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1. Introduction

“The secret of my influence has always been that it remained secret.”
– Salvador Daĺı

Knowing who is influential, or central, in a community is important to anyone
who wants to influence the choices made by community members. In particular, the
extent to which a piece of information di�uses among a population often depends on
how central the initially informed are within the network (see Katz and Lazarsfeld
(1955); Rogers (1995); Kempe, Kleinberg, and Tardos (2003, 2005); Borgatti (2005);
Ballester, Calvó-Armengol, and Zenou (2006); Banerjee, Chandrasekhar, Duflo, and
Jackson (2013)). Policymakers, businesses and other organizations can thus benefit
from targeting the right individuals for spreading valuable information.

However, learning who is central in a social network can be costly. For policy-
makers, collecting detailed network data is costly, and easy “fixes” (such as asking
the traditional leaders, or geographically central households) may not identify peo-
ple who are actually very central (see Beaman, BenYishay, Magruder, and Mobarak
(2014); Banerjee, Chandrasekhar, Duflo, and Jackson (2013)). Even for members of
the community, knowledge of the network structure beyond their immediate friends
is far from automatic. In fact, individuals within a network tend to have little per-
spective on its structure, as found in important early research by Friedkin (1983) and
Krackhardt (1987), among others (see Krackhardt (2014) for background and refer-
ences). However, we can still ask whether, despite not knowing the network structure,
people can make reliable guesses about who is central to the network and who, more
specifically, is particularly well placed to di�use information through the network. In
this paper, we answer these questions both theoretically and empirically – finding
positive answers in each case.

First, we develop a simple model, building on our previous work (Banerjee, Chan-
drasekhar, Duflo, and Jackson, 2013), to show that individuals in a network should
be able to identify central individuals within their community even without know-
ing anything about the structure of the network. Our model is about a process we
call “gossip”, where nodes generate pieces of information that are then stochastically
passed from neighbor to neighbor, along with the identity of the node where it started.
We assume only that individuals who hear the gossip are able to keep count of the
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number of times each person in the network is mentioned as a source.1 We show that
for any listener in the network, the relative ranking under this count converges over
time to the correct ranking of every node’s propensity to send information to the rest
of the network. The specific measure of a node’s ability to send information that we
use is given by its “di�usion centrality,” introduced in Banerjee et al. (2013), which
answers the question of how widely information from a given node di�uses in a given
number of time periods and for a given random per-period transmission probability.2

In short, by listening and keeping count of how often they hear about someone,
individuals learn the correct ranking of community members from the point of view of
how e�ectively they can serve as a source of information to the rest of the community.

Second, we use a unique dataset to assess whether this holds empirically. We
asked every adult in each of 35 villages to name the person in their village best
suited to initiate the spread of information. We combine their answers (which we
call their “nominations”) with detailed network data that include maps of a variety
of interactions in each of the 35 villages. We show that individuals nominate highly
di�usion/eigenvector central people (on average at the 71st percentile of centrality).
We also show that the nominations are not simply based on the nominee’s leadership
status or geographic position in the village, but are significantly correlated with dif-
fusion centrality even after conditioning on these characteristics. Finally, a LASSO
regularization technique (Tibshirani (1996); Belloni and Chernozhukov (2009); Bel-
loni et al. (2014b,a)) picks out di�usion centrality as the only relevant variable to
predict the number of nominations, out of five possible measures of network positions
(di�usion centrality, degree, eigenvector centrality, traditional leadership status and
geographic centrality).

Thus, our model shows that it is possible for individuals to learn who are the most
central people in their network, and our empirical work suggests that they do so.
This data, of course, could still be consistent with other models of how people choose
individuals to nominate, and we explore some of these alternatives in our analysis,
showing that the nominees’ centrality is significant in determining nominations well
beyond other geographic and sociological attributes of the nominees. The correlation

1We use the term “gossip” to refer to the spreading of information about particular people. Our
di�usion process is focused on basic information that is not subject to the biases or manipulations
that might accompany some “rumors” (e.g., see Bloch, Demange, and Kranton (2014)).
2This measure of centrality nests three of the most prominent measures: degree centrality at one
extreme (if there is just one time period of communication), and eigenvector centrality and Katz-
Bonacich centrality at the other extreme (if there are unlimited periods of communication). For
intermediate numbers of periods, di�usion centrality takes on a wide range of other values.
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of nominations and centrality may have nothing to do with di�usion, and so our next
step is to test whether the nominees are, indeed, good di�users.

Third, to test this prediction, we conduct an additional large randomized field ex-
periment in 213 di�erent villages to test whether informing nominated individuals
leads to wider di�usion of information than informing either randomly selected indi-
viduals or village elders. Our experiment consists of three pieces. In 71 villages we
seed a piece information in 3 to 5 randomly selected households (the number of seeds
to be reached was randomly selected). In 71 other villages we seed information in
3 to 5 village households who have status as “elders” in the village – leaders with a
degree of authority in the community, who command great respect. Finally, in the
remaining 71 villages, we seed information in 3 to 5 individuals nominated by others
as being well suited to spread information (“gossip nominees”). The piece of infor-
mation we want people to learn is very simple: anyone who calls a particular number
will be entered in a ra�e for a free cell phone and other cash prizes. The chance
to win a prize is independent of the number of people who enter the ra�e, ensuring
that the information is non-rivalrous. The call itself is free. We then measure the
extent of di�usion using the number of independent entries to the ra�e. We get al-
most three times as many entries when we seed information with gossip nominees as
compared to seeding with village elders or with random villagers (elders outperform
random villagers). Furthermore, in a subsample of 69 out of the 71 villages where we
did random seeding, we collect full network information. We find that the random
seeds that happen to have high di�usion centrality and/or to be gossips lead to more
di�usion of information. However, even controlling for di�usion centrality of a seed,
gossip (nominated) seeds still provide greater information di�usion, suggesting that
people do even better than we can at choosing initial seeds based on only di�usion
centrality. This may be because they are incorporating other information, such as
who is trustworthy or who is most charismatic or talkative, which may not be picked
up in the pure network data. Or it may be because our measures of centrality are
noisy and villagers are even more accurate at finding central individuals than we are.

To our knowledge, this is the first paper to demonstrate that members of com-
munities are able, easily and accurately, to nominate people in the community who
are good at di�using information, and that these nominees are highly central in a
network sense. It is also the first to describe a simple process by which people can
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learn things about of their broader network that they have no direct access to.3 Our
results have important practical consequences, since policy makers and businesses are
often looking for the best way to spread a given piece information, and asking peo-
ple to identify the best person to spread the information is cheaper and easier than
collecting data on the entire network.

The remainder of the paper is organized as follows. Section 2 develops the model
of di�usion. In Section 3 we relate the notion of di�usion centrality to network
gossip. Section 4.1 describes the setting and the data used in the empirical analysis.
We examine whether individuals nominate central nodes in Section 4.2. Section 5
describes the experiment and the results. Section 6 concludes.

2. A Model of Network Communication

We consider the following model.

2.1. A Network of Individuals. A society of n individuals are connected via a pos-
sibly directed4 and weighted network, which has an adjacency matrix g œ {0, 1}n◊n.
Unless otherwise stated, we take the network g to be fixed and let v(1) be its first
(right-hand) eigenvector, corresponding to the largest eigenvalue ⁄

1

.5 The first eigen-
vector is nonnegative and real-valued by the Perron-Frobenius Theorem.

Throughout, we assume that the network is (strongly) connected in that there
exists a (directed) path from every node to every other node, so that information
originating at any node could potentially make its way eventually to any other node.6

2.2. Di�usion Centrality. In Banerjee, Chandrasekhar, Duflo, and Jackson (2013),
we defined a notion of centrality called di�usion centrality, based on random infor-
mation flow through a network according to the following process, which is a variant
of the standard di�usion process that underlies many models of contagion.7

A piece of information is initiated at node i and then broadcast outwards from that
node. In each period, with probability q œ (0, 1], independently across neighbors and
3There are some papers (e.g., Milgram (1967) and Dodds et al. (2003)) that have checked people’s
abilities to use knowledge of their friends’ connections to e�ciently route messages to reach distant
people, but those test knowledge about peoples’ own connections.
4When defining g in the directed case, the ij-th entry should indicate that i can tell something to
j. In some networks, this may not be reciprocal.
5

v

(1) is such that gv

(1) = ⁄1v

(1) where ⁄1 is the largest eigenvalue of g in magnitude.
6More generally, everything we say applies to the components of the network.
7See Jackson and Yariv (2011) for background and references. A continuous time version of di�usion
centrality appears in Lawyer (2014).
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history, each informed node informs each of its neighbors of the piece of information
and the identity of its original source. The process operates for T periods, where T

is a positive integer.
There are many reasons to allow T to be finite. For instance, a new piece of

information may only be “news” for a limited time. After while boredom sets in or
some other news arrives and the topic of conversation changes. By allowing for a
variety of T ’s, di�usion centrality admits important finite-horizon cases, as well as
more extreme cases where agents discuss a topic indefinitely.8

Di�usion centrality measures how extensively the information spreads as a function
of the initial node. In particular, let

H(g; q, T ) :=
Tÿ

t=1

(qg)t ,

be the “hearing matrix.” The ij-th entry of H, H(g; q, T )
ij

, is the expected number
of times, in the first T periods, that j hears about a piece of information originating
from i. Di�usion centrality is then defined by

DC(g; q, T ) := H(g; q, T ) · 1 =
A

Tÿ

t=1

(qg)t

B

· 1.

So, DC(g; q, T )
i

is the expected total number of times that some piece of informa-
tion that originates from i is heard by any of the members of the society during a
T -period time interval.9 Banerjee et al. (2013) showed that di�usion centrality of the
initially informed member of a community was a statistically significant predictor of
the spread of information – in that case, about a microfinance program.

Note that this measure allows people to hear the information multiple times from
the same person and count those times as distinct reports, so that it is possible for
an entry of DC to be more than n. There are several advantages to defining it in
this manner. First, although it is possible via simulations to calculate a measure
8Of course this is an approximation and, moreover, di�erent people may have di�erent incentives to
pass news, or time horizons over which they do so. The current model and definition already moves
beyond the literature, but richer extensions would be easy to study.
9 We note two useful normalizations. One is to compare it to what would happen if q = 1 and
g were the complete network gc, which produces the maximum possible entry for each ij subject
to any T . Thus, each entry of DC(g; q, T ) could be divided through by the corresponding entry
of DC(gc; 1, T ). This produces a measure for which every entry lies between 0 and 1, where 1
corresponds to the maximum possible numbers of expected paths possible in T periods with full
probability weight and full connectedness. Another normalization is to compare a given node to
the total level for all nodes; that is, to divide all entries of DC(g; q, T ) by

q
i DCi(g; q, T ). This

normalization tracks how relatively di�usive one node is compared to the average di�usiveness in its
society.
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that tracks the expected number of informed nodes and avoids double-counting, our
expression is much easier to calculate. Second, for many parameter values, the two
measures are roughly proportional to each other. Third, this version of the measure
relates nicely to other standard measures of centrality in the literature, while a mea-
sure that adjusts for multiple hearing does not. Finally, in a world in which multiple
chances to hear the same thing lead to a greater probability of information retention,
this count might be a better predictor of actual learning.10

2.3. Properties of Di�usion Centrality. It is useful to first remind the reader of
di�usion centrality’s relationship relative to other prominent measures of centrality
in the literature, though a reader impatient to see our main results is welcome to
bypass this sub-section and return to it at a later stage. As we state in Banerjee
et al. (2013), as T is varied, di�usion centrality nests three of the most prominent
and widely used centrality measures: degree centrality, eigenvector centrality, and
Katz-Bonacich centrality. 11 It thus provides a foundation for these measures and
spans between them.

In particular, it is straightforward to see that (i) di�usion centrality is proportional
to degree centrality at the extreme at which T = 1, and (ii) if q < 1/⁄

1

, then
di�usion centrality coincides with Katz-Bonacich centrality if we set T = Œ. Also,
when q > 1/⁄

1

di�usion centrality approaches eigenvector centrality as T approaches
Œ.12 For completeness, a proof of the last claim and a formal statement of these
results appears in the appendix.

Between these extremes, di�usion centrality measures how di�usion process oper-
ates for some limited number of periods. As shown in Banerjee et al. (2013), the
behavior in the intermediate ranges can be more relevant for certain di�usion phe-
nomena than either extreme.

10One could also further enrich the measure by allowing for the forgetting of information, but with
three parameters the measure would start to become unwieldy.
11Let d(g) denote degree centrality: di(g) =

q
j gij . Eigenvector centrality corresponds to v

(1)(g):
the first eigenvector of g. Also, let KB(g, q) denote Katz-Bonacich centrality – defined for q < 1/⁄1

by KB(g, q) :=
1qŒ

t=1 (qg)t
2

· 1.

12It is useful to note that the di�erence between the extremes of Katz-Bonacich centrality and
eigenvector centrality depends on whether q is su�ciently small so that limited di�usion takes place
even in the limit of large T , or whether q is su�ciently large so that the knowledge saturates the
network and then it is only relative amounts of saturation that are being measured. Saturation
occurs when the entries of

1qŒ
t=1 (qg)t

2
· 1 diverge (note that in a [strongly] connected network, if

one entry diverges, then all entries diverge). Nonetheless, the limit vector is still proportional to a
well defined limit vector: the first eigenvector.
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Exactly how should one choose the “right” q and T? Clearly this must be context
dependent and should be treated as an empirical question. In some settings, people
interact or communicate all the time and so q will be high, while in others their
contact may be more limited, corresponding to a lower q. Likewise, there may be
some things that are long lasting in terms of discussion or di�usion, corresponding to
a high T , while others quickly subside, leading to a low q. Thus, the answer will be
determined by the specifics of the context and setting of the application.

Despite the fact that the “right” answer is context dependent, it is useful to identify
critical levels of q, T that di�erentiate the varying regimes of behavior of di�usion
centrality. Our earlier results relating di�usion centrality to other standard measures
at its extremes do not tell us at what levels of q, T we see fundamental changes in the
measure’s behavior. Here we provide some theoretical results on di�usion centrality
that show that di�usion centrality behaves fundamentally di�erently depending on
whether q is above or below 1/⁄

1

(the inverse of the first eigenvalue of g), and whether
T is smaller or bigger than the diameter of the graph. We use these to suggest that
the threshold case of q = 1/E[⁄

1

] and T = E[Diam(g)] provides a natural benchmark
value for these parameters.

The intuition behind these thresholds is as follows. Whether q is above or below
1/⁄

1

determines whether the sum in di�usion centrality converges or diverges – as we
know from spectral theory that the first eigenvalue of a matrix governs its expansion
properties. The role of T being above or below the diameter is also very intuitive.
In many classes of large random graphs, the average distance between most nodes is
actually almost the same as the diameter, something first discovered by Erdos and
Renyi. Thus, if T is below the diameter, news from any typical node will not have a
long enough time to reach most other nodes. In contrast, once T hits the diameter,
then that permits news from any typical node to reach most others. If one moves
beyond T , then many of the walks counted by gT begin to have “echoes” in them:
they visit the same node twice. For instance, news passing from node 1 to node 2 to
node 3 then back to node 2 and then to node 4, etc. Once most paths have echoes
in them, the measure begins to act di�erently, and that eventually converges to the
ergodic distribution, and essentially the first eigenvector (provided q is large enough
to get saturation).
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Here we report a theorem and corollary that formalize some of these intuitive
statements. To do this we consider a sequence of Erdos-Renyi networks, as those
provide for clear limiting properties.13

Let g(n, p) denote an Erdos-Renyi random network drawn on n nodes, with each
link having independent probability p. In the following, as is standard, p (and T ) are
functions of n, but we omit that notation to keep the expressions uncluttered. We also
allow for self-links for ease of calculations. We consider a sequence of random graphs
of size n and as is standard in the literature, consider what happens as n æ Œ.

Theorem 1. If T = o(pn), then E[DC(g(n,p);q,T )]

npq

1≠(npq)T

1≠npq

æ 1. 14

Theorem 1 provides an expression for how we expect di�usion centrality to behave
in large graphs. Provided that T grows at a rate that is not overly fast15, then we
expect di�usion centrality of a typical node to converge to npq 1≠(npq)

T

1≠npq

.
Theorem 1 thus provides us with the tool to see when a di�usion that begins at

a typical node is expected to reach other nodes or not, and leads to the following
corollary.

Corollary 1. Consider a sequence of Erdos-Renyi random networks g(n, p) for
which 1≠ÁÔ

n

Ø p Ø (1 + Á) log(n)

n

for some Á > 016 and any corresponding T = o(pn).

(1) A threshold q:
(a) If q = o(1/E[⁄

1

]), then E [DC (g(n, p); q, T )] æ 0.
(b) If 1/E[⁄

1

] = o(q), then E [DC (g(n, p); q, T )] æ Œ.17

(2) A threshold T :18

(a) If T < (1 ≠ Á)E[Diam(g(n, p))] for some Á > 0, then E[DC(g(n,p);q,T )]

n

æ 0.
(b) If T Ø E[Diam(g(n, p))] and q > 1/(E[⁄

1

])1≠Á for some Á > 0, then
E[DC(g(n,p);q,T )]

n

= �(1).

13These properties will extend to other classes of random graph models by standard arguments (e.g.,
see Jackson (2008a)), but a general exploration of such models takes us beyond our scope here.
14To remind the reader, f(n) = o(h(n)) for functions f, h if f(n)/h(n) æ 0, and f(n) = �(h(n)) if
there exists k > 0 for which f(n) Ø kh(n) for all large enough n.
15But note that it can be a rate that can tend to infinity and is already very permissive as it is far
beyond the growth of the diameter of the network. Here T can grow up to pn, which will generally
be larger than log(n), while diameter is proportional to log(n)/ log(pn).
16This ensures that the network is connected almost surely as n grows, but not so dense that the
diameter shrinks to be trivial. See Bollobas (2001).
17Note that E[⁄1] = np.
18Again, note that T = o(pn) is satisfied whenever T = o(log(n)), and thus is easily satisfied given
that diameter is proportional to log(n)/ log(pn) .
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Putting these results together, we know that by setting q = 1/E[⁄
1

] and T =
E[Diam(g)] we are at the point at which di�usion is just expected to reach a non-
trivial number of others from a typical node, but by moving either of the parameters
above or below this level, we would expect in a large network either to reach al-
most nobody or saturate the network. This makes DC (g; 1/E[⁄

1

], E[Diam(g(n, p))])
a nice benchmark centrality, which is what we use throughout the empirical sec-
tions. At these values it will di�er from both degree and eigenvector centrality (and
Katz-Bonacich centrality). Of course, fitting q, T from the data can provide for more
accurate measures as it will be tailored to the context and setting, but if one wishes
to use a benchmark measure that does not have free parameters, then these are the
parameter values that most clearly distinguish this measure from standard measures.

3. Relating Diffusion Centrality to Network Gossip

We now investigate whether and how individuals living in network g can end up
with knowledge of others’ positions in the network that correlates with di�usion
centrality without knowing anything about the network structure.

3.1. A Gossip Process. Di�usion centrality considers di�usion from the sender’s
perspective. Let us now consider the same stochastic information di�usion process
but from a receiver’s perspective. Over time, each individual hears information that
originates from di�erent sources in the network, and in turn passes that information
on with some probability. The society discusses each of these pieces of information
for T periods. The key point is that there are many such topics of conversation,
originating from all of the di�erent individuals in the society, with each topic being
passed along for T periods.

For instance, Arun may tell Matt that he has a new car. Matt then may tell Abhijit
that “Arun has a new car,” and then Abhijit may tell Esther that “Arun has a new
car.” Arun may also have told Ben that he thinks house prices will go up and Ben
could have told Esther that “Arun thinks that house prices will go up”. In this model
Esther keeps track of the cumulative number of times that bits of information that
originated from Arun reach her and compares it with the same number for information
that originated from other people. What is crucial, therefore, is that the news involves
the name of the node of origin – in this case “Arun” – and not what the information is
about. The first piece of news originating from Arun could be about something he has
done (“bought a car”) but the second could just be an opinion (“Arun thinks house
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prices will go up”). Esther keeps track of the fact that she has heard two di�erent
pieces of information originating from Arun.

Recall that
H(g; q, T ) =

Tÿ

t=1

(qg)t ,

is such that the ij-th entry, H(g; q, T )
ij

, is the expected number of times j hears a
piece of information originating from i.

We define the network gossip heard by node j to be the j-th column of H,

NG(g; q, T )
j

:= H(g; q, T )·j.

Thus, NG
j

lists the expected number of times a node j will hear a given piece of news
as a function of the node of origin of the information. So, if NG(g; q, T )

ij

is twice as
high as NG(g; q, T )

kj

then j is expected to hear news twice as often that originated
at node i compared to node k, presuming equal rates of news originating at i and k.

Note the di�erent perspectives of DC and NG: di�usion centrality tracks how well
information spreads from a given node, while network gossip tracks relatively how
often a given node hears information from (or about) each of the other nodes.

To end this sub-section two remarks are in order. First, one could allow passing
probabilities to di�er by information type and pairs of nodes.19 Indeed, in Banerjee
et al. (2013) we allowed di�erent nodes to pass information with di�erent probabilities,
and in Banerjee et al. (2014) we allow the probability of communication to depend
on the listener’s network position. Although one can enrich the model in many ways
to capture specifics of information passing, the current simple version captures basic
dynamics and relates naturally to centrality measures.

Second, we could allow nodes to di�er in how frequently they generate new infor-
mation which is then transmitted to its neighbors. Provided this transmission rate
is positively related to nodes’ centralities, the results that we present below still hold
(and, in fact, the speed of convergence would be increased). If the rate of genera-
tion of information about nodes is negatively correlated with their position, then our
results below would be attenuated.

19We can generalize our setup replacing q with a matrix Q. Now define

H(g; Q, T ) :=
A

Tÿ

t=1
(Q ¶ g)t

B
.

Here Q can have entries qij which allow the transmission probabilities to vary by pair. Note that qij

can depend on characteristics of those involve and encode strategic behavior based on the economics
being modeled.
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3.2. Identifying Central Individuals. With that measure of gossip in hand, we
show how individuals in a society can estimate who is central simply by counting
how often they hear gossip about others. We first show that, on average, individuals’
rankings of others based on NG

j

, the amount of gossip they heard about them, are
positively correlated with di�usion centrality.

Theorem 2. For any (g; q, T ), q
j

cov(DC(g; q, T ), NG(g; q, T )
j

) = var(DC). Thus,
in any network with di�erences in di�usion centrality among individuals, the average
covariance between di�usion centrality and network gossip is positive.

It is important to emphasize that although both measures, NG
i

and DC
i

, are based
on the same sort of information process, they are really two quite di�erent objects.
Di�usion centrality is a gauge of a node’s ability to send information, while the
network gossip measure tracks the reception of information by di�erent nodes. Indeed,
the reason that Theorem 2 is only stated for the sum rather than any particular
individual j’s network gossip measure is that for small T it is possible that some
nodes have not even heard about other nodes, and moreover they might be biased
towards their local neighborhoods.20

Next, we show that if individuals exchange gossip over extended periods of time,
every individual in the network is eventually able to perfectly rank others’ centralities.

Theorem 3. If q Ø 1/⁄
1

and g is aperiodic, then as T æ Œ every individual
j’s ranking of others under NG(g; q, T )

j

converges to be proportional to di�usion
centrality, DC(g; q, T ), and hence according to eigenvector centrality, v(1).

The intuition is that individuals hear (exponentially) more often about those who
are more di�usion/eigenvector central, as the number of rounds of communication
tends to infinity. Hence, in the limit, they assess the rankings according to di�u-
sion/eigenvector centrality correctly. The result implies that even with very little
computational ability beyond remembering counts and adding to them, agents can

20 One might conjecture that more central nodes would be better “listeners”: for instance, having
more accurate rankings than less central listeners after a small number of periods. Although this
might happen in some networks, and for many comparisons, it is not guaranteed. None of the cen-
trality measures considered here ensure that a given node, even the most central node, is positioned
in a way to “listen” uniformly better than all other less central nodes. Typically, even a most central
node might be farther than some less central node from some other important nodes. This can lead
a less central node to hear some things before even the most central node, and thus to have a clearer
ranking of at least some of the network before the most central node. Thus, for small T , the

q
is

important in Theorem 2.
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come to learn arbitrarily accurately complex measures of the centrality of everyone
in the network, including those with whom they do not associate.

More sophisticated strategies where individuals try to infer network topology, could
accelerate learning. Nonetheless, learning is possible even in an environment where
individuals do not know the structure of the network and do not tag anything but
the source of the information.

The restriction to q Ø 1/⁄
1

is important. When q tends to 0, individuals hear
about others in the network with vanishing frequency, and as a result, the network
distance between people can influence who they think is the most important.

4. Evidence: who are the gossips?

4.1. Data Collection. To investigate whether individuals’ nomination of who is best
at di�using is related to the nominee’s centrality, we use a unique network data that
we gathered from villages in rural Karnataka (India). The data consists of a complete
description of the network combined with “gossip” information for 35 villages.

To collect the network data (described in detail in Banerjee, Chandrasekhar, Duflo,
and Jackson (2013), and publicly available at http://economics.mit.edu/faculty/

eduflo/social), we asked adults to name those with whom they interact in the
course of daily activities.21 We have data concerning 12 types of interactions for a
given survey respondent: (1) whose houses he or she visits, (2) who visits his or
her house, (3) his or her relatives in the village, (4) non-relatives who socialize with
him or her, (5) who gives him or her medical help, (6) from whom he or she borrows
money, (7) to whom he or she lends money, (8) from whom he or she borrows material
goods (e.g., kerosene, rice), (9) to whom he or she lends material goods, (10) from
whom he or she gets important advice, (11) to whom he or she gives advice, (12) with
whom he or she goes to pray (e.g., at a temple, church or mosque). Using these data,
we construct one network for each village, at the household level where a link exists
between households if any member of either household is linked to any other member
of the other household in at least one of the 12 ways. Individuals can communicate if
they interact in any of the 12 ways, so this is the network of potential communications,
and using this network avoids the selection bias associated with data-mining to find
the most predictive subnetworks. The resulting objects are undirected, unweighted
networks at the household level.
21We have network data from 89.14% of the 16,476 households based on interviews with 65% of all
adult individuals aged 18 to 55. This is a new wave of data relative to our original microfinance
study.
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After this data was collected, to collect gossip data, we asked the adults the fol-
lowing two additional questions:

(Event) If we want to spread information to everyone in the village about tickets to a
music event, drama, or fair that we would like to organize in your village, to
whom should we speak?

(Loan) If we want to spread information about a new loan product to everyone in your
village, to whom do you suggest we speak?

Table 1 provides some summary statistics for our data. The networks are sparse: the
average number of households in a village is 196 with a standard deviation of 61.7,
while the average degree is 17.7 with a standard deviation of 9.8.

Only half of the households were willing to name a good “gossip”. This is in
itself intriguing. Perhaps people are unwilling to o�er an opinion when they are
unsure of the answer.22 Conditional on naming someone, however, there is substantial
concordance of opinion. Only 4% of households were nominated in response to the
Event question (and 5% for the Loan question) with a cross-village standard deviation
of 2%. Conditional on being nominated, the median household was nominated nine
times.23 This is perhaps a first indication that the answers may be meaningful, since if
people are good at identifying central individuals we would expect their nominations
to coincide.

We label as “leaders”, shopkeepers, teachers and leaders of self-help groups – 13%
of households fall into this category. This was how the microfinance organization
Bharatha Swamukti Samsthe (BSS) defined leaders, who were identified as people to
be seeded with information about their product. BSS’s theory was that such social
leaders were a priori likely to be important in the social learning process and thereby
would contribute to more di�usion of microfinance.24

4.2. Do individuals nominate central nodes? Our theoretical results suggest
that people can learn others’ di�usion or eigenvector centralities simply by tracking

22See Alatas et al. (2014) for a model that builds on this idea.
23We work at the household level, in keeping with Banerjee et al. (2013) who used households as
network nodes; a household receives a nomination if any of its members are nominated.
24In our earlier work, Banerjee et al. (2013), we show that there is considerable variation in the
centrality of these “leaders” in a network sense, and that this variation predicts the eventual take
up of microfinance.
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news that they hear through the network, and therefore should name central individ-
uals when asked whom to use as a “seed” for di�usion. In this section, we examine
whether this is the case.

4.2.1. Data description. Figure 1 shows that people who are nominated as gossips, as
well as people who are considered by the microfinance institution to be good “seeds”
for their product (the “leaders”) are significantly more central than randomly picked
households. Moreover, gossip nominees are more central than the leaders. Indeed,
47% of households that are both nominated and have a leader are in the top decile
of the eigenvector centrality distribution. Furthermore, 23% of the households that
are nominated but are not leaders are in the top decile of the centrality distribution,
while only 16% of households that are not nominated but have a leader, are in the
top decile of the eigenvector centrality distribution. Finally, only 7% of households
that are not nominated and contain no leader are in the top decile of the eigenvector
centrality distribution.25

Figure 2 presents the distribution of nominations as a function of the network
distance from a given household. If information did not travel well through the social
network, we might imagine that individuals would only nominate households with
whom they are directly connected. Panel A of Figure 2 shows that less than 20% of
individuals nominate someone within their direct neighborhood, compared to about
10% of nodes within this category. At the same time, over 27% of nominations come
from a network distance of at least three or more (40% of nodes are in these category).
Therefore, while respondents tend to nominate people who are closer to them than
the average person in the village, they are also quite likely to nominate someone who
is far away. Moreover, it is important to note that highly central individuals are
generally closer to people than the typical household (since they have many friends –
the famous “friendship paradox”), so it does make sense that people tend to nominate
individuals who are closer to them. Taken together, this suggests that information
about centrality does indeed travel through the network.

Furthermore, Panel B of Figure 2 shows that the average eigenvector centrality
percentile of those named at distance 1 is the same as at distance 2 or distance 3
or more. This suggests that individuals have reasonable and comparably accurate

25The di�erence between the 23% of households that are in the top decile given that they are
nominated but not leaders and the 16% in the top decile given that they are not nominated but are
leaders is significant with a p-value of 0.00 under a Welch test.
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information about central individuals in the community who are near or far from
them.

4.2.2. Regression Analysis. Motivated by this evidence, we present a more systematic
analysis of the correlates of nominations, using a discrete choice framework for the
decision to nominate someone.

Our theory suggests that if people choose whom to nominate based on who they
hear about most frequently, then di�usion centrality should be a leading predictor of
nominations. While the aforementioned results are consistent with this prediction,
there are several plausible alternative interpretations which do not rely on the infor-
mation mechanism we outline in the model. For example, individuals may nominate
the person with the most friends, and people with many friends tend to be more
di�usion central than those with fewer friends (i.e., di�usion centrality with T = 1
and T > 1 can be positively correlated). Alternatively, it may be that people simply
nominate the “leaders” within their village, or people who are central geographically,
and these also correlate with di�usion/eigenvector centrality. There are indeed a pri-
ori reasons to think that leadership status and geography may be good predictors
of network centrality, since, as noted in Banerjee et al. (2013), the microfinance or-
ganization selected “leaders” precisely because they believed these people would be
informationally central. Previous research has also shown that geographic proximity
increases the probability of link formation (Fafchamps and Gubert, 2007; Ambrus
et al., 2014; Chandrasekhar and Lewis, 2014) and therefore one might expect geo-
graphic data to be a useful predictor of centrality. In addition to leadership data we
have detailed GPS coordinates for every household in each village. We include these
in our analysis below as controls.26

To deal with this concern we show that our di�usion centrality measure does not
simply pick out degree centrality, geography or traditional leadership. We recognize
that the correlations below do not constitute proof that the causal mechanism is
indeed gossip, but they do rule out these obvious confounding factors.

26To operationalize geographic centrality, we use two measures. The first uses the center of mass.
We compute the center of mass and then compute the geographic distance for each agent i from
the center of mass. Centrality is the inverse of this distance, which we normalize by the standard
deviation of this measure by village. The second uses the geographic data to construct an adjacency
matrix. We denote the ij entry of this matrix to be 1

d(i,j) where d(·, ·) is the geographic distance.
Given this weighted graph, we compute the eigenvector centrality measure associated with this
network. Results are robust to either definition.
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To operationalize our analysis we use DC (1/E[⁄
1

], E[Diam(g(n, p))]) as our mea-
sure of di�usion centrality, as discussed in Section 2.3. This is what we mean when
we refer to di�usion centrality.

We estimate a discrete choice model of the decision to nominate an individual.
Note that we have large choice sets as there are n ≠ 1 possible nominees and n nomi-
nators per village network. We model agent i as receiving utility u

i

(j) for nominating
individual j:

u
i

(j) = – + —Õx
j

+ “Õz
j

+ µ
v

+ ‘
ijv

,

where x
j

is a vector of network centralities for j (eigenvector centrality, di�usion
centrality and degree centrality), z

j

is a vector of demographic characteristics (e.g.,
leadership status, geographic position and caste controls), µ

v

is a village fixed e�ect,
and ‘

ijv

is a Type-I extreme value distributed disturbance. For convenience given the
large choice sets, we estimate the conditional logit model by an equivalent Poisson
regression, where the outcome is the expected number of times an alternative is
selected (Palmgren, 1981; Baker, 1994; Lang, 1996; Guimaraes et al., 2003). This is
presented in Panel A of Table 2. For comparison, Panel B presents the corresponding
OLS results.

We begin with a number of bivariate regressions in Table 2. First we show that
di�usion centrality is a significant driver of an individual nominating another (column
1). A one standard deviation increase in di�usion centrality is associated with a 0.607
log-point increase in the number of others nominating a household (statistically sig-
nificant at the 1% level). Columns 2 to 5 repeats the exercise with two other network
statistics (degree and eigenvector centrality), with the “leader” dummy, and with
an indicator for geographic centrality. All of these variables, except for geographic
centrality, predict nomination, and the coe�cients are similar in magnitude.

The di�erent network centrality measures are all correlated. To investigate whether
di�usion centrality remains a predictor of gossip nomination after controlling for the
other measures, we start by introducing them one by one as controls in column 1 to 4
in Table 3. Degree and eigenvector centrality are insignificant, and do not a�ect the
coe�cient of di�usion centrality. The leader dummy continues to be significant, but
the coe�cient of di�usion centrality remains strong and significant. The geographic
centrality variable now has a negative coe�cient, and does not a�ect coe�cient of
the di�usion centrality variable.
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Our results provide suggestive evidence that a key driver of the nomination decision
involves di�usion centrality with T > 1. The point estimates point towards the
di�usion centrality as the most robust predicting factor.

To confirm this pattern, in the last column of Table 3, we introduce all the variable
together and perform a LASSO analysis which “picks” out the variables that are
strongly associated with the nomination variable. Specifically, we use the post-LASSO
procedure of Belloni and Chernozhukov (2009). It is a two-step procedure. In the
first step, standard LASSO is used to select the support: which variables matter in
predicting our outcome, the number of nominations. In the second step, standard
OLS (or Poisson, for Panel A) is run on the support selected in the first stage.27

,

28

Interestingly, LASSO picks out only one variable: di�usion centrality. The post-
LASSO coe�cient and standard error thus exactly replicate the OLS of using just
di�usion centrality. This confirms that di�usion centrality is the key predictor of
gossip nomination.

5. Experiment: Do gossip nominees spread information widely?

We have shown that individuals nominate central people in the network. Prior
research demonstrated that providing information to more central individuals leads
to greater di�usion (Banerjee et al., 2013; Beaman et al., 2014). Therefore, a natural
question is whether using our gossip nomination protocol picks out those individuals
that lead to faster di�usion of information compared to other obvious ways of choosing
the seeds This is the most relevant policy implication of our theory.

5.1. Information Di�usion and Gossip Seeding. We want to compare seeding
information to gossips (nominees) to two benchmarks: (1) a set of village elders and
(2) randomly selected households. Seeding information among random households
provides the most relevant benchmark because it allows us to study how informa-
tion circulates starting from random (non gossip) households. Seeding information
with village elders provides an interesting benchmark because they are traditionally
respected as social and political leaders. They are generally easy to identify, and it

27The problem with the returned coe�cients from LASSO in the first step is that it shrinks the
coe�cients towards zero. Belloni and Chernozhukov (2009), Belloni et al. (2014b) and Belloni et al.
(2014a) show that running out usual OLS on the support selected in the first stage in a second step
will recover consistent estimates for the parameters of interest.
28To our knowledge, the post-LASSO procedure has not been developed for nonlinear models, so we
only conduct selection using OLS.



GOSSIP: IDENTIFYING CENTRAL INDIVIDUALS IN A SOCIAL NETWORK 18

could be, for instance, that information spreads widely only if it has the backing of
someone who can influence opinion, not just convey information.

We conducted an experiment in 213 new villages in Karnataka that were not in-
volved in the microfinance di�usion project, and where we had not worked before. In
every village, we attempted to contact k households and inform them about a pro-
motion run by our partner, a cellphone sales firm, that gave them a chance to enroll
in a (non-rival) ra�e to win a new mobile phone or a cash prize.29 These individuals
were encouraged to inform others in their community about the promotion. If an
individual in the village heard about the promotion, she could give us a call to take
part30 Our primary outcome data is thus the number of calls from unique households
that we received31. In half of the villages, we set k = 3 and in half of the villages we
set k = 5.

We randomly divided the sample of 213 into three arms of 71 villages, where the k

seeds were selected as follows.

T1. Village Elders: k households were chosen from a list of village elders obtained
one week prior, by interviewing up to 15 households in the village (selected
randomly via circular random sampling via the right-hand rule method that
is commonly used in surveying).32

T2. Random: k households were chosen uniformly at random, also using the right-
hand rule method and going to every n/k households.

T3. Gossip: k households were chosen from a list of gossip nominees obtained
one week prior, by interviewing up to 15 households in the village (selected
randomly via circular random sampling).

29The promotion was as follows. If an individual gave us a call, we would enter them in a non-
rival ra�e. We would then come to the village a week later and give every entered individual the
opportunity to win a cellphone. The subject rolls a pair of dice and if she rolls a 12 she wins the
phone. If she rolled less than a 12, lesser (but still substantial for these villagers), cash prizes of 25
to 275 rupees were given out. These terms were explained to the seeds and to the callers when they
called to enter the ra�e.
30In fact, we used what are known as “missed calls”, a Indian institution. It is a call that is not
picked up (and thus not charged) but serves as a ping, which we then call back so that the villagers
are not charged for the call.
31Seed calls are included but there are seed number fixed e�ects.
32Circular sampling is a standard survey methodology where the enumerator starts at the end of
a village and, using a right-hand rule, spirals throughout the entire village, when enumerating
households.
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The main outcome variable we are interested in is the number of calls we received.
This represents the number of people who heard about the promotion and wanted to
participate.

Given that the seeding does not exclude gossips in random villages, in some random
villages gossip nominees were included in our seeding set by chance. We reclassify
these villages as gossip seeding, so the random benchmark should be interpreted, as
intended, as random conditional on none of the seed households being gossip nomi-
nees. Gossip seeding should be interpreted as “at least one seed is a gossip nominee”.
The reclassification is valid because the selection of households under this treatment
is random, and hence the re-classification is random.

Subsequently, we collected full network data in 69 of the 71 villages in group T2
(two villages were no longer accessible to our surveyors). This data is used in Tables
6 and 7.

Figure 3 presents the results graphically. The distribution of calls in the gos-
sip villages clearly stochastically dominates that of the leader and random graphs.
Moreover, the incidence of a di�usive event, where a large number of calls is received,
is rare when we seed information randomly or with village elders – but we do see such
events when we seed information with gossip nominees.

Table 4 presents the regression analysis. Columns (1) and (2) do not include any
controls. Columns (3) and (4) control for a potentially endogenous variable, “non
broadcast communication”: in one village the seed (a gossip nominee) made a flyer
and printed many photocopies to advertise the promotion. The number of calls
received in this village (106 calls) is much larger than the median of 5 in the gossip
villages and 3 in the entire sample. The 95th percentile is 39 in the full sample and
47 in the gossip sample. The results are similar, showing that this village does not
drive this result.

In columns (1) and (3) the outcome variable is the number of calls received. In the
village elder treatment, we receive 5.5 phone calls on average, whereas in the random
treatment we receive 3.9 calls on average. When the seeds are gossip nominees, we
receive 13.8 calls on average. In columns (2) and (4) we normalize by the number
of seeds. In the random seeding treatment we receive just over 1 calls per seed,
which increases to about 1.4 call per seed in the village elder treatment (though the
di�erence is not significant). In contrast, under gossip seeding we have 3.54 calls
per seed, more than 3 times the ratio. This is our key experimental result: gossip
nominees are indeed extremely good starting points to di�use a piece of information.
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5.2. Mechanism: does gossip seed di�usion capture di�usion centrality? We
have seen in the first section of the paper that villagers seem to nominate individuals
who are di�usion central. In our previous work (Banerjee, Chandrasekhar, Duflo,
and Jackson, 2013), we showed that di�usion central seeds are associated with faster
di�usion. To what extent is the faster di�usion of information in the experiment
mediated by the di�usion centrality of the gossip seeds, and to what extent does it
reflect the villagers’ ability to capture other dimensions of individuals that would
make them good at di�using information?

To get at this issue, a few weeks after the experiment, we collected complete network
data sample in 69 villages where seeds were randomly selected (2 of the 71 village
were no longer accessible). In these villages, by chance, some seeds happen to be
gossips and/or elders. We create a measure of centrality that exactly parallels the
gossip dummy and elder dummy by forming a dummy for “high di�usion centrality”.
A household has “high di�usion centrality” if its di�usion centrality is greater than
one standard deviation above the mean. As reported in Table 5, with this measure
24 villages have exactly one high di�usion centrality seed and 14 have more than one.
For comparison, 23 villages have exactly one gossip seed, and 8 have more than one.

In Panel A of Table 6, we run Poisson regressions where the dependent variable
is the number of calls we received, without control variables. As before, Panel B
controls for the “broadcast di�usion” (the village where a flyer was made by one of
the seeds and photocopies were distributed throughout the village, and where we
received 106 calls while the next highest number of calls in the random sample was
58). This is an endogenous control variable, but an important one (since the di�usion
does not take place via the network learning model). This village’s seeds happened
to include two gossips, but none with high di�usion centrality. Table 7 performs the
same regressions, but using an OLS specification, and the results are qualitatively
very similar.

Column 1 of Table 6 shows that more calls are received when enough seeds have high
di�usion centrality, although the significance of the results is strongly influenced by
the single “broadcast village”. Without a control for this, in the Poisson specification
the coe�cient of at least one highly di�usion central seed is -0.0677, at least 2 is
0.59, and 3 or more 0.335. With control for broadcast di�usion, the coe�cient of at
least one high di�usion centrality seed is 0.348 (not significant), at least 2 is 1.008
(p value = 0.006), and 3 or more is 0.677 (p value = 0.056). In Table 7 we see that
we receive on average 6.9 (9.8) more calls if we reached at least two high di�usion
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centrality seeds without (with) control for broadcast di�usion. Although controlling
for the broadcast di�usion does not produce results that are statistically di�erent
from those without controls, the point estimates are larger and the standard errors
smaller because the broadcast village is a huge outlier in terms of number of calls, and
the seed was a gossip who was not central. With this caveat, this result confirms the
non-experimental results from our previous work that di�usion centrality captures
the potential of seeds to di�use information in a network.

Column 2 of both tables shows the impact of hitting the gossip seeds. For instance,
in Table 7 we see with one gossip seed reached, the coe�cient is positive but not
significantly di�erent from 0, but with 2, it is large and significant: we received 12
more calls if we reached two gossip seeds than if we reach none (24 if we do not control
for the broadcast village!). Column 3 shows no e�ect of reaching elders. Columns 4
introduces gossip and high centrality dummies together. The results are somewhat
noisy since the variables are collinear (as we saw before), but the key result is that
the point estimate of the coe�cient on there being “two gossips” remains large and
significant in all specifications (OLS, Poisson, with and without control for broadcast).

Taken together, the results show that di�usion centrality captures part of the im-
pact of gossip, but not all of it. An obvious example of something that is not captured
by centrality is the fact that the gossip in the broadcast village had imaginative ways
of conveying information (e.g., by making a poster), and people knew that, which is
why they nominated this person in the first place. Note, however, that the impact
of gossip seeds remains strong after controlling for the centrality of seeds, even in
villages where there was no broadcasting. This suggests that there are other features
of gossip nominees that make them good at di�using information, and villagers must
know about these traits.

To further explore this, in column 7, we implement a LASSO procedure to check
whether the value of gossip seeds in explaining calls is robust to the inclusion of other
controls. Following Belloni et al. (2014b), we perform a double-post LASSO to select
the optimal set of control variables in a regression of calls on gossip nominations.
Our basic regression relates y (number of calls) to Z (gossip variables) and some set
of control variables X (di�usion centrality, elder dummies, etc.). We first perform
a LASSO of Z on X to select the variables in X that are relevant in explaining Z

(step 1). We then perform a LASSO of y on X, to select the control variable that are
important in explaining y (step 2). Finally we perform a regression of y on Z and the
union of variables that were selected in step 1 and in step 2. Belloni et al. (2014b)
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shows that this method has the following desirable properties: it allows for imperfect
model selection and allows for robust estimation and inference even if the underlying
assumptions about the sparsity of the data generating process does not exactly hold.
In our case, no control variable is selected in step 1 or in step 2 (regardless of whether
we control for broadcast), so we end up regressing number of calls on the number of
gossip seed dummies. This means that none of the other variables at our disposal
su�ciently explain variation in the number of calls or gossip nomination itself so as to
be selected as a control when looking at the partial correlation of gossip nomination
with number of calls. The exercise confirms that having seeds that are gossips is
strongly correlated with number of calls: having two gossip seeds corresponds to
about 24 more calls received.

To summarize, this subsection presents some evidence in favor of the mechanism
we emphasize in the model, but also highlights the fact that the gossip variable is
actually a richer and more important proxy of information di�usion than the model
based measure. Gossip seeds tend to be highly central, and information does spread
faster from highly central seeds. This accounts for some part of the reason why
information di�uses rapidly from gossip nominated seeds. At the same time it is also
clear that the model does not capture the entire reason why gossip seeds are best to
di�use information: even controlling for their di�usion centrality, gossip seeds still
lead to faster di�usion. Furthermore, we find that being nominated as a gossip is
the only factor that predicts di�usion. There are clearly other factors that predict
whether a seed will be good at di�using information beyond their centrality (altruism,
interest in the information, etc.) and villagers seem to be good at capturing those
factors.

6. Conclusion

Our model illustrates that it should be easy for even very myopic and non-Bayesian
agents, simply by counting, to have an idea of who is central in their community
(according to fairly complex definitions). Motivated by this, we asked villagers to
identify central individuals in their village. They do not simply name locally central
individuals (the most central among those they know), but actually name ones that
are globally central within the village. Moreover, in a specially designed experiment,
we find that nominated individuals are indeed extremely e�ective at di�using infor-
mation. This suggests that individuals may use simple protocols to learn valuable
things about the complex systems within which they are embedded.
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While our model focuses on the network-based mechanics of communication, in
practice, considerations beyond simple network position may determine who the
“best” person is to spread information, as other characteristics may a�ect the qual-
ity and impact of communication. It seems that villagers take such characteristics
into account and thus nominate individuals who are even more successful at di�using
information than the most central individual in the network.

Our findings have important policy implications, since such nomination data are
easily collected and therefore can be used in a variety of contexts, either on their own
or combined with other easily collected data, to identify who would be a good seed
for information di�usion. Thus, using this sort of protocol may be a cost-e�ective
way to improve di�usion and outreach.

Beyond these applications, the work presented here opens a rich agenda for further
research, as one can explore which other aspects of agents’ social environments can
be learned in simple ways. For example, can individuals also identify individuals
who are trusted and trusted by others? A piece of information about a ra�e is
probably innocuous enough to be transmitted by a “gossip”, but what about advice
on immunization, for example?
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Figure 1. This figure uses the Phase 1 dataset. The probability that
a randomly chosen node with a given classification (whether or not it is
nominated under the event question and whether or not it has a village
leader) is in the top decile of the eigenvector centrality distribution.
95% confidence intervals are displayed.
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Figure 2. Distribution of centralities of nominees with the Phase 1
dataset.
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Tables

Table 1. Summary Statistics

mean sd
households per village 196 61.70
household degree 17.72 (9.81)
clustering in a household’s neighborhood 0.29 (0.16)
avg distance between nodes in a village 2.37 (0.33)
fraction in the giant component 0.98 (0.01)
is a “leader” 0.13 (0.34)
nominated someone for event 0.38 (0.16)
nominated someone for loan 0.48 (0.16)
was nominated for event 0.04 (0.02)
was nominated for loan 0.05 (0.03)
number of nominations received for loan 0.45 (3.91)
number of nominations received for event 0.34 (3.28)
Notes: This table presents summary statistics from the
Phase 1 dataset: 35 villages of the Banerjee et al. (2013)
networks dataset where nomination data was originally
collected in 2011/2012. For the variables “nominated
someone for loan (event)” and “was nominated for loan
(event)” we present the cross-village standard deviation.
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Table 2. Factors predicting nominations

Panel A: Poisson Regression (1) (2) (3) (4) (5)

Di�usion Centrality 0.607***
(0.085)

Degree Centrality 0.460***
(0.078)

Eigenvector Centrality 0.605***
(0.094)

Leader 0.868***
(0.288)

Geographic Centrality -0.082
(0.136)

Observations 6,466 6,466 6,466 5,733 6,466
Panel B: OLS (1) (2) (3) (4) (5)

Di�usion Centrality 0.285***
(0.060)

Degree Centrality 0.250***
(0.061)

Eigenvector Centrality 0.283***
(0.064)

Leader 0.422**
(0.172)

Geographic Centrality -0.025
(0.038)

Observations 6,466 6,466 6,466 5,733 6,466
Notes: This table uses data from the Phase 1 dataset. Panel A reports estimates
of Poisson regressions where the outcome variable is the expected number of
nominations under the event question. Panel B reports the same using OLS. Re-
sults are robust to including caste fixed e�ects and village fixed e�ects, available
upon request. Degree centrality, eigenvector centrality and di�usion centrality,
DC (g; 1/E[⁄

1

], E[Diam(g(n, p))]), are normalized by their standard deviations.
Standard errors (clustered at the village level) are reported in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table 3. Factors predicting nominations

Panel A: Poisson Regression (1) (2) (3) (4) (5)

Di�usion Centrality 0.642*** 0.354** 0.553*** 0.606*** 0.607***
(0.127) (0.176) (0.098) (0.085) (0.085)

Degree Centrality -0.039
(0.101)

Eigenvector Centrality 0.283
(0.186)

Leader 0.541*
(0.305)

Geographic Centrality -0.082
(0.142)

Observations 6,466 6,466 5,733 6,466 6,466
Post-LASSO X
Panel B: OLS (1) (2) (3) (4) (5)

Di�usion Centrality 0.303*** 0.161* 0.278*** 0.285*** 0.285***
(0.091) (0.087) (0.069) (0.060) (0.060)

Degree Centrality -0.020
(0.066)

Eigenvector Centrality 0.138
(0.095)

Leader 0.297
(0.175)

Geographic Centrality -0.026
(0.039)

Observations 6,466 6,466 5,733 6,466 6,466
Post-LASSO X
Notes: This table uses data from the Phase 1 dataset. Panel A reports esti-
mates of Poisson regressions where the outcome variable is the expected number
of nominations under the event question. Panel B reports the same using OLS.
Results are robust to including caste fixed e�ects and village fixed e�ects, avail-
able upon request. Degree centrality, eigenvector centrality and di�usion central-
ity, DC (g; 1/E[⁄

1

], E[Diam(g(n, p))]), are normalized their standard deviations.
Column (5) uses a post-LASSO procedure where in the first stage LASSO is im-
plemented to select regressors and in the second stage the regression in question
is run on those regressors. Omitted terms indicate they were not selected in the
first stage. Standard errors (clustered at the village level) are reported in paren-
theses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 4. Calls received by treatment

(1) (2) (3) (4)
Calls Received Calls Received Calls Received

Seeds
Calls Received

Seeds

Gossip HHs Informed 9.875*** 8.997*** 2.498*** 2.196***
(2.075) (1.898) (0.568) (0.485)

Elders Informed 1.632 1.632 0.443 0.443
(1.284) (1.287) (0.371) (0.372)

Constant (Random Non-Gossip) 3.889*** 3.889*** 1.044*** 1.044***
(0.743) (0.745) (0.213) (0.214)

Observations 213 213 213 213
R-squared 0.081 0.246 0.068 0.333
Broadcast Control X X
Notes: This table uses data from the Phase 2 experimental dataset. Columns (1) and (2) use the
number of calls received as the outcome variable. Columns (3) and (4) normalize the number of calls
received by the number of seeds, 3 or 5, which is randomly assigned. Columns (2) and (4) control for
broadcast. Robust standard errors are reported in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1.
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Table 5. Number of seeds by type

None Exactly 1 Exactly 2 3 or more
High Di�usion Centrality 30 24 12 2
Gossip Nomination 37 23 8 1
Elder 53 10 5 0
Notes: This table presents summary statistics from the 69 random
villages in the Phase 2 experiment, where we collected network data.
We were unable to collect network data from 2 villages due to is-
sues of conflict and we omit one village where a seed made fliers. A
seed is considered to have high di�usion centrality if it is at least
one standard deviation above the mean in terms of centrality.
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Table 6. Calls received by seed traits, Poisson Regression

Panel A: No control for broadcast di�usion (1) (2) (3) (4) (5) (6) (7)

1 High DC Seed -0.0677 -0.302 -0.0477 -0.247
(0.433) (0.437) (0.431) (0.377)

2 High DC Seeds 0.590 -0.0329 0.645 0.190
(0.437) (0.652) (0.415) (0.528)

At least 3 High DC Seeds 0.335 -0.571 0.671 0.431
(0.374) (0.618) (0.498) (0.479)

1 Gossip Nominations 0.536 0.547 0.719* 0.524
(0.383) (0.455) (0.433) (0.374)

2 Gossip Nominations 1.721*** 1.754** 2.054*** 1.593***
(0.514) (0.705) (0.587) (0.439)

At least 3 Gossip Nominations -0.0732 0.0648 0.139 -0
(0.378) (0.489) (0.456) (0.240)

1 Elder 0.225 -0.0587 -0.393
(0.385) (0.342) (0.374)

2 Elders -0.591 -0.828* -1.794***
(0.518) (0.486) (0.653)

Observations 69 69 69 69 69 69 69
Double Post-LASSO X
Control for broadcast di�usion
Panel B: Control for broadcast di�usion (1) (2) (3) (4) (5) (6) (7)

1 High DC Seed 0.348 0.237 0.365 0.226
(0.336) (0.343) (0.335) (0.349)

2 High DC Seeds 1.008*** 0.750* 1.021*** 0.777*
(0.348) (0.419) (0.346) (0.422)

At least 3 High DC Seeds 0.677** 0.252 0.970** 0.757
(0.329) (0.370) (0.465) (0.499)

1 Gossip Nominations 0.397 0.234 0.354 0.524
(0.370) (0.378) (0.393) (0.374)

2 Gossip Nominations 1.108*** 0.788** 1.087*** 1.593***
(0.369) (0.401) (0.389) (0.439)

At least 3 Gossip Nominations -0.299 -0.371 -0.311 -0
(0.330) (0.326) (0.334) (0.240)

1 Elder 0.378 0.0228 -0.172
(0.393) (0.345) (0.338)

2 Elders -0.408 -0.683 -1.227**
(0.485) (0.484) (0.546)

Observations 69 69 69 69 69 69 69
Double Post-LASSO X
Control for broadcast di�usion X X X X X X X
Notes: This table presents data from the 69 random villages in the Phase 2 experiment, where we collected net-
work data. The table presents Poisson regressions of number of calls received by characteristics of the set of seeds.
High DC refers to a seed being above the mean by one standard deviation of the centrality distribution. Columns
(1)-(6) control for number of seeds, village size and the interaction. Panel A does not control for the broadcast
di�usion village whereas Panel B does. Column (7) performs a double post-LASSO procedure, to select optimal
controls in a regression of number of calls on gossip variables, where the set of controls are di�usion centrality
dummies, elder dummies, number of seeds, village size, and the interaction. No controls are selected by the pro-
cedure. Robust standard errors are used.
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Table 7. Calls received by seed traits, OLS

Panel A: No control for broadcast di�usion (1) (2) (3) (4) (5) (6) (7)

1 High DC Seed -0.775 -2.728 -0.731 -2.876
(4.067) (4.406) (4.114) (4.439)

2 High DC Seeds 6.861 0.990 7.227 1.782
(5.562) (8.087) (5.389) (7.656)

At least 3 High DC Seeds 3.173 -8.125 6.142 -2.805
(3.551) (10.86) (4.729) (7.310)

1 Gossip Nominations 4.229 4.209 6.492 4.130
(3.657) (4.589) (5.292) (3.312)

2 Gossip Nominations 24.42* 24.90* 29.50* 23.50**
(12.38) (14.71) (15.55) (11.17)

At least 3 Gossip Nominations -0.758 0.580 0.915 -0
(3.781) (4.694) (4.654) (1.473)

1 Elder 2.432 -0.314 -4.320
(4.874) (4.524) (5.526)

2 Elders -4.110 -6.131* -16.14*
(3.283) (3.595) (8.778)

Observations 69 69 69 69 69 69 69
Double Post-LASSO X
Control for broadcast di�usion
Panel B: Control for broadcast di�usion (1) (2) (3) (4) (5) (6) (7)

1 High DC Seed 2.190 1.313 2.180 1.051
(2.659) (2.680) (2.718) (2.767)

2 High DC Seeds 9.843** 7.372 9.836** 7.265
(4.693) (5.403) (4.676) (5.478)

At least 3 High DC Seeds 5.377** 0.906 7.709* 3.765
(2.672) (3.712) (4.094) (3.782)

1 Gossip Nominations 2.929 1.517 2.704 4.130
(3.401) (3.788) (4.013) (3.312)

2 Gossip Nominations 12.12** 9.352 12.31** 23.50**
(4.847) (5.630) (4.910) (11.17)

At least 3 Gossip Nominations -2.959 -3.184 -2.792 -0
(3.194) (3.363) (3.391) (1.473)

1 Elder 3.945 0.568 -1.274
(4.836) (4.458) (4.337)

2 Elders -2.567 -4.698 -9.080**
(2.821) (3.609) (4.505)

Observations 69 69 69 69 69 69 69
Double Post-LASSO X
Control for broadcast di�usion X X X X X X X
Notes: This table presents data from the 69 random villages in the Phase 2 experiment, where we collected
network data. The table presents Poisson regressions of number of calls received by characteristics of the
set of seeds. High DC refers to a seed being above the mean by one standard deviation of the centrality
distribution. Columns (1)-(6) control for number of seeds, village size and the interaction. Panel A does not
control for the broadcast di�usion village whereas Panel B does. Column (7) performs a double post-LASSO
procedure, to select optimal controls in a regression of number of calls on gossip variables, where the set of
controls are di�usion centrality dummies, elder dummies, number of seeds, village size, and the interaction.
No controls are selected by the procedure. Robust standard errors are used.
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Appendix A. Proofs

A.1. Relation of Di�usion Centrality to Other Measures.
We prove all of the statements for the case of weighted and directed networks.
Let v(L,k) indicate k-th left-hand side eigenvector of g and similarly let v(R,k) indicate

g’s k-th right-hand side eigenvector. In the case of undirected networks, v(L,k) = v(R,k).
In the case of directed networks, eigenvector v(1) in the main body corresponds to
v(R,1).

Let d(g) denote degree centrality (so d
i

(g) = q
j

g
ij

). Eigenvector centrality corre-
sponds to v(1)(g): the first eigenvector of g. Also, let KB(g, q) denote Katz-Bonacich
centrality – defined for q < 1/⁄

1

by:33

KB(g, q) :=
A Œÿ

t=1

(qg)t

B

· 1.

It is direct to see that (i) di�usion centrality is proportional to degree centrality at
the extreme at which T = 1, and (ii) if q < 1/⁄

1

, then di�usion centrality coincides
with Katz-Bonacich centrality if we set T = Œ. We now show that when q > 1/⁄

1

di�usion centrality approaches eigenvector centrality as T approaches Œ, which then
completes the picture of the relationship between di�usion centrality and extreme
centrality measures.

The di�erence between the extremes of Katz-Bonacich centrality and eigenvector
centrality depends on whether q is su�ciently small so that limited di�usion takes
place even in the limit of large T , or whether q is su�ciently large so that the knowl-
edge saturates the network and then it is only relative amounts of saturation that are
being measured.34

Theorem A.1.

(1) Di�usion centrality is proportional to degree when T = 1:

DC (g; q, 1) = qd (g) .

33See (2.7) in Jackson (2008b) for additional discussion and background. This was a measure first
discussed by Katz, and corresponds to Bonacich’s definition when both of Bonacich’s parameters
are set to q.
34Saturation occurs when the entries of

1qŒ
t=1 (qg)t

2
· 1 diverge (note that in a [strongly] con-

nected network, if one entry diverges, then all entries diverge). Nonetheless, the limit vector is still
proportional to a well defined limit vector: the first eigenvector.
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(2) If q Ø 1/⁄
1

and g is aperiodic, then as T æ Œ di�usion centrality approxi-
mates eigenvector centrality:

lim
T æŒ

DC (g; q, T )
q

T

t=1

(q⁄
1

)t

= v(1).

(3) For T = Œ and q < 1/⁄
1

, di�usion centrality is Katz-Bonacich centrality:

DC (g; q, Œ) = KB (g, q) ; q < 1/⁄
1

.

This is a result we mention in Banerjee, Chandrasekhar, Duflo, and Jackson (2013).
An independent formalization appears in Benzi and Klymko (2014).

We also remark on the comparison to another measure: the influence vector that
appears in the DeGroot learning model (see, e.g., Golub and Jackson (2010)). That
metric captures how influential a node is in a process of social learning. It corre-
sponds to the (left-hand) unit eigenvector of a stochasticized matrix of interactions
rather than a raw adjacency matrix. While it might be tempting to use that metric
here as well, we note that it is the right conceptual object to use in a process of
repeated averaging through which individuals update opinions based on averages of
their neighbors’ opinions. It is thus conceptually di�erent from the di�usion process
that we study. Nonetheless, one can also define a variant of di�usion centrality that
works for finite iterations of DeGroot updating.

Proof of Theorem A.1. We show the second statement as the others follow di-
rectly.

First, consider any irreducible and aperiodic nonnegative (and hence primitive) g.
If the statement holds for any arbitrarily close positive and diagonalizable gÕ (which
are dense in a nonnegative neighborhood of g), then since DC(g;q,T )qT

t=1(q⁄1)

t is a continuous
function (in a neighborhood of a primitive g, which has a simple first eigenvalue) as
is the first eigenvector, then the statement also holds at g.35 Thus, it is enough to
prove the result for a positive and diagonalizable g.

We show the following for a positive and diagonalizable g:
• If q > ⁄≠1

1

, then

lim
T æŒ

DC (g; q, T )
q

T

t=1

(q⁄
1

)t

= lim
T æŒ

DC (g; q, T )
q⁄1≠(q⁄1)

T +1

1≠(q⁄1)

= v(R,1).

• If q = ⁄≠1

1

, then
35As is shown below, DC(g;q,T )qT

t=1
(q⁄1)t

has a well-defined limit, and so this holds also for the limit.
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lim
T æŒ

1
T

DC
1
g; ⁄≠1

1

, T
2

= v(R,1).

Let Âg = g/⁄
1

, and normalize the eigenvectors to lie in ¸
1

, so that the entries in
each column of V≠1 and each row of V sum to 1.

Let us show the statement for the case where q = 1/⁄
1

. It is su�cient to show

lim
T æŒ

......

DC
1
g; ⁄≠1

1

, T
2

T
≠ v(R,1)

......
= 0.

First, note that given the diagonalizable matrix, straightforward calculations show
that

DC
i

1
g; ⁄≠1

1

, T
2

=
ÿ

j

Tÿ

t=1

ÿ

k

v(R,k)

i

v(L,k)

j

Â⁄t

k

.

Thus,
------

DC
i

1
g; ⁄≠1

1

, T
2

T
≠ v(R,1)

i

------
=

------

q
j

q
T

t=1

q
n

k=1

v(R,k)

i

v(L,k)

j

Â⁄t

k

T
≠ v(R,1)

i

------
=

=
------
1
T

ÿ

j

Tÿ

t=1

nÿ

k=2

v(R,k)

i

v(L,k)

j

Â⁄t

k

------
Æ 1

T

Tÿ

t=1

nÿ

k=2

1 ·

------

nÿ

j=1

v(L,k)

j

------
¸ ˚˙ ˝

Æ1

·
---Â⁄t

k

---

Æ n

T

Tÿ

t=1

---Â⁄t

2

--- = n

T

---Â⁄
2

---

1 ≠
---Â⁄

2

---

3
1 ≠

---Â⁄
2

---
T

4
æ 0.

Since the length of the vector (which is n) is unchanging in T , pointwise convergence
implies convergence in norm, proving the result.

The final piece repeats the argument for q > 1/⁄
1

. It follows that the eigenvalues
of qg are Â� = diag

Ó
Â⁄

1

, ..., Â⁄
n

Ô
with q⁄

k

= Â⁄
k

. We show

lim
T æŒ

.....
DC (g; q, T )
q

T

t=1

(q⁄
1

)t

≠ v(R,1)

..... = 0.
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By similar derivations as above,
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Note that this last expression converges to 0 since Â⁄
1

> 1, and Â⁄
1

> Â⁄
2

.36 which
completes the argument.

A.2. Other Proofs.
Proof of Theorem 1 .

E [DC (g(n, p); q, T )]
i

=
C

Tÿ

1

E
Ë
qtg(n, p)t

È
· 1

D

i

=
Tÿ

1

qtnE
Ë
g(n, p)t

È

ij

,

where the last equality comes from the fact that E [g(n, p)t]
ij

= E [g(n, p)t]
ik

for all
i, j, k in an Erdos-Renyi random graph.

Next, note that

E
Ë
g(n, p)t

È

ij

= E
S

U
ÿ

k1,k2,...,kt≠1œ{1,...,n}t≠1
g

ik1g
k1k2 · · · g

kt≠1j

T

V

36Note that it is important that q Ø 1/⁄1 for this claim, since if q < 1/⁄1, then q⁄1 < 1. In that
case, observe that qT

t=1
--
⁄̃2

--t

qT
t=1 ⁄̃

t
1

=
Â
⁄2
Â
⁄1

· 1 ≠ ⁄̃1

1 ≠ ⁄̃2

by the properties of a geometric sum, which is of constant order. Thus, higher order terms (Â⁄2, etc.)
persistently matter and are not dominated relative to

qT
t

Â
⁄

t
1.
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If all the indexed g
..

’s were distinct, the right hand side of this equation would simply
be nt≠1pt. However, some terms repeat, in which case, since they are bernoulli random
variables, the expression would be even less for some terms. Thus, it follows directly
that

E
Ë
g(n, p)t

È

ij

Ø nt≠1pt

and so

E [DC (g(n, p); q, T )]
i

=
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1
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Note also, that

E
S

U
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k1,k2,...,ktœ{1,...,n}t

g
ik1g

k1k2 · · · g
kt≠1j

T

V Æ nt≠1pt + tnt≠2pt≠1 + t2nt≠3pt≠2 + . . . + tt.

This last inequality is a very loose upper bound simply by loosely upper-bounding
how many g

..

’s could conceivably repeat, and then putting in the expression that
would ensue if they did repeat. Despite how loose the bound is, it su�ces for our
purposes.

Given that t Æ T < pn, it follows that

E
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g
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Thus,
E

Ë
g(n, p)t

È

ij

Æ nt≠1pt

1
1 ≠ T

pn

.

Since T << pn it follows that (here o(1) is with respect to n):

E [DC (g(n, p); q, T )]
i

=
Tÿ

1
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Ë
g(n, p)t

È

ij

Æ
Tÿ

1

qtntpt(1 + o(1)) = npq
1 ≠ (npq)T
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(1 + o(1)).

The theorem follows directly.
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Proof of Theorem 2 . Recall that H = q
T
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(qg)t and DC =
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·1 and

so
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which completes the proof.

Proof of Corollary 1 . To see (1) first note that x1≠x

T

1≠x

æ 0 if x æ 0, and that
x1≠x

T

1≠x

æ xx

T

x

æ Œ if x æ Œ. Replacing x with npq and then applying Theorem 1
yields the result under (a) and (b), respectively.

To see (2), we consider the case in which q > 1/(E[⁄
1

])1≠Á, and so in which npq >

(np)Á. This is the case under which (b) applies. This also implies the result in (a),
since if the conclusion of (a) holds for such a q it will also hold for all lower q, given
that DC is monotone in q.

Again, since npq > 1, it follows that if T is growing, then

E [DC (g(n, p); q, T )]
i

æ npq
1 ≠ (npq)T

1 ≠ npq
æ (npq)T .

So, to have
E [DC (g(n, p); q, T )]

i

Ø kn

for some k > 0, it is su�cient that (npq)T Ø kn, or

T Ø log(n) + log(k)
log np + log(q) æ log(n)

log np
≥ E[Diam (g(n, p))],

where the last comparison is a property of Erdos-Renyi random networks given that
1≠ÁÔ

n

Ø p Ø (1 + Á) log(n)

n

, and so this establishes (b). From the analogous calculation,
if T is below log(n)

log np

, then E [DC (g(n, p); q, T )]
i

Æ kn for any k, and so (a) follows.
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Proof of Theorem 3. Again, we prove the result for a positive diagonalizable g,
noting that it then holds for any (nonnegative) g.

Again, let g be written as
g = V�V≠1.

Also, let ⁄̃
k

= q⁄
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. It then follows that we can write
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By the ordering of the eigenvalues from largest to smallest in magnitude,
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So, since the largest eigenvalue is unique, it follows that
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Note that the last expression converges to 0 since Â⁄
1

> 1, and Â⁄
1

> Â⁄
2

. Thus,
H·,j

q
T

t=1

⁄̃t

1

æ v(R,1)v(L,1)

j

for each j. This completes the proof since each column of H is proportional to v(R,1)

in the limit, and thus has the correct ranking for large enough T .37 Note that the
ranking is up to ties, as the ranking of tied entries may vary arbitrarily along the
sequence. That is, if v(R,1)

i

= v(R,1)

¸

, then the ranking that j has over i and ¸ could
vary arbitrarily with T , but their rankings will be correct relative to any other entries
with higher or lower eigenvector centralities.

37The discussion in Footnote 36 clarifies why q > 1/⁄1 is required for the argument.



GOSSIP: IDENTIFYING CENTRAL INDIVIDUALS IN A SOCIAL NETWORK 43

Appendix B. Alternative Outcome for Experiment

Table B.1. Showed up for payment, no controls for broadcast di�usion

(1) (2) (3) (4) (5) (6) (7)

1 High DC Seed 0.0483 -0.200 0.0475 -0.142
(0.413) (0.383) (0.416) (0.343)

2 High DC Seeds 0.381 -0.0594 0.492 0.153
(0.427) (0.464) (0.429) (0.443)

At least 3 High DC Seeds 0.0560 -0.673 0.251 0.0404
(0.341) (0.605) (0.368) (0.324)

1 Gossip Nominations 0.197 0.215 0.401 0.0793
(0.350) (0.399) (0.363) (0.339)

2 Gossip Nominations 1.605*** 1.664*** 1.841*** 1.383***
(0.433) (0.528) (0.449) (0.396)

At least 3 Gossip Nominations 0.0445 0.122 0.132 -0.147
(0.362) (0.420) (0.374) (0.229)

1 Elder -0.0751 -0.320 -0.647**
(0.409) (0.421) (0.328)

2 Elders -0.544* -0.539** -1.119***
(0.316) (0.254) (0.243)

Observations 48 48 48 48 48 48 48
Double Post-LASSO X
Control for broadcast di�usion
Notes: This table presents data from the 48 of the 69 random villages in the Phase 2 experiment, where
we collected network data and had payment data. The table presents Poisson regressions of number of
respondents who showed up (to play their payment lottery) calls received by characteristics of the set
of seeds. The sample includes the 48 villages for which we have this data. High DC refers to a seed
being above the mean by one standard deviation of the centrality distribution. Columns (1)-(6) con-
trol for number of seeds, village size and the interaction. Column (7) performs a double post-LASSO
procedure, to select optimal controls in a regression of number of calls on gossip variables, where the
set of controls are di�usion centrality dummies, elder dummies, number of seeds, village size, and the
interaction. No controls are selected by the procedure. Robust standard errors are used.
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Table B.2. Showed up for payment, controlling for broadcast di�usion

(1) (2) (3) (4) (5) (6) (7)

1 High DC Seed 0.435 0.280 0.436 0.258
(0.317) (0.338) (0.318) (0.332)

2 High DC Seeds 0.802** 0.573 0.869** 0.627
(0.338) (0.372) (0.355) (0.388)

At least 3 High DC Seeds 0.365 -0.0146 0.516 0.324
(0.298) (0.428) (0.342) (0.329)

1 Gossip Nominations 0.0779 -0.0246 0.134 0.0793
(0.337) (0.350) (0.337) (0.339)

2 Gossip Nominations 1.040*** 0.823** 1.037*** 1.383***
(0.335) (0.359) (0.385) (0.396)

At least 3 Gossip Nominations -0.183 -0.292 -0.250 -0.147
(0.324) (0.317) (0.311) (0.229)

1 Elder 0.113 -0.206 -0.394
(0.413) (0.421) (0.301)

2 Elders -0.396 -0.398 -0.761***
(0.295) (0.300) (0.262)

Observations 48 48 48 48 48 48 48
Double Post-LASSO X
Control for broadcast di�usion X X X X X X X
Notes: This table presents data from the 48 of the 69 random villages in the Phase 2 experiment,
where we collected network data and had payment data. The table presents Poisson regressions of
number of respondents who showed up (to play their payment lottery) calls received by characteris-
tics of the set of seeds. All regressions control for a dummy for broadcast village. The sample includes
the 48 villages for which we have this data. High DC refers to a seed being above the mean by one
standard deviation of the centrality distribution. Columns (1)-(6) control for number of seeds, village
size and the interaction. Column (7) performs a double post-LASSO procedure, to select optimal
controls in a regression of number of calls on gossip variables, where the set of controls are di�usion
centrality dummies, elder dummies, number of seeds, village size, and the interaction. No controls
are selected by the procedure. Robust standard errors are used.
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Appendix C. Loan Question

Table C.1. Factors predicting nominations

Panel A: Poisson Regression (1) (2) (3) (4) (5)

Di�usion Centrality 0.625***
(0.075)

Degree Centrality 0.490***
(0.067)

Eigenvector Centrality 0.614***
(0.084)

Leader 0.950***
(0.271)

Geographic Centrality -0.113
(0.082)

Observations 6,466 6,466 6,466 5,733 6,466
Panel B: OLS (1) (2) (3) (4) (5)

Di�usion Centrality 0.391***
(0.071)

Degree Centrality 0.367***
(0.065)

Eigenvector Centrality 0.378***
(0.074)

Leader 0.629***
(0.229)

Geographic Centrality -0.045
(0.029)

Observations 6,466 6,466 6,466 5,733 6,466
Notes: This table uses data from the Phase 1 dataset. Panel A reports esti-
mates of Poisson regressions where the outcome variable is the expected number
of nominations under the loan question. Panel B reports the same using OLS.
Results are robust to including caste fixed e�ects and village fixed e�ects, avail-
able upon request. Degree centrality, eigenvector centrality and di�usion central-
ity, DC (g; 1/E[⁄

1

], E[Diam(g(n, p))]), are normalized their standard deviations.
Standard errors (clustered at the village level) are reported in parentheses. ***
p < 0.01, ** p < 0.05, * p < 0.1.
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Table C.2. Factors predicting nominations

Panel A: Poisson Regression (1) (2) (3) (4) (5)

Di�usion Centrality 0.560*** 0.431*** 0.565*** 0.624*** 0.560***
(0.122) (0.130) (0.086) (0.075) (0.122)

Degree Centrality 0.070 0.070
(0.086) (0.086)

Eigenvector Centrality 0.219
(0.138)

Leader 0.613**
(0.290)

Geographic Centrality -0.115
(0.089)

Observations 6,466 6,466 5,733 6,466 6,466
Post-LASSO X
Panel B: OLS (1) (2) (3) (4) (5)

Di�usion Centrality 0.310*** 0.266*** 0.383*** 0.391*** 0.310***
(0.112) (0.089) (0.081) (0.071) (0.112)

Degree Centrality 0.091 0.091
(0.079) (0.079)

Eigenvector Centrality 0.138
(0.089)

Leader 0.457*
(0.231)

Geographic Centrality -0.045
(0.030)

Observations 6,466 6,466 5,733 6,466 6,466
Post-LASSO X
Notes: This table uses data from the Phase 1 dataset. Panel A reports esti-
mates of Poisson regressions where the outcome variable is the expected number
of nominations under the loan question. Panel B reports the same using OLS.
Results are robust to including caste fixed e�ects and village fixed e�ects, avail-
able upon request. Degree centrality, eigenvector centrality and di�usion centrality,
DC (g; 1/E[⁄

1

], E[Diam(g(n, p))]), are normalized their standard deviations. Col-
umn (5) uses a post-LASSO procedure where in the first stage LASSO is imple-
mented to select regressors and in the second stage the regression in question is
run on those regressors. Omitted terms indicate they were not selected in the first
stage. Standard errors (clustered at the village level) are reported in parentheses.
*** p < 0.01, ** p < 0.05, * p < 0.1.


