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Abstract

We study whether allowing players to sign binding contracts governing future play

leads to reputation e¤ects in repeated games with long-run players. We proceed

by extending the analysis of Abreu and Pearce (2007) by allowing for the possibil-

ity that di¤erent behavioral types may not be immediately distinguishable from each

other. Given any prior over behavioral types, we construct a modi�ed prior with the

same total weight on behavioral types and a larger support under which almost all

e¢ cient, feasible, and individually rational payo¤s are attainable in perfect Bayesian

equilibrium. Thus, whether reputation e¤ects emerge in repeated games with con-

tracts depends on details of the prior distribution over behavioral types other than its

support.
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1 Introduction

Does game theory make strong predictions about the outcomes of long-run relationships? It

has been known since the seminal papers of Kreps et al (1982), Kreps and Wilson (1982),

and Milgrom and Roberts (1982) that reputation e¤ects have important consequences for

equilibrium selection in many dynamic games. Fudenberg and Levine (1989) famously

showed that a patient long-run player facing a series of short-run opponents receives at least

her Stackelberg payo¤ in any Nash equilibrium, if her �Stackelberg type�has positive prior

probability, and similar results hold in two-player repeated games in the limit where one

player becomes in�nitely more patient than the other.1 However, reputation e¤ects are

elusive in two-player games with comparably patient players:2 indeed, it is not obvious what

outcome one would expect reputation e¤ects to select in such games. For this reason, the

reputation result of Abreu and Pearce (2007, henceforth AP) is striking: AP show that, in

two-player repeated games with common discounting in which players may o¤er each other

binding commitments to future divisions of the surplus, all perfect Bayesian equilibrium

(PBE) payo¤s converge to the Nash bargaining with threats payo¤s as the probability of

behavioral types converges to zero, so long as the �Nash bargaining with threats type�

has positive prior probability and di¤erent commitment types are distinguishable from each

other from the start of the game. Thus, AP�s results suggest that allowing players to sign

binding contracts in repeated games� which seems very plausible in many applications, such

as employer-employee and union-�rm relationships� leads to extremely strong equilibrium

selection results in the presence of an arbitrarily small amount of incomplete information.

The current paper investigates whether this intuition is correct, or whether the ability to

make such strong predictions about long-run relationships requires additional assumptions

1Schmidt (1993) and Cripps et al (1996) provide weaker payo¤ bounds than do Fudenberg and Levine
(1989). Stronger results hold with trembles (Aoyagi (1996)), imperfect monitoring (Celentani et al (1996)),
or complicated commitment types (Evans and Thomas (1997)).

2See Chan (2000) for a folk theorem and Chan (2000) and Cripps et al (2005) for uniqueness results
in special games. Aumann and Sorin (1989) derive a uniqueness result for common interest games under
additional assumptions. Recently, Atakan and Ekmekci (2009a, 2009b, 2009c) provide additional uniqueness
results for a broad class of extensive-form games with perfect information and for a broad class of one-sided
reputation-building games with imperfect monitoring of the non-reputation-builder. On reputation e¤ects
(or lack thereof) in bargaining, see Myerson (1991), Abreu and Gul (2000), Kambe (1999), Compte and
Jehiel (2002), Lee and Liu (2010), and Wolitzky (2011).
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about the nature of the incomplete information in the model.

Formally, we extend AP�s model by allowing that di¤erent commitment types may not

be immediately distinguishable, and show that whether or not reputation e¤ects emerge

depends on the relative probabilities of di¤erent behavioral types, rather than on only the

support of the prior distribution over behavioral types.3 In particular, given any prior over

behavioral types, we construct a modi�ed prior with a larger support under which almost

all e¢ cient, feasible, and individual rational payo¤s are perfect Bayesian equilibrium payo¤s

(Theorem 1). Furthermore, the weight on any behavioral type under the original prior is

at most K times its weight under the modi�ed prior, where K is a constant that does not

depend on the original prior and is non-decreasing in the discount rate; thus, there is a

uniform bound on the extent to which any original prior must be modi�ed to yield a new

prior for which a folk theorem holds. Therefore, if the only assumption that a researcher

is willing to make about the prior distribution of behavioral types is that some types have

positive prior probability, she cannot rule out any e¢ cient, feasible, individually rational

payo¤s. This stands in stark contrast with the case of one long-run player facing a series

of short-run players (Fudenberg and Levine (1989, 1992)), where assumptions of this form

lead to strong conclusions about equilibrium payo¤s.

The essential intuition for our result is that, when di¤erent behavioral types are initially

indistinguishable, imitating a �tough�behavioral type may not be pro�table for a normal

player (i, say), because doing so may lead her opponent (j) to believe that she is a �soft�

behavioral type, at least for a long time. This is the key di¤erence between our model and

AP�s, in which if player i imitates a tough behavioral type, player j believes that player i

is either tough or normal, since in AP�s model di¤erent behavioral types are immediately

distinguishable. In particular, in our model there may be soft types of player i that play like

tough types with some probability, but also concede to player j with high enough probability

that player j will keep playing against an apparently tough type in the hope that it will turn

out to be a soft type. As long as soft types continue to concede on the equilibrium path,

player j will eventually become convinced that she is facing a tough type and concede. But

3We do, however, assume that normal types have the ability to distinguish themselves from behavioral
types. We discuss the role of this assumption in Section 4.
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if the prior probability of soft types is high enough relative to the prior probability of tough

types, this will take long enough that player i will not be tempted to imitate a tough type.

We remark that our soft types reward one�s opponent for failing to concede in much the

same way as Evans and Thomas�(1997, 2001) commitment types punish one�s opponent for

failing to play a prescribed action. The reason why allowing complicated commitment types

leads to multiplicity in our model and uniqueness in Evans and Thomas�is the di¤erence in

patience: with equal patience, the fact that player j thinks that player imay be a complicated

commitment type may limit player i�s ability to manipulate player j�s beliefs quickly enough

for her to bene�t from doing so, while if player i is in�nitely more patient than player j

she can only bene�t from player j�s attributing to her a wide range of possible commitment

types. This line of argument shows why a player cannot guarantee herself a high payo¤

in our model even if she is the only reputation-builder (i.e., if her opponent is known to be

normal), despite her potentially useful ability to o¤er binding contracts. It also provides an

intuition for why existing reputation results with equal patience rely on strong restrictions

on the prior distribution over commitment types, even in the limited class of games for which

such results apply,4 while reputation results for games in which one player is in�nitely more

patient than the other do not require such restrictions.5

Finally, there is an interesting connection� suggested to me by an anonymous referee�

between our results and the failure of reputation e¤ects in some repeated games with a patient

reputation-builder and a relatively impatient long-run opponent. Reputation e¤ects may fail

to obtain in that setting because the normal reputation-builder may punish her opponent for

best-responding to her Stackelberg action (see chapter 16 of Mailath and Samuelson (2006)

for an informative discussion of this point). However, the reputation-builder can circumvent

this problem when she is allowed to o¤er binding contracts, as in AP, which makes AP�s

4Chan�s (2000) uniqueness result depends on there being only one commitment type; Cripps et al (2005)
obtain uniqueness only in the limit as the weight on commitment types other than the Stackelberg type
converges to zero; Atakan and Ekmekci (2009a) assume that non-Stackelberg types distinguish themselves
from the Stackleberg type at a uniform rate; Atakan and Ekmekci (2009b) assume that there is only one
commitment type; Atakan and Ekmekci (2009c) assume that all commitments types are �nite-automata,
which in their model is a similar restriction to that in Atakan and Ekmekci (2009a); and Aumann and Sorin
(1989) assume that every commitment type that follows a pure strategy with �nite memory has positive
probability, but that no other commitment types have positive probability.

5For example, none of the papers cited in Footnote 1 relies on upper bounds on the prior probability of
any type.
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uniqueness result possible.6 Introducing additional behavioral types, as in our model, can

restore the opponent�s incentive to fail to best-respond to the reputation builder�s action,

leading to the failure of reputation e¤ects.

The remainder of our paper proceeds as follows: Section 2 introduces our model, which

is very similar to AP�s model, with the modi�cation that distinct behavioral types are not

immediately distinguishable from each other. Section 3 presents the main idea of the paper

in the context of a simple example: the prisoner�s dilemma with a single behavioral type

on each side. It serves to build intuition and to contrast our results with AP�s. Section 4

presents the main result, Theorem 1. Section 5 o¤ers brief concluding remarks.

2 Model

We begin with the hybrid discrete-time/continuous-time model developed by AP. There are

two players. At each integer time n = 0; 1; 2; : : :, players choose actions in a �nite stage

game G = (Si; Ui)
2
i=1 and also make demands (�contracts,��o¤ers�) ui 2 �i, where �i is the

convex hull of the set of player i�s feasible payo¤s in G, and ui is interpreted as the lowest

payo¤ that player i is willing to accept in the continuation game. Actions determine �ow

payo¤s until the next integer time, assuming neither player accepts the other�s contract o¤er.

That is, if players use actions (s1; s2), player i�s period payo¤ is Ui (s1; s2)
R 1
0
e�rtdt, where

r is the common discount rate. We also assume, as in AP, that players can select mixed

actions (mi;mj) at integer times, in which case mixing occurs continuously throughout the

period, so it is as if mixed actions are observable; letMi be the set of player i�s mixed actions.

At any time (not just integer times), either player j (= �i) can accept the other player�s

standing o¤er ui (�concede�), in which case the players receive
�
ui; �j (ui)

�
, where �j (ui) is

the highest feasible payo¤ for j consistent with i getting ui, and the game ends (each player

only has one standing o¤er at a time� these may change on the integers). As in AP, there

is a �rst and last date at which player j can accept each o¤er of player i�s (i.e., �just after

6Indeed, the ability to o¤er binding contracts makes reputation-building easier in many settings, which
provides another motivation for our indeterminacy result. Games with a patient reputation-builder facing a
relatively impatient opponent is one example. Another is common-interest games with two equally patient
players (Cripps and Thomas, 1997), where it is again easy to see that allowing binding contracts leads to
reputation e¤ects.

5



n�and �just before n+ 1�), and the players move sequentially in an arbitrary, pre-speci�ed

order at each integer time n; see AP for more details of this formulation of time. We also

assume that the function �j is strictly decreasing, which rules out common-interest games,

and use ��1j and �i interchangeably. The game ends immediately if the standing o¤ers ever

satisfy (u1; u2) 2 �, in which case both players get their demands. Thus, the game can be

thought of as a �repeated game with contracts�or as �bargaining with payo¤s as you go.�

At time t, the (disagreement) history ht of mixed actions (mi;mj) and demands (ui; uj) is

publicly observed.

At the beginning of the game, there is a chance that each player is one of a number of

behavioral types, which are simply repeated game strategies (i.e., arbitrary automata that

may condition their player on the entire history ht). Player i is of behavioral type 
i (i.e.,

is committed to strategy 
i) with prior probability �i (
i), and �i is assumed have countable

support; since we do not assume that �i (
i) is positive for any 
i, this formulation allows for

both one-sided and two-sided reputation-formation.7 We assume that each 
i plays a pure

strategy over (�i;Mi) but may mix over accepting or rejecting j�s o¤er. This restriction is

made to simplify notation, and is without signi�cant loss of generality, since a mixed strategy

over (�i;Mi) can be approximated by a lottery over countably many pure strategies over

(�i;Mi); in addition, an element of Mi is already a lottery over Si, so the only restriction

here is that behavioral types do not mix over uncountably many elements of �i.8 Players�

types are drawn independently. Let zi be the probability that i is one of the behavioral

types, i.e., zi =
P


i2supp�i �i (
i). Let (G; �) describe the stage game together with the

common prior over behavioral types.

AP assume that, before play over (�;M) begins, there is an initial �announcement�

stage, where each player simultaneously announces a behavioral type 
i. AP assume that

7In AP, �i (
i) is the probability of player i�s being of type 
i conditional on being a behavioral type.
We let �i (
i) be the unconditional probability of player i�s being of type 
i.

8One di¤erence between our model and AP is that AP do not allow behavioral types to play mixed
strategies or concede at non-integer times. Our assumption that behavioral types can mix and concede
at non-integer times is not crucial, as each type we consider that mixes and concedes at non-integer times
can be replaced by a set of types, each one of which concedes with probability 1 at a di¤erent integer time
without substantially a¤ecting our results. Furthermore, AP�s results do not rely on their assumption that
behavioral types do not mix or concede at non-integer times. Thus, this di¤erence in assumptions� which
substantially simpli�es our exposition� does not drive the di¤erence in results between the current paper
and AP.
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behavioral types (but not normal types) announce their types truthfully; this is why behav-

ioral types are instantly distinguishable from each other in their model. We dispense with

the announcement stage almost entirely: we assume only that there is an initial �revelation�

stage, in which each normal player has the option to �reveal rationality�, i.e., to costlessly

and certi�ably reveal to the other player that she is normal. Formally, we assume that before

players choose their initial (�;M), they publicly announce an element of the set f0; 1g, and

that all behavioral types announce 0; we refer to announcing 1 as �revealing rationality�.

We also assume that behavioral types do not condition their play on whether their opponents

reveal rationality.9 ;10

Unlike the announcement stage of AP, the revelation stage is included in our model

essentially for convenience, and indeterminacy of reputation e¤ects persists without the

revelation stage; see the discussion preceding the proof of Theorem 1 for a discussion of

the role of the revelation stage in our model. In addition, our analysis goes through if

behavioral types also have the ability to certi�ably reveal their types, because a normal type

cannot mimic a behavioral type that certi�ably reveals itself. Hence, the revelation stage

can also be given a positive justi�cation if players can exhibit hard information that reveals

their types. For example, an incumbent �rm may be able to publicly exhibit its production

costs by letting potential entrants tour its factories and look at its �nancial records, and an

employee may be able to publicly exhibit her outside option by producing job o¤ers from

rival employers. Thus, even with the revelation stage, our analysis does not rely on normal

and behavioral players having di¤erent abilities to reveal their types (as it is as if every

player can either reveal her true type or reveal �nothing�), in contrast to the analysis of AP

(as in their model behavioral players are forced to reveal their true types but normal players

are not).

9The assumption that normal players may �reveal rationality� to each other is also present, roughly
speaking, in AP. Technically, AP require normal players to announce a behavioral type, rather than allowing
them to announce that they are normal, but they show in their Footnote 17 that this assumption is immaterial
in their model. More substantively, AP also assume that behavioral types do not condition their play on
announcements.
10One can check that Theorem 1 continues to hold if behavioral types can condition their play on whether

their opponents reveal rationality, provided that the prior probability that each player is behavioral is
su¢ ciently small (proof available upon request).
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3 Example

In this section, we illustrate the main idea of our paper in the context of a simple example.

Let G be the prisoner�s dilemma:

C D

C 1; 1 �1; 3

D 3;�1 0; 0

We �rst consider this stage game with a single behavioral type (the Nash bargaining with

threats type, analyzed by AP) on each side, and note that a uniqueness result applies as

in AP. We then add an additional �soft�behavioral type on each side and show that, for

suitably chosen priors, almost all e¢ cient, feasible, and individually rational payo¤s can be

attained in PBE. The argument for this fact contains many of the ideas of the proof of our

main result (Theorem 1) in a much simpler context.

First, consider the case where each player is normal with probability 1 � z, and with

probability z is the behavioral type that in every period plays D and demands 1, and never

accepts an o¤er of less than 1. Call this behavioral type 
; note that 
 is the Nash bargaining

with threats type. AP show that, when z is small, a normal player�s expected payo¤ in any

PBE is close to her Nash bargaining with threats payo¤. In this simple example, an even

stronger result applies: for any z > 0, both normal players receive payo¤ 1 in any PBE.

This follows from an argument similar to the proof of Lemma 1 of AP, which we sketch

here. Suppose there exists a PBE in which normal player i�s payo¤ is less than 1. Then

she must receive payo¤ less than 1 from imitating 
, i.e., from not revealing rationality and

then playing D and demanding 1 in every period. Player i receives 1 from this strategy

when player j is of type 
, so she must receive less than 1 from this strategy when player j

is normal. However, if player i imitates 
, there exists some �nite time T such that normal

player j accepts her demand with probability 1 by T .11 Let T0 be the in�mum over all T

such that this is the case, and suppose towards a contradiction that T0 > 0. Then there

exists " > 0 such that player j�s o¤er at T0 � ", �i (uj), is less than 1 (as otherwise the
11This follows by a fairly standard reputation-building argument. For the details, see the proof of Lemma

1 of AP.
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two demands would be compatible and the game would have ended), and e�r" (1) > �i (uj).

Therefore, upon reaching time T0 � " player i will not concede until after time T0 (as this

yields payo¤ at least e�r" (1), whereas conceding yields payo¤ �i (uj)). This implies that

normal player j must concede at time T0 � ", contradicting the hypothesis that T0 > 0.

Hence, player i�s o¤er of 1 must be accepted with probability 1 by normal player j at time

0, which implies that player i can guarantee herself a payo¤ of 1 in any PBE by imitating


. And, of course, the same argument applies to player j.

Next, suppose that each player is still normal with probability 1�z, but is now of type 


with probability z
�
1
K

�
for some K � 1, and with probability z

�
K�1
K

�
is of type ~
, de�ned as

follows: ~
 plays D and demands 1 in every period, but also accepts any non-negative o¤er at

time t at hazard rate r=� (t), where � (t) is the probability that player i is of type ~
 at time

t conditional on her being behavioral (i.e., of type 
 or ~
) and having played D, demanded

1, and not conceded until time t. That is,

� (t) �
e�rt � 1

K

e�rt

for all t such that this is nonnegative. This is illustrated in Figure 1, where � (t) is the ratio

(at time t) of the distance from the curve e�rt (which is the probability that player i does

not concede before time t conditional on her being behavioral) to the dotted line at 1
K
to

the distance from the curve to the x-axis. ~
 always rejects negative o¤ers, and also rejects

any o¤er at any time t such that e�rt � 1
K
. We claim that, for any u�i 2

�
1
K
; 2� 1

K

�
, there

is now a PBE in which player i receives payo¤ u�i when both players are normal.

To see this, consider the following strategy pro�le: Normal player j reveals rationality. If

player i reveals rationality, player j playsD and demands �j (u
�
i ) in every period, and accepts

player i�s demand if and only if �j (ui) � �j (u�i ). If player i does not reveal rationality, player

j plays D and demands 2 in every period up to time 1
r
logK, and never accepts an o¤er of

less than 2 until time 1
r
logK. At time 1

r
logK, player j continues playing D and demanding

2 in every period, but switches to accepting player i�s demand if and only if �j (ui) � 1.

To complete the description of on-path play, we specify that normal player i�s strategy is

identical to player j�s, except that in the subgame after both players reveal rationality player
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Figure 1: Evolution of Beliefs Conditional on Facing a Behavioral Opponent

i demands u�i and accepts player j�s demand if and only if �i (uj) � u�i . Without going into

the details, we specify that o¤-path behavior is as in the proof of Theorem 1, and assert that

this behavior is sequentially rational. Thus, to check that this strategy pro�le is a PBE, we

must only check that there are no pro�table one-shot deviations at on-path histories.

Clearly, both players�play is optimal after both players reveal rationality. It remains

only to check that their play is optimal (at on-path histories) after one�s opponent fails to

reveal rationality, and that it is optimal to reveal rationality initially. We �rst verify that

player j�s play is optimal after player i does not reveal rationality (the argument for player i

is symmetric). If player i does not reveal rationality, then she must be one of the behavioral

types, which implies that it is optimal for player j to play D in every period. Also, since

player j always has the option of accepting her opponent�s o¤er of 1, and only type ~
 ever

accepts a demand of more than 1, player j can do no worse than always demanding 2, the

highest demand that o¤ers player i a non-negative payo¤. Furthermore, note that if player

j�s assessment that player i is of type ~
 is � (t) > 0, then player j expects player i to accept

her demand of 2 at rate r
�(t)
� (t) = r. Therefore, for any � such that � (�) > 0, player j�s
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expected payo¤ from rejecting player i�s o¤er until time � and then accepting is

Z �

0

e�(r+r)t (r (2) + 0) dt+ e�(r+r)� (1) = 1,

which is the same as player j�s payo¤ from accepting player i�s o¤er immediately. Therefore,

player j�s decision to reject player i�s o¤er whenever � (t) > 0 is (weakly) optimal. Next,

observe that � (t) reaches 0 at time T satisfying

e�rT =
1

K
,

or

T =
1

r
logK.

At this time, player j becomes certain that player i is of type 
, and therefore must accept

player i�s o¤er of 1. Thus, player j�s continuation strategy is optimal after player i does not

reveal rationality.

Finally, we must verify that revealing rationality is optimal for both players. Consider

player i �rst. If player j is behavioral, then player i�s payo¤ is not a¤ected by whether or

not she reveals rationality, so it is optimal for her to reveal rationality if and only if it is

optimal for her to do so conditional on the event that player j is normal. If player j is

normal and player i reveals rationality, player i receives payo¤ u�i . If player j is normal

and player i does not reveal rationality, player i can never receive a positive �ow payo¤ and

cannot accept a positive o¤er �i (uj) or have a positive demand of her own accepted until

time T . Furthermore, the highest o¤er she ever receives is 1, and the highest demand of

hers that player j ever accepts is also 1. Therefore, in the event that player j is normal,

player i�s payo¤ in the subgame after she does not reveal rationality is no more than

e�rT (1) =
1

K
.

Since u�i >
1
K
, it follows that player i�s decision to reveal rationality is optimal. Finally, the

same argument applies to player j, and the fact that u�i < 2 � 1
K
implies that �j (u

�
i ) >

1
K
,
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so player j�s decision to reveal rationality is optimal as well. This completes the argument

that each player can receive any payo¤ in
�
1
K
; 2� 1

K

�
when her opponent is normal in some

PBE.

We make four brief remarks to conclude our analysis of this example: First, the fact

that each player can receive any payo¤ in
�
1
K
; 2� 1

K

�
when her opponent is normal in a PBE

implies that she can receive any ex ante expected payo¤ in this range when the probability

that her opponent is behavioral (z) is su¢ ciently small. Second, taking K large yields a

single prior distribution over behavioral types under which almost any e¢ cient, feasible, and

individually rational payo¤ vector is attainable in PBE; that is, there is no need to tailor the

prior distribution to the target payo¤ vector. Third, the above argument does not require

type ~
�s concession rate to be exactly r=� (t); all that is needed is that type ~
 concedes at

least this quickly.12 Fourth, the smallestK required for a given payo¤vector to be attainable

in PBE with the above prior is independent of the discount rate, r. All but the last of these

observations also apply to our general model, as will become clear in the following section.

Furthermore, the constant K used in the construction of the modi�ed prior in the general

analysis is non-decreasing in r, so K remains bounded as the players become more patient.

4 Indeterminacy of Reputation E¤ects

This section contains the formal statement and proof of our main result. The analysis

is complicated by the possibility that players may imitate behavioral types with arbitrary

repeated game strategies, rather than only the stationary type considered in the above

example. However, the idea that a player will not imitate a given behavioral type if there is

a high prior probability on a particular �soft�type whose play initially resembles that type

carries over from the example.

Let ui be i�s (mixed action) minmax payo¤, let �ui � �i
�
uj
�
, and let ûi and ûi be i�s lowest

and highest feasible payo¤s, respectively. Let mi be a mixed action of i�s that minmaxes

j. We say that u is a �PBE payo¤ of (G; �) when both players are normal� if there is a

12However, if type ~
 concedes faster than this, then K must be larger to support the same range of target
payo¤s in PBE.
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PBE of (G; �) that yields expected payo¤ u conditional on both players�being normal. Of

course, if z1 and z2 are small, then u is a PBE payo¤ of (G; �) when both players are normal

if and only if u is close to an ex ante expected PBE payo¤ of the normal players in (G; �)

(since G is �nite), but we need not assume that z1 and z2 are small. We write u > (�)u0 if

ui > (�)u0i for i 2 f1; 2g.

Our main result is the following:

Theorem 1 For any �nite game G, vector ~u > u, and number �r > 0, there exists a number

K � 1 such that, for every prior �, there exists a modi�ed prior �0 with the following three

properties:

1. z0i = zi for i 2 f1; 2g.

2. �
0
i (
i) � 1

K
�i (
i) for all 
i 2 supp �i and i 2 f1; 2g.

3. For any discount rate r 2 (0; �r), the set of PBE payo¤s of (G; �0) when both players

are normal contains any e¢ cient u� 2 � such that u� � ~u.

Theorem 1 says that there exists a single modi�ed prior for which the PBE set contains

almost any e¢ cient, feasible, and individually rational payo¤, for any discount rate below

an arbitrary �xed number (in particular, the constant �r is chosen freely, and need not be

�small�). Also, the extent to which the original prior must be modi�ed to yield such a

new prior, measured by K, does not depend on the original prior, �, but only on G, ~u, and

�r. Finally, Theorem 1 does not show that the uniqueness result of AP is sensitive to the

addition of a �small�mass of behavioral types that initially pool with another behavioral

type. Rather, it shows that their result is sensitive to the addition of a �large�mass of such

types, where �largeness�is determined only by G and ~u.

A noteworthy consequence of Theorem 1 is the existence of a bound on the extent to

which the original prior must be modi�ed (K) that is uniform over discount rates below �r;

in particular, this bound does not explode as the discount rate goes to zero. This contrasts

with the results of Fudenberg and Levine (1989), which imply that the prior probability of

the Stackelberg type must converge to zero if payo¤ multiplicity is to persist as r goes to
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zero.13 The key di¤erence is the presence of equal discounting in our model. In particular,

the rate at which player i must be conceding to player j for player j to be willing to reject

her demand scales with r. This implies that the time T required for player i to convince

player j that she is a �tough�type scales with 1=r. Hence, the resulting cost of delay to

player i, e�rT , is independent of r. This argument is exactly as in the example of Section

3.14 Indeed, K only depends on the discount rate at all in Theorem 1 due to a technical

issue resulting from the hybrid discrete-time/continuous-time nature of the model.15

We now outline the proof of Theorem 1. The �rst step is constructing the modi�ed prior

�0 for given �, G, ~u, and �r. The goal is constructing a �soft� (henceforth, �o¤setting�)

type ~
i for every 
i 2 supp �i such that ~
i has the following properties: On-path, ~
i follows

the same strategy over (�i;Mi) as 
i does for a long time; ~
i concedes to player j quickly

enough that player j does not accept any o¤er less than �j (~ui) when she is not con�dent

whether she is facing type 
i or type ~
i, but slowly enough that it takes a long time for

player j to learn whether she is facing type 
i or type ~
i; and ~
i induces player j to play

either
�
�uj;mj

�
or some other �tough� action for a long time. These �tough� actions of

player j that are induced by type ~
i are called admissible in the proof of Theorem 1. The

point of this construction is that, if player j assigns su¢ cient weight to his facing type ~
i,

then player j will play an admissible action and reject all o¤ers of less than �j (~ui) until

some distant time Ti.16 Therefore, if normal player i receives at least ~ui in some strategy

pro�le and Ti is su¢ ciently large, then she does not want to pretend to be of type 
i, since

13It is easy to see that Fudenberg and Levine�s results continue to apply if contracts are allowed, as a patient
long-run player could simply imitate the Stackelberg type who rejects all contract o¤ers and demands her
highest feasible payo¤ every period. This relates to our observation in Footnote 6 that allowing contracts
often makes reputation results easier to obtain.
14In contrast, if in the current model player i were made much more patient than player j, she could

guarantee herself nearly �ui in any PBE by making a demand close to �ui and playing mi every period, as
long as the behavioral type that follows this strategy is present with positive probability.
15The issue is that, if player j acts second at an integer time t, it is impossible to punish player j

for deviating from his prescribed action until time t + 1. This friction is larger when r is larger, which
necessitates a larger K in the construction in the proof of Theorem 1. This friction would be entirely
absent if the continuous-time model were replaced by the limit of discrete-time models as actions become
frequent, which is why the fact that K depends on �r may be viewed as an artifact of the hybrid discrete
time/continuous time nature of the model.
16An exception to this is that player j may play an inadmissible action in response to an o¤er by player i

of at least �j (~ui). However, it can be shown that player i also receives a low payo¤ in this case, essentially
because either player j accepts her generous o¤er or she accepts a correspondingly aggressive demand of
player j�s.
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she is guaranteed to receive a low �ow payo¤ until time Ti. Finally, the modi�ed prior �0 is

de�ned so that player j�s beliefs after player i fails to reveal rationality are that, whichever

strategy 
i 2 supp �i player i follows, player i is initially very likely to be an o¤setting type.

The second step is verifying that it is indeed optimal for player j to play an admissible

action and reject any o¤er less than �j (~ui) until time Ti. This might at �rst appear to be

di¢ cult, because it is very di¢ cult to determine player j�s entire optimal strategy under

prior �0. However, to show that it is optimal for player j to play an admissible action and

reject any o¤ers less than �j (~ui) at some history h
t, it su¢ ces to exhibit a single continuation

strategy of player j�s that involves playing an admissible action and rejecting any o¤er less

than �j (~ui) and yields a higher payo¤ than any continuation strategy that involves playing

any inadmissible action or accepting an o¤er less than �j (~ui). And, if type ~
i concedes at

a high enough rate until time Ti, then it can be veri�ed that playing the best admissible

action in the current period, then playing
�
�uj;mj

�
and rejecting player i�s o¤er until time

T , and �nally accepting player i�s o¤er just after time T yields a higher payo¤ for player j

than does any continuation strategy involving playing any inadmissible action or accepting

an o¤er less than �j (~ui) at history h
t.

Finally, we construct a PBE in which normal players attain the target payo¤s (u�1; u
�
2).

In this PBE, when both players reveal rationality, they then demand their target payo¤s,

ending the game immediately with the target payo¤s. If player i deviates by failing to reveal

rationality, then, as we have seen, she faces only admissible actions until time Ti and her

o¤er is rejected unless she demands less than ~ui (with the exception described in Footnote

16), so, regardless of her continuation strategy, she receives a payo¤ below her target payo¤.

Hence, both players reveal rationality. The speci�cation of o¤-path play supporting this

behavior is somewhat complicated, and builds on a construction in AP.

The role of our assumption that normal players can �reveal rationality� to each other

is as follows: Suppose that, at the beginning of the game, normal player i is supposed to

demand u�i and normal player j is supposed to demand �j (u
�
i ), ending the game. If some

behavioral player j o¤ers player i more than u�i , player i is tempted to demand more than

u�i in the hope that player j is of this type. If player j turns out to make the normal

demand �j (u
�
i ), player i can simply accept this o¤er an instant after it is made and thus
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go unpunished for her experimentation. Allowing normal players to reveal rationality to

each other before the beginning of play eliminates this problem, since, if player j reveals

rationality, normal player i has no reason to experiment with higher initial demands. Since

this is the only point in the proof where the ability of normal players to reveal rationality

matters, any modi�cation of the game that prevents normal player i from experimenting

in this way allows us to eliminate the revelation stage.17 The revelation stage can also be

eliminated without such a modi�cation if z1, z2, and r are su¢ ciently small. The idea is that

the strategy pro�le constructed in the proof of Theorem 1 can be modi�ed by prescribing

that normal player 1 initially demands û1 and normal player 2 initially demands �2 (u
�
1),

player 1 immediately accepts player 2�s demand if it equals �2 (u
�
1), and the �rst player who

deviates receives her minmax payo¤ if agreement is not reached by time 1. Under this

strategy pro�le, neither player has an incentive to experiment in the above manner, because

player 1 is already demanding her highest feasible payo¤, and, when z1 is small, player 2

receives less than her minmax payo¤ if she deviates and then accepts when player 1 demands

û1. The requirement that r is also small is needed to ensure that a player is willing to wait

and receive her highest feasible and individually rational at the next integer time when her

opponent deviates. The details of this construction are available upon request.

Proof of Theorem 1. Step 1: Construction of �0

We begin by constructing, for any type 
i, an o¤setting type ~
i that at every instant

either follows the strategy of type 
i or concedes. The motivation for the details of the

speci�cation of ~
i will become clear in Step 2 of the proof.

First, observe that the theorem is trivial if there is no vector u� 2 � such that u� � ~u,

so assume that such a vector exists. Since ~u > u and �j is decreasing, this implies that

�uj > �j (~ui) > uj. Let

u0i �
~ui + ui
2

,

17For example, rather than allowing normal players to reveal rationality we could impose an " penalty on
both players for failing to come to agreement immediately, and assume that z1 and z2 are su¢ ciently small
that this penalty outweighs any incentive to experiment, i.e., that " (1� zj) > (ûi � ui) zj for all i (proof
available upon request).
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let

�i � max
(
�j (u

0
i )� ûj

�uj � ûj
;

ûj � �j (u0i )
ûj �

�
(1� e��r)�j (u0i ) + e��r�j (~ui)

� ; ûj � �j (~ui)
ûj � uj

)
,

and let

K �

�
ûi�ui
u0i�ui

��j(u0i )�ûj
�uj��j(u0i )

1� �i
.

Observe that �i < 1, so K is �nite. This number K will su¢ ce for the proof.

Fix a discount rate r 2 (0; �r). Let

�i � r
�j (u

0
i )� ûj

�uj � �j (u0i )
,

and let

�i (t) � 1�
e�it

K
.

To understand the de�nition of �i (t), suppose that initially player i plays strategy 
i with

probability 1
K
, and with probability K�1

K
plays a di¤erent strategy that up to time t plays

the same (�i;mi) as does 
i and also accepts player j�s o¤er at a hazard rate that makes the

unconditional hazard rate that player i accepts player j�s o¤er equal �i. Then �i (t) is a

lower bound on the probability that player i is not playing strategy 
i at time t conditional

on the event that she has not accepted player j�s o¤er by time t (indeed, �i (t) is exactly

this probability if and only if strategy 
i never accepts player j�s o¤er before time t).

Next, let T be the time at which �i (t) reaches �i; that is,

Ti �
1

�i
log (K (1� �i)) .

Finally, let

�̂i (t) �
�i (t)

�i (t)

if �i (t) > 0, and let �̂i (t) = 0 otherwise. If �̂i (t) is player i�s acceptance rate conditional

on not playing 
i, and �i (t) is the probability that player i is not playing 
i, then �i (t) is

player i�s unconditional acceptance rate.

We now de�ne admissible actions, as previewed in the outline of the proof:
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De�nition 1 At an integer time t at which player j acts �rst, the action
�
�uj;mj

�
is ad-

missible and all other actions are inadmissible. At an integer time t at which player j acts

second, the action
�
�uj;mj

�
is admissible, as is the action (max f�uj; Uj (mi (t) ;mj)g ;mj) for

any mj that satis�es mj 2 argmaxm0
j
Uj
�
mi (t) ;m

0
j

�
and Uj (mi (t) ;mj) > �j (u

0
i ), where

mi (t) is player i�s realized time-t action; and all other actions are inadmissible. A history

ht is admissible if player j has never played an inadmissible action, and is inadmissible

otherwise.

We are ready to de�ne type ~
i:

De�nition 2 Given any type 
i, the 
-o¤setting type, ~
i, is the strategy de�ned as follows:

If history ht is admissible, ~
i plays the same (ui;mi) as does 
i, and ~
i accepts player j�s

demand at hazard rate �̂i (t); if in addition t = Ti, then ~
i accepts player j�s demand with

probability 1. If ht is inadmissible, ~
i plays (�ui;mi) and rejects player j�s demand.

Finally, we de�ne the modi�ed prior �0i. In this de�nition, ~
0i is the 

0
i-o¤setting type

de�ned above.

De�nition 3 The modi�ed prior �0i is given by �
0
i (
i) =

1
K
�i (
i)+

P

0i2supp�i:~
0i=
i

K�1
K
�i (


0
i)

for all types 
i.

Observe that z0i = zi and �0i (
i) � 1
K
�i (
i) for all 
i 2 supp �i. Thus, to prove the

theorem it su¢ ces to show that the set of PBE payo¤s of (G; �0) when both players are

normal contains any e¢ cient u� 2 � such that u� � ~u. This is done in Steps 2 and 3 of the

proof.

Step 2: Behavior under �0i

We now establish the key property of the modi�ed prior �0i. Under a strategy pro�le in

the game (G; �0) in which normal players reveal rationality, player j�s optimal continuation

strategy at any history ht that is consistent with player i following some strategy 
i 2 supp �0i
is determined up to indi¤erence by sequential rationality. We say that an action of player

j�s is (weakly) optimal at such a history if it is part of an optimal continuation strategy.
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Lemma 1 Fix a strategy pro�le in the game (G; �0) in which normal players reveal ratio-

nality. Suppose that history ht is admissible, player i�s past play at ht is consistent with her

following some strategy 
i 2 supp �0i, and t < Ti. Then the following two statements hold at

ht:

1. Suppose that player i�s demand is at least ~ui. Then it is optimal for player j to reject

player i�s demand. If in addition t is an integer, then it is optimal for player j to play

an admissible action.

2. If t is an integer at which player j acts second and it is optimal for player j to reject

player i�s demand and play an inadmissible action, then under any optimal continuation

strategy agreement is reached by time t+1 and player j receives continuation payo¤ at

least �j (u
0
i ).

Proof of Lemma 1. First, suppose that player i�s time-t demand is at least ~ui. We show

that rejecting player i�s demand at time t is optimal by exhibiting a strategy that involves

rejected player i�s demand at time t and yields a weakly higher payo¤ than accepting this

demand. In particular, suppose that player j plays
�
�uj;mj

�
from the next integer time

onward and rejects player i�s demand until just after time Ti, and then accepts player i�s

demand. When player j follows this strategy, player i concedes at unconditional rate at

least �i at all times earlier than Ti (since at such times there is probability at least �i (t)

that she is conceding at rate �̂i (t), as player j is always playing an admissible action), and

concedes at time Ti with unconditional probability at least

�i (Ti) = �i �
�j (u

0
i )� ûj

�uj � ûj
.

Therefore, player j�s continuation payo¤ from this strategy is at least

Z Ti�t

0

e�(r+�i)t
�
�i�uj + rûj

�
dt+ e�(r+�i)(Ti�t)

�
�j (u

0
i )� ûj

�uj � ûj
(�uj) +

�uj � �j (u0i )
�uj � ûj

�
ûj
��

=
�
1� e�(r+�i)(Ti�t)

� 1

r + �i

�
�i�uj + rûj

�
+ e�(r+�i)(Ti�t)�j

�
u0i
�

=
�
1� e�(r+�i)(Ti�t)

�
�j
�
u0i
�
+ e�(r+�i)(Ti�t)�j

�
u0i
�

= �j
�
u0i
�
.

19



On the other hand, player j�s continuation payo¤ from accepting player i�s demand at time

t is at most �j (~ui). This is less than �j (u
0
i ), so it is optimal for player j to reject player i�s

demand at time t.

Second, suppose that t is an integer at which player j acts �rst. Player j�s continuation

payo¤ from rejecting player i�s demand and playing any action other than
�
�uj;mj

�
(the

unique admissible action) is at most

�i (t)uj + (1� �i (t)) ûj,

because if player i is of type ~
i (which is the case with probability at least �i (t)) she

immediately minmaxes player j. Since �i (t) is decreasing and t < T , this is less than

�i (Ti)uj + (1� �i (Ti)) ûj

= �iuj + (1� �i) ûj

�
ûj � �j (~ui)
ûj � uj

�
uj
�
+
�j (~ui)� uj
ûj � uj

(ûj)

= �j (~ui)

< �j
�
~u0i
�
.

As we have seen, �j (~u
0
i ) is a lower bound on player i�s continuation from rejecting player i�s

demand and following (at least) one strategy that involves playing
�
�uj;mj

�
. Therefore, if

player i�s time-t demand is at least ~ui, then it is optimal for player j to reject this demand

and play
�
�uj;mj

�
.

Third, suppose that t is an integer at which player j acts second. Let U�j � maxm0
j
Uj
�
mi (t) ;m

0
j

�
and let m�

j 2 argmaxm0
j
Uj
�
mi (t) ;m

0
j

�
. Then playing

�
max

�
�uj; U

�
j

	
;m�

j

�
at time t and

subsequently playing
�
�uj;mj

�
and rejecting player i�s demand until just after time Ti (and

then accepting) yields continuation payo¤ at least

�
1� e�r

�
max

�
U�j ; �j

�
u0i
�	
+ e�r�j

�
u0i
�
. (1)

This follows because, if U�j � �j (u0i ), then player j receives �ow payo¤ U�j and demands U�j
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from time t to time t+1 ; and we have already seen that player j�s continuation payo¤ from

playing
�
�uj;mj

�
and rejecting player i�s demand until time Ti is at least �j (u

0
i ). On the

other hand, playing any inadmissible action at time t yields continuation payo¤ at most

(1� �i (t)) ûj + �i (t)
��
1� e�r

�
max

�
U�j ; �j (ui)

	
+ e�r�j (ui)

�
, (2)

where ui is player i�s time-t demand, because type ~
i responds to an inadmissible action by

always rejecting player j�s demand and minmaxing player j starting at time t+1. If ui � ~ui,

then (2) is at most

(1� �i (t)) ûj + �i (t)
��
1� e�r

�
max

�
U�j ; �j (~ui)

	
+ e�r�j (~ui)

�
,

and therefore the di¤erence between (1) and (2) is at least

(1� �i (t))
�
1� e�r

�
�j
�
u0i
�
+ e�r

�
�j
�
u0i
�
� �i (t)�j (~ui)

�
� (1� �i (t)) ûj.

This expression is non-negative if and only if

�i (t) �
ûj � �j (u0i )

ûj �
�
(1� e�r)�j (u0i ) + e�r�j (~ui)

� .
Since r � �r, a su¢ cient condition for this inequality is

�i (t) �
ûj � �j (u0i )

ûj �
�
(1� e��r)�j (u0i ) + e��r�j (~ui)

�
Now �i (t) � �i (T ) = �i �

ûj��j(u0i )
ûj�((1�e��r)�j(u0i )+e��r�j(~ui))

, so this su¢ cient condition holds.

Hence, it is optimal for player j to play an admissible action at time t whenever player i�s

demand is at least ~ui.

Finally, if player j plays an inadmissible action at time t, then just before time t+ 1 his

continuation payo¤ from rejecting player i�s demand is at most

�i (t)uj + (1� �i (t)) ûj,
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because the probability that player i is of type ~
i at this time is at least �i (t), and type ~
i

minmaxes player j starting at time t + 1. Since �i (t) � �i (T ) �
ûj��j(~ui)
ûj�uj

, this is no more

than
ûj � �j (~ui)
ûj � uj

uj +

�
1�

ûj � �j (~ui)
ûj � uj

�
ûj = �j (~ui) .

Hence, if ui < ~ui, then agreement is reached by time t + 1 under any optimal continuation

strategy. Finally, as we have seen, it is optimal for player j to play an admissible action at

time t if ui � ~ui, and this yields continuation payo¤ at least �j (u
0
i ). Therefore, at time t

it is optimal for player j to reject player i�s demand and play an inadmissible action only if,

under any optimal continuation strategy, agreement is reached by time t+1 and he receives

continuation payo¤ at least �j (u
0
i ).

Step 3: Equilibrium Construction

We now construct strategy pro�les for the normal types in (G; �0) that yield the desired

range of PBE payo¤s. The construction builds on that in Lemma 24 of AP. The next

paragraph speci�es on-path play, and the three paragraphs after it specify o¤-path play.

Fix u�i 2 [~ui; �i (~uj)]. Normal players reveal rationality. If both players reveal rationality,

normal player i initially plays (u�i ;mi) and normal player j initially plays
�
�j(u

�
i );mj

�
. Thus,

if both players are normal and follow their equilibrium strategies, the game ends immediately

with payo¤s
�
u�i ; �j (u

�
i )
�
. If player i does not reveal rationality and at history ht her play is

consistent with some type 
i 2 supp �0i, then normal player j is certain that her opponent is

behavioral, and her on-path continuation play is pinned down up to indi¤erence by sequential

rationality. At any history at which player j is certain that player i is behavioral and is

indi¤erent between accepting and rejecting player i�s o¤er, we specify that she rejects; and at

any history at which player j is certain that player i is behavioral and is indi¤erent between

playing
�
�uj;mj

�
and playing any other action, we specify that she plays

�
�uj;mj

�
. Player

j�s play at other histories at which he is certain that player i is behavioral and is indi¤erent

between any two actions is irrelevant and can therefore be speci�ed arbitrarily.

O¤-path play in the subgame after both players reveal rationality is as in Lemma 24

of AP. In particular, if player i deviates to an incompatible demand, then player i plays

(ui;mi) and player j plays
�
�uj;mj

�
at the next integer time, and in the interim player i
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accepts player j�s demand and player j rejects player i�s demand. The same continuation

play follows any single-player deviation. Next, suppose that both players deviate from their

prescribed play (to incompatible demands) at integer time t. If player 1�s �ow payo¤ given

the realized time-t actions is weakly less than player 2�s o¤er to her, then she accepts player

2�s demand, and player 2 rejects her demand. If this condition fails for player 1 but holds

for player 2, then player 2 accepts and player 1 rejects. If both players��ow payo¤s are

strictly greater than their opponents�o¤ers to them, then neither player accepts until the

next integer time, at which point continuation play is as at the beginning of the subgame

after both players reveal rationality, with u�i replaced by player i�s �ow payo¤.

Next, consider the subgame after player j reveals rationality and player i does not.

Suppose that at time t player i�s play becomes inconsistent with all types 
i 2 supp �0i (i.e.,

at time t player i either makes or rejects a demand that makes the history inconsistent with

all 
i 2 supp �0i). Then player i plays (ui;mi) and player j plays
�
�uj;mj

�
at the next integer

time. In the interim, if player i�s �ow payo¤ given the realized time-t actions is weakly less

than player j�s o¤er to her, then she accepts player j�s demand, and player j rejects her

demand. If this condition fails for player i, then player j accepts player i�s demand if and

only if this yields a higher payo¤ than receiving his �ow payo¤ until the next integer time

and then receiving �uj. If both of these conditions fail, then neither player accepts until

just before the next integer time, at which point player i accepts player j�s demand, if this

demand is no more than �uj. Continuation play following the next integer time is as at the

beginning of the subgame after both players reveal rationality, with u�i replaced by ui. Now,

as long as player i�s play is consistent with some type 
i 2 supp �0i, player j�s play is pinned

down by sequential rationality and an arbitrary rule for breaking indi¤erences. Hence, the

above speci�cation of play after player i deviates from any type 
i 2 supp �0i determines

player i�s entire optimal continuation strategy, again up to indi¤erence.

Finally, consider the subgame after neither player reveals rationality. If at time t player

j�s play becomes inconsistent with all types 
j 2 supp �0j, then continuation strategies at the

resulting history ht are identical to continuation strategies at history ht0, de�ned to equal ht

with the modi�cation that player j initially revealed rationality (which are speci�ed in the

previous paragraph). That is, continuation play is �as if�player j had revealed rationality.
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Similarly, if at time t both players� play simultaneously becomes inconsistent with all of

their types in supp �0, then continuation play is speci�ed to be the continuation play at the

corresponding history where both players have revealed rationality.

It is clear that each player�s strategy is optimal at every history except the null history

before the players do or do not reveal rationality. Therefore, to check that the above

strategy pro�le is a PBE, it su¢ ces to check that revealing rationality is optimal for both

players. This in turn requires only checking that revealing rationality is optimal for player

i conditional on player j�s being normal, as revealing rationality has no e¤ect on play if

player j is behavioral, by the assumption that behavioral types do not condition their play

on whether their opponents reveal rationality.

Suppose that player j is normal and normal player i does not reveal rationality. At any

admissible history, if player i takes an action that is not consistent with any type 
i 2 supp �0i,

then her continuation payo¤ equals ui (by the above speci�cation of o¤-path play). Thus,

suppose that player i�s play remains consistent with some type 
i 2 supp �0i at all admissible

histories. By Lemma 1, continuation play prior to time Ti falls into one of two categories:

either player j always plays an admissible action and only accepts demands of no more than

~ui; or, at some integer time t at which player j acts second, player j play an inadmissible

action and agreement is reached by the next integer time. We now show that in either case

player i�s payo¤ is no more than u�i , regardless of her strategy.

In the former case, the fact that u�i � ~ui > ui implies that player i may receive a payo¤

strictly above u�i only if the game does not end before Ti. Since in this case player j plays

either mj or some action mj such that Uj (mi (t) ;mj) > �j (u
0
i ) (and thus Ui (mi (t) ;mj) �

u0i ) at every time t < Ti, player i�s payo¤ is at most

�
1� e�rTi

�
u0i + e

�rTiûi.
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Now

e�rTi = (K (1� �i))
�r=�i

=

 �
ûi � ui
u0i � ui

��i=�r!�r=�i
=

~ui � ui
ûi � ui

.

Hence, �
1� e�rTi

�
ui + e

�rTiûi �
�
ûi � ~ui
ûi � ui

�
ui +

�
~ui � ui
ûi � ui

�
ûi = ~ui � u�i .

In the latter case, recalling that agreement is reached before time t+ 1 if player j plays

an inadmissible action at time t, leaving player j with payo¤ at least �j (u
0
i ), player i�s

continuation payo¤cannot be higher than the maximum of player i�s time-t demand, denoted

ui, and the continuation payo¤of type ~
i, denoted u
~
i
i (this is because player i�s time-t action

mi is the same as the time-t action of types 
i and ~
i, because player j acts second at time

t). We claim that both of these values are weakly less than ~ui (and thus weakly less than

u�i ). First, the fact that player j�s continuation payo¤ is at least �j (u
0
i ) implies that

(1� �i (t)) ûj + �i (t)
��
1� e�r

�
ûj + e

�r�j (ui)
�
� �j

�
u0i
�
,

and therefore

�j (ui) � ûj �
er

�i (t)

�
ûj � �j

�
u0i
��
.

Hence,

ui � �i

�
ûj �

er

�i (t)

�
ûj � �j

�
u0i
���

� �i

�
ûj �

er

�i (T )

�
ûj � �j

�
u0i
���

� ~ui.

Second, because player i cannot receive continuation payo¤ greater than �j
�
u
~
i
i

�
when
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player i is of type ~
i,

(1� �i (t)) ûj + �i (t)�j
�
u
~
i
i

�
� �j

�
u0i
�
.

Hence,

�j

�
u
~
i
i

�
� ûj �

1

�i (t)

�
ûj � �j

�
u0i
��
,

which implies that u~
ii � ~ui by the same argument as above.

We conclude that player i receives payo¤weakly below u�i if she does not reveal rationality,

which implies that failing to reveal rationality is not a pro�table deviation for player i.

The same argument applies to player j, because the fact that u�i � �i (~uj) implies that

�j (u
�
i ) � ~uj. Therefore, the above strategy pro�le is a PBE.

5 Conclusion

This paper shows that allowing players to sign binding contracts governing future play does

not lead to reputation e¤ects in the absence of assumptions on the relative probabilities of

di¤erent behavioral types. This suggests that equilibrium selection due to reputation e¤ects

is substantially weaker in games with two long-run players than in games with a single

long-run player, even in the presence of contracts, and that existing results do not provide

a completely convincing equilibrium selection argument for applications in which di¤erent

behavioral types may not be immediately distinguishable.

However, we reiterate that AP�s uniqueness result is robust to introducing a small mass

of behavioral types that initially pool with other behavioral types; in particular, AP�s result

continues to hold when behavioral types are not immediately distinguishable if the prior

probability of the Nash bargaining with threats is high enough relative to the prior probability

of �softer�types whose early play resembles that of the Nash bargaining with threats type.

This raises the intriguing question of where the boundary between AP�s uniqueness result

and our multiplicity results lies. That is, for what prior distributions of behavioral types

do repeated games with contracts have unique equilibria, and for what priors does the folk

theorem apply? What happens in the transitional region between these regimes? Relatedly,
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our arguments suggest that some behavioral types may be more pro�tably imitated for a wide

range of prior distributions than others; for example, a player must be very con�dent that

her opponent is really a soft type for her to keep playing when her opponent imitates a type

that gets �tougher�over time, as this behavior penalizes her for failing to concede. Ongoing

research suggests that this approach may be tractable: in Wolitzky (2011), I characterize

the behavioral type that is most pro�tably imitated in bargaining by a player who holds

�worst-case�beliefs about her opponent�s prior belief about her own strategy, and show that

this type does indeed get �tougher�over time. I view these ideas as interesting directions

for future research.
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