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Abstract

Since the advent of heteroskedasticity-robust standard errors, several papers have proposed adjust-

ments to the original White formulation. We replicate earlier �ndings that each of these adjusted estima-

tors performs quite poorly in �nite samples. We propose a class of alternative heteroskedasticity-robust

tests of linear hypotheses based on an Edgeworth expansions of the test statistic distribution. Our pre-

ferred test outperforms existing methods in both size and power for low, moderate, and severe levels of

heteroskedasticity.
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1 Introduction

The use of �White standard errors� (White, 1980) is now prevalent in economics. However, it has long been
known that t-tests based on White standard errors over-reject when the null hypothesis is true and the
sample is not large. Indeed, it is not uncommon for the actual size of the test to be 0.15 when the nominal
size is the usual 0.05. Various �xes to estimating the middle matrix (X ′ΣX) in equation (2) below have been
introduced. We consider the performance of some of these methods in this paper; see MacKinnon (2011) for
a more comprehensive discussion. The major �nding seems to be that these attempted �xes do not solve
the problem, as we demonstrate subsequently.

The other major approach has been to bootstrap the t-test, which will get the correct size (on average).
We benchmark the performance of techniques in this paper with the Wild bootstrap (WB), which MacKinnon
(2011) �nds to perform best in terms of power. Hall (1992) has demonstrated that with a pivotal test statistic,
as occurs here, the bootstrapped test will be accurate to the second order in n rather than to the �rst order,
which underlies the asymptotic expansion used for the White approach.

In this paper, we directly apply the second-order Edgeworth approximation approach to the test statistic
distribution using the results of Rothenberg (1988). Hausman and Kursteiner (2008) used this approach
to estimate the covariance of the feasible generalized least squares estimator (FGLS) and found a marked
improvement. However, we �nd that the second-order Edgeworth approach has signi�cant size distortions in
this setting. Instead, we nonparametrically bootstrap the covariance matrix of the parameter vector β and
then use the second-order Edgeworth expansion to modify the t-statistic critical value. Using MacKinnon's
(2011) Monte Carlo design, we �nd this approach has excellent size properties and has power that is gener-
ally superior to the Wild bootstrap approach. We call this technique the �second-order bootstrap� (SOB)
approach and recommend it for use in applied research, particularly when there are sample size concerns.
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2 Traditional Robust Standard Error Estimators

For the model

y = Xβ + u (1)

with V ar(u) = Σ, the variance of the parameter vector β̂ estimated by OLS is

V ar(β̂) = (X ′X)−1X ′ΣX(X ′X)−1. (2)

Let n denote the sample size and k denote the dimension of β. All of the heteroskedasticity-consistent
covariance matrix estimators in the literature (commonly denoted HCj for j = 0, 1, 2, etc.) have the same
sandwich estimator form with variations in the estimated sample matrix that is used for Σ.

We are interested in test statistics of the form

T =
c′β̂ − c′β0√

c′V̂ c
(3)

corresponding to a null hypothesis about a linear combination of the estimated parameters H0 : c′β = c′β0,
where V̂ is an asymptotically valid estimate of V ar(β̂). The following are approaches to estimating (X ′ΣX)
that have appeared in the literature.1

1. HC0 (White, 1980) is the original formulation used in White standard errors. White's (1980) contri-

bution was to recognize that X̂ ′ΣX is a consistent estimator of X ′ΣX when using the sample matrix

Σ = diag
{
û2i
}

where û2i are the �tted residuals from estimating (1) via OLS.

2. HC1 (MacKinnon and White, 1985) adjusts for degrees of freedom and is the most commonly used
robust standard error estimator and is employed by Stata's robust option.

Σ =
n

n− k
diag

{
û2i
}

3. HC2 (MacKinnon and White, 1985) adjusts for the leverage values hi where h is the diagonal of the
projection matrix PX = X(X ′X)−1X ′.

Σ = diag

{
û2i

1− hi

}
4. HCJ (MacKinnon and White, 1985) is the jackknife covariance matrix estimator.

Σ =
n− 1

n

(
diag

{
ũ2i
}
− 1

n
ũũ′
)

where ũi = ûi

1−hi
.

5. HC3 (Davidson and MacKinnon, 1993) is an approximation to HCJ and is a slight modi�cation of
HC2

Σ = diag

{(
ûi

1− hi

)2
}

6. HC4 (Cribari-Neto, 2004) adjusts the residuals by a leverage factor that increases with the leverage.

Σ = diag

{
û2i

(1− hi)δi

}
where δi = min {4, nhi/k}

We consider these approaches in terms of their size in Section 6 below. We �nd using MacKinnon's (2011)
research design that each of the HCj estimators continues to have signi�cant size distortions when n is of
moderate size.

1We omit HC5 (Cribari-Neto et al., 2007) from our analysis as it is nearly identical to HC4.
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3 Bootstrap Estimators

Another class of heteroskedasticity robust estimators uses the Wild bootstrap to estimate the distribution
of a given test statistic, forming a rejection region based on the realized bootstrap distribution. The Wild
bootstrap involves forming B bootstrap samples using the data generating process

y∗i = Xiβ̃ + f(ũi)v
∗
i

where ũi are residuals from an estimate β̃ of β, f(·) is one of several candidate transformations of the
estimated residuals, and v∗i is an independent random variable with mean 0 and variance 1. For each

bootstrap sample {Xi, y
∗
i }, we estimate β̂∗j where j indexes the bootstrap sample, j = 1, . . . , B, and calculate

the test statistic of interest T ∗j , as in (3), using a particular heteroskedasticity-robust estimator of the variance

of β̂. Inference is then based on comparing the original test statistic to the α/2 and 1 − α/2 percentiles of{
T ∗j
}
.

MacKinnon (2011) shows that using the Wild bootstrap to estimate the distribution of test statistics
based on HC1, using v

∗
i ∈ {−1, 1} with equal probability, restricted residuals (i.e. β̃ is estimated imposing

the null hypothesis), and a transformation of the residuals corresponding to HC3, f(ũi) = ũi

1−h̃i
(where h̃i

an element of the diagonal of the restricted projection matrix PX̃) performs best in terms of size and power.
The bootstrap will have correct size on average by construction, so its power characteristics determine the
usefulness of the approach. We will benchmark our results with this particular variant of the Wild bootstrap
and show that our preferred estimator performs comparably in size and much better in power.

4 Second-Order Correction to Test Statistic Distribution

Rothenberg (1988) derives n−1 Edgeworth approximations for the distribution functions of test statistics that
are linear functions combinations of β such as (3), assuming that the errors are normally distributed. Hall
(1992) demonstrates that the second-order Edgeworth expansion approach and the bootstrap approach have
the same order of approximation in the case of pivotal test statistics. If the traditional, �rst-order critical
values are ±zα/2, then the second-order approximation critical values t for the test of the null hypothesis
H0 : c′β = c′β0 are a multiplicative adjustment to zα/2:

t = ±zα/2

(
1− 1

12
(1 + z2α/2)V +

a(z2α/2 − 1) + b

2n

)
= ±zα/2 · h (4)

where n is the sample size and

V =

∑
f4i û

4
i

(
∑
f2i û

2
i )

2

a =

∑
f2i g

2
i∑

f2i û
2
i

b =

∑
f2i Qii∑
f2i û

2
i

f = nX(X ′X)−1c

g =
(I − PX)Σf√

f ′Σf/n

Q = nPXΣ(PX − 2I)

and ûi are the �tted residuals and Σ is estimated with HC0.
We then calculate the test statistic in equation (3) and make inference by comparing it with the adjusted

critical value obtained from equation (4). In other words, we reject the null hypothesis if the test statistic

exceeds the adjusted critical value in magnitude
∣∣∣T̂ ∣∣∣ > |t| and fail to reject otherwise. We refer to this test as

the second-order (SO) approach. Applied researchers implementing a SO adjustment may �nd it convenient
to calculate �virtual standard errors� by multiplying given standard errors by the adjustment factor h in (4)
and comparing the resulting t-statistics to the traditional asymptotic critical value.
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4.1 Bootstrapped V̂

While any estimate V̂ of V ar(β̂) can be used in (3), simulation results show that for small samples, the

empirical covariance matrix of a vector of nonparametrically bootstrapped β̂ estimates performs best. To
compute this estimated covariance matrix, for B = 400 bootstrap iterations we resample (X, y) with re-
placement from the original data, forming a pairs bootstrap sample (X∗, y∗). For each iteration j, we then

calculate β̂∗j = (X∗′X∗)−1X∗′y∗ , and take V̂ to be

V̂ =
1

B − 1

B∑
j=1

(
β̂∗j −

¯̂
β∗
)(

β̂∗j −
¯̂
β∗
)′

(5)

We refer to inference based on using V̂ from (5) in equation (3) compared to the regular asymptotic
critical values ±zα/2 as the variance bootstrap (VB). When comparing the VB test statistic to the adjusted
critical values in (4), we call this the �second-order bootstrap� (SOB) approach.

5 Simulation Design

The data generating process for the simulations follows MacKinnon (2011) with a sample size of n = 40

yi = β1 +

5∑
k=2

βkXik + ui

ui = σiεi

εi ∼ N (0, 1)

σi = z(γ) (Xiβ)
γ

(6)

Xik ∼ LN(0, 1), k > 1

βk = 1, k < 5

β5 = 0

where z(γ) is a scaling factor that ensures that the average variance of ui is equal to 1. γ = 0 corresponds
to homoskedasticity, and the degree of heteroskedasticity increases with γ. For context, in this simulation
design when γ = 1, HC1 robust standard errors are 44% larger than their homoskedastic counterparts, and
γ = 2 corresponds to standard errors that are 70% larger than the corresponding homoskedastic standard
errors.

6 Size Results

We compare the performance of the various variance estimators in the test H0 : β5 = 0 with signi�cance level
α = 0.05 for 10,000 Monte Carlo simulations with varying degrees of heteroskedasticity using the research
design in (6). Since the data was generated with β5 = 0, this test should reject in approximately 5% of
simulations. Table 1 below shows rejection frequencies for three levels of heteroskedasticity, where none,
moderate and severe correspond to γ = 0, 1, 2, respectively. The rejection frequencies of each of the HCj are
decreasing in the degree of the heteroskedasticity. Of the HCj estimators, HC3 and HCJ perform the best,
although they both over-reject for homoskedasticity and drastically under-reject for severe heteroskedasticity.

The rejection frequencies when we use the Rothenberg second-order critical values with test statistics
based on the HC0 variance estimates, denoted SO, show that the exact adjustment proposed by Rothenberg
(1988) performs quite poorly. Indeed, the SO test size is approximately the same as the original White
estimator.

The three bootstrap methods perform more consistently across the heteroskedasticity spectrum. It is
worth noting that whereas the rejection frequencies of theHCj estimators decline signi�cantly with the degree
of heteroskedasticity, the bootstrap tests perform quite well even under homoskedasticity. The variance
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Table 1: Rejection Frequencies for Nominal Size 0.05 Test
Level of Heteroskedasticity
None Moderate Severe

Test statistic γ = 0 γ = 1 γ = 2
HC0 0.159 0.144 0.110
HC1 0.135 0.121 0.090
HC2 0.106 0.085 0.049
HCJ 0.069 0.043 0.018
HC3 0.067 0.041 0.017
HC4 0.034 0.015 0.004
SO 0.156 0.149 0.134
VB 0.042 0.033 0.021
WB 0.046 0.050 0.040
SOB 0.045 0.045 0.039

bootstrap (VB) uses use the bootstrapped covariance matrix of β̂ from (5) with B = 400 to compute the
test statistic (3) and compares it to the regular critical value, i.e. 1.96. Applying the Edgeworth expansion
to the distribution of the test statistic to adjust the critical value for the VB test statistic as in (4) (the SOB
approach) improves the rejection frequencies considerably for high degrees of heteroskedasticity. Rejection
frequencies from the Wild bootstrap (WB) approach are consistently close to their nominal value. Identifying
the Wild bootstrap and second-order bootstrap tests as having the best size properties, we now compare the
power of these two approaches.

7 Power Results

Figures 1 and 2 examine the power of the Wild bootstrap and second-order bootstrap tests. In each graph,
we vary the true value of β5 and report rejection frequencies of the null hypothesis that β5 = 0, with α = 0.05.
Note that when the true β5 = 0, the rejection frequency is the size of the test statistic. Accordingly, a test
statistic has good size the closer its rejection frequency is to 0.05 when β5 = 0 and has greater power the
higher its rejection frequency is for β5 6= 0.

For both γ = 1 and γ = 2, the Wild bootstrap and second-order bootstrap tests have quite good size.
However, the SOB approach has better power performance than the Wild bootstrap (WB), which is the best
of the bootstrap approaches for this design. For any magnitude of the true β5 greater than approximately
0.1 (where the power performance of the two tests is quite similar), the SOB rejection frequencies are often
much higher than the WB rejection frequencies.
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Figure 1: Power Results: Moderate Heteroskedasticity
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Graph shows rejection frequencies for H0 : β5 = 0 given varying values of the true value of β5. γ = 1, n =
40, α = 0.05.

Figure 2: Power Results: Severe Heteroskedasticity
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Graph shows rejection frequencies for H0 : β5 = 0 given varying values of the true value of β5. γ = 2, n =
40, α = 0.05.

6



8 Conclusion

White robust standard errors are universally used in econometrics. Their �nite sample properties lead to
over-rejection under the null hypothesis, sometimes by a large amount. Over the past 25 years numerous
approaches have been suggested to �x the problem. In this paper, we suggest a second-order bootstrap
(SOB) approach that has approximately the correct size and superior power properties to the best of the
bootstrap approaches.
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