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Private information induced incentive constraints can cause allocations to diverge from full 
information optimal allocations, of’ten in the direction of limited insurance, but can bring 
unanticipated anomalies. Related, plausible contract exclusion rest&ions can be in 
welfare terms. More generally, private information optimal allocations can be sensitive to the 
information structure, suggesting that the latter be specikd with an eye toward realism as well as 
tractability. In an effort to make tractability less of a constraint the paper shows how two 
appare4v difficult information stnrctures - a costly state verification environment and a multi- 
period m&lateral private infonzatio2 ezxironment - can be handled theoretically, by revelation 
principle methods. The paper also shows how solutions can ‘be ge~cm~%x! am&dl~. 
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alternative specifications of preferences and technokrgy. AltUg (1985) experi- 

ments with multiple capital goods, finding that separable preferences may 

ovide a reasonably good fit to the data, unlike ydland and P 
introduces non-convexities in labor s ply, to deliver 

ansen and Sargent (this issue) use non-convexities 
to deliver a distinction between straight 
this interaction between observations and 
productive, indeed exciting. 

It is not obvious where the next round of iterations will take us, but one can 
take some guesses. The models of ansen and of Hansen and Sargent treat 
identical agents differently in ex post labor supplies but identically iu con- 
sumptions, something which follows naturally at an optimum from separable 
preferences and full insurance. Because full consumption insurance seems 
inconsistent with actual observations, an obvious next step is to limit in- 
surance in some way. This would seem to have implications for both the 
dispersion of consumption in a population and for aggregate time series. 
Indeed, following a long tradition, Bemanke and Gertler (1986), Greenwald 
and Stiglitz (1986) and Smith (1985) each limit insurance and asset markets in 
th at modeling business cycle phenomena. 

to limit insurance is to preclude it exogenously. That is, the 
modeler can specify what contracts are feasible and what contracts are not. A 
second way to limit insurance is to find a reason why insurance markets are 
. l-enit, A ll11u LVU and to deliver insurance arrangements as part of the solution to the 

. . . 
optimum problem. Implicitly or explicitly, authors seem Lu ylbrUA b- --=fnr the cprnnd 

l S.” -iv,---- 

easons. On the pragmatic side we need 
at contracts or markets to limit 

to explain the o 

mimic the observations. 
ferences and technology than to 

Private information is the prime candidate to use to limit insurance arrange- 
ments endogenously. In fact Bernanke and Gertler (1986), Greenwald and 
Stiglitz (1986), Smith (1985) all use private information to motivate or 
derive the ins e contracts and asset markets of their business cycle 
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related, the joint restrictions tion on contracts 
phenomena are incorporated. ~fo~ation cons 
weak as possible, so only preferences, endowments, tee 
information structure dictate the solution. Fourth, and related, these private 

information optimal solutions, though consistent with limited in,suranw, some- 
times display anomalies, such as en_anced dispersion, 
artificial lotteries, deliberate scr 
mation acquisition in the face of increased cost. S 
anomalies are ex post rationalizable, in the sense that once discovered, their 
existence can be traced back to information contrained insurance motives. But 
a priori logic or ‘out of model reasoning’ _may have missed their rationale. 
Fifth, and related, plausible but exogenous contract exclusion restrictions can 
be shown in various contexts to be too strong. Exogenous restrictions are 
sometimes as damning in welfare terms as private information itself, 
because the anomolous possibilities just mentioned are ignored. Exogenous 
restrictions can thus interfere with attempts to explain observations from 
supposed primitives and to compare ahernative policy regimes. Sixth, to the 
extent that exogenous exclusion restrictions seem more consistent observa- 
tions, we are led to puzzle over why private information was not enough and 
to search for a source of further restrictions. In this way the productive 
interaction between observations and thz primitives of economic models can 
continue. 

The private information methods of this paper are the so-called revelation 
principle methods developed in yerson (1979) and in Harris and Townsend 
(i98ij and extended hSie fo 

n*rr8-a~Ls~+lrr rl:uzm.1+ - . 
ma apycuulrr1gr UUll~UlL pm& Mmmiiori 

environments. The first: in r ection 2, is a costly state verification type environ- 
‘ronment in that 

entirely private 
nor entirely public. In fact! Townsend (1979) did not use revelation principle 
methods in deriving debt c(Bntracts as optimal and displayed stochastic audits 
as a Pareto dominating possibility rather than as an integral part of the 
analysis. recent related literature includes Baiman and Bemski (198Q 
Evans (1 Gale and Hellwig (1983, Mookherjee and Png (1987), and 
Reingzmm and ilde (1985). But much of this literature stops short of a full, 
private information optimtun, sing instead various restrictions on COG- 
tracts, as in Townsend (4979), l effort to characterize soiutions. 

vironment to which revelation princip 

agents, in section 4. It i 



s which scramble information, as in the recent work of 
in fact, an explicit and detailed proof of the revelation 

, then, is to show how revela 
tuations where they 

oai9.L 
One caveat is in order, however. The revelation principle has its 

pa&&u, nothing here precludes situations of multiple equilibria, 
in which a direct revelation mechanism has additional, non-truthtelling equi- 
libria. Examples of such ns are contained 
Den&i and Sappington , Postlewaite and 

ullo (1983), among others. Of course truthtelling per se is not the 
e issue is one of implementation, ensuring that the solution to 
problem with incentive constraints can be achieved as a 

utcome for some game. Indeed, Palfrey and Srivastava 
a suitably enriched game or mechanism would have as 

its unique outcome the desired ‘truthtelling equilibrium, at least up to a 
limited notion of reflnem for a wide variety of environments. 

on of this idea es us beyond the scope of the pres 
d a discussion of limited commitment. 

The revelation principle method is also extended here numerically in sec- 
tions 3 and 5. ‘That is, maximum problems for the determination of private 
information Pareto optimal allocations are converted to standard linear pro- 

s, despite sequential auditing in section 3 or sequential incentive con- 
DUauAbU -1 UVi__,-- +n;**~ in Cmtion 5. and these programs are solved numerically for various l 

discussed. 
t might be complained that the two private information environments 
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constraints, causing aggregate storage to increase. Thus aggregate effects 
emerge rather quickly in numerical examples, but the direction of the effect is 
dependent on the specific parameters of the environment. e point, again, is 
not that private information is a wild card producing any outcome whatever, 
but that the logic of optimal, but information constrained insurance should 
not be taken for granted. 

Imagine an economy with two agents (a and b), two dates, a planning and a 
consumption period, and a single underlying consumption good. Agent a has 
preferences over consumption bundle ca 2 0, as represented by a utility 
function Ua(ca, 9). is a shock to preferences, or better put, to a 
household producti , with Ua(ca, 9) as an indirect utility function 
over ‘market’ goods. Shock 9 is observed by agent a alone at ihe beginning of 
the tion period and takes on one of a finite number of values in some 
set the point of view of the planning period, shock 8 occurs with 
probability p(B), and this is common knowledge. Agent a has m endovmmt 
of eG u&s of &e ~~~=~qy&j~ g-g& m ~-rdmmce~ or aiLwarl. v &_ -+____ * r--i-r--- -- C man* h WP dt=wr&d by 

-b a utility function Ub(cb) over consumption bundles c 2 0. Agent b has an 
endowment eb. Consumption vectors c = (ca, cb) are bounded by the social 
endowment e = ea + eb, and further restricted to a finite number of values, as 
if consumption took place in discrete units. Finally, if for some reason or other 
an audit takes place in the consumption period, then K units of the consump- 

from a rando 

J.Mon-- H 
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tion of inf~~atio~ constrained optima, can turn directly to program 2.1 or 2.2, 
with the requisi,te notation decfined therein. 

ues one or zero, 



ective func 

9d=0). 

[clm*(d),d=O], (1) 

below ation is over either Cdeo or Cdrl and is 
from the context. ow, as a matter of notation, let 
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Qd=l ( u*(c*, s)s[cle, 8, d = 11 
c 

+ ?TdmO( U”(c*, li+[clP. d = O] 
c 

c 

one can refer to announced 

e in the class under 



Ua(ca,~)n[cltJ,6,d=l] 
c 

)a[clB, d= 01)) 

Ub(cb)+~t?,9,d=1~ 
c 

C 

Ub(cb)~[c~i9,d=O])), (3) 

is the double 8 
values coincide. 

e deal with counterkctual claims 

2.1 is continuous in the choice 
restricted by (2) is closed and 

bounded since any ty is a number between zero and one inclusive. 
Finally, constraints 2) are also continuous in W. Thus the constraint 
set is compact, and so a solution to the program is guaranteed to exist [note 
that (co, cb) = ( , eb) is presumed to be feasible]. In fact, in 
above the ardS1 d-0( 6) always enter rnultiplicatively. 
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~rog~a~~i~g problem 2.2 

ction 

c 
LI”(E”,B)n[c,d=O~81)) 

Ub(cb)s[c, d= llO,S] 

v”(cb)lr[c, d=Ol 
c 

Ua(ca,t9)w[c,d=0~ 
c 

)r[c,d=Ol@], 

CE 
d-i 

9 

(6) 

C 

2 9 
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and 

Ub(cb)lr[C,d= ll6,0] + 
C 

Ub(cb)g[c,d=0,8)} 

2 Ub(eb). (12) 

e 

solutions ~ as proeram 2.2 have been computed for two sp cations of 
preferences. For case 1, preferences of a6 -ent Q are of the form U4(c, 0) = [c -I- 
S]‘/@ with 6 E (0.2,0.3,0.8,0.9}, each 8 drawn with probability 0.25. For case 

= 0.95 for sure. 

having higher marginal utility for a given consumption allocation. In all the 
examples which follow t te endowment e= 10 is split equally 
a priori, with ea = eb = 5. e cost of an audit is varied from K = 0.5 to 

ttention is restricted to a finite number of consumption bundles on the 
feasible resource allocations, though thk is 
to the solution with a continuum of possible 

e first step in the numerical algorithm was to impose a 
optimal solutions. further 

olutions were offered. guess is 
that solutions with a relztively fine, grid, with increments between 
consumptions of 0.01, were computed. so, no case of multiple solutions was 
uncovered, though this possibility has not been ruled out. 

solutions to program 2.2 for case 1 p 

erfect costless e 
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agent b be no less than at autarky, is binding. That is, all 
accrue to agent Q, and in effect one maximizes the 

hat the utility of agent 
omatically imposed vithout loss 

if there is an audit, 8 is revealed as tne true parameter value, and 
counterfactual vahe of 8 had been announced. This can always be assumed to 
be part of an optimal solution, though it matters only when incentive 
constraint is binding. In any event the penalty branch is never dis yed in the 
tables. 

To be noted in table 1 is the tendency of private information to cause the 
information solution to be pressed inward in the direction of less in- 
ce, with higher values of K reflecting greater private information prob- 

lems. T s, private information implies less indexation. This is ‘intuitive’ a,t 
least in space of deterministic no audit and audit consu tions. Sp=rfi- 

ly, the full info&mation solution h agent a eating more when he is 
s, and eating less at low 8 values, 
no-audit consumption payoirs at 

, and the no audit 
_K, except as one 

= 5 at 8 = 0.8. Fig. 1 is suggestive, with the arrows mdicatmg 
movement of no-audit consumptions with increases in K. A similar picture 
prevails for audit ConsumDtions. 

udit probabilities in table 1 are monotone increasing in $ for each K, with 
and monotone decreasing at each 8 value as K 
ilities would seem a natural su ary device, 
vely plausible. 

of table 1 is the emergence of consumption 
t. For example, at K = 5, there is a genuine 

ottery at 8 = 0.8 and at 8 = 0.9. In pa f consumption lotteries at K = 5 

ne gets a sense fro 

ts are close :.o one a 



le 1 

Case 1 preferenmP 

0.2 1.63 1.0 
.3 1.76 1.0 

0.8 6.44 1.0 
0.9 9.85 1.0’ 

8 

Private information solution and audit cost K = 0.5 

c4 if d==O ~(ca,d=O,B) c’ifd=l g(ca, d = 1, 8, 0) 

0.2 0.0 1.86 1.0 - 
0.3 1.9 0.992036 2;6 0. 
0.8 5.72 0.634464 6.3 0.365536 
0.9 9.77 0.5168W 9.37 0.483195 

Private information solution and audit cost K = I 

9 prob (audit) c=ifd=O r(ca,d=0,6) c’ifd=l w(ca, d = 1,8,6) 

0.2 0.0 2.09 1.0 - - 
0.3 0.001763 2.1 0.998237 2.6 0.001743 
0.8 0.304029 5.05 0.695970* 6.28 0.304029 
0.9 0.458684 9.69 0.541316 8.91 0.458684 

Private information solution artd audit cost K = 2 

8 prob (audit) co if d=O s(c”,d=O,@) co if d=l rrr(c",d=1,8,8) 

0.2 o*o 2.48 1.0 - - 
0.3 0.0 2.48 1.0 - - 
0.8 0.207649 4.36 0.792351* 6.7 0.207649 
0.9 0.407632 9.21 0.592368’ 7.97 0.407632 

Private information solution and audit cost K = 5 

9 prob (audit) ca if d==O B(Ca,d=O,e) co if d=l qtca, d = 1, 8, 8) 

0.2 0.0 3.6 1.0* - - 
0.3 0.0 3.6 l.Of - - 

0.8 0.0 0.0 0.302120 - - 
9.0 0.697880 

Ifi 
0.9 0.0 c k9 0 0.302120 > - - 

0.697880 

a lottery with support 

e acerisks are use 

JMon- Y 



cU ifQ’=% IT(P,d= B 
- - 

- - 
3 
8” 

- - 
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ng also is the 111~ v UaAAv-rr -~s=m~nt of the audit probabilities. From K= 0.5 up to 
abilities of audits at 8 = -1.0 and 8 = + 

arently, this audit statistic is not a rev 
r the entire solution. Also, at the K = 

probability is non-monotone in positive at 8 = - 1.0 and 8 = + 0.10 but zero 
at 8 = 0.9. It is evident from s that the consumption lo 
effect replaces a probabilistic audit, as foreshadowed above. 
explain the non-monotone audit probability result above. 
one way but not the only way of inducing random consumption allocations. 

Striking also is that audits occur at even K= 9.9, using 9 of available 
output (this is not in the table). Apparently, this allows 8 = - and 64.0 
agents to be distinguished from one another. Afterall, the spread between 
these types is large, and so distinguishing consumptions Is important. And for 
K = 9.9 significant and distinct consumption lotteries emerge at 8 = 0.10 and 

es are also distinguished from one another. Dism 
-1, 8=0.10 and 8=0.3 prevail in the K=lO 

n where of course there are no audits. Thus, consumption lotteries again 
appear as a last resort. A large spread ong 8’s makes distinct consumptions 
worthwhile, by one device or another t with relatively high risk aversion, 
consumption lotteries are costly, and they are resisted until the costs of audits 
is exorbitant. 

Exogenous exclusion restrictions and CI priori limited contracts matter for 
consumptions. Table 3 returns to the case 1 preferences of table 1 but restricts 
audits to be deterministic when they occur, as in most 

se are computed by a mixed integer linear program. 
t and non-audi reveals substantial differences in consumptions 

ere. t also note that in table 3, under the restricted 

Table 3 

Restriction to deterministic audits, K = 0.5 (upper part) and K = 1 (lower p&xt), 
case 1 preferences. 

Audita ca if d=l v( ca, d = 1,&O) 

0.2 N 1.67 1.0” - - 
0.3 N 1.67 LO* - - 
0.8 Y - - 6.03 1.0 
0.9 Y - - 9.32 1.0 

_- 
0.2 N 2.69 1.v 
0.3 N 2.69 1.0* 
t!.!! f 0 0.273724 

\ ‘I 03 4.r- 0.726271 
0.9 - - 9.G 1.0 

a 
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Table 4 

Constant protbability of auditing, K = 0.5, case 1 preferences. 

8” prob (audit) co if d=O vr(P, d = 0,8) c”ifd=l a(ca,d=l,8,8) 

0.2 0.428382 1.73 0.571618 1.73 0.428382 
0.3 0.428382 2.23 0.571618 2.21 0.428382* 
0.8 0.428382 5.94 0.571618 5.80 0.428382 
0.9 0.428382 8. 0.571618* 9.27 

policy, low 8 values fail to be distinguished from one another. Also, con 
tion lotteries emerge earlier, at 8 = 0.8 and K = 1 in table 3 rather than 
as in table 1. 

r completeness table 4 s how a restriction to constant audit prob 
that is, probabilities endent of 0, can also alter the nature 

consumptions. (This is sometimes considered in the literature when 
revelation-type, announcement possibilities are ignored.) should be 
WllllWA&+u .w .-v-r _ -_ -- = -=--em-aA +h tghlp 1 srt K = 9,s. perhaps surprising is the high audit 

’ ate information optimal solutions were also computed for weights 
Aa = 0 and A6 = 1, so that all the gains to trade accrue instead to agent b. 

solution for case 2 preferences and = 5. This should be 
= 5 entry in table 2. 

Evidently solutions do vary with ights. In table 5 there tends to be 
less probabilistic auditing, with a cant consumption lottery at 8 = 0.9. 
This variation of optimal solutions g weights is troublesome 
from the standpoint of developing operational theory. In a large economy, 
with more households, one might suppose that the outcome be competitive, or 
in the core, removing the indeterminancy. 

Various welfare eriments were also formed. The first experiment 
delivers a measure welfare loss of p information, the percentage of 

e endowment which would have to be destroyed in the full 

Effect of different X’s, Aa = 0, Ab = 1, K = 5, case 2 preferences. 

8” prob (audit) c” if d=O c” if d=l 

- 3.0 0.0 1.09 1.00 - - 
4.G n V. 1.35 0.999961 1.32 0.1 0. 2.67 I .* 

LOU V.“P I W-v” 

0.9 0.0 0. 
9.93 

-- 
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Table 6 

Welfare loss to private informatio*. ,- -____.. n lrnhmns 1) and to restricted, constant audit probability policy 
(columns 2). 

Case 1 prcfereuces 

(1) (2) 

Case 2 preferences 

(1) (2) 

K = 0.5 1.2 2.3 0.3 0.6 
K=l 2.3 4.0 0.7 1.3 
K=2 4.1 5.5 1.4 2.1 
K=5 5.9 5.9 3.4 4.5 
K=9 5.9 5.9 4.7 4.9 

information solution in order to lower the objective function to its value in the 
rivate information optimal solution. Also computed ;s the same measure of 

welfare loss when the private informa l solution is restricted to audit 
probabilities which are constant over 8. e results are presented in table 6, 
for both case 1 and case 2 preferences, as K is varied from 0.5 to 9.0. 

For low ues of K the welfare loss under the restricted policy is close to 
twice that he loss to private information alone. This difference decreases as 
K increases. At relative high values of K the loss can be identical, as these 
values imply the constant policy of no auditing is optimal. 

A similar welfare comparison is done with the deterministic audit restriction 
7, again for case 1 and case 2 preferences and various 

e welfare loss from a restriction to deterministic audits is 
the welfare loss of private information alone, that is, the 
For case 2 preferences the results are more striking, as 

t prematurely at relatively low values of K, causing 

is not considered directly is a restriction which precludes 
consumption lotteries. ut table 7 and an additional calculation tell the 

Table 7 

elfare Boss to private information (columns 1) wd to restricted deterministic audit policy 
(columns 2). 

Case 1 preferences Case 2 preferences 

0) (2) (1) (2) 

1.2 2.6 0.3 3.1 
4.7 (2.7 5.0 
5. 5.0 
5. 5.0 
5. 5.0 
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Table 8 

elfare loss to private information for diffident wei as A, P=1, Ah=O~cohrnns 1)aud A”=O, 

Case 1 preferences 

(1) !2! 

Case 2 preferences 

(1) (2) 

K= 0.5 1.2 1.2 0.3 0.6 
K=l 2.3 2.1 0.7 1.1 
K--2 4.1 3.9 1.4 2.0 
K=5 5.9 5.6 3.4 2.4 
K=9 5.9 5.6 4.7 2.6 

story. For case 2 preferences, K= 9, and the restricted policy there are no 
its at all, and so all beneficial exchange is supported by consumption 

lotteries. The welfare loss of p ’ te information under the restricted policy, 
relative to full information, is If random consumptions were also pre- 
cluded, and audits remained at zero, as seems likely since an audit consumes 
90% of output, the solution would be autarkic, necessarily. Then the welfare 
loss relative to full information, the percentage amount of the endowment 
which would have to be destroyed in the full information environment in order 
to lower the objective to its autarkic value uld be a dramatic 21%. ‘This is 
by far largest welfare loss displayed in of the examples. For case 1 
preferences a similar lottery exclusion increases the welfare loss from 5.9% to 
7.0%. 

As a check on these welfare measures, the Xa = Q a.nd hb = 1 specification is 
also adopted (in effect m aximizmg the ex ante utility of agent b subject to the 
utility of agent a at autarky) and the welfare loss is compared to the Xa = 1, 
Ab = 0 specification. Table 8 makes the comparison for the losses to private 
information for both preference cases. The numbers do differ, though only 
radically so for the high K, case 2 environment. Still, as we noted earlier, this 
indeterminancy in solutions is troublesome. More theory is needed to pin 
down the welfare weights. 
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teries. Indeed, the former r will dominate the latter 
percentage of the endow nt which is required to eliminate private 
tion in the former is less t the welfare loss to private 
in the tables. t is clear from the tables that under 
p&&s which enhance the welfare loss of private information, one might favor 
the use of ex ante elimination even thou that would not be socially efficient. 
Alternatively, back to the positive si e were to limit attention to 
restricted policies, one might not make predictions about choices among 
regimes. 

The numerical examples displayed above make the point that private 
information optimal solutions can display surprising features, that restrictions 
which seem reasonable Q priori can be damning in welfare terms. 0f colurse 

display these features! ndeed, in order to present a 
seems useful to re to the original costly state 

of Townsend (1979) and investigate there the impact 
ay be recalled, again, that send (1979) 

contracts and showed they looked e standard debt 
contracts under a restriction stic audits, though probabilistic 
audits were shown in Towns a Pareto dominating possibility. 

The privately observed random endowment environment of Townsend 
as in program here with the exception that an 
d not be impo for a counterfactual endowment 

value greater than the actual ekiowment value. example, suppose 
cb) =: (eb + 0.05), ea E ,8, IO} each with 
en for an audit cost of K = 2? Xa = 1, I@ = 0, and 

tions the solution is reported in table 9. 
, on the other hand, and in contrast 

are no additional (real) consumption 
the grid, and related, no doubt, the 

solution is driven to autarky even for relatively low values of audit cost 
so, it is difkult to get high audi; 
e threat of audit (and penalties) help 

St costly state verification. 
-I___ 

bir( P, d = 1, e4, ea) 



nce 

audit probabilities mu 
transfers. Otherwise, 

possibility that audit probab ay be non-mcwtone with values of 

possibility of benefi- 

with two agents (a and b), two dates (t and t + l), 
an consumption good at each date. Given a path for 
consumptions cf and ~f+~ by agent i at date t and t + 1, respectively, agent i 
has preferences as sented by the objective function U’( cf, t9,!) + 

Yi(c~+I, 8,‘,,), i = a, b or simplicity here quantities of consumption bun- 
dles at each date art: p16;3~h~~~ cV c-W vII _ --- ---~~--~fiJl +A +atp t\n at rrenct a finite n es, as 
if consumption took place in discrete units. also there to be 

er of possible shock specifications (@F, O/‘, 6fi1, @A,) in some 
ach drawn with a priori probabilities p( Or+ OF, 8F+1, OF+ 1 
knowledge. Shocks 8 may be supposed to hit an u 

household production function, so that the U’(e) and V’( l ) are 



The environment here may be seen as a special but fully specified ecwmnic 
e~~~~~rne~t, an andogue to the game theoretic setu 

en~ronment is special in that the agents 
in that events of probab~ty zero cannot occur. 

gu~anteed by the no-action possibilities specification 
abilities specification. Yet the en~onment is dynamic - the insertion 

od must be allocated period by period. These period by period consumption 
ocations create information revelation ~oss~b~l~t~es which the mechanism 

design must accommodate. In this sense the allocation is like an action in 
Myerson (1986). 

Myerson (1986) emphasizes the importance of communication among agents 
in the context of his dynamic, sequential games. This takes the form, among 
other things, of allo g agents to commit to certain actions or inactions and 
communicating this to other agents, either directly, or, indirectly, through a 

t also takes the form of allowing agents 
off events, possibly random events, 

observed by them. This is facilitated by preplay communication. Alternatively, 
the agents could follow the reco~~ndations of a mediator who passes on 
such recommendations according to such random events or similar events of 

s own making. (Again, see yerson’s example 2.) son argues, in fact, 
at thx is no loss of gen lity in requiring that commumcation go 

through a mediator, because agents can do through a mediator anything they 
can do on their own. l[n fact, there may be an advantage to going through a 
mediator in that the latter can control information flows, 
from acting ex post against their own ex arate interest. 
allows the mediator to scramble his re~o~endations to the agents. (See 

yerson’s example 5.) 
For the economic environment of this section we accept fully the idea that 

all ~ommu~cation can go through a IAS;ator without loss of generality. No 
proof of this is given. Then we shall derive an analogue to the scrambling 

ing here that the mediator might well scram- 
ble the date 1 co 
fact a case of active, 

c programing considerations 
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each agent i (i = a, b) and a message space . 1( mi, c,) at date t + I for each 
a, b) where c The idea here is that messages sent 
ate t may not own to agent i at date t + 1, so the set of 

a priori feasible messages at date t + 1 for agent i may not be restricted by 
j + i. On the other hand past own messages mf and past own con 
are known at date t + 1, and with deterministic endowments 

thrown away, c/ is 
spaces are taken to te dimensional subsets 

of Euclidian spaces. 
The second CRASS of objects included in the specification of a game is the set 

of allocation rules. At date t the set of feasible consumptions c, is restricted to 
lie in Ct = ((cp, cp) : cl” 2 0, cf 2 0, cf + cf = e,}, where again space Ct is finite 
dimensional and similarly at date t + 1. Let A, denote the set probability 
measures over Ct. allocation rule at date t is a measure b,(my, mf) 
in A,, a lottery spec (c,fmS, 112:) of consumption 
bundle c, effect m f. That is, a computer is 
preprogrammed to map messages into random outcomes even if mes- 
sages are privately sent. Similarly, let A,, 1 denote the set of probability 
measures over consumption set Ct+l. Then an allocation rule at date t + 1 
. 

a measure A,+l(my, rn:, mT+l, mb r+l,c,) in A,,, with typical element 
,+i(c,+Jm;9 49 4+,9 m;+,, c,)* 
A strategy at date t for agent i is a possibly random choice of a message in 

M: given his observed 8,!. That is, a strategy is a measure t&9;) conditioned 
on 0:, a lottery specifying the probability u:( m f 10;) of message m f . A strategy 
at date t + 1 for agent i is a possibly random choice of a message in 

i( mf, c,) given his observed shocks 0; and 0;+ 1 and conditioned on his 
message ml and past observed outcome c,. That is, a strategy is a measure 

0;’ f- ,<e,i, q+ 1, rni, c,) over I$+,( mf, c,) with typical element c$+ i( mf+ I 1 l ). 
Now imagine what happens as t game is played out over time, so that here 

and below sequential aspects are hasized. Given some specification of date 
t strategies ufb( ) over i’M: values and given an (arbitrary) allocation rule 
AJrny5 rn:) over c,, agent a observes a particular c, at the end of date t, 
knows as well particular values p and &y, and at the beginning of date t + 1 
knows a particular 8$,. 
optimally under 
notation, 

Inferences about particular values eb are then made 
rule, if possible. That is, in the obvious suggestive 
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or, more precisely, 

of (14) denotes the posterior probability Df agent 
conditioned on p, &+1, 6?:, and c,. Of course 

and side of (14) is the obvious conditional 
1 alone. The posterior probability of 8: 

b are formed similarly. 

analogue for agent b can be filled in any 

ate or troublesome in that these arbitrary 
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value of the objective function to this proble 

) 9 st 
solves the problem of maximizing the objective function 

{u[cp,ep,] + 
8” t+ 1 tltb m f 4 Ct 

. . . 
( 1 ill 

wise. 
ar conditions apply for strategy uF+T( OF, OF+19 mf, c,) of agent b at 

imilar conditions apply for strategy c$‘*( 8,:) of agent b at t. 
imilar conditions apply for the posterior p,“,*,( 19:, 6A 1, mt, q) of 

agent b. 

Given an equilibrium allocation for some specified game we c 
now a new allocation mechanism which has as an equilibrium the same 

at date t agent i m 
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thus to infer also From this point of view, then, it is apparent that the 
old particular message space IV; in use was of ng spec 
could have replaced it with any alternative that allowe 
scrambling desired by agent i. In short the 01 

new mechanism b-uilds in this 
rating it as part of its internal 

eratim. The scrambler is a lottery on 0; effected by an announcement of 0; 
ent i at date t. 

ore formally, then, let the allocation rule of the new mechanism, denoted 
q( a), be constructed as follows. First, let v;(#) = c$*(I~:). Here then $( 19;) 
denotes a lottery over internal computer messages mf E 63:, here as a function 
of the value of 19; named by agent i, just a5 if the internal message had been 

at is, $( na f It?;) is the probab 
agent i announces 0;. The 

as if it had been sent by agent i. Second let 
hen ~(IPz~, mf) is a lottery over consump- 
the probability the computer picks c, given 

nerated named values my and rnf for 0: and OF, respectively. 
omputer is doing exactly what it did 

= - A ( t+l c,+Jmf, mf, mY+,, mb t+-19 ct) 
my+1 mf+1 
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for agent i at date % 
with rules w specified above, has an eq 
y,!( 6;) = 8; and y;+ I( 19;, 6;+ 1, mi, c,) = (e,i, e,i,,>, that is, with named values 
equal to act values. Thus the new mechanism will ackeve the same 
probabilistic n of resources as the ginal mecharusm. 

For suppose, to emphasize sequential aspects, agent a adopts an arbitr 
a value of @ distinct from 

essage roz; under 
message being seen by agent a. a assumes 

however that agent b announces truthfuR at date t, gene message rnf 
under the scrambler ?Tp(@/‘). Then at &ate t + 1, given actual parameter draw 
e= t+l, agent a has posterior p,“,*l(t9~lgP, 19:+~, MT, c,), exactly the same posterior 
agent a would have had in the old mechanism for the spectied path 
VP, 8p+19 my, c,). That is, for every (m:, c,) ou e and for parameter draws 
Sp and 8p+1, agent a draws exactly the same rices about et6 as before. 
This is apparent fr Bayes rule (14) and the assumption that agent b is 
telling the truth so t in effect his messages are sent in exactly the same 
probabilistic way as re. Off this pat the posterior can be arbitrary and 
can be taken to be at it was before. Now at date t + 1, agent ez can name 
the actual values o s parameter draws (et*, BP, 1), or he can name counter- 
factual values (&, 8;“+ 1). If he names truthfully and assumes agent b is naming 
truthfully, he can generate by construction of the new mechanism the same 
distribution over outcomes he would have faced under the old mechanism 
under the s 
naming (@, 

Alternatively, if he announ counterfactually, 
virtue of the construction of new mechanism, 

would be like employing the slratcgyy &: (&. e+l, my, c,), a random strategy 
that was available to agent. a under t d mechanism under path 

(ep9 &9 my, c,) but not chosen. Thus trutht weakly dominates for agent 
a at date t + 1 for all paths t9;., 8p+1, my, and et. Thus 
objective function of agent a at date t is given by 
before. 
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ct the same distributirln of consumption outcomes 
announcing truthfully, since his old random strategy and the 01 

eration of c, are inc orated into 141. Alternatively, E 
counterfactually, saying activating scrambler Irp( p). 
like employing the random strategy C:*(P) under the old mechanism, a 
choice available at date t and draw 0: but not chosen. Thus truthtelling 
weakly dominates at date t. 

Of course similar arguments apply for agent b at date 1’ and at date t + 1. 
Thus both agents adopt truthtelling strategies in the new mechanism, and as is 
obvious by the above arguments the same distribution of consumption alloca- 

of resources is achieved as under the equilibrium of the old mechanism. 
ussion thus far, we can restrict ourselves WiihOut loss 

ribed class of new mechanisms, with truthtelling 
at is, the equilibrium outcome of any mechanism 

in the ~8~s given initially, with the specified message spaces and outcome 
functions, satisfies the constraints just described, namely, for every path 
y, %I, my, c,, and for every counterfactual announcement at date t + 1, 

fi:, Bp+1, 

ere 

= 
9 

b 
+1 I 

(19) 
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parameter draw and every counterfactual 

{ Lqq, 9;) + pa* [ 
ea r+l e,6 rnt 4 c~ 

These constraints can be simplikd further. In particular under the mecha- 
nism n,( 0) and 11;+i( 0) the truthtelling strategy is maximking for agent a for 
all possible messages my, given actual parameters 0; and OF+, and previous 
c tions c,, as (18) s clear. Thus even in the absence of information 
on my, truthtelling would be m aximizing for agent CI. More formally, suppose 
agent a announced @ at date tl possibly different from the actual OF, and 
though & is scrambled via ?r,“(eF), delivering some message rn:, this is not 
seen by agent a. For a particular rn;, dta, eta, @F+,, c, combination, multiply 
both sides of (18) by Irp( my&), delivering in the objective function the new 
but obvious posterior- pp,*,(B,“, OF+i, rn$9:, i9;+1, &, c,). S 
values thus yields truthtelling as the maximking st 
information on my. This makes clear that explicit dependence on rnf in the 
posterior agent CI, mf’ in the posterior of agent S, and my, rn: in the rules q 

and Itr+1 can be suppressed. That is, let 
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nouncements 6: at date t, and all counterfactual announcements, 6, 
A 

1 at 

date d + 1, 

2 v~(cP,,,~~+,)~~~,(c 140 eb &J B:a eb eb c ) t+l t 9 t ’ t 9 t+l, t ’ t+l, t 

eb eb I r+l Ct+l 

er simglications are now seen to be possible. For recall from the 
earlier discussion that 

where, given agent Q employs the ouncement rule & = Sp<ep), with 
Sp( 0) defined over all 0:. Also, as in txevious formula, * 

lying p,“,*l( etbI l ) in right-hand side of (22) by the term in the 
of the right-hand side -3f (23) yields the numerator of the latter 

n short, muliiplying both sides of (21) by the denominator factor yields 

X 

x 0 

+I, 
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ar;nouncements ( 
obvious notation as an incentive co 

~q~~+~,e~+,)~ c I c I& eb tb e”a 8” eb t9 t+l t ’ t 9 t 9 t+l t ’ t+l 

for all paths 8” 8 t , I”+ 1, c,, ad for ah named values & and (by &+I). 
course 

for all &, &+1, @, &+l so that the 

Al&&+,], ( 26) 

marginal distribution of c, is independent 
of future ouncements. gain, inequality (25) ensures agent a would tell the 
truth in the second period no matter what @ was announced in the first 
period, at Pea&i on the presumption that agent b follows a truthtelling strategy 
throughout. 

Similarly, with truthtelling established for the second perio , so that future 
parameter announcements are coincident with actual histories and contem- 
porary realizations, eq. (20) reduces for each actual 0: and ah named values 
& to an incentive constraint at date t, namely, 

[ WC9 49 + BV”(cP,19 431 

r 
Xv LCt9 Ct+l t lea, BP, 9 Cl9 BP9 sp,l] P( ep. Cl9 Bptll~tq 

(; 4fi1 ep BP,, ct+l 

n short we are re 
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and date t + 1 announcements of histories d con- 

orary values OF+, and e objective function 

+A6 
t 

[~“(cp,ep) +Bv”(c~+,,4%) 
0: ep 4f+l ep,, ct ct+l 

subject to constraints (25) and (?‘Y to analogue incentive constraints for agent 
b, to constraint (26) with 

v ctJt+l t 3 t 9 t 3 t+l, t 3 t+l ( 16~ 4P ea ea eb eb ) =I. (30) 

ct Ct+l 

Individual rationality constraints can also be imposed. 
Thus far sequential, dynamic progr amming considerations have been em- 

phasized, with truthtelling at date t + 1 as a maximizing strategy for agent Q 
for any possible history, and with truthtelling at date t as a maximizing 
strategy at date t on the premise that the truth will be told in the future 
this is equivalent with saying that if at the begking of date t 
cant lated all possible strategies Sp( 8:) mapping date t parameter value 0: 
into te t announcement & and at the same time jointly contemplated all 
possible strategies 8* (P 8 

nouncement & 8:” 

t+l t , t4+1, c,) mapping the specified history into an- 

t , t+l, then truthtelling would be a maximking choice for these 
strategies. Afterall, the dynamic programmin g algorithm is just a way to derive 
optimal strategies. Thus we may write for each actual 0: 

3 + Pva(cp+19 BP,,)1 
C, qtl e,b et:, cl+1 
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In particular, then, tru dominate anything in the 
a cements at date t 

announcement,, at date t + 1, that 

date t. Under this restriction the p 
earlier announcement Q at 

twice, which 
ncement 8)(1 merely appears 

does also in similar expression. 
by with allocation rule 

s suggests that one can get 

and with announcements of contemporary values on/’ each date. In fact, agent 
Q would tell the truth under such an allocation rule, by the restricted version 
(31), as would agent b by a similar expression, and so the same distribution of 
consumption allocations would be generated. This leads to the alternative 

programming P , now in the form suggested by on (1986), 

Programming problem 4.2 

Find the lotteries S(c t, c t+l IO4 8’ 8’ 6 b t 9 t ’ t+l, r+l ) over consumptions c, and 
c t+l, effected by announcements of parameters 19: and 19: at date t and OF+1 

and 4% at date t + 1, which maximize the objective function 

Aa ( [ ua(cp, BP) + PVo(cP+19 ep,l)i 
60 8; es1 OP,~ ct ct+l 

+ lib 1 ) + ~~b(cP,19ep,J] 
@P ep 4% ep,, ct ct+l 

x +( c,, C,+llep, 9 t+l, t+l P t 9 t+l, t 3 t+l ea eb ) (ea e* 66 86 ) ) 
I 

subject to constraints, for each actual 
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for all strategies Up(Sp) and y 1”+1 p, t”+ 1v c,), and similarly for incentive (6 8 
constraints for agent b. 

Numerical computation of solutions to 
dimensionality problems. Particularly de 
tive constraints as 
evocation, c,. To s 

d tedious due to 

values, and this was assumed to be common knowledge. Thus only agent CI 
ounces at t, and only agent b armounces at t + 1. Thus reannouncement at 

date t + I of date t values was no longer necessary. The essential scrambling 
possibility remained in tact, however, as in annormcing 0F+l agent b must 
integrate over 19: values unless 0: is perfectly inferred by the outcome of the 
otter-y over C, valuet: at date t. 

Numerical examples displayed active scrambling, at least for some parame- 
ter values. For the example here preferences are defined by 

tY=(cp,ep) = (cf’, e,” E {0.2,0.9), 

u( ’ &, ep,,) = (c;+~)“+‘, BP,, E (0.2,0.9}, 

ty functiollip VI -p of the same form for agent s at t + 1 and eP+r = 0.30 
and for agent b at d with 0: = 0.90. Parameters Sp and 8F+l are generated 
with own prior distribution 

/(0.2,0.9) with prob. 0.3, 

with prob. 0.2, 

with prob. 0.1, 

with prob. 0.4. [ (0.9,0.2) 

solet ep=e~+l=ep=e~+l=5, 
tions is set at incre 



0.2 (1.75.8.25) 1:O (0.2,0.2) (4.75,5.25) 1 .o 
(0.2.0.9) (2.0,8.0) IO 

(0.0 ,lO.O) 0 1 

0. (1.75,8.25) 0:O (0.9,0.2) (3.75,6.25) 1. 

(3.25,6.75) O-8 

(0.9,0.9) 
\ (1.0 ,9.0) 

\ (10.0,0.0) 

that case there is an incentive constraint for agent b at t + I for every 19; 
announcement. The solution is reported in table 11. 

Clearly with 0: announcements public, there is no longer a gain to ad- 
ditional lotteries over q values, and the c, = (1.75,8.25) possibility at 8; = 0.9 
of table 10 is suppressed in table 11. St g also now, in table 11, is the 
absence of insurance for agent b at date t the 6: = 0.2 branch, with the 
shock invariant c,+~ = (2.5,7.5) of table 11 replacing (4.75,5.25) and (2.0,g.O) 
for&=0.2and8P,,= 0.9, respectively, in table 10. Evidently, the lottery in 
table 11 which does distinguish stb+l = 0.2 and 6F+I = 0.9 for the 0: = 0.9 
branch is not worthwhile in table 11 at 0; = 0.2 branch, a region in which 
agent b has relatively low consumption. thout this lottery, as under 8: = 0.2 
in table 11, consumption at date t + 1 cannot depend on agent b’s announce- 

ut since agent b is kept somewhat uninformed about what 0: bran 
table 10, agent b is never put in a position of choosing between t 

5.25 and 8.0 entries of table 10, when 6: = 0.2 and he is to report @Al, but 
rather chooses between those points the outcomes at 8: = 0.9 branch, where 
there is a lottery. Evidently, with somewhat higher expected consumption, 
lotteries can distinguish effectively. 

Table 11 

Scrambling suppressed with public announcements. 

0.2 (1.75,8.25) 1.0 (0.2,0.2) (2.5,7.5) 1.0 
(2.5,7.5) 1.0 

0.9 
I’ (0.0*10.0) 0.1042598 
\ (3.2596.75) 0.8957402 

(0.9,0.2) (3.754.25) 1.0 
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