this is again a finite-dimensional case. Thus, there exists a constant λ∗ for

which λ∗−1∥mη∥∞≤∥η∥∗≤λ∗∥mη∥∞, and bounding identification strength in terms of ∥η∥∗

is equivalent to bounding ∥m∥∞, the maximal deviation of the moments from zero. □
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3 Admissibility

Recall that the limit experiment corresponds to observing g∼GP(m,Σ), where (θ∗,m)∈Γ. The

researcher aims to choose an estimator δ that yields a low risk Em[L(δ(g,Σ),θ
∗)] for the loss

function L, where since Σ is known in the limit experiment we abbreviate δ(g,Σ)=δ(g) going

forward. Unfortunately there is not a uniformly best estimator in this setting, as minimizing

risk at different parameter values (θ∗,m),(θ∗′,m′)∈Γ usually leads to distinct estimators δ and δ′.

It is however without loss of performance to limit attention to the set of admissible estimators.

Definition 3 An estimator δ is dominated on Γ̃⊆Γ if there exists another estimator δ′ such

that Em[L(δ
′(g),θ∗)] ≤ Em[L(δ(g),θ

∗)] for all (θ∗,m) ∈ Γ̃, with a strict inequality for some

(θ∗,m)∈Γ̃. The estimator δ is admissible on Γ̃ if it is not dominated on Γ̃.

An estimator is admissible if its performance, measured in terms of risk, cannot be uniformly

improved. Since no admissible estimator dominates any other, selecting from among sets of

admissible estimators requires taking a stand on how we value performance over different

regions of the parameter space, for instance by specifying a prior and considering Bayes

estimators as in Andrews and Mikusheva (2022). In the present paper we set a more modest

goal, and aim to provide necessary conditions for admissibility under bounds on identification

strength. Our main technical contribution is to establish a close connection between the set

of admissible estimators under bounded identification strength and the set of estimators that

are uniformly continuous in g.

Definition 4 An estimator δ is almost-surely uniformly continuous with modulus of continuity

κ̃(·), where κ̃(·) is continuous at zero and κ̃(0)=0, if there exist another estimator δ∗ such that

δ(g)=δ∗(g) for almost every g and ∥δ∗(g)−δ∗(g′)∥≤ κ̃(∥g−g′∥∞) for all g,g′ in the support

of the process GP(0,Σ).

Theorem 1 Assume that the loss function L(a,θ) is bounded, continuous and uniformly convex

in its first argument. Assume that an estimator δ is admissible on Γ̃, where Γ̃⊆ΓW forW<∞.

Then δ is almost-surely uniformly continuous with modulus of continuity κ̃(x)=κ−1
(
2L̄W ·x

)
for L̄=supa,θL(a,θ).

The proof of Theorem 1 builds on Theorem 2 of Andrews and Mikusheva (2022), which

is itself a minor extension of a result from Brown (1986). That result, reproduced in the
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appendix for completeness, shows that for convex loss functions admissible estimators must

be the (almost everywhere) pointwise limit of Bayes decision rules for finitely-supported priors.

Going beyond this result, we then prove that under bounded identification strength small

changes in the moments g lead to only small changes in the posterior probability of different

θ values.10 We further prove that for a bounded loss the posterior expected risk function is

Lipschitz in g. Uniform convexity of the loss function allows us to translate this last property

into uniform continuity of Bayes decision rules. Uniform continuity is preserved by pointwise

limits, so the conclusion of the theorem follows.

If we consider the special case of squared error loss (1), the previous result can be strength-

ened to show that admissible decision rules must be Lipschitz in g.

Definition 5 An estimator δ is almost-surely Lipschitz with Lipschitz constantK if there exists

another estimator δ∗ such that δ(g)=δ∗(g) for almost every g and ∥δ∗(g)−δ∗(g′)∥≤K∥g−g′∥∞
for all g,g′ in the support of the process GP(0,Σ).

Theorem 2 Assume that an estimator δ is admissible on Γ̃, where Γ̃⊆ΓW for W<∞ for

squared error loss as defined in (1). Then δ is almost-surely Lipschitz with Lipschitz constant

K= r̄
√
pW, where r̄=supθ∥r(θ)∥.

While Theorems 1 and 2 translate numerical bounds on identification strength to numerical

bounds on the modulus of continuity or Lipschitz constant, selecting a value of W for a

given application seems unappealing. Similarly, different researchers may prefer different

loss functions. We next provide a necessary condition for admissibility under any bound on

identification strength and any uniformly convex loss.

Corollary 1 If δ is not almost-surely uniformly continuous, then it is inadmissible on Γ̃ for

all Γ̃ with bounded identification strength (that is, all Γ̃ with Γ̃⊆ΓW for some W<∞) and

all bounded, continuous, and uniformly convex loss functions.

Corollary 1 states that under any bound on the strength of identification, no matter

how large, and any uniformly convex loss, admissible estimators are uniformly continuous in

10The choice of the norm ∥·∥∗ as our measure of identification strength is important for this step, since

it allows us to bound the change in the likelihood between moment realizations g and g′ in terms of ∥g−g′∥∞.
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the moment process g, so small changes in the realized sample moments (measured in the

supremum norm ∥·∥∞) can induce only small changes in the estimate. Hence, if we observe

that a given estimator fails to be uniformly continuous, it is unappealing in a very wide variety

of decision problems. While uniform continuity may seem a minimal requirement, we show

in the next section that GMM estimators do not have this property.

We show in Appendix B that bounded identification strength is crucial for the uniform

continuity property. There, we provide an example with an unrestricted parameter space Γ

where the limit of Bayes posterior means is a step function, and thus discontinuous.

3.1 Inadmissibility of GMM

While it is known that appropriately constructed GMM estimators are efficient in large samples

when the model is strongly identified, this result breaks down under weak identification. We

next show that GMM estimators are not generally uniformly continuous, and so are inadmis-

sible under any bound on the strength of identification and for a wide variety of convex loss

functions. GMM estimators in the limit experiment take the form

δGMM(g,Σ)=argmin
a∈A

L(a,θ̂), θ̂∈argmin
θ∈Θ

g(θ)′Ξ(θ)g(θ), (5)

where Ξ(θ) is a deterministic weight function, corresponding to the probability limit of Ξn(θ).

If there are multiple points where the second minimum is achieved, we assume that θ̂ applies

some selection rule.

GMM estimators in the limit experiment are invariant to the scale of g.11

Definition 6 An estimator δ is scale-invariant if δ(c·g,Σ)=δ(g,Σ) for all g and all c>0.

This scale invariance is important for our purposes, since scale-invariant estimators in our

setting are uniformly continuous if and only if they are constant.

Lemma 2 Let δ be a scale-invariant estimator. If δ is almost-surely uniformly continuous

with the modulus of continuity κ̃(·), where κ̃(·) is continuous at zero and κ̃(0)=0, then there

exists a∗∈A such that δ(g,Σ)=a∗ almost surely.

11To be precise, GMM estimators are scale-invariant so long as the rule for selecting from a non-unique

argmin is likewise invariant.
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GMM estimators δGMM are scale-invariant and non-constant, so Lemma 2 implies that δGMM

is not uniformly continuous. Hence, by Corollary 1, δGMM is inadmissible under bounded

identification strength. The source of this inadmissibility is intuitive, namely that small changes

in data can cause the GMM estimator to jump discontinuously. Our weakly identified setting

is important for this result, and GMM estimators are known to be asymptotically admissible

in many strongly-identified problems. Appendix C discusses why Lemma 2 does not apply

in the strongly identified case.

Special Case: Linear IV (continued) In this example, δ is continuous in g(·) if and only

if it is continuous in (ξ0,ξ1), and the two-stage least squared estimator (4) is discontinuous when

the first-stage estimate is zero, ξ1=0. This is consistent with the intuition that instrumental

variables estimation is badly behaved when the instrument is irrelevant.

Interestingly, if we use other instrumental variables estimators (with multiple instru-

ments, k>1) we may encounter additional points of discontinuity. For instance the limited

information maximum likelihood estimator corresponds to GMM with weighting matrix

Ξ(θ)=(σ2u−2σuvθ+σ
2
vθ

2)−1E[ZiZ
′
i]
−1 for σ2u, σ

2
v, and σuv the residual variances and covariance

from regressing (Y,D) on Z. The resulting estimator θ̂ is discontinuous at ξ1=0, but also

at (ξ0,ξ1) where (i) the OLS and two-stage least squares estimates coincide and (ii) the

reduced-form R2 coefficient exceeds the first-stage R2, which may be interpreted as a sign of

model misspecification – see Andrews (2019). □

4 Alternative Estimators

In the last section we showed that GMM estimators are inadmissible under bounds on identifi-

cation strength. Unfortunately our proof is non-constructive, and yields no characterization for

a dominating estimator. The reasons for GMM’s inadmissibility are nonetheless instructive,

and suggest a route to more reasonable estimators. The source of GMM’s inadmissibility is that

it depends only on the minimizer of the GMM objective. This results in the scale-invariance

discussed in the last section which, in turn, implies that the GMM estimate is not continuous

in the moments g.

In this section we study two estimators which depend on the moments in a more continuous
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way, the first based on bagging or bootstrap aggregation, and the second based on quasi-Bayes.

In order to provide constructive results we focus on squared error loss (1), so Bayes estimators

correspond to posterior means, and Theorem 2 implies that admissible estimators must be

Lipschitz. Both bagged GMM and Quasi-Bayes are continuous in the moments, and both are

Lipschitz under additional conditions.

While we show that bagged GMM and quasi-Bayes have better continuity properties than

GMM when identification is weak, and existing theoretical results imply that both are efficient

when identification is strong, their admissibility under weak identification is an open question.

An alternative approach, which guarantees admissibility under weak identification, is to report

Bayes posterior means based on full-support priors on ΓW . To implement this approach in

practice, however, one would have to take a stand on the identification strength bound W,

which seems unlikely to be appealing. Moreover, in the infinite-dimensional case it is not

obvious to us how to construct such priors or compute the resulting posteriors. Hence, while

a fully Bayesian approach guarantees admissibility, we expect Quasi-Bayes and bagged GMM

to be more attractive options in most applications.

4.1 Bagged GMM

One way to ensure continuity is to directly smooth the GMM estimator. For instance, we

can average an estimator across bootstrap draws, yielding a bagged, or bootstrap aggregated,

estimator. Bühlmann and Yu (2002) show that bagging can reduce both bias and variance

when estimators are unstable, in the sense of being sensitive to small changes in the data. The

instability of GMM under weak identification suggests that its performance might also be

improved by bagging.

To formally introduce the bagged GMM estimator, again consider the limit experiment

where we observe a single draw of the moment process g∼GP(m,Σ). For an estimator δ(g)

(which need not be GMM) let us draw independent Gaussian noise ζ∼GP(0,Σ) and define

the bagged version of δ as the average of δ(g+ζ) over noise realizations,

δB(g)=E[δ(g+ζ)|g].

We interpret δB(g) as a bagged estimator because the distribution of g∗=g+ζ given g is exactly

the asymptotic distribution of the moments across bootstrap replications, conditional on the ini-
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tial data delivering moments g (see e.g. Section 3.6 and Van der Vaart andWellner 1996). Hence,

δB(g) corresponds to the (asymptotic analog of the) average of δ(·) across bootstrap draws.

We formalize the connection between bagging and smoothing in our setting by showing

that in finite-dimensional limit experiments all bagged estimators are Lipschitz.

Proposition 1 If the limit experiment is finite-dimensional, then for any estimator δ(·) with

range contained in A the bagged estimator δB(g) is Lipschitz.

Proposition 1 implies, in particular, that for δGMM(g) the GMM estimator as defined in

(5), the bagged GMM estimator δBGMM(g)=E[δGMM(g+ζ)|g] satisfies the global continuity

property required by Corollary 1. On an intuitive level this estimator “averages out” the

discontinuities of GMM, resulting in a Lipschitz estimator.12 A practical limitation of the

bagged GMM estimator is that it requires repeatedly minimizing the GMM objective function

to compute δGMM(g+ζ). In settings where minimization is difficult this can make computing

the bagged estimator costly. If, on the other hand, a researcher is already using the bootstrap

then the incremental cost of computing the bagged estimator is essentially zero.

To illustrate how bagging smooths the GMM estimator, we return to our examples.

Special Case: Finite Θ (continued) In this special case the bagged GMM estimator

for r(θ) can be written as a weighted average across the possible values of r(θ). In particular,

for θ̂(g+ζ) the GMM estimate based on moments g+ζ, we can write the bagged GMM

estimator as δBGMM(g)=
∑

θ∈Θr(θ)Pr
{
θ̂(g+ζ)=θ|g

}
. Note, however, that the probability

Pr
{
θ̂(g+ζ)=θ|g

}
is simply the probability (conditional on g) that the collection of correlated

random variables {(g(θ)+ζ(θ))′Ξ(θ)(g(θ)+ζ(θ)):θ∈Θ} achives its minimum at a particular

θ. One can show that these probabilities are Lipschitz in g, from which it is immediate that

δBGMM(g) is Lipschitz as well. □

Special Case: Linear IV (continued) Recall that the limit experiment for linear IV

reduces to observing the jointly normal random vector ξ = (ξ′0,ξ
′
1)

′ ∼ N((π∗′θ∗,π∗′)′,Ωξ),

corresponding to the intercept and (negative) slope of g. We can correspondingly define

12The same is true for the whole family of estimators δBGMM
τ (g)=E[δ(g+τ ·ζ)|g] for τ >0. However, values

τ ≠1 complicate the bootstrap interpretation, as well as the Bayesian interpretation discussed below, so we

focus on the case with τ=1.
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ν=(ν0
′,ν1

′)∼N(0,Ωξ) as the intercept and (negative) slope of ζ∼GP(0,Σ). The two-stage

least squares estimate of θ for moment realization g+ζ is thus

θ̂(ξ+ν)=
(ξ1+ν1)

′Ξ(ξ0+ν0)

(ξ1+ν1)′Ξ(ξ1+ν1)
,

while the two-stage least squares estimate of r(θ) is r
(
θ̂(ξ+ν)

)
. The bagged two-stage least

squares estimator is then

δBTSLS(g)=E
[
r
(
θ̂(ξ+ν)

)
|g
]
=

∫
r
(
θ̂(ξ+ν)

)
f(ν)dν=

∫
r
(
θ̂(ν)

)
f(ν−ξ)dν,

for f(·) the N(0,Ωξ) density. Note, however, that f(·) is Lipschitz, so since r
(
θ̂(·)
)
is bounded,

δBTSLS(g) is likewise Lipschitz. □

The bagged GMM estimator also has a Bayesian interpretation. In the finite-dimensional

case the mean function m is simply a finite-dimensional vector. For a flat (improper) prior on

m, the posterior distribution on m after observing g corresponds to a GP(g,Σ) distribution,

which is precisely the distribution of g+ζ conditional on g. Note, however, that the flat prior

on m allows the possibility that m(θ)≠0 for all θ and so does not impose correct specification

of the GMM model. This raises the question of how to define the object of interest when GMM

is misspecified. One approach is to focus on the GMM estimand or pseudo-true value θ∗(m)=

argminθ∈Θm(θ)′Ξ(θ)m(θ), which minimizes the population analog of the GMM objective. The

bagged GMM estimator then corresponds to the posterior mean of r(θ∗(m)) under the flat prior.

4.2 Quasi-Bayes

We could also take a more overtly Bayesian approach. For a prior π on Θ, the quasi-Bayes

posterior mean of r(θ) in the limit experiment is

δQB
π (g)=

∫
r(θ)

exp
(
−1

2
Q(θ|g)

)∫
exp
(
−1

2
Q(θ|g)

)
dπ(θ)

dπ(θ), (6)

where Q(θ|g)=g(θ)′Σ(θ,θ)−1g(θ) is the continuously updated GMM objective function. This

estimator corresponds to the posterior mean after updating π(θ) based on “log-likelihood”

−1
2
Q(θ|g), and was initially suggested by Chernozhukov and Hong (2003). Since Q(θ|g) is

not in general the likelihood of the researcher’s model the interpretation of δQB
π (g) from a

strict Bayesian perspective may not be obvious, but Andrews and Mikusheva (2022) showed
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that this estimator arises as the limit of a sequence of Bayes posterior means for proper priors.

Unlike the priors underlying bagged GMM, the priors that give rise to quasi-Bayes impose

correct specification of the GMM model. See Chernozhukov and Hong (2003) and Andrews

and Mikusheva (2022) for further discussion, as well as asymptotic results under both strong

and weak identification.

A key feature of the quasi-Bayes approach for our purposes is that it takes a weighted

average of r(θ) over the parameter space Θ, weighting by
exp(−1

2
Q(θ|g))∫

exp(−1
2
Q(θ|g))dπ(θ)

dπ(θ). It follows

from this structure that quasi-Bayes is Lipschitz in the GMM objective function.

Lemma 3 Quasi-Bayes is Lipschitz in the GMM objective function Q:∥∥δQB(g)−δQB(g′)
∥∥≤K∥Q(·|g)−Q(·|g′)∥∞,

where K= 1
2
r̄
√
p.

Unfortunately, Q(·|g) is continuous but not Lipschitz in the moments g. Consequently, the

Lipschitz continuity required by Theorem 2 does not follow from Lemma 3. Indeed, while

quasi-Bayes is continuous in g, it is not in general Lipschitz.13

Special Case: Finite Θ (continued) Suppose that the parameter space consists of just two

points, Θ={0,1}, that we have a one-dimensional moment condition (k=1), and that Σ=I2.

Consider the quasi-Bayes estimator using a prior π that puts weight 1
2
on each parameter

value. The quasi-Bayes estimator of θ is

δQB
π (g)=

exp
(
−1

2
g(1)2

)
exp
(
−1

2
g(0)2

)
+exp

(
−1

2
g(1)2

)= 1

1+exp
(
1
2
g(1)2− 1

2
g(0)2

).
While this estimator is differentiable in (g(0),g(1)), it is not Lipschitz. Indeed,

∂δQB
π (g)

∂g(0)

∣∣∣∣
g(0)=g(1)

=
g(0)

4
,

which exceeds any finite constant for large values of both g(0) and g(1). Intuitively, when

both g(0) and g(1) are large, δQB
π (g) behaves like δ(g)=argminθ∈{0,1}g(θ)

2. □

13Since Andrews and Mikusheva (2022) showed that quasi-Bayes emerges as the limit of a sequence of

Bayes posterior means, it may be surprising that it does not satisfy a necessary condition for admissibility

under bounded identification strength. The sequences of priors underlying quasi-Bayes imply, however, that

∥m∥∞→p∞ and so correspond to the case of unbounded identification strength.
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An interesting feature of this example is that the non-Lipschitz behavior of the quasi-Bayes

estimator appears for realizations of g which suggest misspecification of the model. Specifically,

the GMM model with parameter space Θ={0,1} requires that either m(0)=0 or m(1)=0.

Hence, under the model the distribution of minθ∈{0,1}g(θ)
2 is bounded by a χ2

1, and data realiza-

tions with both g(0) and g(1) large are highly unlikely. This suggests that if we limit attention to

data realizations which appear consistent with the model the quasi-Bayes estimator may be Lip-

schitz. The following result shows that this is the case provided Θ is finite and π has full support.

Proposition 2 Assume that the parameter space is finite, |Θ|<∞. For C>0 define

GC=

{
g : inf

θ∈Θ
Q(θ|g)≤C

}
.

If π has support Θ, then the quasi-Bayes estimator δQB
π (g) is Lipschitz in g on GC.

The minimized GMM objective Q(θ|g) is often termed a J-statistic, and researchers com-

monly reject correct specification of the model when this statistic exceeds a threshold. Under

the assumption of correct specification we have limC→∞ infγ∈ΓPγ{g∈GC}= 1, so moment

realizations g ∉GC have low probability under all data generating processes consistent with

the GMM model. Hence, for finite Θ, quasi-Bayes is Lipschitz over data realizations such that

the GMM model is not rejected.

4.2.1 Default Priors

To apply the quasi-Bayes approach (unlike for bagged GMM) we must explicitly specify a

prior π(θ). From a subjective Bayesian perspective the prior π on the GMM parameter θ

should reflect the researcher’s beliefs about the structural parameters in a given application.

In practice, however, subjective priors can be difficult to specify or controversial, and it may

be helpful to have default options.

One common default is to use a flat prior, with π proportional to Lebesgue measure,

where our assumption that Θ is compact ensures that this prior has finite mass. As has

previously been observed in other contexts, however, “flatness” of a prior is parameterization-

specific, and the use of flat priors can lead two researchers, estimating the same model on

the same data but with different parameterizations, to different posteriors. This motivates

us to seek parameterization-invariant default priors. Since the covariance function Σ, and its
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domain Θ×Θ, are known in the limit experiment they can be used to inform such a prior.

Correspondingly, we define a default prior as a Σ-dependent probability measure on Θ, π(·;Σ).

To formally define reparameterization-invariance, let Ψ be a compact set and let ϑ :Θ→Ψ

be a diffeomorphism between Θ and Ψ, corresponding to a reparameterization ψ=ϑ(θ) of

the model. This implies reparameterized moments h(·)=g(ϑ−1(·)) defined on Ψ, where by

construction h(·)∼GP(mh,Σh) for

mh(ψ)=m
(
ϑ−1(ψ)

)
,Σh(ψ1,ψ2)=Σ

(
ϑ−1(ψ1),ϑ

−1(ψ2)
)
.

We call a rule for constructing a prior invariant to re-parameterization if the pushforward of

π(·;Σ) under ϑ(·) is equal to π(·;Σh) for all re-parametrizations ϑ(·), so the default delivers

the same prior (and thus posterior) distribution regardless of the parameterization. The flat

prior is invariant when ϑ is linear, but not generally otherwise.

The structure of the GMM model is also preserved under linear transformations of the

moments. Specifically, let B :Θ→B be a differentiable function from Θ to the set B of full-rank

k×k matrices. We can define a new moment process h(θ)=B(θ)g(θ), where by construction

h(·)∼GP(mh,Σh) for

mh(θ)=B(θ)m(θ),Σh(θ1,θ2)=B(θ1)Σ(θ1θ2)B(θ2)
′.

The moments h and g are one-to-one transformations of each other, and imply the same value

for the continuously updated GMM objective. Hence, it is again natural to require that a

default prior be invariant to such transformations, with π(·;Σh)=π(·;Σ).

In parametric models the desire for a parameterization-invariant default prior has led to

the use of the Jeffreys (1946) prior, which is usually defined to be proportional to |i(θ)|1/2,

for |i(θ)| the determinant of the Fisher information. Our suggested default prior is based on

an analogous idea. Specifically, recall that the Fisher information is equal to the variance

of the score, that is, the gradient of the log likelihood. We might analogously try to form

a default prior based on the variance of the gradient of the GMM objective, Var( ∂
∂θ
Q(θ|g)).

Unfortunately, however, Var( ∂
∂θ
Q(θ|g)) depends on the mean function m, and so is unknown

in general. To construct a feasible default prior, we instead consider the variance of the

continuously updated GMM objective in the fully-unidentified case, i(θ;Σ)=Var( ∂
∂θ
Q(θ|G))
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for G∼GP(0,Σ). The entries of i(θ;Σ) take the form

ijl(θ;Σ)=tr

(
Σ−1(θ,θ)

{
∂2Σ(θ,θ̃)

∂θj∂θ̃l
−∂Σ(θ,θ̃)

∂θj
·Σ−1(θ,θ)

∂Σ(θ̃,θ)

∂θl

}∣∣∣∣∣
θ̃=θ

)
(7)

and so can be computed from Σ. Since the continuously updated GMM objective is unchanged

by linear transformations of the moments, ijl(θ;Σ) is also unchanged. Moreover, the same

calculations which prove the invariance of Jeffreys prior for parametric models show that the

default prior proportional to the square root of the determinant of i(θ;Σ),

π(·;Σ)∝|i(·;Σ)|1/2 (8)

is likewise invariant to reparameterization. Hence, the default prior (8) is invariant to both

reparameterization and linear transformations of the moments, as desired.14

While we motivated our default prior (8) by analogy to Jeffreys prior, it also has a more

direct interpretation. Since G= g−m corresponds to the noise component of the GMM

moments, the score ∂
∂θ
Q(θ|G) measures the speed with which the noise in the moments changes

at θ. One can show, however, that E[ ∂
∂θ
Q(·|G)]≡0, so Var( ∂

∂θ
Q(θ|G))=E[ ∂

∂θ
Q(θ|G) ∂

∂θ
Q(θ|G)′]

measures the average (squared) magnitude of the score. Hence, the default prior (8) assigns

more mass to regions of the parameter space where the noise component of the moments tends

to change quickly in θ, and less to regions where the noise tends to change slowly.

Special Case: Linear IV (continued) To explore the implications of our default prior

in this example, let us partition the 2k×2k variance matrix into four k×k sub-matrices Ωjl

for j,l∈{0,1}, where Ωjl=Cov(ξj,ξl). Under this notation i(θ;Σ) is equal to the trace of

(Ω00−(Ω10+Ω01)θ+Ω11θ
2)

−1×(
Ω11−(Ω01−Ω11θ)(Ω00−(Ω10+Ω01)θ+Ω11θ

2)
−1
(Ω10−Ω11θ)

)
,

which can also be written as the relative variance:

Var(g(θ))−1Var(ξ1|g(θ)).

Thus, the default prior (8) favors parameter values where (i) the GMM moments predict the

first-stage poorly (so Var(ξ1|g(θ)) is large) and (ii) the GMM moments themselves are not

14While we focus on the default prior (8), other invariant priors exist. For instance, for scalar θ the prior

proportional to |Σ(θ,θ)|−
1
2

∣∣∣ ∂2

∂θ∂θ̃
Σ
(
θ,θ̃
)
− ∂

∂θΣ
(
θ,θ̃
)
Σ(θ,θ)

−1 ∂
∂θ̃
Σ
(
θ,θ̃
)∣∣∣12

θ̃=θ
is also invariant.
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too noisy (so Var(g(θ)) is small). Since Var(ξ1|g(θ))→0 and Var(g(θ))→∞ as |θ|→∞, we

see that the default prior density (8) converges to zero for θ large.

We obtain further simplifications when the reduced-form and first-stage errors are ho-

moskedastic. In this case the matrices Ωjl are proportional to each other,

Ωξ=

 σ2u σuv

σuv σ2v

⊗Ω̃,

for Ω̃ a k×k matrix, and σ2u, σ
2
v, σuv again the variances and covariance of the reduced-form

and first-stage errors. In this case some algebra shows that our default prior is equal to a

Cauchy distribution centered at σuv
σ2
v
. One can show, however, that σuv

σ2
v
corresponds to the

probability limit of the OLS estimator under weak-instrument asymptotics. Hence in the

homoskedastic case our default prior corresponds to a Cauchy distribution centered at OLS. □

5 Linear IV Simulations

While our theoretical results show that GMM estimators are dominated under bounds on

identification strength, they do not imply that GMM is dominated by either bagged GMM or

quasi-Bayes. Relative performance of these estimators in applications is thus an open question.

We explore this comparison in the context of linear IV, using simulation designs based on

Andrews et al. (2019). Andrews et al. (2019) calibrated simulations based on all instrumental

variables specifications published in the American Economic Review from 2014 to 2018 for

which sufficient information is available to estimate the variance matrix Ωξ in (3), yielding

124 specifications. We follow their simulation designs, and draw data from the normal model

(3) with π∗ equal to the first-stage estimate in the Andrews et al. (2019) data and θ∗ equal

to the two-stage least squares estimate. We consider six different estimators. The first two

are GMM, specifically two-stage least squares, which as noted above corresponds to GMM

with weighting matrix Ξ(θ)=E[ZiZ
′
i]
−1, and continuously updated GMM, which corresponds

to GMM with weighting matrix Ξ(θ)=Σ(θ)−1. We next report bagged versions of each GMM

estimator. Finally, we report two quasi-Bayes estimators, the first using a flat prior π(θ)∝1

and the second using the invariant default prior (8).

Our theoretical results require the loss function to be bounded. In the context of the

linear IV model, this means that our results to not apply to unconstrained estimation of θ

22



under squared error loss. We address this in two ways, first considering estimation of θ under

bounds on the parameter space and then considering estimation of the correlation between

the structural and first-stage errors, which is a naturally bounded quantity.

In most economic applications of IV methods there are context-specific bounds on the

range of plausible parameter values, for instance bounds beyond which a researcher would

conclude that there is a problem with their data or their instrument. Motivated by this

observation, we take the parameter space in specification s to be Θs=
[
±20

∣∣∣σuv,sσ2
v,s

∣∣∣] for σuv,s the
covariance of the reduced-form and first-stage errors in specification s, and σ2v,s the variance

of the first-stage error. As noted above σuv
σ2
v
corresponds to the probability limit of the least

squares estimator under weak instrument asymptotics, so this parameter space restricts the

size IV coefficient to be no more than 20 times the size of the least squares coefficient. Nine

of the just-identified specifications in the Andrews et al. (2019) data do not report estimates

for (σuv,σ
2
v), because replication data were not publicly available but Ωξ could be estimated

based on published results. In these cases we set σuv equal to covariance of the reduced-form

and first-stage estimates, and σ2v equal to the variance of the first-stage estimate. Consistent

with our motivation for restricted the parameter space, Θs contains the true IV coefficient

in all but three of the 124 Andrews et al. (2019) specifications, so we limit attention to these

121 specifications for our analysis. We approximate the bagged estimators by averages over

400 bootstrap draws, and report results based on 10,000 simulation draws.

The restriction to a bounded parameter space is substantively important for the results

we report below. Absent a restriction on the parameter space, the two-stage least squares

estimator for the IV coefficient only has finite moments up to the degree of over-identification.

Correspondingly, for an unrestricted parameter space the bagged two-stage least squares

estimate is only defined for k≥2. The situation is, if anything, worse for the other estimators we

consider: for instance, in linear IV models with homoskedastic errors the continuously updating

GMM estimator reduces to the limited information maximum likelihood estimator, which lacks

even a first moment. Our restriction to a bounded parameter space ensures that all estimators

and moments are well-defined and finite, but for those cases where the restriction is important

for e.g. existence of a given moment, the results necessarily depend on the choice of bounds.

Motivated by this sensitivity, we report three additional sets of results. In the main text we

report results estimating the correlation between the structural and first-stage errors, which can
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be shown to equal r(θ)= σuv−θσ2
v

σv
√

σ2
u−2θσuv+θ2σ2

v

. This correlation measures the degree of endogeneity,

and so may be of interest in its own right. Moreover, as recently highlighted by Angrist and

Kolesár (2022), conventional confidence intervals are reliable in just-identified IV settings, even

with weak instruments, so long as this correlation coefficient is not too large. Hence, we might

also want to know r(θ) for that reason. Importantly for our current purposes, r(θ) is bounded

by construction.

In the appendix we report results where we vary the definition of the parameter space, con-

sidering Θs=
[
±40

∣∣∣σuv,sσ2
v,s

∣∣∣] and Θs=
[
±60

∣∣∣σuv,sσ2
v,s

∣∣∣]. Widening the bounds increases the errors of

the IV coefficient estimates from all approaches, but the ordering of estimators by average perfor-

mance is unchanged. As expected, the change in the bounds has almost no effect on the correla-

tion coefficient estimates. Finally we report results, for two-stage least squares and bagged two-

stage least squares only, which drop the bounds on the parameter space entirely. To ensure that

the mean squared error is well-defined these results restrict attention to specifications with at

least three instruments, k≥3. The performance gaps between these estimators are small in our

k≥3 specifications with bounded parameter spaces, and remain small when we drop the bounds.

Results for IV Coefficient Table 1 reports our findings for the IV coefficient. For each

specification s we consider the root mean squared error for each estimator, normalized by the

two-stage least squares standard error σ∗s in the Andrews et al. (2019) data to account for

differences in units,
√
Es

[
(δ(g)−θ∗s)

2]/σ∗s , where Es[·] denotes the expectation in specification

s. We report the average of this ratio for each estimator across four different categories based

on the effective first-stage F statistic of Montiel-Olea and Pflueger (2013). The effective F

statistic, which we denote by F , is a measure of instrument strength and in the just-identified

case is equal to the squared t-statistic for testing π∗=0, ξ21/Var(ξ1). See Montiel-Olea and

Pflueger (2013) for details and motivation for this statistic. To complement these results,

Figure 1 plots the root mean squared error for each alternative estimator, relative to its GMM

counterpart, against the average effective F statistic Es[F ], limiting attention to specifications

where Es[F ]≤50 for visibility. To show differences based on the number of instruments we plot

just-identified (k=1) specifications in blue, and over-identified (k≥2) specifications in black.

For a more detailed picture of how performance varies with the number of instruments, Table 3

in the appendix reports average results when we bin specifications by the number of instruments.
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A number of patterns emerge in Table 1 and Figure 1. First, two-stage least squares

outperforms continuously updating GMM everywhere except the strongest identification

category. The bagged GMM estimators each outperform their standard GMM analogs in most

cases. Specifically, these estimators show substantial improvements in the category where

identification is weakest (Es[F ]≤10), a smaller improvement in the next-weakest category (10<

Es[F ]≤20), and either a minimal improvement or a small deterioration in the second-strongest

category (20<Es[F ]≤50). Quasi-Bayes with a flat prior underperforms all the other estimators,

while quasi-Bayes with the invariant prior outperforms both GMM estimators except in the

second-strongest category (20<Es[F ]≤50). The performance gap between the two quasi-Bayes

approaches demonstrates the influence of the prior, and highlights that the greater smoothness of

quasi-Bayes as a function of the moments does not guarantee improved performance for all priors.

Finally, all estimators show very similar performance in the strongest category (50<Es[F ]),

though two-stage least squares and bagged two-stage least squares are known to be inefficient

under strong identification. Nonetheless, the estimator with the best average performance

overall is bagged two-stage least squares, followed by bagged continuously updating GMM.

Results for Correlation Coefficient Table 2 reports our findings for the correlation

coefficient r(θ) = σuv−θσ2
v

σv
√

σ2
u−2θσuv+θ2σ2

v

. We again report the root mean squared error normal-

ized by the delta-method standard error σ∗r,s for r(θ) in the Andrews et al. (2019) data,√
Es

[
(δ(g)−r(θ∗s))

2]/σ∗r,s, and bin specifications based on the average effective first-stage F

statistic. Figure 2 plots the root mean squared error for each alternative estimator, relative to

its GMM counterpart, against the average effective F statistic Es[F ]. Table 4 in the appendix

reports average results when we bin specifications by the number of instruments.

The results for estimating the correlation coefficient are broadly consistent with those

for the IV coefficient. In particular, two-stage least squares largely outperforms continuously

updating GMM, and each bagged estimator substantially outperforms its GMM counterpart

in the weakest category, with smaller gain in the stronger categories. Quasi-Bayes with a

flat prior again underperforms the other estimators considered. One difference with the IV

coefficient results is that quasi-Bayes with our invariant prior now slightly under-performs

relative to two-stage least squares. All estimators again behave very similarly in the strongest

specifications (50<Es[F ]). The best-performing estimator on average is bagged continuously
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Es[F ]≤10 10<Es[F ]≤20 20<Es[F ]≤50 50<Es[F ]

Two-Stage

Least Squares
1.37 1.20 1.02 1.00

Continuously

Updating GMM
1.55 1.24 1.03 0.99

Bagged Two-Stage

Least Squares
1.03 1.09 1.01 0.99

Bagged Continuously

Updating GMM
1.04 1.12 1.05 0.99

Quasi-Bayes,

Flat Prior
1.51 1.61 1.10 1.00

Quasi-Bayes,

Invariant Prior
1.18 1.10 1.03 0.99

Number of Specifications 56 28 19 18

Table 1: Performance of IV coefficient estimators in Andrews et al. (2019) specifications. Entries correspond

to the root mean squared error normalized by the standard error in the Andrews et al. (2019) data,√
Es[(δ(g)−θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond to ranges of values for the average

effective first-stage F statistic of Montiel-Olea and Pflueger (2013).

updating GMM, followed by bagged two-stage least squares.

Overall, these simulation results show that bagged GMM estimators often outperform their

standard GMM counterparts in the settings we consider, through neither dominates the other.

Quasi-Bayes with a flat prior performs quite poorly, while quasi-Bayes with the invariant prior

(8) is more competitive.
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Figure 1: RMSE comparisons for IV coefficient estimators in Andrews et al. (2019) specifications. Each

point corresponds to one of the Andrews et al. (2019) specifications. The vertical axis measures the ratio of

root mean squared error for the alternative estimator compared to the GMM estiamtor for the IV coefficient,√
Es[(δ(g)−θ∗s)

2]/Es[(δGMM(g)−θ∗s)
2]. So, for instance, a value of 0.8 means the RMSE for the alternative

estimator is 20% lower. The horizontal axis shows the average effective first-stage F statistic of Montiel-Olea and

Pflueger (2013), Es[F ]. We limit attention to specifications with Es[F ]≤50 for visibility. Blue dots correspond

to just-identified (k=1) specifications, while black dots correspond to over-identified (k≥2) specifications.
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Es[F ]≤10 10<Es[F ]≤20 20<Es[F ]≤50 50<Es[F ]

Two-Stage

Least Squares
1.09 1.10 1.01 0.99

Continuously

Updating GMM
1.21 1.13 1.02 0.99

Bagged Two-Stage

Least Squares
1.03 1.07 1.00 0.99

Bagged Continuously

Updating GMM
0.99 1.09 1.02 0.99

Quasi-Bayes,

Flat Prior
1.19 1.45 1.07 0.99

Quasi-Bayes,

Invariant Prior
1.10 1.11 1.01 0.99

Number of Specifications 56 28 19 18

Table 2: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond to the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)−r(θ∗s))

2]/σ∗
r,s, averaged across specifications. Columns correspond to ranges of values for

the average effective first-stage F statistic of Montiel-Olea and Pflueger (2013).
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Figure 2: RMSE comparisons for correlation coefficient estimators in Andrews et al. (2019) specifications. Each

point corresponds to one of the Andrews et al. (2019) specifications. The vertical axis measures the ratio of root

mean squared error for the alternative estimator compared to the GMM estiamtor for the correlation coefficient,√
Es[(δ(g)−r(θ∗s))

2]/Es[(δGMM(g)−r(θ∗s))
2]. So, for instance, a value of 0.8 means the RMSE for the alterna-

tive estimator is 20% lower. The horizontal axis shows the average effective first-stage F statistic of Montiel-Olea

and Pflueger (2013), Es[F ]. We limit attention to specifications with Es[F ]≤50 for visibility. Blue dots corre-

spond to just-identified (k=1) specifications, while black dots correspond to over-identified (k≥2) specifications.
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A Proofs

Proof of Lemma 1 If k=1, the result is immediate from Theorem 2.1 of van der Vaart and

van Zanten (2008). We are left to prove it for k>1. Define an augmented parameter space

Θ∗=Θ×V, where V ={v∈Rk :∥v∥1=1} and consider a Gaussian process g∗(·) defined on

Θ∗ as g∗(θ,v)=v′g(θ). Note that the process g∗, its mean m∗(θ,v) and its covariance function

Σ∗(θ,v,θ̃,ṽ) are one-to-one transformations of g, m, and Σ. For H∗ the RKHS associated with
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Σ∗, H∗ is isometric to H. Indeed, for m∗∈H∗:

m∗(θ,v)=
∑

αiΣ
∗(θi,vi,θ,v)=

(∑
αiv

′
iΣ(θi,θ)

)
v=m(θ)′v, (9)

where m∈H and ∥m∥H=∥m∗∥H∗.

We have assumed that g(·)∼GP(m,Σ) has almost-surely continuous sample paths, which

implies that G∗∼GP(0,Σ∗) can likewise be realized as a process with almost surely continuous

sample paths. Let C∗ be the space of R-valued continuous functions on Θ∗ with the property

that any f∗∈C∗ can be represented as f∗(θ,v)=f(θ)′v for f∈C(Θ,Rk) and v∈V . Due to the

structure of Σ∗, realizations of the process G∗ almost surely belong to C∗ and the process can

be represented as G∗(θ,v)=v′G(θ), where G∼GP(0,Σ). Take any linear functional defined

on the space of continuous functions with index set Θ∗ and denote by η∗ its restriction to

C∗. Since the relation between f∗∈C∗ and f∈C(Θ,Rk) is one-to-one, we can define a linear

functional on C(Θ,Rk) as η(f)=η∗(f∗). This creates a one-to-one correspondence between

linear functionals on C∗ and linear functionals on C(Θ,Rk). Note that the definition of the

Pettis integral for process G∗ depends on η∗ only and all functionals that are the same once

restricted to C∗ lead to the same Pettis integral:

m∗
η∗(θ,v)=E[G∗(θ,v)η∗(G∗)]=E[v′G(θ)η∗(G∗)]=v′E[G(θ)η(G)]=v′mη(θ). (10)

Due to Theorem 2.1 of van der Vaart and van Zanten (2008),H∗ coincides with the image of the

space of linear functionals defined on C∗ under the Pettis integral transformation, while equation

(2.4) in that paper together with the definition of σ(G∗) establish that ∥mη∗∥∞≤σ2(G∗)∥η∗∥∗.

Comparing equation (10) to (9), we see that the first statement of Lemma 1 holds. We further

notice that all norms of starred objects coincide with the norms of the corresponding objects

without stars. For example,

∥m∥∞= sup
j,θ∈Θ

|mj(θ)|= sup
v∈V,θ∈Θ

|v′m(θ)|= sup
(θ,v)∈Θ∗

|m∗(θ,v)|=∥m∗∥∞.

Note further that η and η∗ have the same total variation norm.

∥η∗∥∗= sup
f∗∈C∗,∥f∗∥∞≤1

η∗(f∗)= sup
f∈C(Θ,Rk),∥f∥∞≤1

η(f)=∥η∥∗.

Finally,

σ2(G∗)= sup
∥η∗∥∗≤1

E[η∗(G∗)2]= sup
∥η∥∗≤1

E[η(G)2]=σ2(G).

This completes the proof. □
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Theorem 3 (Brown 1986, Andrews and Mikusheva 2022): For any parameter space Γ̃⊆Γ, any

loss L(a,θ) which is convex in a for all θ, and any decision rule δ that is admissible on Γ̃, there

exists a sequence of finitely supported priors πr on Γ̃ and corresponding Bayes decision rules δπr,∫
Em[L(δπr(g),θ

∗)]dπr(θ
∗,m)=min

δ̃

∫
Em[L(δ̃(g),θ

∗)]dπr(θ
∗,m),

such that δπr(g)→δ(g) as r→∞ for almost every g.

Proof of Theorem 1 Consider the posterior risk function Rπ(a,g)=Eπ[L(a,θ)|g]. As the

first step of the proof we show that for any finitely-supported prior π on Γ̃, the risk function

Rπ(a,g) is Lipschitz in g:

|Rπ(a,g)−Rπ(a,g
′)|≤L̄W∥g−g′∥∞. (11)

Let {(θ1,m1),...,(θJ ,mJ)} be the support of π. For each mj we know from Lemma 1 that

there exists ηm,j ∈H with ∥η∥∗ ≤W and mj(·) =E[G(·)ηm,j(G)]. Further note that by e.g.

Lemma 3.1 of van der Vaart and van Zanten (2008), for each m∈H the likelihood ratio for

the measure Qm corresponding to a GP(m,Σ) distribution, relative to m′=0, takes the form

dQm

dQ0
(g)=exp

(
ηm(g)− 1

2
∥m∥2H

)
.

Define g̃=g′−g, and let gt=g+t·g̃. Note that

Eπ[L(a,θ)|gt]=
∑

jL(a,θj)exp
{
ηm,j(gt)− 1

2
∥mj∥2H

}
π(θj,mj)∑

jexp
{
ηm,j(gt)− 1

2
∥mj∥2H

}
π(θj,mj)

. (12)

Linearity implies that ηm,j(gt)=ηm,j(g)+tηm,j(g̃), and thus

∂

∂t
exp

{
ηm,j(gt)−

1

2
∥mj∥2H

}
=ηm,j(g̃)exp

{
ηm,j(gt)−

1

2
∥mj∥2H

}
.

By differentiating (12) we get

∂

∂t
Eπ[L(a,θ)|gt]=Covπ(L(a,θ),ηm(g̃)|gt), (13)

where the only posterior uncertainty about ηm(g̃) comes from the unknown parameter m,

while g̃ is fixed. The Cauchy-Schwarz inequality implies that

∥Covπ(L(a,θ),ηm(g̃)|gt)∥≤L̄
√
Var(ηm(g̃)|gt).
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For (θj,mj)∈ΓW we have ∥ηm,j∥∗≤W , thus |ηm,j(g̃)|≤W∥g̃∥∞=W∥g−g′∥∞, which implies

that
√
Var(ηm(g̃)|gt)≤W∥g−g′∥∞. Hence,

|Rπ(a,g)−Rπ(a,g
′)|=

∣∣∣∣∫ 1

0

∂

∂t
Eπ[L(a,θ)|gt]dt

∣∣∣∣≤L̄W∥g−g′∥∞.

We define the Bayes decision rule δ(g) for prior π as Rπ(δ(g),g)=mina∈DRπ(a,g). As the

next step of the proof we show that for any finitely-supported prior π on Γ̃, the Bayes decision

rule δ(g) is almost surely uniformly continuous in g and satisfies the inequality:

∥δ(g′)−δ(g)∥≤κ−1
(
2L̄W ·∥g−g′∥∞

)
, (14)

where κ(·) is the function from the definition of uniform convexity.

From the definition of the Bayes decision rule and equation (11) we have

Rπ(δ(g
′),g)−Rπ(δ(g),g

′)≤Rπ(δ(g
′),g)−Rπ(δ(g

′),g′)≤L̄W∥g−g′∥∞.

Equation (11) also implies Rπ(δ(g),g
′)−Rπ(δ(g),g)≤L̄W∥g−g′∥∞. These inequalities result

in the following statement:

Rπ(δ(g
′),g)−Rπ(δ(g),g)≤2L̄W ·∥g−g′∥∞. (15)

The uniform convexity of the loss function L(a,θ) results in the uniform convexity of the

posterior risk function Rπ(a,g) in its first argument with the same κ(·). So

Rπ(ta+(1−t)a′,g)≤tRπ(a,g)+(1−t)Rπ(a
′,g)−t(1−t)κ(∥a−a′∥).

Thus,

Rπ(tδ(g
′)+(1−t)δ(g),g)−Rπ(δ(g),g)+t(1−t)κ(∥δ(g′)−δ(g)∥)

≤t(Rπ(δ(g
′),g)−Rπ(δ(g),g)).

The fact that δ(g) is a Bayes decision rule implies that

Rπ(tδ(g
′)+(1−t)δ(g),g)−Rπ(δ(g),g)≥0.

Combining this with inequality (15) we obtain:

κ(∥δ(g′)−δ(g)∥)≤Rπ(δ(g
′),g)−Rπ(δ(g),g)≤2L̄W ·∥g−g′∥∞.

Since function κ is strictly increasing and thus invertible, we arrive at (14). The continuity

of κ(·) at zero comes from continuity of the loss function L(a,θ).
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As the final step in the proof of Theorem 1 we show that (14) holds for any admissible rule on

Γ̃. Using an extension of a result from Brown (1986), Theorem 3 establishes that there exists a

sequence of finitely supported priors πs on Γ̃ and corresponding Bayes decision rules δπs such that

δπs(g)→δ(g) as s→∞ for almost every g. Since δπs(g) is uniformly continuous with modulus of

continuity κ̃ for all s, however, it follows that δπs converges pointwise to a limit δ∗ which is also

uniformly continuous with modulus of continuity κ̃. Hence, δ(g)=δ∗(g) for almost every g. □

Proof of Theorem 2 First consider Γ̃⊆ΓW . Following exactly the same arguments as the

ones used in the proof of statement (13), we can show that for any finitely-supported prior

π on Γ̃, any moment realizations g, g′, and gt=g+t·g̃ for g̃=g′−g

∂

∂t
Eπ[r(θ)|gt]=Covπ(r(θ),ηm(g̃)|gt),

where by the Cauchy-Schwarz inequality

∥Covπ(r(θ),ηm(g̃)|gt)∥≤ r̄
√
pW∥g−g′∥∞,

from which it is immediate that Eπ[r(θ)|g] is Lipschitz in g:

∥Eπ[r(θ)|g]−Eπ[r(θ)|g′]∥≤K∥g−g′∥∞.

Given this Lipschitz property for Bayes posterior means, that δ is almost-everywhere Lipschitz

follows by the same argument as in the proof of Theorem 1. □

Proof of Corollary 1 Immediate from Theorem 1. □

Proof of Lemma 2 Suppose that δ is both almost-surely uniformly continuous and scale-

invariant. Consider two independent draws g and g′, and note that by scale-invariance we have

δ(g,Σ)−δ(g′,Σ)=δ(c·g,Σ)−δ(c·g′,Σ)

for all c>0. However, the uniform continuity property implies for almost every (g,g′) and any

fixed c,

∥δ(g,Σ)−δ(g′,Σ)∥=∥δ(c·g,Σ)−δ(c·g′,Σ)∥≤ κ̃(c·∥g−g′∥∞)

with probability one. Sending c to zero leads us to the required statement. □
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Proof of Proposition 1 If the covariance function Σ has a finite number of nonzero eigenval-

ues, it follows that for G∼GP(0,Σ) the process G(·) is a transformation of a finite-dimensional

normal random vector, so we can write G(θ)=A(θ)Y for Y ∈Rq a standard normal random

vector and A(·) a matrix-valued function that depends on Σ. Correspondingly, the RKHS

H can be written as {A(·)x :x∈Rq}.

Combining these observations, we can write g(·)=A(·)y for y∼N(x,I), and any estimator

δ(g) can be equivalently expressed as γ(y)=δ(A(·)y). For υ a standard normal random vector

and ζ as defined in the main text, we likewise have the equality

δB(g)≡E[δ(g+ζ)|g]=E[γ(y+υ)|y]≡γB(y)

for the bagged estimators. Since Σ
(
θ,θ̃
)
=A(θ)A

(
θ̃
)′

while Σ is continuous and Θ is compact,

the largest singular value ofA(θ), σmax(A(θ)), is uniformly bounded. For σ̄=supθ∈Θσmax(A(θ)),

sup
θ∈Θ

∥g(θ)−g̃(θ)∥≤sup
θ∈Θ

σmax(A(θ))∥y−ỹ∥≤ σ̄∥y−ỹ∥.

Hence, it suffices to show that γB(y) is Lipschitz in y.

Note that for φ the standard (multivariate) normal density,

γB(y)=

∫
γ(y+υ)φ(υ)dυ=

∫
γ(υ)φ(υ−y)dυ.

Hence, if we let yt=y+t·ỹ, we have

∂

∂t
γB(yt)

∣∣
t=0

=

∫
γ(υ)

∂

∂t
φ(υ−yt)|t=0dυ

=

∫
γ(υ)(υ−y)′ỹφ(υ−y)dυ=Covυ∼N(y,I)(γ(υ),υ

′ỹ),

where Covυ∼N(y,I)(γ(υ),υ
′) denotes the covariance of γ(υ) and υ when υ ∼N (y,I). Note,

however, that since the range of γ(υ) is contained in A, Cauchy-Schwarz implies that for

ā=supa∈A∥a∥, ∥∥∥∥ ∂∂t γB(yt)∣∣t=0

∥∥∥∥=∥∥Covυ∼N(y,I)(γ(υ),υ
′ỹ)
∥∥≤ ā√p∥ỹ∥,

which completes the proof. □

Proof of Lemma 3 Let Q(θ)=Q(θ|g) and Q′(θ)=Q(θ|g′), and consider

Qt(θ)=Q(θ)+t(Q
′(θ)−Q(θ))=Q(θ)+t·∆(θ)
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for ∆(θ) =Q′(θ)−Q(θ). Let us write EQB
π [·|Q] for the expectation under the quasi-Bayes

posterior distribution, which draws θ from the distribution with density
exp(−1

2
Q(θ))∫

exp(−1
2
Q(θ))dπ(θ)

relative

to π, and define CovQB
π (·,·|Q) analogously. Note that δQB

π (g)=EQB
π [r(θ)|Q(·|g)], and that

∂

∂t
EQB
π [r(θ)|Qt]=

∂

∂t

[∫
r(θ)exp

(
−1

2
Qt(θ)

)
dπ(θ)∫

exp
(
−1

2
Qt(θ)

)
dπ(θ)

]
=−1

2

(
EQB
π [r(θ)∆(θ)|Qt]−EQB

π [r(θ)|Qt]EQB
π [∆(θ)|Qt]

)
=−1

2
CovQB

π (r(θ),∆(θ)|Qt)

By the Cauchy-Schwarz inequality, however,

∥CovQB
π (r(θ),∆(θ)|Qt)∥≤ r̄

√
psup

θ
|∆(θ)|,

which completes the proof. □

Proof of Proposition 2 Similar to the proof of Lemma 3, let EQB
π [·|g] be the expectation

under the quasi-Bayes posterior distribution, which draws θ from the distribution with density
exp(−1

2
Q(θ|g))∫

exp(−1
2
Q(θ|g))dπ(θ) relative to π, and define CovQB

π (·,·|g), VarQB
π (·|g) analogously. For gt=g+t·g̃,

note that by Cauchy-Schwarz∥∥∥∥ ∂∂tδQB
π (gt)

∥∥∥∥=∥∥∥∥ ∂∂tEQB
π [r(θ)|gt]

∥∥∥∥=1

2

∥∥CovQB
π

(
r(θ),g̃(θ)′Σ(θ)−1gt(θ)|gt

)∥∥≤
1

2
r̄
√
p

√
EQB
π

[(
g̃(θ)′Σ(θ)−1gt(θ)

)2|gt].
By another application of Cauchy-Schwarz,

(
g̃(θ)′Σ(θ)−1gt(θ)

)2≤ g̃(θ)′Σ(θ)−1g̃(θ)·Q(θ|gt),

so

EQB
π

[(
g̃(θ)′Σ(θ)−1gt(θ)

)2|gt]≤∥g̃∥2Σ,∞EQB
π [Q(θ|gt)|gt]

for

∥g̃∥Σ,∞=sup
θ∈Θ

√
g̃(θ)′Σ(θ)−1g̃(θ)=sup

θ∈Θ

√
Q(θ|g̃).

Altogether, we obtain that∥∥∥∥ ∂∂tEQB
π [r(θ)|gt]

∣∣
t=0

∥∥∥∥≤ 1

2
r̄
√
p∥g̃∥Σ,∞

√
EQB
π [Q(θ|g)|g].
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Note, next, that

EQB
π [Q(θ|g)|g]=

∫
Q(θ|g)exp

(
−1

2
Q(θ|g)

)
dπ(θ)∫

exp
(
−1

2
Q(θ|g)

)
dπ(θ)

.

Since the function h(x)=xexp
(
−1

2
x
)
is maximized at x=2, if∫

exp

(
−1

2
Q(θ|g)

)
dπ(θ)≥ε,

then

Eπ[Q(θ|g)|g]≤2exp(−1)ε−1.

Note, however, that for |Θ| finite and π=minθ∈Θπ(θ),∫
exp

(
−1

2
Q(θ|g)

)
dπ(θ)=

∑
θ∈Θ

exp

(
−1

2
Q(θ|g)

)
π(θ)≥exp

(
−1

2
min
θ∈Θ

Q(θ|g)
)
π.

Hence, for g∈GC as defined in the proposition,∥∥∥∥ ∂∂tEQB
π [r(θ)|gt]

∣∣
t=0

∥∥∥∥≤ r̄√p∥g̃∥Σ,∞exp

(
1

2
C−1

)
π−1,

which completes the proof. □

B Example: Discontinuous Limit-of-Bayes

This appendix provides an example to demonstrate that without bounds on identification

strength, the pointwise limit of Bayes posterior means can be discontinuous.

Let us continue the finite Θ special case discussed in main text, and further suppose that

the parameter space consists of just two points, Θ={θ1,θ2}, that we have a one-dimensional

moment condition (k=1), and that Σ=I2. The functionm is thus described by two numbers –

the values at θ1 and θ2. Consider prior πC, supported on just two values of (θ,m), which assigns

probability 1
2
to each of θ1 and θ2 and, conditional on θ=θj, implies that (m(θj),m(θ−j))=(0,C)

with probability one, where θ−j denotes the element of Θ other than θj. Suppose we are

interested in estimating r(θ)=θ under squared error loss, and note that the Bayes estimator

corresponds to the posterior mean

δπC(g,Σ)=EπC [θ|g]=
∑2

j=1θjexp(−
1
2
g(θj)

2− 1
2
(g(θ−j)−C)2)∑2

j′=1exp(−
1
2
g(θj′)2− 1

2
(g(θ−j′)−C)2)

.

For a given g with g(θ1) ≠ g(θ2) EπC [θ|g] → argminθ∈{θ1,θ2}g(θ) as C → ∞. The limiting

estimator δ(g)=argminθ∈{θ1,θ2}g(θ) is a step function, and thus discontinuous.
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C Strong-Identification Limit Experiment

This appendix outlines the limit experiment for strongly identified GMM and discusses why

our inadmissibility argument for GMM estimators under weak identification does not translate

to this setting.

In strongly identified GMM models, θ∗ is consistently estimable at a
√
n rate. To obtain a

non-trivial decision problem in the limit we must therefore focus attention on a shrinking neigh-

borhood of the true parameter value, reparameterizing the model in terms of τ∗=
√
n(θ∗n−θ0),

for θ∗n the true parameter value in the sample of size n and θ0 a fixed parameter value around

which we localize the problem. Under mild conditions on the moments, the limit experiment

for estimation of τ∗ in this setting corresponds to observing

g(0)∼N(−Hτ∗,Ω) (16)

for H and Ω known, non-stochastic matrices where H has full column rank, and τ∗∈Rp. See

for instance Armstrong and Kolesar (2021).

Observing (16) is equivalent to observing the linear process g(·) where

g(·)=GP(m,Σ).

with m(τ)=H(τ−τ∗) and Σ(τ,τ̃)=Ω, where both H and Σ are known. Hence, the strong-

identification limit experiment (16) can be cast as a special case of our weak-identification

limit experiment (2) with the additional restrictions that (i) m is linear with a known Jacobian

and (ii) Σ is constant.

Our inadmissibility argument for GMM under weak identification relies on the fact that the

GMM estimator is the same for moment realizations g(·) and c·g(·) for all positive constants

c. In the strongly identified case, however, c·g(·) for c≠1 has a Jacobian different from H,

and so lies outside the support of the process g(·). If we instead rescale the moments only at

a given point τ, note that the GMM estimator for τ∗ with weighting matrix Ξ can be written

as τ̂=τ−(H′ΞH)−1H′Ξg(τ). Hence, in the strongly identified case GMM is not invariant to

changing the scale of g(τ).

Indeed, a stronger statement is true: if we consider a flat prior on τ∗, the posterior mean is

equal to the efficient GMM estimator with weighting matrix Ξ=Ω−1. Hence, in the strongly-
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identified limit experiment the efficient GMM estimator can be written as the limit of a sequence

of Bayes posterior means for proper priors, and our inadmissibility argument does not apply.

D Additional Simulation Results

This section reports additional simulation results to complement those reported in the main

text. Tables 3 and 4 report average normalized mean squared error, for the IV and correlation

coefficients respectively, when we bin specifications based on the number of instruments rather

than the effective F statistic. We see that the gains for the alternative estimators are largest in

the just-identified case, while the performance of the GMM and alternative estimators tends

to be closer in the over-identified specifications.

Tables 5 and 6 report normalized root mean squared error (based on 1,000 simulation

draws) averaged across all specifications when we set the parameter space Θs in specification

s equal to
[
±c· σuv

σ2
v

]
for c∈{20,40,60}. As these results show, the qualitative messages from

our simulations are unchanged across these alternative parameter spaces. Specifically, Table

5 reports results for the IV coefficient, and we see that while the root mean squared error

for all estimators grows as we widen the bounds on the parameter space, in every case

bagged two-stage least squares performs the best, followed by bagged continuously updating

GMM, then quasi-Bayes with an invariant prior, then the two GMM estimators, and finally

quasi-Bayes with a flat prior. Table 6 reports results for the correlation coefficient and shows,

as expected, that the bounds of the parameter space make almost no difference in this case.

Tables 7 and 8 drop boundedness of the parameter space altogether and report the mean

squared error of two-stage least squares and bagged two-stage least squares estimators for

the IV coefficient when we limit attention to specifications with k ≥ 3. Table 7 bins the

specifications based on the effective F-statistic, while Table 8 bins them based on the number

of instruments. We see that in these specifications bagging makes very little difference: while

the bagged estimator performs slightly better in some cases, and slightly worse in others, the

overall performance difference between the two estimators is minimal. This is consistent with

the results in Table 3, which show that the performance gains for bagged two stage least

squares are coming from the specifications with k=1 and k=2.
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k=1 k=2 k=3 k≥4

Two-Stage

Least Squares
1.84 1.06 1.01 0.98

Continuously

Updating GMM
1.84 1.12 1.04 1.21

Bagged Two-Stage

Least Squares
1.12 1.04 0.99 1.01

Bagged Continuously

Updating GMM
1.12 1.08 1.03 1.00

Quasi-Bayes,

Flat Prior
1.94 1.20 1.13 1.27

Quasi-Bayes,

Invariant Prior
1.06 1.07 1.04 1.22

Number of Specifications 31 20 30 40

Table 3: Performance of IV coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond to the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)−θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond to varying degrees of

over-identification.
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k=1 k=2 k=3 k≥4

Two-Stage

Least Squares
1.20 1.06 1.00 1.01

Continuously

Updating GMM
1.20 1.10 1.01 1.18

Bagged Two-Stage

Least Squares
1.00 1.07 0.98 1.06

Bagged Continuously

Updating GMM
1.00 1.10 1.00 1.01

Quasi-Bayes,

Flat Prior
1.38 1.19 1.04 1.19

Quasi-Bayes,

Invariant Prior
0.99 1.11 1.00 1.17

Number of Specifications 31 20 30 40

Table 4: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications. Entries

correspond to the root mean squared error normalized by the standard error in the Andrews et al. (2019)

data,
√
Es[(δ(g)−r(θ∗s))

2]/σ∗
r,s, averaged across specifications. Columns correspond to varying degrees of

over-identification.
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Θs=
[
±20σuv,s

σ2
v,s

]
Θs=

[
±40σuv,s

σ2
v,s

]
Θs=

[
±60σuv,s

σ2
v,s

]
Two-Stage

Least Squares
1.22 1.34 1.42

Continuously

Updating GMM
1.30 1.42 1.51

Bagged Two-Stage

Least Squares
1.04 1.06 1.07

Bagged Continuously

Updating GMM
1.05 1.07 1.09

Quasi-Bayes,

Flat Prior
1.39 1.58 1.70

Quasi-Bayes,

Invariant Prior
1.11 1.14 1.15

Number of Specifications 121 122 122

Table 5: Performance of IV coefficient estimators in Andrews et al. (2019) specifications based on 1000

simulation draws. Entries correspond the root mean squared error normalized by the standard error in the

Andrews et al. (2019) data,
√
Es[(δ(g)−θ∗s)

2]/σ∗
s , averaged across all specifications. Columns vary the size

of the parameter space.
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Θs=
[
±20σuv,s

σ2
v,s

]
Θs=

[
±40σuv,s

σ2
v,s

]
Θs=

[
±60σuv,s

σ2
v,s

]
Two-Stage

Least Squares
1.07 1.07 1.07

Continuously

Updating GMM
1.12 1.12 1.12

Bagged Two-Stage

Least Squares
1.03 1.03 1.03

Bagged Continuously

Updating GMM
1.02 1.03 1.03

Quasi-Bayes,

Flat Prior
1.20 1.21 1.20

Quasi-Bayes,

Invariant Prior
1.07 1.08 1.08

Number of Specifications 121 122 122

Table 6: Performance of correlation coefficient estimators in Andrews et al. (2019) specifications based on

1000 simulation draws. Entries correspond the root mean squared error normalized by the standard error

in the Andrews et al. (2019) data,
√
Es[(δ(g)−r(θ∗s))

2]/σ∗
r,s, averaged across all specifications. Columns vary

the size of the parameter space.

Es[F ]≤10 10<Es[F ]≤20 20<Es[F ]≤50 50<Es[F ]

Two-Stage

Least Squares
0.98 1.01 1.01 1.00

Bagged Two-Stage

Least Squares
1.00 0.98 0.99 0.99

Number of Specifications 42 4 15 9

Table 7: Estimator performance in Andrews et al. (2019) specifications with k ≥ 3 and an unbounded

parameter space. Entries correspond to the root mean squared error normalized by the standard error in

the Andrews et al. (2019) data,
√
Es[(δ(g)−θ∗s)

2]/σ∗
s , averaged across specifications. Columns correspond

to ranges of values for the average effective first-stage F statistic of Montiel-Olea and Pflueger (2013).
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k=3 k≥4

Two-Stage

Least Squares
1.01 0.98

Bagged Two-Stage

Least Squares
0.99 1.01

Number of Specifications 30 40

Table 8: Estimator performance in Andrews et al. (2019) specifications. Entries correspond to the root

mean squared error normalized by the standard error in the Andrews et al. (2019) data,
√
Es[(δ(g)−θ∗s)

2]/σ∗
s ,

averaged across specifications. Columns correspond to varying degrees of over-identification.
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