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Abstract

Most papers that employ Differences-in-Differences estimation (DD) use many years of data
and focus on serially correlated outcomes but ignore that the resulting standard errors are incon-
sistent. To illustrate the severity of this issue, we randomly generate placebo laws in state-level
data on female wages from the Current Population Survey. For each law, we use OLS to compute
the DD estimate of its “effect” as well as the standard error of this estimate. These conventional
DD standard errors severely understate the standard deviation of the estimators: we find an
“effect” significant at the 5 percent level for up to 45 percent of the placebo interventions. We
use Monte Carlo simulations to investigate how well existing methods help solve this problem.
Econometric corrections that place a specific parametric form on the time-series process do not
perform well. Bootstrap (taking into account the auto-correlation of the data) works well when
the number of states is large enough. Two corrections based on asymptotic approximation of
the variance-covariance matrix work well for moderate numbers of states and one correction
that collapses the time series information into a “pre” and “post” period and explicitly takes
into account the effective sample size works well even for small numbers of states.
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I. Introduction

Differences-in-Differences (DD) estimation has become an increasingly popular way to estimate

causal relationships. DD estimation consists of identifying a specific intervention or treatment

(often the passage of a law). One then compares the difference in outcomes after and before the

intervention for groups affected by the intervention to the same difference for unaffected groups.

For example, to identify the incentive effects of social insurance, one might first isolate states that

have raised unemployment insurance benefits. One would then compare changes in unemployment

duration for residents of states raising benefits to residents of states not raising benefits. The great

appeal of DD estimation comes from its simplicity as well as its potential to circumvent many of

the endogeneity problems that typically arise when making comparisons between heterogeneous

individuals (see Meyer [1995] for an overview).

Obviously, DD estimation also has its limitations. It is appropriate when the interventions are as

good as random, conditional on time and group fixed effects. Therefore, much of the debate around

the validity of a DD estimate typically revolves around the possible endogeneity of the interventions

themselves.1 In this paper, we address an altogether different problem with DD estimation. We

assume away biases in estimating the intervention’s effect and instead focus on issues relating to

the standard error of the estimate.

DD estimates and their standard errors most often derive from using Ordinary Least Squares

(OLS) in repeated cross-sections (or a panel) of data on individuals in treatment and control groups

for several years before and after a specific intervention. Formally, let Yist be the outcome of interest

for individual i in group s (such as a state) by time t (such as a year) and Ist be a dummy for

whether the intervention has affected group s at time t.2 One then typically estimates the following

regression using OLS:

Yist = As + Bt + cXist + β Ist + εist, (1)

where As and Bt are fixed effects for states and years respectively, Xist are relevant individual
1 See Besley and Case [2000]. Another prominent concern has been whether DD estimation ever isolates a

specific behavioral parameter. See Heckman [2000] and Blundell and MaCurdy [1999]. Abadie [2000] discusses how
well the comparison groups used in non-experimental studies approximate appropriate control groups. Athey and
Imbens [2002] critique the linearity assumptions used in DD estimation and provide a general estimator that does
not require such assumptions.

2 For simplicity of exposition, we will often refer to interventions as laws, groups as states and time periods as
years. This discussion of course generalizes to other types of DD estimates.
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controls and εist is an error term. The estimated impact of the intervention is then the OLS

estimate β̂. Standard errors used to form confidence interval for β̂ are usually OLS standard errors,

sometimes corrected to account for the correlation of shocks within each state-year cell.3 This

specification is a common generalization of the most basic DD set-up (with two periods and two

groups), which is valid only under the very restrictive assumption that changes in the outcome

variable over time would have been exactly the same in both treatment and control groups in the

absence of the intervention.

In this paper, we argue that the estimation of equation (1) is in practice subject to a possibly

severe serial correlation problem. While serial correlation is well understood, it has been largely

ignored by researchers using DD estimation. Three factors make serial correlation an especially

important issue in the DD context. First, DD estimation usually relies on fairly long time series.

Our survey of DD papers, which we discuss below, finds an average of 16.5 periods. Second, the

most commonly used dependent variables in DD estimation are typically highly positively serially

correlated. Third, and an intrinsic aspect of the DD model, the treatment variable Ist changes itself

very little within a state over time. These three factors reinforce each other so that the standard

error for β̂ could severely understate the standard deviation of β̂.

To assess the extent of this problem, we examine how DD performs on placebo laws, where

treated states and year of passage are chosen at random. Since these laws are fictitious, a significant

“effect” at the 5 percent level should be found roughly 5 percent of the time. In fact, we find

dramatically higher rejection rates of the null hypothesis of no effect. For example, using female

wages (from the Current Population Survey) as a dependent variable and covering 21 years of data,

we find a significant effect at the 5 percent level in as much as 45 percent of the simulations. Similar

rejection rates arise in two Monte Carlo studies.4

3 This correction accounts for the presence of a common random effect at the state-year level. For example,
economic shocks may affect all individuals in a state on an annual basis [Moulton 1990, Donald and Lang 2001].
Ignoring this grouped data problem can lead to inconsistent standard errors. In most of what follows, we will
assume that the researchers estimating equation (1) have already accounted for this problem, either by allowing
for appropriate random group effects or, as we do, by collapsing the data to a higher level of aggregation (such as
state-year cells). For a broader discussion of inference issues in models with grouped errors, see Wooldridge [2002,
2003].

4 In the first Monte Carlo study, the data generating process is the state-level empirical distribution that puts
probability 1/50 on each of the 50 states’ observations in the CPS. As the randomization is at the state level, this
preserves the within-state autocorrelation structure. In the second Monte Carlo study, the data generating process
is an AR(1) with normal disturbances.
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We then use Monte Carlo simulations to investigate how several alternative estimation tech-

niques help solve this serial correlation problem. We show that simple parametric corrections which

estimate specific data generating processes (such as an AR(1)) fare poorly. A nonparametric tech-

nique, block bootstrap, performs well when the number of states is large enough. Two simpler

techniques also perform well. First, one can remove the time series dimension by aggregating the

data into two periods: pre- and post-intervention. If one adjusts the t-statistics for the small num-

ber of observations in the regression, this correction works well even when the number of groups

is relatively small (e.g. 10 states). Second, one can allow for an unrestricted covariance structure

over time within states, with or without making the assumption that the error terms in all states

follow the same process. This technique works well when the number of groups is large (e.g. 50

states) but fare more poorly as the number of groups gets small.

The remainder of this paper proceeds as follows. Section II surveys existing DD papers. Section

III examines how DD performs on placebo laws. Section IV describes how alternative estimation

techniques help solve the serial correlation problem. We conclude in Section V.

II. A Survey of DD Papers

Whether serial correlation has led to serious over-estimation of t-statistics and significance levels

in the DD literature so far depends on: (1) the typical length of the time series used, (2) the serial

correlation of the most commonly used dependent variables; and (3) whether any procedures have

been used to correct for it [Greene 2002]. Since these factors are inherently empirical, we collected

data on all DD papers published in 6 journals between 1990 and 2000.5 We classified a paper as

“DD” if it focuses on specific interventions and uses units unaffected by the law as a control group.6

We found 92 such papers.

Table I summarizes the number of time periods, the nature of the dependent variable, and the

technique(s) used to compute standard errors in these papers. Sixty-nine of the 92 DD papers

used more than two periods of data. Four of these papers began with more than two periods but
5 The journals are the the American Economic Review, the Industrial and Labor Relations Review, the Journal

of Labor Economics, the Journal of Political Economy, the Journal of Public Economics, and the Quarterly Journal
of Economics.

6 Hence, for example, we do not classify a paper that regresses wages on unemployment as a DD paper (even
though it might suffer from serial correlation issues as well).
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collapsed the data into two effective periods: before and after. For the remaining 65 papers, the

average number of periods used is 16.5 and the median is 11. More than 75 percent of the papers

use more than 5 periods of data.7

The most commonly used variables are employment and wages. Other labor market variables,

such as retirement and unemployment also receive significant attention, as do health outcomes.

Most of these variables are clearly highly auto-correlated. For example, Blanchard and Katz [1992]

find strong persistence in shocks to state employment, wages and unemployment. Interestingly,

first-differenced variables, which likely exhibit negative auto-correlation, are quite uncommon in

DD papers.

A vast majority of the surveyed papers do not address serial correlation at all. Only 5 papers

explicitly deal with it. Of these, 4 use a parametric AR(k) correction. As we will see later on,

this correction does very little in practice in the way of correcting standard errors. The fifth allows

for an arbitrary variance-covariance matrix within each state, one of the solutions we suggest in

Section IV.

Two additional points are worth noting. First, 80 of the original 92 DD papers have a potential

problem with grouped error terms as the unit of observation is more detailed than the level of

variation (a point discussed by Donald and Lang [2001]). Only 36 of these papers address this

problem, either by clustering standard errors or by aggregating the data. Second, several techniques

are used (more or less informally) for dealing with the possible endogeneity of the intervention

variable. For example, 3 papers include a lagged dependent variable in equation (1), 7 include

a time trend specific to the treated states, 15 plot some graphs to examine the dynamics of the

treatment effect, 3 examine whether there is an “effect” before the law, 2 test whether the effect

is persistent, and 11 formally attempt to do triple-differences (DDD) by finding another control

group. In Bertrand, Duflo and Mullainathan [2002], we show that most of these techniques do not

alleviate the serial correlation issues.
7 The very long time series reported, such as 51 or 83 at the 95th and 99th percentile respectively, arise because

several papers used monthly or quarterly data. When a paper used several data sets with different time spans, we
only recorded the shortest span.
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III. Over-Rejection in DD Estimation

The survey above suggests that most DD papers may report standard errors that understate

the standard deviation of the DD estimator, but it does not help quantify how large the inference

problem might be. To illustrate the magnitude of the problem, we turn to a specific data set: a

sample of women’s wages from the Current Population Survey (CPS).

We extract data on women in their fourth interview month in the Merged Outgoing Rotation

Group of the CPS for the years 1979 to 1999. We focus on all women between the ages 25 and

50. We extract information on weekly earnings, employment status, education, age, and state

of residence. The sample contains nearly 900,000 observations. We define wage as log(weekly

earnings). Of the 900,000 women in the original sample, approximately 540,000 report strictly

positive weekly earnings. This generates (50*21=1050) state-year cells, with each cell containing

on average a little more than 500 women with strictly positive earnings.

The correlogram of the wage residuals is informative. We estimate first, second and third

auto-correlation coefficients for the mean state-year residuals from a regression of wages on state

and year dummies (the relevant residuals since DD includes these dummies). The auto-correlation

coefficients are obtained by a simple OLS regression of the residuals on the corresponding lagged

residuals. We are therefore imposing common auto-correlation parameters for all states. The

estimated first order auto-correlation coefficient is 0.51, and is strongly significant. The second

and third order auto-correlation coefficients are high (0.44 and 0.33 respectively) and statistically

significant as well. They decline much less rapidly than one would expect if the data generating

process was a simple AR(1).89

To quantify the problem induced by serial correlation in the DD context, we randomly generate
8 Solon [1984] points out that in panel data, when the number of time periods is fixed, the estimates of the auto-

correlation coefficients obtained using a simple OLS regression are biased. Using Solon’s generalization of Nickell’s
[1981] formula for the bias, the first order auto-correlation coefficient of 0.51 we estimate with 21 time periods would
correspond to a true auto-correlation coefficient of 0.6 if the data generating process were an AR(1). However, Solon’s
formulas also imply that the second and third order auto-correlation coefficients would be much smaller than the
coefficients we observe if the true data generating process were an AR(1) process with an auto-correlation coefficient
of 0.6. To match the estimated second and third order auto-correlation parameters, the data would have to follow an
AR(1) process with an auto-correlation coefficient of 0.8.

9 The small sample sizes in each state-year cell can lead to large sampling error and lower serial correlation in
the CPS than in other administrative data. See, for example, Blanchard and Katz [1997]. Sampling error may also
contribute to complicating the auto-correlation process, making it for example a combination of AR(1) and white
noise.
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laws that affect some states and not others. We first draw a year at random from a uniform

distribution between 1985 and 1995.10 Second, we select exactly half the states (25) at random and

designate them as “affected” by the law. The intervention variable Ist is then defined as a dummy

variable which equals 1 for all women that live in an affected state after the intervention date, 0

otherwise.11

We can then estimate equation (1) using OLS on these placebo laws. The estimation generates

an estimate of the law’s “effect” and a standard error for this estimate. To understand how well

conventional DD performs, we can repeat this exercise a large number of times, each time drawing

new laws at random.12

For each of these simulations we randomly generate new laws but use the same CPS data. This

is analogous to asking “If hundreds of researchers analyzed the effects of various laws in the CPS,

what fraction would find a significant effect even when the laws have no effect?” If OLS were to

provide consistent standard errors, we would expect to reject the null hypothesis of no effect (β = 0)

roughly 5 percent of the time when we use a threshold of 1.96 for the absolute t-statistic.13

The first row of Table II presents the result of this exercise when performed in the CPS micro

data, without any correction for grouped error terms. We estimate equation (1) for at least 200

independent draws of placebo laws. The control variables Xist include 4 education dummies (less

than high school, high school, some college and college or more) and a quartic in age as controls.

We report the fraction of simulations in which the absolute value of the t-statistic was greater than

1.96. We find that the null of no effect is rejected a stunning 67.5 percent of the time.

One important reason for this gross over-rejection is that the estimation fails to account for

correlation within state-year cells (Donald and Lang [2001], Moulton [1990]). In other words, OLS

assumes that the variance-covariance matrix for the error term is diagonal while in practice it might
10We choose to limit the intervention date to the 1985-1995 period to ensure having enough observations prior and

post intervention.
11 We have tried several alternative placebo interventions (such as changing the number of “affected” states or

allowing for the laws to be staggered over time) and found similar effects. See Bertrand, Duflo and Mullainathan
[2002] for details.

12 This exercise is similar in spirit to the randomly generated instruments in Bound, Jaeger and Baker [1995].
Also, if true laws were randomly assigned, the distribution of the parameter estimates obtained using these placebo
laws could be used to form a randomization inference test of the significance of the DD estimate [Rosenbaum [1996].

13Note that we are randomizing the treatment variable while keeping the set of outcomes fixed. In general, the
distribution of the test statistic induced by such randomization is not a standard normal distribution and, therefore,
the exact rejection rate we should expect is not known. We directly address this issue below by turning to a more
formal Monte Carlo study.

7



be block diagonal, with correlation of the error terms within each state-year cell. As noted earlier,

while 80 of the papers we surveyed potentially suffer from this problem, only 36 correct for it. In

rows 2 and 3, we account for this issue in two ways. In row 2, we allow for an arbitrary correlation

of the error terms at the state-year level. We still find a very high (44 percent) rejection rate.14 In

row 3, we aggregate the data into state-year cells to construct a panel of 50 states over 21 years

and then estimate the analogue of equation (1) on this data.15 Here again, we reject the null of no

effect in about 44 percent of the regressions. So correlated shocks within state-year cells explain

only part of the over-rejection we observe in row 1.

In the exercise above, we randomly assigned laws over a fixed set of state outcomes. In such a

case, the exact rejection rate we should expect is not known, and may be different from 5 percent

even for a correctly sized test. To address this issue, we perform a Monte Carlo study where the

data generating process is the state-level empirical distribution of the CPS data. Specifically, for

each new simulation, we sample states with replacement from the CPS, putting probability 1/50

on each of the 50 states. Because we sample entire state vectors, this preserves the within-state

autocorrelation of outcomes. In each sample, we then randomly pick half of the states to be

“treated” and randomly pick a treatment year (as explained above).

The results of this Monte Carlo study (row 4) are very similar to the results obtained in the

first exercise we conducted: OLS standard errors lead to reject the null hypothesis of no effect at

the 5 percent significance level in 49 percent of the cases.16 To facilitate the interpretation of the

rejection rates, all the CPS results presented below are based on such Monte Carlo simulations

using the state-level empirical distribution of the CPS data.

We have so far focused on Type I error. A small variant of the exercise above allows us to assess
14 Practically, this is implemented by using the “cluster” command in STATA. We also applied the correction

procedure suggested in Moulton [1990]. That procedure forces a constant correlation of the error terms at the
state-year level, which puts structure on the intra-cluster correlation matrices and may therefore perform better in
finite samples. This is especially true when the number of clusters is small (if in fact the assumption of a constant
correlation is a good approximation). The rate of rejection of the null hypothesis of no effect was not statistically
different under the Moulton technique.

15 To aggregate, we first regress individual log weekly earnings on the individual controls (education and age)
and form residuals. We then compute means of these residuals by state and year: Ȳst. On this aggregated data, we
estimate Ȳst = αs + γt +β Ist + εst. The results do not change if we also allow for heteroskedasticity when estimating
this equation.

16We have also run simulations where we fix the treatment year across all simulations (unpublished appendix
available from the authors). The rejections rates do not vary much from year to year, and remain above 30 percent
in every single year.
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Type II error, or power against a specific alternative. After constructing the placebo intervention,

Ist, we can replace the outcome in the CPS data by the outcome plus Ist times whichever effect

we wish to simulate. For example, we can replace log(weekly earnings) by log(weekly earnings)

plus Ist × .0x to generate a true .0x log point (approximately x percent) effect of the intervention.

By repeatedly estimating DD in this altered data (with new laws randomly drawn each time)

and counting rejections, we can assess how often DD rejects the null of no effect under a specific

alternative.17 Under the alternative of a 2 percent effect, OLS rejects the null of no effect in 66

percent of the simulations (row 4, last column).

The high rejection rate is due to serial correlation, as we document in the next rows of Table

II. As we discussed earlier, an important factor is the serial correlation of the intervention variable

Ist itself. In fact, if the intervention variable were not serially correlated, OLS standard errors

should be consistent. To illustrate this point, we construct a different type of intervention which

eliminates the serial correlation problem. As before, we randomly select half of the states to form

the treatment group. However, instead of randomly choosing one date after which all the states in

the treatment group are affected by the law, we randomly select 10 dates between 1979 and 1999.

The law is now defined as 1 if the observation relates to a state that belongs to the treatment group

at one of these 10 dates, 0 otherwise. In other words, the intervention variable is now repeatedly

turned on and off, with its value in one year telling us nothing about its value the next year. In

row 5, we see that the null of no effect is now rejected in only 5 percent of the cases.

Further evidence is provided in rows 6 through 8. Here we repeat the Monte Carlo study (as

in row 4) for three different variables in the CPS: employment, hours and change in log wages.

We report estimates of the first, second and third order auto-correlation coefficients for each of

these variables. As we see, the over-rejection problem diminishes with the serial correlation in the

dependent variable. As expected, when the estimate of the first-order auto-correlation is negative

(row 8), we find that OLS lead us to reject the null of no effect in less than 5 percent of the

simulations.

This exercise using the CPS data illustrates the severity of the problem in a commonly used
17It is important to note that the “effect” we generate is uniform across states. For some practical applications,

one might also be interested in cases where the treatment effect is heterogeneous.
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data set. However, one might be concerned that we are by chance detecting actual laws or other

relatively discrete changes. Also, there might be other features of the CPS wage data, such as state-

specific time trends, that may also give rise to over-rejection. To address this issue, we replicate

our analysis in an alternative Monte Carlo study where the data generating process is an AR(1)

model with normal disturbances. The data is generated so that its variance structure in terms of

relative contribution of state and year fixed effects matches the empirical variance decomposition of

female state wages in the CPS.18 We randomly generate a new data set and placebo laws for each

simulation. By construction, we can now be sure that there are no ambient trends and that the

laws truly have no effect. In row 9, we assume that the auto-correlation parameter of the AR(1)

model (ρ) equals .8. We find a rejection rate of 37 percent. In rows 10 through 14, we show that

as ρ goes down, the rejection rates fall. When ρ is negative (row 14), there is under-rejection.

The results in Table II demonstrate that, in the presence of positive serial correlation, con-

ventional DD estimation leads to gross over-estimation of t-statistics and significance levels. In

addition, the magnitudes of the estimates obtained in these false rejections do not seem out of line

with what is regarded in the literature as “significant” economic impacts. The average absolute

value of the estimated “significant effects” in the wage regressions is about .02, which corresponds

roughly to a 2 percent effect. Nearly 60 percent of the significant estimates fall in the 1 to 2 percent

range. About 30 percent fall in the 2 to 3 percent range, and the remaining 10 percent are larger

than 3 percent. These magnitudes are large, considering that DD estimates are often presented

as elasticities. Suppose for example that the law under study corresponds to a 5 percent increase

in child-care subsidy. An increase in log earnings of .02 would correspond to an elasticity of .4.

Moreover, in many DD estimates, the truly affected group is often only a fraction of the treatment

group, meaning that a measured 2 percent effect on the full sample would indicate a much larger

effect on the truly affected sub-sample.

The stylized exercise above focused on data with 50 states and 21 time periods. Many DD

papers use fewer states (or treated and control units), either because of data limitations or because

of a desire to focus only on comparable controls. For similar reasons, several DD papers use fewer
18 We choose an AR(1) process to illustrate the problems caused by auto-correlation in the context of a simple

example, not because we think that such a process matches the female wage data the best.
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time periods. In Table III, we examine how the rejection rate varies with these two important

parameters. We rely on the Monte Carlo studies described above (state-level empirical distribution

of the CPS data and AR(1) model with normal disturbances) to analyze these effects. We also

report rejection rates when we add a 2 percent treatment effect to the data.

The data sets used by many researchers have fewer than 50 groups. Rows 1-4 and 10-13 show

that varying the number of states does not change the extent of the over-rejection. Rows 5-9 and

14-17 vary the number of years. As expected, over-rejection falls as the time span gets shorter, but

it does so at a rather slow rate. For example, even with only 7 years of data, the rejection rate

is 15 percent in the CPS-based simulations. Conditional on using more than 2 periods, around 60

percent of the DD papers in our survey use at least 7 periods. With 5 years of data, the rejection

rate varies between 8 percent (CPS) and 17 percent (AR(1), ρ = 8). When T=50, the rejection

rate rises to nearly 50 percent in the simulations using an AR(1) model with ρ=.8.

IV. Solutions

In this section, we evaluate the performance of alternative estimators that have been proposed

in the literature to deal with serial correlation. To do so, we use placebo interventions in the two

Monte Carlo studies described above. We also evaluate the power of each estimator against the

specific alternative of a 2 percent effect (we add Ist ∗ 0.02 to the data). The choice of 2 percent as

the alternative is admittedly somewhat arbitrary, but our conclusions on the relative power of each

estimator do not dependent on this specific value.19

IV.A. Parametric Methods

A first possible solution to the serial correlation problem would be to specify an auto-correlation

structure for the error term, estimate its parameters, and use these parameters to compute standard

errors. This is the method that was followed in 4 of the 5 surveyed DD papers that attempted
19 We report the power against the alternative of 2 percent because 2 percent appears as a “reasonable” size

effect. Moreover, in simulated data with an AR(1) process with ρ=0.8, the rejection rate when using the true variance-
covariance matrix is 32.5 percent when there is a 2 percent effect, which is large enough to be very different from the
5 percent rejection rate obtained under the null of no effect.
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to deal with serial correlation. We implement several variations of this basic correction method in

Table IV.

Row 2 performs the simplest of these parametric corrections, wherein an AR(1) process is

estimated in the data, without correction for small sample bias in the estimation of the AR(1)

parameter. We first estimate the first order auto-correlation coefficient of the residual by regressing

the residual on its lag, and then use this estimated coefficient to form an estimate of the block-

diagonal variance-covariance matrix of the residual. This technique does little to solve the serial

correlation problem: the rejection rate stays high at 24 percent. The results are the same whether or

not we assume that each state has its own auto-correlation parameter. The failure of this correction

method is in part due to the downward bias in the estimator of the auto-correlation coefficient.

As is already well understood, with short time-series, the OLS estimation of the auto-correlation

parameter is biased downwards. In the CPS data, OLS estimates a first-order auto-correlation

coefficient of only 0.4. Similarly, in the AR(1) model where we know that the auto-correlation

parameter is .8, a ρ̂ of .62 is estimated (row 5). However, if we impose a first-order autocorrelation

of .8 in the CPS data (row 3), the rejection rate only goes down to 16 percent, a very partial

improvement.

Another likely problem with the parametric correction may be that we have not correctly

specified the auto-correlation process. As noted earlier, an AR(1) does not fit the correlogram of

wages in the CPS. In rows 7 and 8, we use new Monte Carlo simulations to assess the effect of

such a mis-specification of the autocorrelation process. In row 7, we generate data according to an

AR(2) process with ρ1 = .55 and ρ2 = .35. These parameters were chosen because they match well

the estimated first, second and third auto-correlation parameters in the wage data when we apply

the formulas to correct for small sample bias given in Solon [1984]. We then correct the standard

error assuming that the error term follows an AR(1) process. The rejection rate rises significantly

with this mis-specification of the auto-correlation structure (30.5 percent).

In row 8, we use a data generating process that provides an even better match of the time-series

properties of the CPS data: the sum of an AR(1) (with auto-correlation parameter 0.95) plus white

noise (the variance of the white noise is 13 percent of the total variance of the residual). When

trying to correct the auto-correlation in this data by fitting an AR(1), we reject the null of no effect
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in about 39 percent of the cases.

The parametric corrections we have explored do not appear to provide an easy solution for the

applied researcher.20 Any mis-specification of the data generating process results in inconsistent

standard errors and, at least without much deeper exploration into specification tests, it is difficult

to find the true data generating process.21

We next investigate alternative techniques that make little or no specific assumption about the

structure of the error term. We start by examining a simulation-based technique. We then examine

three other techniques that can be more readily implemented using standard statistical packages.

IV.B. Block Bootstrap

Block bootstrap [Efron and Tibshirani, 1994] is a variant of bootstrap which maintains the auto-

correlation structure by keeping all the observations that belong to the same group (e.g., state)

together. In practice, we bootstrap the t-statistic as follows. For each placebo intervention, we

compute the absolute t-statistic t = abs(β̂/SE(β̂)), using the OLS estimate of β and its standard

error. We then construct a bootstrap sample by drawing with replacement 50 matrices (Ȳs,Vs),

where Ȳs is the entire time series of observations for state s, and Vs is the matrix of state dummies,

time dummies, and treatment dummy for state s. We then run OLS on this sample, obtain an

estimate β̂r and construct the absolute t-statistic tr = abs(β̂r−β̂)

SE(β̂r)
. The sampling distribution of tr is

random and changing as N (the number of states) grows. The difference between this distribution

and the sampling distribution of t becomes small as N goes to infinity, even in the presence of

arbitrary auto-correlation within states and heteroskedasticity. We draw a large number (200) of

bootstrap samples, and reject the hypothesis that β = 0 at a 95 percent confidence level if 95

percent of the tr are smaller than t. The results of the block bootstrap estimation are reported in

Table V.

This correction method presents a major improvement over the parametric techniques discussed
20We do not explore in this paper IV/GMM estimation techniques. There is however a large literature on GMM

estimation of dynamic panel data models that could potentially be applied here.
21For example, when we use the two “reasonable” processes described above in the CPS data or in a Monte Carlo

study based on the empirical distribution of the CPS data, the rejection rates remained high.
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before. When N equals 50, the rejection rate of the null of no effect is 6.5 percent in data drawn

from the CPS and 5 percent in data drawn from an AR(1) model. When there is a 2 percent effect,

the null of no effect is rejected in 26 percent of the cases in the CPS data and in 25 percent of

the cases in the AR(1) data. However, the method performs less well when the number of states

declines. The rejection rate is 13 percent with 20 states and 23 percent with 10 states. The power

of this test also declines quite fast. With 20 states, the null of no effect is rejected in only 19 percent

of the cases when there is a 2 percent effect.

While block bootstrap provides a reliable solution to the serial correlation problem when the

number of groups is large enough, this technique is rarely used in practice by applied researchers,

perhaps because it is not immediate to implement.22 We therefore now turn to three simpler

correction methods.

IV.C. Ignoring Time Series Information

The first simpler method we investigate is to ignore the time series information when computing

standard errors. To do this, one could simply average the data before and after the law and run

equation (1) on this averaged outcome variable in a panel of length 2. The results of this exercise

are reported in Table VI. The rejection rate when N equals 50 is now 5.3 percent (row 2).

Taken literally, however, this solution will work only for laws that are passed at the same time

for all the treated states. If laws are passed at different times, “before” and “after” are no longer

the same for each treated state and not even defined for the control states. One can however slightly

modify the technique in the following way. First, one can regress Yst on state fixed effects, year

dummies, and any relevant covariates. One can then divide the residuals of the treatment states

only into two groups: residuals from years before the laws, and residuals from years after the laws.

The estimate of the laws’ effect and its standard error can then be obtained from an OLS regression

in this two-period panel. This procedure does as well as the simple aggregation (row 3 vs. row 2)

for laws that are all passed at the same time. It also does well when the laws are staggered over
22 Implementing block bootstrap does require a limited amount of programming. The codes generated for this

study are available upon request.
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time (row 4).23

When the number of states is small, the t-statistic needs to be adjusted to take into account

the smaller number of observations (see Donald and Lang [2001] for a discussion of inference in

small-sample aggregated data set). When we do that, simple aggregation continues to perform

well, even for quite small numbers of states. Residual aggregation performs a little worst, but the

over-rejection remains relatively small. For example, for 10 states, the rejection rate is 5.3 percent

under the simple aggregation method (row 10) and about 9 percent under the residual aggregation

method (row 11).

The downside of these procedures (both raw and residual aggregation) is that their power is

quite low and diminishes fast with sample size. In the CPS simulations with a 2 percent effect,

simple aggregation rejects the null only 16 percent of the time with 50 states (row 2), 8.8 percent

of time with 20 states (row 6), and 6.5 percent of the time with 10 states (row 10).

IV.D. Empirical Variance-Covariance Matrix

As we have seen in Section IV.A, parametric corrections seem to fail in practice. However, the

parametric techniques discussed above did not make use of the fact that we have a large number

of states that can be used to estimate the auto-correlation process in a more flexible fashion.

Specifically, suppose that the auto-correlation process is the same across all states and that there is

no cross-sectional heteroskedasticity. In this case, if the data is sorted by states and (by decreasing

order of) years, the variance-covariance matrix of the error term is block diagonal, with 50 identical

blocks of size T by T (where T is the number of time periods). Each of these blocks is symmetric,

and the element (i, i + j) is the correlation between εi and εi−j . We can therefore use the variation

across the 50 states to estimate each element of this matrix, and use this estimated matrix to

compute standard errors. Under the assumption that there is no heteroskedasticity, this method

will produce consistent estimates of the standard error as N (the number of groups) goes to infinity

(Kiefer [1980]).
23To generate staggered laws, we randomly choose half of the states to form the treatment group and randomly

choose a passage date (uniformly drawn between 1985 and 1995) separately for each state in the treatment group.
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Table VII investigates how well this technique performs in practice in the CPS and AR(1)

Monte Carlo studies. The method performs well when the number of states is large (N=50). The

rejection rate we obtain in this case is 5.5 percent in the CPS (row 2) and 7 percent in the Monte

Carlo simulations (row 9). Its power when N=50 is comparable to the power of the block bootstrap

method. In the Monte Carlo study based on the empirical distribution of the CPS, we reject the

null of no effect in 24 percent of the simulations when there is a 2 percent effect.

However, as Table VII also indicates, this method performs more poorly for small sample sizes.

As the number of states drop, the rejection rate of the null of no effect increases. For N=10, this

correction method leads us to reject the null of no effect in 8 percent of the cases; for N=6, the

rejection rate is 15 percent.

IV.E. Arbitrary Variance-Covariance Matrix

One obvious limitation of the empirical variance-covariance matrix method discussed above is

that it is only consistent under the assumption of cross-sectional homoskedasticity, an assumption

that is likely to be violated in practice for many data sets. However, this method can be generalized

to an estimator of the variance-covariance matrix which is consistent in the presence of any cor-

relation pattern within states over time. Of course, we cannot consistently estimate each element

of the variance-covariance matrix in this case, but we can use a generalized White-like formula to

compute the standard errors (White [1984], Arellano [1987] and Kezdi [2002]).24 This estimator

for the variance-covariance matrix is given by:

W = (V ′V )−1

 N∑
j=1

u′juj

 (V ′V )−1

where N is the total number of states, V is matrix of independent variables (year dummies, state

dummies and treatment dummy) and uj is defined for each state to be:

uj =
T∑

t=1

ejtvjt

24 This is analogous to applying the Newey-West correction (Newey and West [1987]) in the panel context where
we allow for all lags to be potentially important.
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where ejt is the estimated residual for state i at time t and vjt is a row vector of dependent variables

(including the constant).25 This estimator of the variance-covariance matrix is consistent for fixed

panel length as the number of states tends to infinity [Kezdi 2002].26

In Table VIII, we investigate how well this estimation procedure performs in practice in finite

samples. Despite its generality, the arbitrary variance-covariance matrix does quite well. The

rejection rate in data drawn CPS is 6.3 percent when N=50 (row 2). With respect to power, we

saw in Tables II and IV that with the correct covariance matrix, the rejection rate in the case of

a 2 percent effect was 78 percent in a Monte Carlo simulation with no auto-correlation and 32

percent in AR(1) data with ρ = .8. The arbitrary variance-covariance matrix comes near these

upper-bounds, achieving rejection rates of 74 percent (row 10) and 27.5 percent (row 9) respectively.

Again, however, rejection rates increase significantly above 5 percent when the number of states

declines: 11.5 percent with 6 states (row 8), 8 percent with 10 states (row 6). The extent of the

over-rejection in small samples is comparable to that obtained for the empirical variance-covariance

matrix correction method, less extreme than with block bootstrap, but higher than with the time

series aggregation.

IV.F. Summary

Based on Monte Carlo simulations, this section has reviewed the performance of several stan-

dard correction methods for serial correlation. The results we obtain are in accord with the previous

literature. First, “naive” parametric corrections, which do not take into account the bias in the

estimation of the auto-correlation parameters in short time series, perform poorly (Nickell [1981]).

Furthermore, the time series lengths typical to DD applications are generally too short to reli-

ably estimate more flexible data generating processes and mis-specification of the process leads to

inconsistent standard errors (Greene [2002]).

Second, the arbitrary and empirical variance-covariance matrix corrections perform well in large
25 This is implemented in a straightforward way by using the cluster command in STATA and choosing entire

states (and not only state-year cells) as clusters.
26 Note that the resulting variance-covariance matrix is of rank TN − N . The standard error of the coefficient

of the state dummies is not identified in this model. However the other terms of the variance-covariance matrix are
identified and consistently estimated as N goes to infinity.
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samples, but not as well when the number of groups becomes small. The small sample bias in the

White standard errors were already noted in MacKinnon and White [1985], who perform Monte

Carlo simulations of this estimator, as well as of alternative estimators with better finite sample

properties. Also, Bell and McAffrey [2002] compute the small sample bias of the White standard

errors. They show that this bias is larger for variables that are constant or nearly constant within

cluster (which is the case of the treatment variables in the DD model). Kezdi [2002] performs Monte

Carlo simulations to evaluate the small sample properties of the Huber-White and the empirical

variance-covariance estimators of the standard errors in a fixed effect model with serial correlation.

Both estimators perform well in finite sample when N equals 50, but are biased when N equals 10.

Finally, aggregating the time series information performs well even for small number of states,

which reflects the fact that the significance threshold can be adjusted for the small effective sample

size (Donald and Lang [2001]). However, these aggregation techniques have relatively low power.

V. Conclusion

Our study suggests that, because of serial correlation, conventional DD standard errors may

grossly understate the standard deviation of the estimated treatment effects, leading to serious

over-estimation of t-statistics and significance levels. Since a large fraction of the published DD

papers we surveyed report t-statistics around 2, our results suggest that some of these findings

may not be as significant as previously thought if the outcome variables under study are serially

correlated. In other words, it is possible that too many false rejections of the null hypothesis of no

effect have taken place.

We have investigated how several standard estimation methods help deal with the serial correla-

tion problem in the DD context. We show that block bootstrap can be used to compute consistent

standard errors when the number of groups is sufficiently large. Moreover, we show that a few

techniques that are readily available in standard econometrics packages also provide viable solu-

tions for the applied researcher. Collapsing the data into pre- and post- periods produce consistent

standard errors, even when the number of states is small (though the power of this test declines

fast). Allowing for an arbitrary auto-correlation process when computing the standard errors is
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also a viable solution when the number of groups is sufficiently large.

We hope that our study provides some motivation for the practitioners that estimate DD models

to more carefully examine residuals as well as perform simple tests of serial correlation. Because

computing standard errors that are robust to serial correlation appears relatively easy to implement

in most cases, it should become standard practice in applied work. We also hope that our study

will contribute in generating further work on alternative estimation methods for DD models (such

as GLS estimation or GMM estimation of dynamic panel data models) that could be more efficient

in the presence of serial correlation.
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TABLE I
Survey of DD Papersa

Number of DD papers 92
Number with more than 2 periods of data 69
Number which collapse data into before-after 4

Number with potential serial correlation problem 65

Number with some serial correlation correction 5
GLS 4

Arbitrary variance-covariance matrix 1

Distribution of time span for papers with more than 2 periods Average 16.5
Percentile Value

1% 3
5% 3
10% 4
25% 5.75
50% 11
75% 21.5
90% 36
95% 51
99% 83

Most commonly used dependent variables Number
Employment 18

Wages 13
Health/medical expenditure 8

Unemployment 6
Fertility/teen motherhood 4

Insurance 4
Poverty 3

Consumption/savings 3

Informal techniques used to assess endogeneity Number
Graph dynamics of effect 15
See if effect is persistent 2
DDD 11
Include time trend specific to treated states 7
Look for effect prior to intervention 3
Include lagged dependent variable 3

Number with potential clustering problem 80
Number which deal with it 36

aNotes: Data comes from a survey of all articles in six journals between 1990 and 2000:the
American Economic Review; the Industrial Labor Relations Review; the Journal of Labor Economics;
the Journal of Political Economy; the Journal of Public Economics; and the Quarterly Journal of
Economics. We define an article as “Difference-in-Difference” if it: (1) examines the effect of a
specific intervention and (2) uses units unaffected by the intervention as a control group.



TABLE II
DD Rejection Rates for Placebo Lawsa

A. CPS DATA

Data ρ̂1, ρ̂2,ρ̂3 Modifications Rejection Rate
No Effect 2% Effect

1) CPS micro, log wage .675 .855
(.027) (.020)

2) CPS micro, log wage Cluster at state-year level .44 .74
(.029) (.025)

3) CPS agg, log wage .509, .440, .332 .435 .72
(.029) (.026)

4) CPS agg, log wage .509, .440, .332 Sampling w/ replacement .49 .663
(.025) (.024)

5) CPS agg, log wage .509, .440, .332 Serially uncorrelated laws .05 .988
(.011) (.006)

6) CPS agg, employment .470, .418, .367 .46 .88
(.025) (.016)

7) CPS agg, hours worked .151, .114, .063 .265 .280
(.022) (.022)

8) CPS agg, changes in log wage -.046, .032, 002 0 .978
(.007)

B. MONTE CARLO SIMULATIONS WITH SAMPLING FROM AR(1) DISTRIBUTION

Data ρ Modifications Rejection Rate
No Effect 2% Effect

9) AR(1) .8 .373 .725
(.028) (.026)

10) AR(1) 0 .053 .783
(.013) (.024)

11) AR(1) .2 .123 .738
(.019) (.025)

12) AR(1) .4 .19 .713
(.023) (.026)

13) AR(1) .6 .333 .700
(.027) (.026)

14) AR(1) −.4 .008 .7
(.005) (.026)

aNotes:

a. Unless mentioned otherwise under ”Modifications,” reported in the last two columns are the OLS
rejection rates of the null hypothesis of no effect (at the 5 percent significance level) on the intervention
variable for randomly generated placebo interventions as described in text. The data used in the last
column was altered to simulate a true 2 percent effect of the intervention. The number of simulations
for each cell is at least 200 and typically 400.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. In rows 3 to 8 of Panel A, data are aggregated
to state-year level cells after controlling for demographic variables (4 education dummies and a quartic
in age). For each simulation in rows 1 through 3, we use the observed CPS data. For each simulation
in rows 4 through 8, the data generating process is the state-level empirical distribution of the CPS
data that puts a probability of 1/50 on the different states’ outcomes (see text for details). For
each simulation in Panel B, the data generating process is an AR(1) model with normal disturbances
chosen to match the CPS state female wage variances (see text for details). ρ̂i refer to the estimated
auto-correlation parameter of lag i. ρ refers to the auto-correlation parameter in the AR(1) model.

c. All regressions include, in addition to the intervention variable, state and year fixed effects. The
individual level regressions also include demographic controls.

d. Standard errors are in parenthesis and are computed using the number of simulations.



TABLE III
Varying N and Ta

Data N T Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS aggregate 50 21 .49 .663
(.025) (.024)

2) CPS aggregate 20 21 .39 .54
(.024) (.025)

3) CPS aggregate 10 21 .443 .510
(.025) (.025)

4) CPS aggregate 6 21 .383 .433
(.025) (.025)

5) CPS aggregate 50 11 .20 .638
(.020) (.024)

6) CPS aggregate 50 7 .15 .635
(.017) (.024)

7) CPS aggregate 50 5 .078 .5
(.013) (.025)

8) CPS aggregate 50 3 .048 .363
(.011) (.024)

9) CPS aggregate 50 2 .055 .28
(.011) (.022)

B. MONTE CARLO SIMULATIONS
WITH SAMPLING FROM AR(1) DISTRIBUTION

10) AR(1), ρ=.8 50 21 .35 .638
(.028) (.028)

11) AR(1), ρ=.8 20 21 .35 .538
(.028) (.029)

12) AR(1), ρ=.8 10 21 .3975 .505
(.028) (.029)

13) AR(1), ρ=.8 6 21 .393 .5
(.028) (.029)

14) AR(1), ρ = .8 50 11 .335 .588
(.027) (.028)

15) AR(1), ρ=.8 50 5 .175 .5525
(.022) (.029)

16) AR(1), ρ=.8 50 3 .09 .435
(.017) (.029)

17) AR(1), ρ=.8 50 50 .4975 .855
(.029) (.020)

aNotes:

a. Reported in the last two columns are the OLS rejection rates of the null hypothesis of no effect (at the
5 percent significance level) on the intervention variable for randomly generated placebo interventions
as described in text. The data used in the last column was altered to simulate a true 2 percent effect
of the intervention. The number of simulations for each cell is typically 400 and at least 200.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable is log weekly earnings. Data
are aggregated to state-year level cells after controlling for the demographic variables (4 education
dummies and a quartic in age). For each simulation in Panel A, the data generating process is the
state-level empirical distribution of the CPS data that puts a probability of 1/50 on the different
states’ outcomes (see text for details). For each simulation in Panel B, the data generating process is
an AR(1) model with normal disturbances chosen to match the CPS state female wage variances (see
text for details). ρ refers to the auto-correlation parameter in the AR(1) data generating process.

c. All regressions also include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.

e. N refers to the number of states used in the simulation and T refers to the number of years.



TABLE IV
Parametric Solutionsa

Data Technique Estimated ρ̂1 Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS aggregate OLS .49 .663
(.025) (.024)

2) CPS aggregate Standard AR(1) .381 .24 .66
correction (.021) (.024)

3) CPS aggregate AR(1) correction .18 .363
imposing ρ=.8 (.019) (.024)

B. OTHER DATA GENERATING PROCESSES

4) AR(1), ρ=.8 OLS .373 .765
(.028) (.024)

5) AR(1), ρ = .8 Standard AR(1) .622 .205 .715
correction (.023) (.026)

6) AR(1), ρ = .8 AR(1) correction .06 .323
imposing ρ=.8 (.023) (.027)

7) AR(2),ρ1 = .55 Standard AR(1) .444 .305 .625
ρ2 = .35 correction (.027) (.028)

8) AR(1)+ white noise Standard AR(1) .301 .385 .4
ρ = .95, noise/signal=.13 correction (.028) (.028)

aNotes:

a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at
the 5 percent significance level) on the intervention variable for randomly generated placebo
interventions as described in text. The data used in the last column was altered to simulate a
true 2 percent effect of the intervention. The number of simulations for each cell is typically
400 and at least 200.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. The dependent variable is log weekly
earnings. Data are aggregated to state-year level cells, after controlling for the demographic
variables (4 education dummies and a quartic in age). For each simulation in Panel A,
the data generating process is the state-level empirical distribution of the CPS data that
puts a probability of 1/50 on the different states’ outcomes (see text for details). For each
simulation in Panel B, the distributions from which the data are drawn are chosen to match
the CPS state female wage variances (see text for details). “AR(1)+ white noise” is the sum
of an AR(1) plus an i.i.d. process, where the auto-correlation for the AR(1) component is
given by ρ and the relative variance of the components is given by the noise to signal ratio.

c. All regressions include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.

e. The AR(k) corrections are implemented in stata using the “xtgls” command.



TABLE V
Block Bootstrapa

Data Technique N Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS aggregate OLS 50 .43 .735
(.025) (.022)

2) CPS aggregate Block Bootstrap 50 .065 .26
(.013) (.022)

3) CPS aggregate OLS 20 .385 .595
(.022) (.025)

4) CPS aggregate Block Bootstrap 20 .13 .19
(.017) (.020)

5) CPS aggregate OLS 10 .385 .48
(.024) (.024)

6) CPS aggregate Block Bootstrap 10 .225 .25
(.021) (.022)

7) CPS aggregate OLS 6 .48 .435
(.025) (.025)

8) CPS aggregate Block Bootstrap 6 .435 .375
(.022) (.025)

B. AR(1) DISTRIBUTION

9) AR(1), ρ=.8 OLS 50 .44 .70
(.035) (.032)

10) AR(1), ρ=.8 Block Bootstrap 50 .05 .25
(.015) (.031)

aNotes:

a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at
the 5 percent significance level) on the intervention variable for randomly generated placebo
interventions as described in text. The data used in the last column was altered to simulate a
true 2 percent effect of the intervention. The number of simulations for each cell is typically
400 and at least 200. The bootstraps involve 400 repetitions.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. The dependent variable is log weekly
earnings. Data are aggregated to state-year level cells after controlling for the demographic
variables (4 education dummies and a quartic in age). For each simulation, we draw each
state’s vector from this data with replacement. See text for details. The AR(1) distribution
is chosen to match the CPS state female wage variances (see text for details).

c. All CPS regressions also include, in addition to the intervention variable, state and year fixed
effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.



TABLE VI
Ignoring Time Series Dataa

Data Technique N Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS agg OLS 50 .49 .663
(.025) (.024)

2) CPS agg Simple aggregation 50 .053 .163
(.011) (.018)

3) CPS agg Residual aggregation 50 .058 .173
(.011) (.019)

4) CPS agg, staggered laws Residual aggregation 50 .048 .363
(.011) (.024)

5) CPS agg OLS 20 .39 .54
(.025) (.025)

6) CPS agg Simple aggregation 20 .050 .088
(.011) (.014)

7) CPS agg Residual aggregation 20 .06 .183
(.011) (.019)

8) CPS agg, staggered laws Residual aggregation 20 .048 .130
(.011) (.017)

9) CPS agg OLS 10 .443 .51
(.025) (.025)

10) CPS agg Simple aggregation 10 .053 .065
(.011) (.012)

11) CPS agg Residual aggregation 10 .093 .178
(.014) (.019)

12) CPS agg, staggered laws Residual aggregation 10 .088 .128
(.014) (.017)

13) CPS agg OLS 6 .383 .433
(.024) (.024)

14) CPS agg Simple aggregation 6 .068 .07
(.013) (.013)

15) CPS agg Residual aggregation 6 .11 .123
(.016) (.016)

16) CPS agg, staggered laws Residual aggregation 6 .09 .138
(.014) (.017)

B. AR(1) DISTRIBUTION

17) AR(1), ρ=.8 Simple aggregation 50 .050 .243
(.013) (.025)

18) AR(1), ρ=.8 Residual aggregation 50 .045 .235
(.012) (.024)

19) AR(1), ρ=.8, staggered laws Residual aggregation 50 .075 .355
(.015) (.028)

aNotes:
a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at the 5 percent significance level) on the

intervention variable for randomly generated placebo interventions as described in text. The data used in the last column was altered to
simulate a true 2 percent effect of the intervention. The number of simulations for each cell is typically 400 and at least 200.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing Rotation Group for the years 1979
to 1999. The dependent variable is log weekly earnings. Data are aggregated to state-year level cells after controlling for demographic
variables (4 education dummies and a quartic in age). For each simulation, we draw each state’s vector from this data with replacement.
See text for details. The AR(1) distribution is chosen to match the CPS state female wage variances (see text for details).

c. All regressions also include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.



TABLE VII
Empirical Variance-Covariance Matrixa

Data Technique N Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS aggregate OLS 50 .49 .663
(.025) (.024)

2) CPS aggregate Empirical 50 .055 .243
variance (.011) (.021)

3) CPS aggregate OLS 20 .39 .54
(.024) (.025)

4) CPS aggregate Empirical 20 .08 .138
variance (.013) (.017)

5) CPS aggregate OLS 10 .443 .510
(.025) (.025)

6) CPS aggregate Empirical 10 .105 .145
variance (.015) (.018)

7) CPS aggregate OLS 6 .383 .433
(.025) (.025)

8) CPS aggregate Empirical 6 .153 .185
variance (.018) (.019)

B. AR(1) DISTRIBUTION

9) AR(1), rho=.8 Empirical 50 .07 .25
variance (.017) (.030)

aNotes:

a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at
the 5 percent significance level) on the intervention variable for randomly generated placebo
interventions as described in text. The data used in the last column was altered to simulate a
true 2 percent effect of the intervention. The number of simulations for each cell is typically
400 and at least 200.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged
Outgoing Rotation Group for the years 1979 to 1999. The dependent variable is log weekly
earnings. Data are aggregated to state-year level cells after controlling for demographic
variables (4 education dummies and a quartic age). For each simulation, we draw each
state’s vector from this data with replacement. See text for details. The AR(1) distribution
is chosen to match the CPS state female wage variances (see text for details).

c. All regressions include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.



TABLE VIII
Arbitrary Variance-Covariance Matrixa

Data Technique N Rejection Rate
No Effect 2% Effect

A. CPS DATA

1) CPS aggregate OLS 50 .49 .663
(.025) (.024)

2) CPS aggregate Cluster 50 .063 .268
(.012) (.022)

3) CPS aggregate OLS 20 .385 .535
(.024) (.025)

4) CPS aggregate Cluster 20 .058 .13
(.011) (.017)

5) CPS aggregate OLS 10 .443 .51
(.025) (.025)

6) CPS aggregate Cluster 10 .08 .12
(.014) (.016)

7) CPS aggregate OLS 6 .383 .433
(.024) (.025)

8) CPS aggregate Cluster 6 .115 .118
(.016) (.016)

B. AR(1) DISTRIBUTION

9) AR(1), ρ=.8 Cluster 50 .045 .275
(.012) (.026)

10) AR(1), ρ=0 Cluster 50 .035 .74
(.011) (.025)

aNotes:

a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at the 5
percent significance level) on the intervention variable for randomly generated placebo interventions
as described in text. The data used in the last column was altered to simulate a true 2 percent effect
of the intervention. The number of simulations for each cell is typically 400 and at least 200.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable is log weekly earnings. Data
are aggregated to state-year level cells after controlling for the demographic variables (4 education
dummies and a quartic in age). For each simulation, we draw each state’s vector from this data with
replacement. See text for details. The AR(1) distribution is chosen to match the CPS state female
wage variances (see text for details).

c. All regressions also include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.



UNPUBLISHED APPENDIX

TABLE IX
Results by Year of Lawa

Data Technique Year Rejection Rate
No Effect 2% Effect

CPS aggregate OLS 1985 .453 .658
(.025) (.024)

CPS aggregate OLS 1986 .42 .688
(.025) (.023)

CPS aggregate OLS 1987 .5 .638
(.025) (.024)

CPS aggregate OLS 1988 .43 .678
(.025) (.024)

CPS aggregate OLS 1989 .44 .655
(.025) (.024)

CPS aggregate OLS 1990 .48 .658
(.025) (.024)

CPS aggregate OLS 1991 .438 .705
(.025) (.023)

CPS aggregate OLS 1992 .383 .68
(.024) (.024)

CPS aggregate OLS 1993 .31 .743
(.023) (.022)

CPS aggregate OLS 1994 .433 .623
(.025) (.024)

CPS aggregate OLS 1995 .328 .66
(.024) (.024)

aNotes:

a. Reported in the last two columns are the rejection rates of the null hypothesis of no effect (at the 5
percent significance level) on the intervention variable for randomly generated placebo interventions
as described in text. The data used in the last column was altered to simulate a true 2 percent effect
of the intervention. The number of simulations for each cell is typically 400 and at least 200. Each
row represents a different fixed year for the law.

b. CPS data are data for women between 25 and 50 in the fourth interview month of the Merged Outgoing
Rotation Group for the years 1979 to 1999. The dependent variable is log weekly earnings. Data
are aggregated to state-year level cells after controlling for the demographic variables (4 education
dummies and a quartic in age). For each simulation, we draw each state’s vector from this data with
replacement. See text for details.

c. All regressions also include, in addition to the intervention variable, state and year fixed effects.

d. Standard errors are in parenthesis and are computed using the number of simulations.


