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Abstract

In this paper we consider parameter estimation in a simple linear simultaneous equations model.
It is well known that two stage least squares (2SLS) estimators perform poorly when the instru-
ments are weak. In this case 2SLS tends to suffer from substantial small sample biases. It is also
known that LIML and Nagar-type estimators are less biased than 2SLS but suffer from large
small sample variability. We construct a bias corrected version of 2SLS based on the Jackknife
principle. Using higher order expansions we show that the MSE of our Jackknife 2SLS estimator
is approximately the same as the MSE of the Nagar-type estimator. Monte Carlo simulations
show that even in relatively large samples the MSE of LIML and Nagar can be substantially
larger than for Jackknife 2SLS.
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1 Introduction

There has been a renewed interest in finite sample properties of econometric estimators. Most of
the related research activities in this area are concentrated in the investigation of finite sample
properties of instrumental variables (IV) estimators. It has been found that standard large
sample inference based on 2SLS can be quite misleading in small samples when the endogenous
regressor is only weakly correlated with the instrument. A partial list of such research activities
is Nelson and Startz (1990), Maddala and Jeong (1992), Staiger and Stock (1997), and Hahn
and Hausman (2000).

A general result is that controlling for bias can be quite important in small sample situations.
Anderson and Sawa (1979), Morimune (1983), Bekker (1994), Angrist, Imbens, and Krueger
(1995), and Donald and Newey (1998) found that IV estimators with smaller bias typically have
better risk properties in finite sample. For example, it has been found that the LIML, the
JIVE, or Nagar’s (1959) estimator tend to have much better risk properties than 2SLS. One
might conjecture that such results may well generalize to situations other than the simultaneous
equations models. In other words, one may conjecture that bias reduced version of an estimator
would in general have a better risk property than the original estimator. Donald and Newey
(1999) and Newey and Smith (2000) may be understood as an endeavor to obtain a bias reduced
version of the GMM estimator in order to improve the finite sample risk properties. In this
paper, we contribute to this approach by considering the higher order risk properties of the
Jackknife 2SLS.

Such an exercise is of interest for several reasons. First, we believe that higher order MSE
calculation of the Jackknife estimator has in general not been available in the literature. Most
papers simply verify the consistency of the Jackknife bias estimator. See Shao and Tu (1995,
Section 2.4) for a typical discussion of such type. Akahira (1983), who showed that the Jackknife
MLE is second order equivalent to MLE, is closest in spirit to our exercise here, although a third
order expansion is necessary in order to calculate the higher order MSE. Our proof strategy
can in principle be generalized to non-IV estimators. Second, the Jackknife 2SLS may prove to
be a reasonable competitor to the LIML or Nagar’s estimator. It is well-known that the LIML
and Nagar have the “moment” problem: With normally distributed error terms, it is known
that LIML and Nagar do not possess any moments. See Mariano and Sawa (1972) or Sawa
(1972). LIML and Nagar’s estimator have better higher order risk properties than 2SLS, as
shown by Rothenberg (1979) or Donald and Newey (1998). The moment problem would not
pose any practical concern if the problem were concentrated in the extreme end of the tails.
Unfortunately, in Hahn and Hausman (2000) we found in Monte Carlo that LIML and Nagar’s

estimator tend to have bigger spread (measured in terms of interquartile range, etc) than 2SLS



for some parameter combinations. It seems possible that the moment problem, which in principle
should be a mere object of theoretical curiosity, presents itself in the form of undesirable finite
sample risk properties despite the prediction based on higher order expansions. On the other
hand, it can be shown that Jackknife 2SLS is known to have moments up to the degree of
overidentification. If Jackknife 2SLS has a higher order MSE comparable to LIML or Nagar’s

estimator, we can then conjecture that its actual finite sample properties may be more stable.

2 MSE of Jackknife 2SLS

The model we focus on is the simplest model specification with one right hand side (RHS) jointly
endogenous variable so that the left hand side variable (LHS) depends only on the single jointly
endogenous RHS variable. This model specification accounts for other RHS predetermined (or

exogenous) variables, which have been “partialled out” of the specification. We will assume that

yi = xifB+eg,

I L
x;, = fitu =zmtu i=1...,n

Here, x; is a scalar variable, and z; is a K-dimensional nonstochastic column vector. The first
equation is the equation of interest, and the right hand side variable x; is possibly correlated with
€;- The second equation represents the “first stage regression”, i.e., the reduced form between
the endogenous regressor x; and the instruments z;. By writing f; = E[x;] z;] = 2}, we are
ruling out a nonparametric specification of the first stage regression. Note that the first equation
does not include any other exogenous variable. It will be assumed throughout the paper that
all the error terms are homoscedastic.

We focus on the 2SLS estimator b given by
b= m:Py =p[+ @,

' Px ' Px

where P = Z (Z’Z)f1 Z'. Here, y denotes (y1,...,yn) . We define z, ¢, u, and Z similarly. 2SLS

is a special case of the k-class estimator given by

' Py —rk-x'My
2'Px — k-2' Mz’

where M = I — P and & is a scalar. For k = 0, we obtain 2SLS. For k equal to the smallest
cigenvalue of the matrix W/PW (W' MW) ™!, where W = [y,z], we obtain LIML. For x =
K772/ (1 — %4), we obtain B2SLS, which is Donald and Newey’s (1998) modification of Nagar’s
(1959) estimator.

Donald and Newey (1998) computed higher order mean squared errors (MSE) of the k-class
estimators. They showed that n times the MSE of 2SLS, LIML, and B2SLS are approximately



equal to
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where we define H = %ﬁ The first term, which is common in all three expressions, is the usual
asymptotic variance obtained under the first order asymptotics. Finite sample properties are
captured by the second terms. For 2SLS, the second term is easy to understand. As discussed
in, e.g., Hahn and Hausman (2001), 2SLS has an approximate bias equal to % Therefore,

the approximate expectation for \/n (b — ) ignored in the usual first order asymptotics is equal

2
to K—\/%%Ii, which contributes (%ﬁ) = KTZ%'{— in the higher order MSE calculation. The second

terms for LIML and B2SLS do not reflect higher order biases. Rather, they reflect higher order
variance that can be understood from Rothenberg’s (1983) or Bekker’s (1994) asymptotics.

Higher order MSE comparison alone would suggest that LIML and B2SLS should be preferred
to 2SLS. Unfortunately, it is well-known that the LIML and Nagar have the “moment” problem.
If (&1, u;) has a bivariate normal distribution, it is known that LIML and B2SLS do not possess
any moments. On the other hand, it is known that 2SLS does not have a moment problem.
See Mariano and Sawa (1972) or Sawa (1972). This theoretical property implies that LIML and
B2SLS have thicker tails than 2SLS. It would be nice if the moment problem could be dismissed
as a mere academic curiosity. Unfortunately, we found in Monte Carlo that LIML and B2SLS
tend to have bigger spread (measured in terms of interquartile range, etc) than 2SLS for some
parameter combinations. In this sense, 2SLS can still be viewed as a reasonable contender to
LIML and B2SLS.

Given that the poor higher order MSE property of 2SLS is based on its bias, we may hope to
improve 2SLS by eliminating its finite sample bias through the jackknife. Jackknife 2SLS may
turn out to be a reasonable contender given that it can be expressed as a linear combination of
2SLS, and hence, free of the moment problem. This is because the jackknife estimator of the
bias is given by
n—1 (ﬁl(z) Y ZYi Y Zi@/i) _n—-1 (ﬁl(z) > i %€ _ SU'P€>

i i

o . ._’\/ L. e~ L. /
n o Zj;éi ZjTj T Y AT n o Zj;éi zjz; ' Px

(1)

and the corresponding jackknife estimator is given by

by = 7> ayi n—1 (%I(i) DAY Ty Zﬂ/i)

~/ ~/ ~/
Ty AT N Ty 2oj#i Z%) T D A
~/ =~ .
DLt S IO i %Y
- ~/ - ~/
Ty %% no =T TG) Zj;ti ZjTg

Here, m denotes the OLS estimator of the first stage coefficient 7, and 7(;y denotes such OLS



estimator based on every observation except the ¢th. Observe that b is a linear combination of

7Sz (1) 2o 4 Tny 2o j2i 2V
=

=/ ) =7 5.
T30 2w Ty i 505 Wy Doji 2%

and all of them have finite moments if the degree of overidentification is sufficiently large (K > 2).
See, e.g., Mariano (1972). Therefore, b; would have finite second moments. if the degree of
overidentification is large.

We show that, for large K, the approximate MSE for the jackknife 2SLS is the same as
in Nagar’s estimator or JIVE. As in Donald and Newey (1998), we let h = ’%g We impose

following assumptions. First, we assume normality!:

Condition 1 (i) (g;,u;) i =1,...,n are i.i.d.; (ii) (€;, ;) has a bivariate normal distribution

with mean equal to zero.
We also assume that z; is a sequence of nonstochastic column vectors satisfying
Condition 2 maxP; = O (%), where Py denotes the (i,1)-element of P = Z(Z’Z)fl AS

Condition 3 (i) max|f;| = max|zjx| = O(nl/r) for some r sufficiently large (r > 3); (ii)
S i ff=0@)2

After some algebra, it can be shown that

iT\I(i)ZZj€j =:L‘IP€+61Z', 7/'(\'/(022]'1']‘ = $IP$+621'7
J#i JF
where

610 = —wig; + (L— Py) N (Mz);, (Me),, 62 = —a?+ (1~ Py) H(Mz)?F .

Here, (Mx); denotes the ith element of Mz, and M = I — P. We may therefore write the

jackknife estimator of the bias as
n—lz ' Pe + 64, B ' Pe
n 2'Px+ 6y x'Px

n—1 1 z' Pe 1 o' Pe
= Z ( 7 611' — 262i - 2611'621' + —36§z> + Rn
n ' Px (z' Px) (z' Px) (z' Px)

'We expect that our result would remain valid under the symmetry assumption as in Donald and Newey
(1998), although such generalization is expected to be substantially complicated.
*If {f;} is a realization of a sequence of 4.i.d. random variables such that E[|f;|"] < co for r sufficiently large,

Condition 3 (i) may be justified in probabilistic sense. See Lemma 1 in Appendix.



where

n— 61:65; n—1 12'Pe
R, nt ,P 221 /P$+%52i_ n4 1 ,P 321 /Pl‘ 1521'
By Lemma 2 in Appendix, we have
1
n*?R, =0, 81:6%; &l =0
( \/72’12 \/ﬁ?‘&‘ OP()a

and can ignore it from our further computation.

We now examine the resultant bias corrected estimator (1) ignoring R,:

’Pe n-1 z'Pe +61; 2/ Pe
H — - +
vn <ac’Pac n ; <ac’Px + 69; {E/P{E> Rn)

n— ? A ' Pe
B nlé (lx]’{Pa:> ( ’Pa:) (nZZ(S ) ®

Theorem 1 below is obtained by squaring and taking expectation of the RHS of (2):

Theorem 1 Assume that Conditions 1, 2, and 8 are satisfied. Then, the approximate MSE of
Vn(by — B) for the jackknife estimator up to O (%) is given by

ag KO’O’ +02

H 7 H?
Proof. See Appendix. m
Theorem 1 indicates that the higher order MSE of Jackknife 2SLS is equivalent to that of
Nagar’s (1959) estimator if the number of instruments is sufficiently large. See Donald and
Newey (1998). Therefore, the Jackknife does not increase variance too much. Although it
has long been known that Jackknife does reduce the bias, the literature has been hesitant in
recommending its use primarily because of the concern that variance may increase too much

due to Jackknife bias reduction. See Shao and Tu (1995, p. 65), for example.



Theorem 1 also indicates that the higher order MSE of Jackknife 2SLS is bigger than that
of LIML. In some sense, this result is not surprising. In Hahn and Hausman (2000), we demon-
strated that LIML is approximately equivalent to the optimal linear combination of two Nagar’s
estimators based on forward and reverse specifications. Jackknife 2SLS is solely based on for-
ward 2SLS, and ignores the information contained in reverse 2SLS. Therefore, it is quite natural
to have LIML dominating Jackknife 2SLS.

3 Monte Carlo

We generated
yi =B +e, m=zZm+u 1=1,...,n

such that z; ~ N (0, Ix), Var (g;) = Var(u;) =1, and 3 =0. We let # = (7, ...,7), such that

T Elzz]n K7

R? =
' E[z2]]m+Var(u;)) Kr?+1

Here, R? denotes the theoretical R? in the first stage regression. We considered combinations of

the following parameters:

n = 100, 500, 1000
= 5 10, 30

R2 = .001, A, 3

p = Cov(g,u) =0, .5, .9

Results based 5000 Monte Carlo runs are summarized in Tables 1 - 3.

We first discuss the sample size 100 case in Table 1. In the upper panel the “moment problem”
appears for both LIML and the Nagar estimator with both the mean and RMSE considerably
larger than for J2SLS. However, for low R? = .001, which corresponds to the weak instrument
setup, J2SLS does considerably better than either LIML or Nagar. The interquartile range for
J2SLS is about % as large as for the other estimators. As the R? increases, the superiority
of J2SLS is not as great. However, it is typically better than the other estimators for the
interquartile range. When LIML does better than J2SLS, it is only by a very small amount. In
the middle and lower panels of Table 1 as the number of instruments increases which exacerbates
the weak instrument problem, the superiority of J2SLS increases with respect to the interquartile
range. Now for the low R? situation, its interquartile range is approximately % as large as LIML
or the Nagar estimator. However, the most interesting finding may be that the “classical” 2SLS

estimator typically does the best of any of the second order unbiased estimators in terms of



the interquartile range. Thus, while LIML and the Nagar estimator demonstrate their expected
superiority in terms of lower median bias, the finite sample performance of 2SLS in terms of the
interquartile range is striking.

In Table 2 we increase the sample size to 500 while the other parameters remain the same.
In terms of the interquartile range we again find that J2SLS is often superior to LIML and the
Nagar estimator. In no situation does LIML have a significant superiority to J2SLS although
it is slightly better in a few cases. Once again, classical 2SLS does better than the other 3
estimators in terms of interquartile range, especially when R? is very low. Thus, in the weak
instrument situations of low R? and high K, regular 2SLS has much to recommend it. Lastly, in
Table 3 we increase the sample size to 1000, again keeping the other parameters constant. Now,
only in the low R? case does J2SLS do better than LIML or the Nagar estimator. In the other
situations, LIML does as well as J2SLS or slightly better. However, LIML never demonstrates
a marked superiority in terms of the interquartile range. Once again, regular 2SLS does best in
terms of the interquartile range.?4

Summing up, even for sample sizes of 1000 the superior performance of LIML with respect
to median unbiasedness is counteracted by the “moment” problem. The moment problem often
leads to high RMSE and a large interquartile range, especially when R? is low, the number
of instruments is high, or the correlation between the two equations stochastic disturbances is
large. All of these situations are characteristic of the weak instrument situation as discussed
by Hahn and Hausman (2000). Thus, we suggest caution in using either LIML or the Nagar
estimator in the weak instrument situation. J2SLS or regular 2SLS may offer better properties
depending on the (implicit) finite sample risk function in use. We also recommend the use of
the Hahn-Hausman (2000) specification test as a means of ascertaining the degree of reliance

appropriate for the large sample approximations being used.

3In order to confirm that our result is not specific to the 3 = 0 case, we considered the case where 8 = —1,
n = 100, K = 30, R> = .001, p = .5. We found that the mean biases of LIML, Nagar, 2SLS, and J2SLS are
equal to 0.5544, 2.3186, 1.3002, 1.2965. The median biases were equal to 1.2729, 1.3111, 1.3005, 1.2948, and
the RMSE were equal to 42.3779 60.4197 1.3103 1.3450. Finally, interquartile ranges were equal to 1.7120,
1.1807, 0.2144, 0.4365. We repeated the Monte Carlo for the case where 8 = —1.8, n = 100, K = 30, R? = .001,
p = .9. The mean biases were equal to 8.0161, 1.2714, 0.8995, 0.8976, and the median biases were equal to 0.8920,
0.9024, 0.8984, 0.8978. RMSE were equal to 514.8346, 27.0408, 0.9033, 0.9162, and the interquartile ranges were

equal to 0.8811, 0.6009, 0.1080, 0.2190. These numbers suggest that our results quite generally hold.
*We also examined properties of Angrist, Imbens, and Krueger’s (1995) JIVE by a small scale Monte Carlo

experiment. For the case where 3 =0, n = 100, K = 30, R? = .001, p = .9, similar to Table 1, we found that the
JIVE has a mean bias equal to 0.6183, median bias equal to 0.8970, RMSE equal to 17.9269, and interquartile
range equal to 0.6346. For the case where 8 =0, n = 100, K = 30, R> = .1, p = .5, we found that the JIVE has
a mean bias equal to 0.2938, median bias equal to 0.1639, RMSE equal to 13.0949, and interquartile range equal
to 0.8962. These numbers suggest that the JIVE may well have a “moment” problem similar to LIML and the

Nagar estimator.



Appendix

A Higher Order Expansion
We first present two Lemmas:

Lemma 1 Let v; be a smample of n independent random variables with max; E [|v;|'] < ¢" < o0

for some constant 0 < ¢ < 0o and some 1 < r < co. Then max; [v;| = O, (nl/r).

Proof. By Jensen’s inequality, we have

1/,’, 1/7‘
E [m?x|ui|] < <E {miax\v,-\rD < (ZEnuir])
1/r 1/r
< (n maXE[|Ui|T]> =pl/ <maxE[|vl|T]> <n"e

The conclusion follows by Markov inequality. m

Lemma 2 Assume that Conditions 2 and 3 are satisfied. Further assume that E[|g;|'] < oo
and E[ju;|"] < oo for r sufficiently large (r > 3). We then have (i) n=*/8 max|61;| = o, (1) and
n~Y® max |62| = o, (1); and (ii) ﬁ > ‘6”6%! =0p (1) and n—\1/5 > ‘6% = o, (1).

Proof. Note that

max |61;] < (max | f;] + max |u;]) - max |e;]

+ max (1 — R-l-)*l - (max |u;| + max [(Pu),|) - (max|e;| + max |[(Pe),]) ,

We have (max|f;| + max|u;|) - max|e;] = O, (nz/r) by Lemma 1. Because max|(Pu)i|2 <
max P;; - v'u, and max P; = O (%), we also have max |(Pu);| = Op (1). Similarly, max |(Pe),| =
Op (1). Therefore, we obtain we obtain max|éy;| = op (nl/G). That max [62;| = op (nl/e) can
be established similarly. It then easily follows that n—\l/ﬁ > !6116%‘ < ﬁ max |61;| max ’521"2 =
0p (1), and =37, (8% < max |62i° = 0, (1). =

==

We note from Donald and Newey (1998) that we have the following expansion®:

7
x' Pe K
H\/ﬁm—jilj—‘vj"'Op(g), (3)

®Our representation of Donald and Newey’s result reflects our simplifying assumption that the first stage is

correctly specified.



where

K 1 1
T]_:h:Op(l), TZZW]_:OP <%>, T3=_W3Eh20p <—\/ﬁ>’
1 K 1 K
T4 - 07 T5 — _W4ﬁh - Op <E> s Te = —Wgﬁwl = Op <E> ,

1 1
T7=W32Eh20p <E>7

and

_ Je _ _u'Pe _ K
h = %_Op(l)a Wy = —Op<%>’

flu 1 u'Pu K
Ws n PA\vn)’ Wa n Op n

2
We now expand % and ( ! ) up to O, (%) Because %x’Px = H+ W3+ Wy, we

Ly Pz
have
H H 1 1 1 K
= =1-=Ws— =Wi+-5W2+o0, | — 4
1Py H+Ws+ Wi H': H YT HEHZ Op(n>’ @
2

H 1 1 1, K

— = —2— — 2= + 3= + —
(%x'Px) 125 Ws — 2 Wy +3-5Wj op<n> (5)

We now expand % > ;615 Observe that

VR = g Dt 3 A 0, i)

= - e Ly (1—13)71 (Me)
Vn vn
1 1 1 _

= —h——ue+ —u'Me+ "= (Mu) P(Me)

1, 1 = i — 1 = (I
= —h——uPe+—uPe— —uPPs— —uPPs+—uPPP¢

vn vn vn vn vn
= n- Lo LuPpes Lupp
= —h \/ﬁuC’a \/ﬁuPP5+\/ﬁuPPP5, (6)

where, as in Donald and Newey (1998), we let
— _ - =~ -\ -1
C=P-P(I-P)=P-PM, PEP(I—P) :
and P is a diagonal matrix with element P;; on the diagonal. Now, note that, by Cauchy-

_ — _ 2
Schwartz, |u'PPe| < vVu'uV /PP’ Pe. Because u'u = O, (n), and /PP’ Pe < max (1—5%:) g'Pe =
(0] (n—lz) O, (K), we obtain

'PP 1 - Lo 1 VK
u\/ﬁs < %\/u’u /PP’ Pe = % Op (”)\/O <ﬁ> Op(K)=0, (T) ’
'PPP 1 [ 1 1 K K
ui\/ﬁs < %\/u’Pu &/ PP Pe = %\/Op(K)\/O <ﬁ> Op(K)=0, (W) =% (z) :

9



To conclude, we can write

1 K
% E 51i:—h+W5+W6+0p <E>, (7)
where
Wy = —iu’C’/e =0, —K
vn Vn
We = iu’?PE =0, —K .
vn n

We now expand <%;'{Pm) (ﬁ > 611-> using (4) and (7):

() (20

1 1 1 K
= <1—EW3—EW4 7 32>(—h+W5+W6)+0p<g>

1 1 1 1 K
= —h+Wa=h+Wi=h— W2 7h+ Ws + We — W3l + 0,
H H n
K
= —T]_—T3—T5—T7+T8+T9+T10+0p<—> (8)
n
where
1 vVK
Tg = W5 = —%UICIE = Op (W) s
1 — VK
Tg = We=ﬁu’PP€=Op (T)’
1 11 VK
T = —— = —— e — .
10 HW3W5 W3 \/_uC Op< - )

1
We now expand - ,Pw (%) ( >:62i). We begin with expansion of %ZZ 02;. As in

(6), we can show that

1 2 1 1 — 1 _
— Z5zi =-H—-~fu—=uC'u— =uPPu+ ~u'PPPu
n P n n n n

Because
! DD -PZZ ’ _ K
‘u PPPu‘ < max (1——Pu> u'Pu =0, (?) ’
’u’?Pu! <

ST 1 P2 / Pi \? |K
w'u\/ v PP"Pu < Op(n)\/max<1_7pii> .u/puzop( ﬁ)’

10



we may write
1 K
ﬁz5zi=—H—Wg—W7+0p <?) 9)

where

W7 = 1u’C’/u =0, <E> .
n n

Combining (4) and (9), we obtain
H 1 1 1 1 K
— —E o= (1—- =W — =Wa+—=W2 ) (—H —W3—W7)+o, | —
lepx<n 52) < H'® H* H? 3>( 3= W) 0”<n>
1 1 K
= —H+Wa+Ws— =W2—-Wa+ =W2—-W7;+ op <E>

K
= _H+W4_W7+Op<ﬁ>

which, combined with (3), yields

1 /
H
%x’Px ( —x’Pm) < 2521>

1 (< K
T Z:LT] (—H + Wy —W7) + o0, <g>
J:

7
1 1 K
=3 T+ Wazh = WiZh + 0, <—>

n
J=1

’ K
=3 T, -Ts+Tu+o, <—> (10)
n

j=1

where

VK
T11——W7 h Op< o .

N

We now examine % ( L ) (ﬁ > 61i62i). Later in Section B.2.1, it is shown that

Lo pPg
n

w3t ()

Therefore, we should have

2
1( H 1 K
— i02; =T — 11
H(%J;’P:I;) (n\/ﬁzi:méz) 12+0p<n> (11)

11



2 [ La'pe
Now, we examine (lfpx) < \fw > (&> 63;). Later in Section B.2.3, it is shown that

1 5 1
mzézi—()p (E)

Therefore, we have

2 1 .
1( H TRv Pe _ K
H (1x’Px) ( 1Py > (nz ZéZZ) =Tu*op <E> (12)

Combining (2), (3), (8), (10), (11), and (12), we obtain
’Pe n-1 ' Pe +61; 2/ Pe
H - - +
Vi < Px n ; (x’Pm + 6; x’Px) Rn)

K
= T1+T3+T7_TB_TQ_T10+T11+T12_T14+0p<z>- (13)

B Approximate MSE Calculation

In computing the (approximate) mean squared error, we keep terms up to O (%) From (13),

we can see that the MSE of the jackknife estimator approximately equal to
E[T?) + E[12] + B [1¢] + E [T]
+2E [I1T5] + 2E [I1T7] — 2E[Th T3] — 2E [ThTe] — 2E [T1Tho] + 2E [T1T11]
+2E [T1T1] — 2E [T1T14] — 2E [13T3] (14)

Combining (14) with (15), (16), (17), (18), (19), (20), (21), (22), (23), (26), (37), and (38) in

the next two subsections, it can shown that the approximate MSE up to O, (1) is given by

n
K 12 2 52 2 12 o452
Ug n (0202 02 ) ( H) Ul;jg 0736 H 0-1;:57

which proves Theorem 1.

12



B.1 Approximate MSE Calculation: Intermediate Results That Only Re-
quire Symmetry

From Donald and Newey (1998), we can see that

E[T?] = o’H (15)
4 1
2 - = 2 2 =
E[T3] = n( 2+ 207 )+0<n> (16)
E[NTs] = 0 (17)
E[NLT] = 4 (0505+20%5) +0<1> (18)
n n
K K
21 — B 22, 2 a 3
25§ = Xiozea )+o<nsupP“> (19)
Also, by symmetry, we have
E[TTs] = 0 (20)
E[iTe] = O. (21)

It remains to compute E [sz], E[ThTio), E[T1T11], E[T1T12], E[ThT14], and E[T5T5]. We will
take care of F/ [lez], E[T1T12], and E[T1T14] in the next section.

Note that
f "u 1 1 /C/ f'e

Using equation (18) of Donald and Newey (1998), we obtain

ZE u ZZE ulszujejf }

1=1 j#i

+ Z Z E [ufs?fzf]q’]] + Z Z E [uiEjUjEifiij;'i]

i=1 j;éi =1 j#i

= ZZMC' +02. Y N fifiC

=1 j#i =1 j#i
= 0%02fC'f + ol f'Cf

2 ! pl Yall
E[T1T10]=E[T3T8]=E[ ] nzHE[uffe-uC’e]

E [ fe-u'C'e]

Therefore, we have

2 0202f'C'f + o2 f'Cf
nH n

2 1 2 1
ﬁ(O-uo-§]{+aisfj+0<E>> :n(0202+02 )+0<n2> (22)

where the second equality is based on equation (20) of Donald and Newey (1998).

E[TiTw] = E[I31s] =

13



Now, note that

E [TlTll] = _ZLHE [UICU : &Jff/&‘]

and

E[dffe-d/Cu] = Y E[ufelf?Ci) ZZE

i=1 =1 j#i
n n
+ Z Z E [eiejuiuj i jCij] + Z Z E [Eigjujui 12 jCji
i=1 j#i =1 j#i
= o2 f'C'f+ o2 f'Cf

Because Cf = Pf —P(I — P)f = PZn —P(I — P)Zr = Zn = f, we obtain
o2
E[TlTll] = 2, (23)
n

B.2 Approximate MSE Calculation: Intermediate Results Based On Nor-
mality

Note that

6162 = ade; + (L — Py) 2 (Mu)? (Me),
— (1= Pa) t e (Mu); — (1= Py) a2 (Mu), (Me),
= flei +3fPuie; + 3fiule; + ude;
+(1— Py) 2 (Mu)] (Me); — (1 — Pi) ™" fiei (Mu);
— (1= Pu) Twigs (Mu)? — (L= Pu) ™" f7 (Mu), (Me),
—2(1 = Py)* fui (Mu); (Me); — (1 — Py) ™" uZ (Mu), (Me), (24)
and
B = (122w + @ P) 1))
= [} +6f7uf +u + (1 - Py) 2 (Mu)]
+4f3u; — 22 (A — Py)t (Mu)? + 4fid
—4fiu; (1 — Pg) ™t (Mu)? = 2(1 — Py) " u? (Mu)? (25)

14



B.2.1 E[T%]

We first compute E [T%] noting that
HB[IE] < 53 B [E] + 5 Y0t [e]

%ZZ 925 [(1=)’] . 5 S EB[(w=)’]
W Z (@ - P~ B [(Mu)? (Z” 2
+7172 Z (- P72 f2E | (M|
+10 Z (- P B [u2? (|
N 1172 Z 41— )2 2B [u? (Mu)? (M<)?]
. % Z (1-P)2E [ug‘ (Mu)? (Me)? }

Under the assumption that %Zl f8 = O(2), the first four terms are all 0(%). Below, we
characterize orders of the rest of the terms.
We now compute %2 >, (@a- Pii)_4 E [(Mu)fS (Me)f] . We write

Oue

€ = —5 Ui +
O‘u

where v; is independent of u;. Because
(L~ P)~* B [(Mu)? (M)

= 1-P)* ("123 105 Var ((Mw),)* + 15 Var (Mu),)® Var ((Mv)i)>

g

2 2
= (1-P)™* (105"—25 (1 - Py)*of +151 - P;)° 08 (1 - Py) <o—§- - “—2))
O-’LL Uu
= 1503:03 + 900%502,
we have
10 10 1
=y - P *E [(Mu)? (Ms)ﬂ = (150208 +9002.0%) = 0 (E) .
7 7

15



We now compute i—g >, @a- Pn-)_2 f2E [522 (Mu)ﬂ . Because

@ P) 7 E | (u)]

we have

= (- P E (M) (P} + (M) )|

= (1— Py)"%-3Var((Mu),)* - Var ((Pe),)
2

+(1—Py)? <% 15 Var ((Mw),)* + 3 Var (Mu),)* Var (Mv),)

u

= 3P0ty +15(1 — Py)ob.0f +3(1— Py) (020} — 0500

= 30’50’2"‘12(1 P’Lz)gus u’

3 - o] < @it +2oket) 53 =0 (2)

We now compute %2 Yo, —=Py)” ’F [u 2(M w); } Because

E {ufef (Mu)ﬂ =

it easily follows that

10 >
3> (-P)E

E [y} ((Pw? + (M)?) ((P)? + ()7 ) |

E [(Mu)ﬂ E [(Pu)f (Ps)f] +F [(Mu)ﬂ E [(Pe)ﬂ
+E [(Mu)‘.‘ (Mg)ﬂ E [(Pu)?] +E [(Mu)f (Mg)ﬂ
3(1 — Py)? Piot (0202 +202))

+15(1 — ZZ) P”a a

+(1 - Py) Py (12%% +3020y) 02
+ (1 — Py)* (150208 + 9002, 0%)

[uzzef (Mu)ﬂ =o (%) .

We now compute 711—(3) >, - Pu-)f2 fiE [(MU)ZZ (ME)ZZ] Because

E [(Mu)f (Ms)ﬂ =

it easily follows that

10 -
3> @-P) g}

(1 — Py)? (0202 +202,)

E [(Mu)f (Ms)ﬂ =0 <%> .

We now compute 33401 — Py) 2 f2E {uzz (Mu)z2 (Ms)ﬂ . Because

E [uf (Mu)? (Ms)ﬂ

= E [((Mu)? + (Pu)? ) (Mu)? (Me)]]

= (1- Pu') (120u50u + 30 ) + P (1— Pm’)z Ui (aiag

16
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it easily follows that
10 _
24— P 2B [uf (M)} ()]

40 40
= (120%.0% +30%%) Z JE = Pi)+ 0% (oho +20%) =5 3 f2Pi (L - Pu)?

)
We finally compute % >, - Py)°FE [Uf (MU)ZZ (Mf)ﬂ - Because
E [ug‘ (Mu)? (Mg)ﬂ
= E [((Mu);‘ + 2 (Mu)? (Pu)? + (PU)f> (Mu)? (Mf)f]
= B [(ru)? (M=) | + 28 [(Pu)f] £ [01w)f (1e)]]
+E [(Pu)ﬂ E [(Mu)? (Ms)?}

= (1- Py)* (150208 +9002.0%) + 2P, (1 — P)® 02 (1202.0% + 30203

UE~ U

+3P% (1 — Py)’ o (0302 + 202,
it easily follows that
10 _ 1
~ Z 1-P)?E [ug‘ (Mu)? (Mg)ﬂ =0 <E> :
To summarize, we have
E[13] =o(2). (26)
n

B.2.2 E[TiTwy]

We now compute F[T1712]. We compute the expectation of the product of each term on the
right side of (24) with f’e.

E[(f¢) (ffe))] = fio? (27)
E[(f'e) 3ffwei)] = 0 (28)
E((f'e) Bfiuiei)] = 3fF (ohof +207,) (29)
E([(f'e) (uie:)] = 0 (30)

Now note that

&
<
N
ol
=
£
I

o2 Mf =0, E[Mu(f'e)] =ouMf =0,
E[Me(fu)] = o0uMf=0,  E[Me(f'c)] =02Mf=0,

17



which implies independence. Therefore, we have
E|(f)- @~ P (Mu)? (Me), ]| =0 (31)

Lemma 3 Suppose that A, B,C' are zero mean normal random variables. Also suppose that A
and B are independent of each other. Then E [AZBC] = Cov (B,C) Var (A).

Proof. Write

_Cov(4,0) " Cov (B, ()
~ Var(4) Var (B)

B+

where v is independent of A and B. Conclusion easily follows. m

Using Lemma 3, we obtain

B((fe) - (= P)  fim (Mu))| = —(@— P Cov (=, fimi) Var (Mu),)
= —(-P) ffol(L - Pi) ol
= —fiolo, (32)

Symmetry implies
E[(f') - (- @= P (Mu)?) | =0 (33)
and
E|(f'e)- (- @= R f2 (Mu), (Me),) | =0 (34)

Lemma 4 Suppose that A, B,C, D are zero mean normal random variables. Also suppose that
(A, B) and C are independent of each other. Then E[ABCD] = Cov (A, B) Cov (C, D)

Proof. Write D = 1A+ £,B + £3C + v, where s denote regression coefficients. Note that
&3 = Cov (C, D) / Var (C) by independence. We then have

ABCD = £, A’BC + £,AB%C + £3ABC? + ABCv

from which the conclusion follows. m

Using Lemma 4, we obtain
B[(f'e) - (-2~ P fis (M), (Me), )|
= —2(L— Py) " Cov ((Mu),, (Me),) Cov (f'e, fius)
= -2 (1 - Pii)_l (1 - R,Z) Uusfizaue
= _2012L6f722 (35)

18



Finally, using symmetry again, we obtain

B|(fe) - (- - P u? (Mu), (Me), )| =0 (36)
Combining (27) - (36), we obtain

E[(f'e) - (0ri62)] = fio2 +2f7 (o002 + 207,)

from which we obtain

PUTal = 5 S [(7%) - @uta] = —%( Zf“) SR

n

B.2.3 LY, 65
We compute E [n—lz Py 6;] and characterize its order of magnitude. From (25), we can obtain
E[83,] = fi +4f20% + 4Paoy,

and hence, it follows that

B.2.4 E[T1Tu]

We compute the expectation of the product of each term on the right hand side of (25) with
(f'e)?, noting independence between (M u), and f’e. We have

B((fe)- f1] = 1 folft = nHoff,

E[(re)? 62uf] = 6fF ((f'f0?) o2 +2(fioue)?)

— 2 242 2 4
= 6nHolo, f{ +120;,

E|(fe)-ut] = 12ff020%+3f ol
= 3nHo?o? +12f%02 0

~

- Pa) 2 (Mw)f] = (f'f0?) - 30% = 3nH o202

(4fpw) | =0,

(22 - P 1w} )| = —2f2 1 fo?o? = ~anH fPo2ol,
2. (4f,-u?)} =0

eI < I B
- N = =

19



B[(7/2)? (~4fmi @ - Pyt (u)?)] =

E [( fle)?. (—2 (- Py tu? (Mu)f)} = _4f252 o2 — 4(1 — Py)nHo?* — 2nHo%0"
Therefore,
rorsa| = et (A3 wertntan iz, (230 0)

i=1 i=1 i=1

+3n2Ho%02 + 12nHo? 0% + 3n2H(7202 — 2n?H?%c2%02

—4nHo? 02 —4(n — K)nHo?0% — 2n?Ho?0%,

and therefore, we have

E[ThTa] = Hl [ Z%]

— 11 2 1 4 1 6 2 2 2 2 6 2 4 1
= 0 <E2f1> - (Eaaau+4aaau—ﬁoaau ol ). (38)

20
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