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Private information induced incentive constraints can cause allocations to diverge from full
information optimal allocations, often in the direction of limited insurance, but can bring
unanticipated anomalies. Related, plausible contract exclusion restrictions can be damaging in
welfare terms. More generally, private information optimal allocations can be sensitive to the
information structure, suggesting that the latter be specified with an eye toward realism as well as
tractability. In an effort to make tractability less of a constraint the paper shows how two
apparently difficult information structures ~ a costly state verification environment and a multi-
period multilateral private information environment - can be handled theoretically, by revelation
principle methods. The paper also shows how solutions can be gencrated numerically.

1. Introduction

Authors of real business cycle models have subjected themselves to a
constraining but productive discipline. The discipline is that observations are
required to be explained by models specified at the level of the primitives of
preferences, endowments, and technology. Thus in practice, as in the seminal
work of Kydland and Prescott (1982), candidate allocations are required to be
Pareto optimal and so to solve the problem of maximizing a weighted sum of
the utilities of the agents of the model subject to constrainis implied by finite
resources.

The fit of the Kydland-Prescott model to U.S. data is not close on some
dimensions, and there are phenomena which that model was not designed to
explain. This has led Kydland and Prescott (1982) and others to search over
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alternative specifications of prefersnces and technology. Altug (1925) experi-
ments with multiple capital goods, finding that separable preferences may
provide a reasonably good fit to the data, unlike Kydland and Prescott.
Hansen (1985) introduces non-convexities in labor supply, to deliver higher
variability of hours, and Hansen and Sargent (this issue) use non-convexities
to deliver a distinction between straight time and overtime employment Itis
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productive, indeed exciting.

It is not obvious where the next round of iterations wiil take us, but one can
take some guesses. The models of Hansen and of Hansen and Sargent treat
identical agents differently in ex post labor supplies but identically in con-

sumptions, something which follows naturally at an optimum from separable
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preferences and full insurance. Because full consumption insurance seems

inconsistent with actual observations, an obvious next step is to limit in-
surance in some way. This would seem to have implications for both the
dispersion of consumption in a population and for aggregate time series.
Indeed, following a long tradition, Bernanke and Gertler (1986), Greenwald
and Stiglitz (1986) and Smith (1985) each limit insurance and asset markets in
their efforts at modeling business cycle phenomena.

One way to limit insurance is to preclude it exogenously. That is, the
modeler can specify what contracts are feasible and what contracts are not. A
second way to limit insurance is to find a reason why insurance markets are
limited and to deliver insurance arrangements as part of the solution to the
optimum problem. Implicitly or expiicitly, auihors seem to prefer the second
approach, for pragr matic and scientific reasons. On the pragmatic side we need
some guidance in deciding what contracts or markets to limit or shut down.
On the scientific side it is more satisfying to explain the observations of
limited insurance from the primitives of preferences and technology than to
mimic the observations.

Private information is the prime candidate to use to limit insurance arrange-
ments endogenously. In fact Bernanke and Gertler (1986), Greenwald and
Stiglitz (1986), and Smith (1985) all uss private information to motivate or
derive the insurance contracts and asset markets of their business cycle
models.

The purpose of this paper is to aid in these efforts by expositing and
extending a method which places private information constrainis on resource
allocations on the same footing with standard resource constraints. With this
accomplished one can solve for optimal arrangements in the obvious way, by
maximizing weighted sums of the utilities of the agents of the model subject to
these private information and resource constraints. The power of this ap-
proach is evident in various ways. First, one does not have to tell private
information stories to deliver contract restrictions before laying out the model.
Rather, contracts emerge from a global optimum problem. Second, and
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related, the joint restrictions of private information on contracts and on other
phenomena are incorporated. Third, the private information constraints are as
weak as possible, so only preferences, endowments, technology, and the
information structure dictate the solution. Fourth, and related, these private
information optimal solutions, though consistent with limited insurance, some-
times display anomalies, such as enhanced dispersion, the volatilities of
artificial lotteries, deliberate scrambling of information, and increased infor-
mation acquisition in the face of increased cosi. Some, if not all, of these
anomalies are ex post rationalizable, in the sense that once discovered, their
existence can be traced back to information contrained insurance motives. But
a priori logic or ‘out of model reasoning’ may have missed their rationale.
Fifth, and related, plausible but exogenous contract exclusion restrictions can
be shown in various contexts to be too strong. Exogenous restrictions are
sometimes as damning in welfare terms as private information itself, ironically
because the anomolous possibilities just mentioned are ignored. Exogenous
restrictions can thus interfere with attempts to explain observations from
supposed primitives and to compare aliernative policy regimes. Sixth, to the
extent that exogenous exclusion restrictions seem: more consistent observa-
tions, we are led to puzzle over why private information was not enough and
to search for a source of further restrictions. In this way the productive
interaction between observations and the primitives of economic models can
continue.

The private information methods of this paper are the so-called revelation
principle methods developed in Myerson (1979) and in Harris and Townsend
(1981) and exiended here to two apparently difficult private information
environments. The first, in section 2, is a costly state verification type environ-
ment of Townsend (1979), an interesting but challenging environment in that
information which can be :made available at a cost is neither entirely private
nor entirely public. In fact, Townsend (1979) did not use revelation principle
methods in deriving debt contracts as optimal and displayed stochastic audits
as a Pareto dominating possibility rather than as an integral part of the
analysis. More recent related literature includes Baiman and Demski (1930),
Evans (1980), Gale and Hellwig (1985), Mookherjee and Png (1987), and
Reinganum and Wilde (1985). But much of this literature stops short of a full,
private information optimvm, imposing instead various restrictions on coii-
tracts, as in Townsend (1979), in an effort to characterize solutions.

The second environment to which revelation principle methods are extended
is a multiperiod environment with private information on the part of multiple
agents, in section 4. It is sometimes said that the revelation principle does not
apply in such contexts, because truth telling is inconsistent with incentives.
Afterall, in certain econoraic environments, agents have a direct need to
conceal their information. In such cases one might expect it to be impossibl:
to induce truthtelling. But it can be established that optimal use can be made
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of concealment devices which scrambie information, as in the recent work of
Myerson (1986). Here, in fact, an explicit and detailed proof of the revelation
principie is offered.

One purpose of the paper, then, is to show how revelation principle
arguments can be employed in situations where they might have been thought
to be inapplicable Itis hoped that the extensions of the revelation principle,
in seciions 2 and 4, confirm the pt‘)wcl of the appiuauu

One caveat is in order, however. The revelation principle has its limits. In
particular, nothing here precludes situations of multiple equilibria, situations
in which a direct revelation mechanism has additional, non-truthtelling equi-
libria. Examples of such situations are contained in Bhattacharya (1984),
Demski and Sappington (1984), Postlewaite and Schmeidler (1986), and

Repullo (1983), among others. Of course truthtelling per se is not the

desideratum. The issue is one of implementation, ensuring that the solution to
a programming problem with incentive constraints can be achieved as a
unique equilibrium outcome for some game. Indeed, Palfrey and Srivastava
(1987) have shown how a suitably enriched game or mechanism would have as
its unique outcome the desired ‘truthteiling’ equilibrium, at least up to a
limited notion of refinement, for a wide variety of environments. But a further
exploration of this idea takes us beyond the scope of the present paper, as -
would a discussion of limited commitment.

The revelation principle method is also extended here numerically in sec-
tions 3 and 5. That is, maximum problems for the determination of private
information Pareto optimal allocations are converted to standard linear pro-
grams, despite sequential auditing in section 3 or sequential incentive con-
straints in section 5, and these programs are solved numerically for various
parameterized environments. It is from these numerical soiutions that ihe
apparent anomalies of privaie information optimal allocations are discovered
and the welfare costs of private information and additional exclusion restric-
tions are measured. The limitations of existing numerical methods are also
discussed.

It might be complained that the two private information environments
described above and considered in the paper are special and that implications
for time series dynamics are unclear. There is some merit to this complaint:
little is known generally. On the other hand, relatively static private informa-
tion environments are often used as a building blocks in more elaborate
dynamic setups. A prime exampic is the use of the costly state verification
environment by Bernanke and Gertler (1986) in their work on financial
fluctuations. So it seems that relatively static private information environments
should be understood well. In addition, there are growing indications that fully
integrated private information dynamic environments can be analyzed. A
prime example is the work of Edward Green (1984) who uses a private
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information pure exchange environment to address the permanent income
hypothesis and the adequacy of debt muarkets. The point is that private
information allows some, but not all, interhousehold reallocations, even if
aggregates remain unaffected. And, it is relatively easy to generate examples
with aggregate effects as well. Indeed, it is shown in section 6 of this paper for
a third, two-period, capital accumulation environment that 1) insurance limited
by private information can mitigate ihe welfare gain from ir:ertemporal
storage, causing aggregate storage to decrease, and 2) in the con.ext of private
information, storage can help mitigate the damning effect of the incentive
constraints, causing aggregate storage to increase. Thus aggregate effects
emerge rather quickly in numerical examples, but the direction of the effect is
dependent on the specific parameters of the environment. The point, again, is
not that private information is a wild card producing any outcome whatever,
but that the logic of optimal, but information constrained insurance should
not be taken for granted.

2. Pareto optimal audits

Imagine an economy with two agents (a and b), two dates, a planning and a
consumption period, and a single underlying consumption good. Agent a has
preferences over consumption bundle ¢®>0, as represented by a utility
function U“%(c? 0). Here 8 is a shock to preferences, or better put, to a
household production function, with U%(c?, J) as an indirect utility function
over ‘market’ goods. Shock @ is observed by agent a alone at ihe beginning of
the consumption period and takes on one of a finite number of values in some
set @. From the point of view of the planning period, shock 8 occurs with
probability p(#), and this is common knowledge. Agent a has an endowment
of e? units of the consumption good. Preferences of agent b are described by
a utility function U%(c?) over consumption bundles ¢” > 0. Agent b has an
endowment e®. Consumption vectors ¢ = (c? c?) are bounded by the social
endowment e = e? + e¢®, and further restricted to a finite number of values, as
if consumption took place in discrete units. Finally, if for some reason or other
an audit takes place in the consumption period, then K units of the consump-
tion good disappear and parameter value @ is made known to agent b.

The environment here is close to Townsend (1979) in which agent g suffers
from a random and privately observed endowment, and agent b in the
planning period is in a position to offer insurance to agent a, to smooth his
consumption. For the model here the uncertainty and private information
concern shocks to preferences, but the insurance motive is the same, with
agent a benefiting from a receipt of the consumption good when he is ‘urgent’
to consume, with hich marsinal utility, and willing to surrender consumption
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when he is ‘patient’. Shocks to preferences facilitate revelation principle
arguments, as one avoids the possibility of pretransfer quantity displays, as in
Townsend (1987). Some comments on the original costly state verification
environment are given at the end of section 3.

Revelation principle arguments will now be extended to the cosily staie
verification environment of this section. One does this by starting with a rather
arbitrary, general game and by reducing it to a simpler, direct revelation game.
Readers who want to see the result, the programming problem for the determina-
tien of information constrained optima, can turn directly to program 2.1 or 2.2,
with the requisi:e notation defined therein.

A general game or resource allocation mechanism for this economy consists
of two objects. The first is a message space for agent a, and the second is an
outcome function or allocation rule. These are now discussed in turn.

A message space for agent a is a set M. The idea is that after a realization
of shock @ agent @ may send a message m € M to agent b, or, better put, to
some central computer. For simplicity, the set M may be taken to be a subset
of some finite dimensional Euclidean space.

An allecation rule is a set of functions specifying the probability of a
completely revealing but costly audit of the shock @ and the probabilities of
consumption conditional on whether or not there is an audit and, if there is an
audit, conditional also on the revealed value of §. More formally, let d be a
dummy variable taking on values one or zero, depending on whether there is
or is not an audit. If there is no audit, so that d = 0, then the space of possible
consumptions is C=%= {(c% ¢?):¢?20, ¢*>0, ¢c°+ c®<e), where again
this contains a finite number of elements, specified in advance. If there is an
audit, so that d=1, then K units of the consumption good disappear from the
model, and the space of possible consumptions is C¥=! = {(c?, c?): >0,
¢®>0, ¢+ c® < e — K ). The probability of an audit conditional on a message
m is denoted A?"'(m), that is, A?"'(m) is the probability that d=1 given
message m, and 47=%(m) is the probability that d =0 given message m, where
of course 47=%(m) + A“"}(m) = 1. The probability of consumption bundle ¢
conditional on there not being an audit when the message was m is denoted
A(c|m, d=0). Thus A(m,d=0) is a probability measure on the fixed, pre-
specified space C9=%. The probability of consumption bundle ¢ conditioned
on there being an audit and the audit-revealed value of the preference shock is
0 when the message is m is denoted A(c|m, 8, d=1). Thus A(m,0,d=1)isa
probability measure on the space C?=1.

Given a game, that is, given a specification of message space M, the
probability of audits 47='(m), m € M, and the probability of consumptions
A(c|m,d=0) and 4(c|m,0,d=1) and given a value of 0, agent a is to
choose a message = € M so as to maximize expected utility. That is, agent a
solves a maximization problem: given 8 € 8, maximize by choice of me M
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the objective function

A=Y m) %, U%(c%0)A(c|m,0,d=1)

ceci=!

+47°%(m) Y. U°(c°0)A(c|m,d=0).

cE Cd-o

For simplicity of notation we shall take the maximizer to this problem,
denoted m*(0), to be deterministic though in fact it is easy to accommodate
random strategies. Thus, if there is more than one maximizer, we shall suppose
some selection rule is in effect.

By virtue of this maximization, we know ‘lat m*(#) € M is the selected
message when the preference shock is 8, that m*(§)€ M is the selected
inessage when the preference shock is §, and that therefore m*(8) is weakly
preferred to the feasible message m*(0) when the preference shock actually is
8. That is, for all 6,/ € 8,

4%=1[m*(0)] ZCIU"(c",O)A[cIm*(f').O, d=1]
+47[m*(0)] Z;. U?(c“,0)A[c|m*(8),d=0]
> A= m*(6)] ;va(cc,o)A[qm*(fi), 0,d=1]
+ 40 [m()] L U*(e,0)A[elm*(8), d=0], 1)

where here and below the summation is over either C9~? or C?~! and is
understood from the context. Now, as a matter of notation, let

d=1

— {0\ — dl....
74=18) = 4" [m*(9)]

L ¢ )

74-0(8) = 4= [m" (),
#[c|8, d=0] = A[c|m*(0),d=0],
w|cld,0,d=1] =A[c|m*(§),0,d= 1],

and consider a new game with message space @ and allocation rules 7. In the
new game 77=!(§) is the probability of an audit given an announced prefer-
ence shock @; w[c|d, d= 0] is the probability of consumption bundle ¢ given
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that the announced preference shock value is @ and there is no audit; and
w[c|d,8,d=1] is the probability of consumption bundle ¢ given that the
announced preference shock value is d, there is an audit, and the actual
preference shock value is 4.

It can now be established that truthtelling is a maximizing strategy under
this new game and that the equilibrium allocation of the old game is achieved.
For suppose the actual parameter draw is  and consider inequality (1) under
the new notation: for all 8, € 6,

w"‘l(ﬂ)gU“(c",O)vr[Cw,ﬂ, d=1]
+wd'°(0)§;U"(c°,0)w[c|9.d=0]
wd-l(é);ua(c“,o)n[c|5, 0,d=1]
wd'o(é)gU“(c“,O)w[cli,d=0}. (2)

inequality (2) states simply that given that the actual parameter draw is 8
agent a weakly prefers to announce the value 6 rather than a counterfactual
value 6. Thus truthtelling is maximizing, and one can refer to announced
preference shock values and actual preference shock values synonymously. By
the construction of =, then, the original equilibrium allocation of resources is
achieved.

We have established thus far that any mechanism or game in the class under
consideration can be reduced without loss of generality to a so-called direct
revelation mechanism satisfying inequalities (2). Moreover, any direct revela-
tion mechanism satisfying inequalities (2) is a bonafide mechanism. Thus the
search for an ex ante Pareto optimal mechanism in the class under considera-
tion, with arbitrary message spaces and outcome functions, can be done in the
space of direct revelation mechanisms satisfying inequalities (2). That is, for
Pareto weights A° and A° with A° + A’ = 1, a Pareto optimal mechanism and a
Pareto optimal allocation of resources can be found as a solution to:

Programming problem 2.1

Maximi 2 by choice of the lotteries w9=°(f), expressing the probability of
an audit, 4=0, given parameter § is announced lotteries w[c|d, 0, d=1],
expressing the probability of consumption ¢ = {¢”, ¢”) given § is announced, 6
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is realized, and there is an audit, d = 1; and lotteries {c|d, d = 0], expressing
the probability of consumption ¢ given @ is announced and there is no audit,
the objective function

x'{ };p(ﬂ){w"'l(O)ZU"(c“,G)vr[clﬂ, 0,d=1]
+ 79=9(8) Y U*(c?, 8) 7[c|f, d=0]}}
+xb{ ;;:(0){#""1(0)2 UP(cb)nlcl6,8, d=1]

+ wd'o(ﬂ)zc:Ub(c”)w{clﬂ,d=0]}}, 3)

subject to constraint (2) for every 0, € 6.

Revealing of how we solved this problem is the double # notation in the
objective function. Announced and actual 8 values coincide. But they do so
because constraints (2) are imposed, and these deal with counterfactual claims
explicitly.

Obviously, the objective function in program 2.1 is continuous in the choice
variables 7. Further the set feasible solutions unrestricted by (2) is closed and
bounded since any probability is a number between zero and one inclusive.
Finally, constraints such as (2) are also continuous in 7. Thus the constraint
set is compact, and so a solution to the program is guaranteed to exist [note
that (c?, c®) = (% e®) is presumed to be feasible]. In fact, in egs. (2) and (3)
above the 79~1(#) and 79~%(#) always enter multiplicatively. Thus let

w[c,d=0]|0]==[c|0, d=0]=9"°(9), (4)
wlc,d=1|0,0] ==[c|d,0,d=1]=%"'(9), (5)

and program 2.1 can be transformed into a linear program:



420 R.M. Townsend, Information constrained insurance

Programming problem 2.2

Maximize the objective function

x'{ zp(o){): Us(c*, 0)n[c,d=1}6,0]
é

c

+;\b{);p(o){zub(cb)w[c,d=1|a,e]

)
+ ZU”(C”)w[c,d=0|01}},
subject to

Y U(c% 0)m]c,d=1]0,8]+ Y U(c% 8)n][c,d=0)6]

> Y Ue(c?,0)n[c,d=1|8,0] + L U*(c% 0)7[c,d=0)6],

V0,0 @,
where
w{r,d=116,0] 20, VvcecC?, vd,0c0,
w[c,d=0|0~] >0, Vce C4=0, vieo,
Yalc,d=11v,8] + Lalc,d=0id] =1, vd,2e€6.

(6)

(7

(8)
(9)
(10)

To ensure th solutions to this program weakly dominate autarky one can

impose contraints

{Zo:p(ﬁ){ZU“(c“,ﬂ)w[c,d=1|0,0]

+ LU 0)ale, d=0|o]}}

> %pw)l’“(e“,ﬁ),

(11)
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and
{Zo'.p(ﬂ){Z Ub(c®)m[c,d=1)0,0]+ L U(c?)w[c,d= ow}}

> Ub(e?). (12)

3. Numerical solutions for the costly state verification environment

Solutions to program 2.2 have been computed for two specifications of
preferences. For case 1, preferences of agent a are of the form U%(c,8) =[c +
8]9/0 with 8 € {0.2,0.3,0.8,0.9}, each @ drawn with probability 0.25. For case
2, §€ {—3.0,—-1.0, +0.10, +0.90}. In both cases preferences of agent b are
of the form U®%(c)=[c+ 8]¥/¢ with ¢ =0.95 for sure. Parameter & = 0.05 is
designed to make preferences well defined even for negative 6. Note that for
c¢?>1-24, high 0’s make agent a more urgent to consume in the sense of
having higher marginal utility for a given consumption allocation. In all the
examples which follow the aggregate endowment e =10 is split equally
a priori, with e®=¢e?=5. The cost of an audit is varied from K=0.5 to
K=10.

Attention is restricted to a finite number of consumption bundles on the
outer edge of the triangle of feasible resource allocations, though this is
intended as an approximation to the solutiocn with a continuum of possible
consumption values. The first step in the numerical algorithm was to impose a
relatively course grid, finding preliminary optimal solutions. Then further
refinements in neighborhoods of the initial solutions were offered. The guess is
that solutions with a rel:tively fine, uniform grid, with increments between
consumptions of 0.01, were computed. Also, no case of multiple solutions was
uncovered, though this possibility has not been ruled out.

Table i displays solutions to program 2.2 for case 1 preferences. These are
the uurestricted, private infosmation optima! allocations. Please note the odd
usage here: unrestricted means not restricted by anything more than private
information. Various additional restrictions are contemplated below. Please
note also that here and below private information optimal solutions are rarely
time consistent. Here, by the time audits take place, both agents may have full
information. Thus one must suppose the existence of a commitment mecha-
nism, perfect costless enforcement.

The full information allocation is also displayed at top of the table, as a
base for comparison. Unless otherwise indicated below, the programming
weights are A?=1 and A =0, so that the constraint (12), that the utility of
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agent b be no less than at autarky, is binding. That is, all the gains to trade
accrue to agent a, and in effect one maximizes the expected utility of agent a
subject to the constraint that the utility of agsnt b be held at autarky. Also,
full ‘penalties’ can be automatically imposed without loss of utility; that is,
c=0 if there is an audit, @ is revealed as the true parameter value, and
counterfactual value of § had been announced. This can always be assumed to
be part of an optimal solution, though it matters only when an incentive
constraint is binding. In any event the nenalty branch is never displayed in the
tables.

To be noted in table 1 is the tendency of private information to cause the
full information solution to be pressed inward in the direction of less in-
surance, with higher values of K reflecting greater private information prob-
lems. That is, private information implies less indexation. This is ‘intuitive’ at
least in the space of deterministic no audit and audit consumptions. Specifi-
cally, the full information solution has agent a eating more when he is
relatively urgent to consume, at high 8 values, and eating less at low @ values,
as promised. Under private information, the no-audit consumption payoffs at
0 = 0.2 and 0 = 0.3 increase with values of the audit cost K, and the no audit
consumption payoffs at 6 =0.8 and § =0.9 decrease wiik X, except as one
moves to K=15 at #=0.8. Fig. 1 is suggestive, with the arrows indicating
movement of no-audit consumptions with increases in K. A similar picture
prevails for audit consumptions.

Audit probabilities in table 1 are monotone increasing in # for each K, with
urgency to consume as it were, and monotone decreasing at each @ value as K
increases. Again, audit probabilities would seem a natural suminary device,
and so these results seem irtuitively plausible.

The most striking feature of table 1 is the emergence of consumption
lotteries when there is no audit. For example, at K=35, there is a genuine
lottery at 6 =0.8 and at #=0.9. In pa'* consumption lotteries at K=35
replace the random consumption ouicomes of probabilitic audits, as at K= 2.
Also note that these consumprion lotieries are separating in that the variance
in outcomes is less painful io relative’y risk-neutral agent types, 6 =0.8,0.9,
than to the risk-averse agent 1ypes, 6 =0.2,0.3. One gets a sense from the
example that consumption lotteries are brought in as a last resort, at high
audit costs. But this cannot be true generally. An example in Prescott and
Townsend (1984) shows that distinguishing lotteries can sometimes achieve a
full information optimal outcome without the need for any audits.

Interestingly, at K>5, #=0.2 and §=0.3 agents are not distinguished
from one another, and neither are § =0.8 and 6 = 0.9 agents. Apparently,
6 =0.2 and 0 = 0.3 agents are close o one another, as are § =0.8 and § =0.9
agents, and the benefit of distinguishing treatment within these groups is
outweighed by the costs. That is, witiin group risk aversions are similar, so
distinguishing lotteries would have to be relatively largec if they were used.
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Table 1
Case 1 preferences.?

Full information solution

9 c 7(c?)
0.2 1.63 10
0.3 1.76 1.0
0.8 6.44 10
0.9 9.85 1.0*

Private information solution and audit cost K = 0.5

0 prob (audit) c?ifd=0 w(<%,d=0,0) Cifd=1 w(c®,d=1,6,6)
0.2 0.0 1.86 1.0 —_ —
0.3 0.007964 19 0.992036 216 0.007964
0.8 0.365536 5.72 0.634464 6.3 0.365536
0.9 0.483195 9.77 0.516805* 9.37 0.483195

Private information solution and audit cost K = 1

0 prob {audit) c?ifd=0 7(c®,d=0,0) ctifd=1 n{c’,d=1,0,0)
0.2 0.0 2.09 1.0 — —_
0.3 0.001763 2.1 0.998237 26 0.001763
0.8 0.304029 5.05 0.695970* 6.28 0.304029
0.9 0.458684 9.69 0.541316 891 0.453684
Private information solution and audit cost K = 2
0 prob (audit) c?ifd=0 7(c®,d=0,0) ccifd=1 n(c%, d=1,6,0)
0.2 00 2,48 1.0 — —
0.3 0.0 248 1.0 —_ —_
0.8 0.207649 4.36 0.792351* 6.7 0.207649
0.9 0.407632 9.21 0.592368* 7.97 0.407632

Private information solution and audit cost K = 5

) prob (audit) c?ifd=0 7{c®,d=0,0) cifd=1 m(c?, d=1,0,0)
0.2 0.0 3.6 1.0* — —
03 0.0 36 1.0* — —
08 00 (30 bsmm) - -
09 0o 50 odomsao) - -

2The asterisks (*) indicate that the computed solution actually displayed a lottery with support
at an adjacent grid point, no doubt an artifact of the grid itself. The indicated solution is ai tl;e
grid point with highest mass, with the appropriate sum of probabilities. The asterisks are used in

this fashion in all tables which follow.

J.Mon—J
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Table 2
Case 2 preferences.
Full information solution
[/ c? a(c?)
-3.0 146 10
-1.0 2.23 10
0.10 567 1.0
0.9 100 1.0
Private infermation solution and audit cost K = 0.5
0 prob(d = 1) c?ifd=0 7(c?,d=0,6) ctifd=1 @(c?,d=1,6,0)
-30 0.00 1.44 1.0 — —
-10 G.060026 217 0.999974 2.16 0.000026
0.10 0.014435 6.04 0.985565* 6.01 0.014435
0.9 0.118609 100 0.8813%1 95 0.118609
Private information solution and audit cost K = 1
8 prob(d=1) c¢ifd=0 w(c®, d=0,6) c¢ifd=1 a(c’,d=1,8,8)
-30 0.00 142 1.00 — —
-10 0.000027 211 0.999973 2.1 0.000027
0.10 0.015158 6.11 0.984841* 6.03 0.015158
0.9 0.115998 100 0.884002 920 0.115998
Private information solution and audit cost K = 2
0 prob(d=1) c?ifd=0 7{(c?,d=0,0) cifd=1 w(c’,d=1,80,8)
-30 0.00 1.38 1.0 — —
-10 0.000028 2.01 0.999972 2.00 0.000028
0.10 0.016443 6.23 (.983557* 6.03 0.016443
0.9 0.111653 10.0 0.888347 8.0 0.111653
Private information solution and audit cost K = 5
8 prob(d=1) c¢tifd=0 a{c?,d=0,8) cifd=1 w(c",d=1,8,8)
-30 0.0 1.29 10 — —
-10 0.000033 1.81 0.9999¢7 1.76 0.000033
0.10 0.019360 6.42 0.980641* 5.0 0.019360
0.9 0.104031 100 0.895919 5.0 0.104081
Private information solution and audit cost K= 9
8 prob(d=1) cifd=0 m{c“,d=0,8) cdifd=1 7(c¢,d=1,6,6)
~30 0.0 1.28 1.0 _ -
-1.0 0.000037 1.94 0.999963 1.0 0.000037
0.10 0.018372 7.22 0.981628* 1.0 0.018372
0.9 0.0 0.60 0.085140 ) . .
10.0 0.914860
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Fig. 1. Case 1 preferences: Less indexation as audit cost K increases.

Solutions are displayed in table 2 for case 2 preferences. Here, however,
efforts to provide useful ‘summaries’ of the ‘logic’ of the solution proved more
difficult. The = +0.10 no-audit consumption solution increases with KX,
while the § = +0.9 solution stays put at the full information solution, drop-
ping in expected value only at K=9. The § = —3.0 and § = —1.0 no-audit
consumption solutions spread out as K increases (except for very high values
of K, eg., at = —1.0 and going to K =9). Ignoring the exceptions, fig. 2
displays a type of ‘overinsurance’. One guess, unconfirmed in some sense, as to
why this happens is that the § = —3.0 and 6 = —1.0 agents are ‘relatively
easy’ to distinguish from one another, while the # = 0.10 and 6 = 0.9 agents
are not. Thus § = 0.10 consumption moves toward 8 = 0.9 consumption, and

to free up the requisite resources, # = —3 and = —1 consumptions are
diminished. In other words, cross-sectional or within population movements
dominate the less indexation ‘intuition’.
cb \\
<—3.0

N~ 0:-10

0 co

Fig. 2. Case 2 preferences: Counterintuitive indexation as audit cost K increases.
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Striking also is the movement of the audit probabilities. From K= 0.5 up to
K =35, the probabilities of audits at 6 = —1.0 and 6 = +0.10 increase with
increases in K. Apparently, this audit statistic is not a revealing summary of
what is going on over the entire solution. Also, at the K = 9 solution, the audit
probability is non-monotone in 8, positive at § = —1.0 and 8 = +0.10 but zerc
at 6 =0.9. It is evident from this that the consumption lottery at § =0.9 in
effect replaces a probabilistic audit, as foreshadowed above. This may help to
explain the non-monotone audit probability result above. Again, audits are
one way but not the only way of inducing random consumption allocations.

Striking also is that audits occur at even K=9.9, using 99% of available
output (this is not in the table). Apparently, this allows § = —3.0 and 6 - 1.0
agents to be distinguished from one another. Afterall, the spread between
these types is large, and so distinguishing consumptions is important. And for
K = 9.9 significant and distinct consumption lotteries emerge at 6 = 0.10 and
6 =0.9, so these agent types are also distinguished from one another. Dis-
tinguishing lotteries at = —1, 6 =0.10 and §=0.9 prevail in the K=10
solution where of course there are no audiis. Thus, consumption lotteries again
appear as a last resort. A large spread among 6’s makes distinct consumptions
worthwhile, by one device or another. But with relatively high risk aversion,
consumption lotteries are costly, and they are resisted until the costs of audits
is exorbitant.

Exogenous exclusion restrictions and a priori limited contracts matter for
consumptions. Table 3 returns to the case 1 preferences of table 1 but restricts
audits to be deterministic when they occur, as in most of Townsend (1979).
These are computed by a mixed integer linear program. Direct comparison of
audit and non-audit branches reveals substantial differences in consumptions
almost everywhere. One might also note that in table 3, under the restricted

Table 3

Restriction to deterministic audits, K= 0.5 (upper part) and K =1 (lower part),
case 1 preferences.

6 Audit? c?ifd=0 7{c?, d=0,0) cifd=1 (¢’ d=1,0,0)
0.2 N 1.67 1.0* — -
0.3 N 1.67 1.0* — -
0.8 Y — — 6.03 1.0
0.9 Y - — 9.32 1.0
0.2 N 2.65 10*

03 N 2.69 1.0*
0 0.273724
0.8 N
{ ln 0.726271 }
6.9 Y — — 9.0 1.0

2Y = yes, N = no.
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Tabie 4
Constant probability of auditing, K = 0.5, case 1 preferences.

#° prob (audit) c?ifd=0 w(c®,d=0,0) cCifd=1 m(c®,d=1,4,6)

0.2 0.428382 1.73 0.571618 1.73 0.428382
0.3 0.428382 2.23 0.571618 221 0.428382*
0.8 0.428382 5.94 0.571618 5.80 0.428382
0.9 0.428382 8.94 0.571618* 9.27 0.428382

policy, low @ values fail to be distinguished from one another. Also, consump-
tion lotteries emerge earlier, at § = 0.8 and K =1 in table 3 rather than K=5
as in table 1.

For completeness table 4 shows how a restriction to constant audit probabil-
ities, that is, probabilities independent of 8, can also alter the nature of
consumptions. (This is sometimes considered in the literature when
revelation-type, announcement possibilities are ignored.) Table 4 should be
comiparced to table 1 at K'=0.5. Perhaps surprising is the relatively high audit
probability.

Private information optimal solutions were also computed for weights
AM=0 and A’=1, so that all the gains to trade accrue instead to agent b.
Table 5 presents the solution for case 2 preferences and K = 5. This should be
compared to the K= 5 entry in table 2.

Evidently solutions do vary with the weights. In table 5 there tends to be
less probabilistic auditing, with a significant consumption lottery at 8 =0.9.
This variation of optimal solutions with programming weights is troublesome
from the standpoint of developing operational theory. In a large economy,
with more households, one might suppose that the outcome be competitive, or
in the core, removing the indeterminancy.

Various welfare experiments were also performed. The first experiment
delivers a measure of the welfare loss of private information, the percentage of
the aggregate endowment which would have to be desiroyed in the full

la P8 I |
Taoic §

Effect of different A’s, A°=0, A’ =1, K= 5, case 2 preferences.

6¢ prob (audit) c?ifd=0 n(c®,d=0,0) cifd=1 n(c,d=1,0,0)
-3.0 0.0 1.09 1.00 — -
-1i0 0.000029 135 0.999961 1.32 0.000039
0.1 0.017640 2.67 0.982360* 2.60 0.017640

0.00 0.296753
0.9 0.0 { 9.93 0.703247}
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Table 6

Welfare loss to privaie information (columns 1) and to restricted, constant audit probability policy
(columns 2).

Case 1 preferences Case 2 preferences
@ 2 @ 2
K=0.5 12 23 0.3 0.6
K=1 23 4.0 0.7 13
K=2 41 55 14 27
K=5 59 5.9 34 45
K=9 59 59 47 49

information solution in order to lower the objective function to its value in the
private information optimal solution. Also computed ‘s the same measure of
welfare loss when the private information solution is restricted to audit
probabilities which are constant over 6. The results are presented in table 6,
for both case 1 and case 2 preferences, as K is varied from 0.5 to 9.0.

For low values of K the welfare loss under the restricted policy is close to
twice that of the loss to private information alone. This difference decreases as
K increases. At relative high values of K the loss can be identical, as these
values imply the constant policy of no auditing is optimal.

A similar welfare comparison is done with the Ceterministic audit restriction
and is displayed in table 7, again for case 1 and case 2 preferences and various
values of K. Again, the welfare loss from a restriction to deterministic audits is
at least comparable to the welfare loss of private information alone, that is, the
loss if often doubled. For case 2 preferences the results are more striking, as
audits are driven out prematurely at relatively low values of K, causing
dramatic welfare losses.

One policy which is not considered directly is a restriction which precludes
consumption lotteries. But table 7 and an additional calculation tell the

Table 7

Welfare loss to private information (columns 1) and to restricted deierministic audit policy
(columns 2).

Case 1 preferences Case 2 preferences
1) 2 1) 2
K=05 1.2 26 0.3 31
K=1 23 47 0.7 50
K=2 4.1 59 14 5.0
K=5 5.9 5.9 34 5.0
K=9 59 59 4.7 5.0
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Table 8

Welfare loss to private information for different weights A, A =1, A’ = 0 (columns 1) and X =0,
A’ =1 (columns 2).

Case 1 preferences Case 2 preferences
Q) ) 1) 2)
K=05 12 12 03 06
K=1 23 21 0.7 1.1
K=2 41 39 14 20
K=5 59 5.6 34 2.6
K=9 59 5.6 47 26

story. For case 2 preferences, K =09, and the restricted policy there are no
audits at all, and so all beneficial exchange is supported by consumption
lotteries. The welfare loss of private information under the restricted policy,
relative to full information, is 5%. If random consumptions were also pre-
cluded, and audits remained at zero, as seems likely since an audit consumes
90% of output, the solution would be autarkic, necessarily. Then the welfare
loss relative to full information, the percentage amount of the endowment
which would have to be destroyed in the full information envircnment in order
to lower the objective to its autarkic value, would be a dramatic 21%. This is
by far largest welfare loss displayed in any of the examples. For case 1
preferences a similar lottery exclusion increases the welfare loss from 5.9% to
7.0%.

As a check on these welfare measures, the A= 0 and A’ =1 specification is
also adopted (in effect maximizing the ex ante utility of agent b subject to the
utility of agent a at autarky) and the welfare loss is compared to the A =1,
AP =0 specification. Table 8 makes the comparison for the losses to private
information for both preference cases. The numbers do differ, though only
radically so for the high K, case 2 environment. Still, as we noted earlier, this
indeterminancy in solutions is troublesome. More theory is needed to pin
down the welfare weights.

We might conclude this discussion of restricted policies and welfare losses
by noting the positive and normative implications in a somewhat different
way. First, on the positive side, one tends to underpredict the use of audits if
restricted policies are considered. Beneficiai probabilistic audits occur in the
unrestricted solutions even when they can consume 99% of social output, and
their exclusion can cause a considerable loss in welfare. Second, on the
normative side, suppose private information could be eliminated entirely
ex ante, if part of social endowment is utilized (thrown away) ex ante. Then
one could compare the two obvious regimes, ex ante elimination of private
information versus optimal ex posr audits with (possible) consumption lot-
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teries. Indeed, the former regime will dominate the latter regime if the
percentage of the endowment which is required to eliminate private informa-
tion in the former is less than the welfare loss to private information displayed
in the tables. It is clear from the tables that under the restricted policies,
policies which enhance the welfare loss of private information, one might favor
the use of ex ante elimination even though that would not be socially efficient.
Alternatively, back to the positive side, if one were to limit attention to
restricted policies, one might not make good predictions about choices among
regimes.

The numerical examples displayed above make the point that private
information optimal scluticns can display surprising features, that restrictions
which seem reasonable e priori can be damning in welfare teriis. Of course
not every environment will display these features! Indeed, in order to present a
more balanced picture, it seems useful to return to the original costly state
verification environment of Townsend (1979) and investigate there the impact
of probabilistic audits. It may be recalled, again, that Townsend (1979)
characterized optimal contracts and showed they looked like standard debt
contracts under a restriction to deterministic audits, though probabilistic
audits were shown in Townsend (1979) to be a Pareto dominating possibility.

The privately observed random endowment environment of Townsend
(1979) can be handled as in program 2.2 here with the exception that an
incentive constraint need not be inposed for a counterfactual endowment
value greater than the actual endowment value. As an example, suppose
Ud(c) = (c + 0.05)%, U®(c®)=:(c®+0.05), e?€ {4,6,8,10} each with
probability 1 and e® = 10. Then for an audit cost of K=2, A*=1, A*=0, and
a grid of increments of 0.1 on corisumptions the solution is reported in table 9.

As suspected, audits are random. Here, on the other hand, and in contrast
with the @ preference shock crise, there are no additional (real) consumption
lotteries apart from those induced by the grid, and related, no doubt, the
solution is driven to autarky even for relatively low values of audit cost K,
namely K between 2.95 and 3.w. Also, it is difficult to get high audit
probabilities, even as K — 0, though the threat of audit (and penalties) help

Table 9
Standard costly state verification.

e prob (audits) c?ifd=0 w(c?, d=0,e%) ¢ if d; 1 a{(c?, d=1,e°% %)

4 0.10520579 5.1 0.89479421 6.2 0.10520579

6 0.02495512 5.8 0.97504488* 7.0 0.02495512

8 0.00506625 74 0.11493375* 8.7 0.00506625
i0 6.c 9.3 1.0* — -




R.M. Townsend, Information constrained insurance 431

considerably, with the solution approaching the with full information solution
as K—0.

Are there any regularities? Mookherjee and Png (1987) are able to make
some progress for a fairly general case, excluding consumption lotteries. They
show that only the highest endowment will nor be audited in any scheme
which provides the agent with positive consumption, that is, audits will occur
with positive probability everywhere else! Further, consumption for agent a in
audit branches will always exceed consumption in non-audit branches. Finally,
audit probabilities must be monotone decreasing with the magnitude of
transfers. Otherwise, anomalies may prevail. In fact, Mookherjee and Png
provide an example in which consumpiion of agent a is non-monotone with
values of the endowment in the audit branch, and they leave open the
possibility that audit probabilities may be non-monotone with values of the
endowment. The exclusion of consumption lotteries may not be warranted,
however. If the U?(-) displays increasing absolute risk aversion, as for the
quadratic function, then agent a may be less risk-averse at endowments where
he is supposed to receive consumption. That creates the possibility of benefi-
cial separating lotteries.

4. Pareto optimal learning

Imagine an economy with two agents (a and b), two dates (¢ and ¢+ 1),
and a single underlying consumption good at each date. Given a path for
consumptions ¢! and ¢/, by agent i at date ¢ and ¢ + 1, respectively, agent i
has preferences as represented by the objective function U'(c, /) +
BVi(ci,y, ,;1) i = a, b. For simplicity here quantities of consumption bun-
dles at each daie are presumcd (o take on at most a finite number of values, as
if consumption took place in discrete units. Here also there are supposed to be
a finite number of possible shock specifications (872, 87, 67 a3y +1) in some
finite set ®, each drawn with a priori probabilities p(62, 6/, 82 ,, 8%,,), which
are common knowledge. Shocks # may be supposed to hit an underlying
household production function, so that the U'(-) and V'(-) are indirect
functions for ‘market acquired’ consumption. Household specific shocks are
naturally private but possibly related.

Shock 6 is seen by agent i alone at the begmmng of date ¢, i=a, b, and
similarly for 6/, , at date ¢ + 1. For simplicity it is supposed that shocks §; and
6}, , still leave agent i in doubt as to the value of shock 8/, j# i. That is, the
conditional probablhtnes p(6/16}, 6/, ,) are strictly positive. It is supposed also
that the 0,‘11, 65, arc mot inferable from contemporary values. That is, the
p(6°.,05.16° 0”) are also strictly positive. For simplicity we may suppose
that the aggregate social endowments are deterministic, represented by e, at
date ¢, with e,=e? + e? as the sum of endowmenis of agents a and b, and
similarly at date ¢ + 1.



432 R.M. Townsend, Information constrained insurance

The environment here may be seen as a special but fully specified economic
environment, an analogue to the game theoretic setup studied by Myerson
(1986). The environment is special in that the agents take no actions per se
and special in that events of probability zero cannot occur. The latter is
guaranteed by the no-action possibilities specification and the positive prob-
abilities specification. Yet the environment is dynamic — the consumption
good must be allocated period by period. These period by period consumption
allocations create information revelation possibilities which the mechanism
design must accommodate. In this sense the allocation is like an action in
Myerson (1986).

Myerson (1986) emphasizes the importance of communication among agents
in the context of his dynamic, sequential games. This takes the form, among
other things, of allowing agents to commit to certain actions or inactions and
communicating this to other agents. either directly, or, indirectly, through a
mediator. (See Myerson’s example 2.) It also takes the form of allowing agents
to coordinate their actions by keying off events, possibly random events,
observed by them. This is facilitated by preplay communication. Alternatively,
the agents could follow the recommendations of a mediator who passes on
such recommendations according to such random events or similar events of
his own making. (Again, see Myerson’s example 2.) Myerson argues, in fact,
that these is no loss of generality in requiring that all communication go
through a mediator, because agents can do through a mediator anything they
can do on their own. In fact, there may be an advantage to going through a
mediator in that the latter can control information flows, preventing agents
from acting ex post against their own ex ante interest. Related, Myerson
allows the mediator to scramble his recommendations to the agents. (See
Myerson’s example 5.)

For the economic environment of this section we accept fully the idea that
all communication can go through a mcd:ator without loss of generaiity. No
proof of this is given. Then we shall derive an analogue to the scrambling
result allowed by Myerson, showing here that the mediator might well scram-
ble the date 1 consumption allocation in zx effort to conceal information. In
fact a case of active, non-trivial scrambling is computed. Finally, it proved for
the dynamic sequential information environment here that the revelation
principle applies. This should help to convince remaining skeptics. More to the
point, the argument makes heavy use of dynamic programming considerations
and delivers a programming problem and incentive constraint different from
the forms presented by Myerson. Though there is an equivalence, the differ-
ences in form are instructive. Again, readers interested in seeing the result first
can turn to program 4.1 or 4.2 below, with notation defined therein.

To continue, then, a game or resource allocation scheme for the economy
of this section includes in its specification a message space M, at date ¢ for
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each agent i (i = a, b) and a message space M/, ;(m', c,) at date ¢ + 1 for each
agent i (i=a, b) where c,=(cf, c?). The idea here is that messages sent by
agent j at date ¢+ may not become known to agent i at date ¢ + 1, so the set of
a priori feasible messages at date ¢ + 1 for agent i may not be restricted by mJ,
J # i. On the other hand past own messages m| and past own consumptions c!
are known at date ¢+ 1, and with deterministic endowments and the assump-
tion that resources cannot be thrown away, ¢/ is known as well. For specificity
and simplicity here message spaces are taken to be finite dimensional subseis
of Euclidian spaces.

The second class of objects included in the specification of a game is the set
of allocation rules. At date ¢ the set of feasible consumptions ¢, is restricted to
liein C,= {(cf, c?): ¢?20,c0 >0, c?+ c? =e,}, where again space C, is finite
dimensional and similarly at date ¢+ 1. Let A, denote the set probability
measures over C,. Then an allocation rule at date ¢ is a measure 4,(m?%, m?)
in A,, a lottery specifying the probability 4,(c,|m% m?) of consumption
bundle ¢, effected by actual messages m? and m>. That is, a computer is
preprogrammed to map messages into random outcomes even if mes-
sages are privately sent. Similarly, let A, , denote the set of probability
measures over consumption set C,, ;. Then an allocation rule at date r+1

is a measure A, ,(m% m’,mé ,,mb, ,c) in A, , with typical element

8,1(calmi, ml, mi, ,m},,, c,).

A strategy at date ¢ for agent i is a possibly random choice of a message in
M given his observed 6. That is, a strategy is a measure o/(6/) conditioned
on 6/, a lottery specifying the probability ¢/(m’|0) of message m'. A strategy
at date 1+ 1 for agent i is a possibly random choice of a message in
M/, ,(m!,c,) given his observed shocks ' and 6., and conditioned on his
past message m'’ and past observed outcome c,. That is, a strategy is a measure
o, .1(0,0/, ., mi, c,) over M} ,(m!,c,) with typical element o/, ,(m, | -).

Now imagine what happens as the game is played out over time, so that here
and below sequential aspects are emphasized. Given some specification of date
t strategies 6°(82) over M? values and given an (arbitrary) allocation rule
A (m?, m}) over c, agent a observes a particular ¢, at the end of date ¢,
knows as well particular values 6 and 77, and at the beginning of date 7 +1
knows a particular 42 ,. Inferences about particular values §” are then made
optimaily under Bayes’ rule, if possible. That is, in the obvious suggestive
notation,

Prob(d?\42, 62, w2, c,)

Prob(c,|07, §”)Prob( 47|47, 6% ,)

_ K Ridhd iy 13
Y Prob(c,|07, 82 )Prob(8?8¢2, 6%, ,) 1)
0b
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or, more precisely,
pen (80102, 6% 0, 7 c,)
EAt(ctlm?’ b)oz ( blgb)p(obwta’ t+l)

I Y A P e G 9

6° m?

Here then the left-hand side of (14) denotes the pgsterior probability of agent
a for a particular value 6® conditioned on 42, ,‘H, m¢, and c,. Of course
p(0”|0,", %1) on the nght-hand s1de of (14) is the obvious conditional
probablhty for §° based on §° and 47, alone. The posterior probability of 2
and 8., is then 0bv10usly

ax b gb a
Pz+1(0t ’0I+1l0t s H-l’ mnc )

—P( +1|0ta’ :+1’0b)pr+1 0b|0'a’ H—l’m?’ct)'

Posteriors for agent b are formed similarly.

Formula (14) and its analogue for agent b do not work for all conditioning
values, 62,82 ,, m% c,. In particular formula (14) requires that c, values be
generated in conjunction with strategy 62(m?|6?) of agent b at date t, for ‘on
path’ values, as it were. Yet the definition of equilibrium, of maximization of
agent a at date ¢ + 1 in particular, requires that agent a have a posterior for
all conditioning values. In this way, in choosing his maximizing strategy
ob(m?]6}) at date ¢, agent b can contemplate arbitrary messages m?, knowing
there is a mapping for agent a at date ¢+ 1 from the outcomes generated by
such messages to a date ¢+ 1 decision for agent a. Fortunately, or unfor-
tunately, formula (14) and its analogue for agent b can be filled in any
arbitrary way for these so-called off-path values, completing the definition of
equilibrium. (This can be unfortunate or troublesome in that these arbitrary
specifications matter for the equilibrium ouicome!) The intent here, however,
is only to deliver any particular equilibrium outcome as a truthtelling equi-
librium of a direct mechanism.

A Bayesian sequential Nash equilibrium of a particular game is a specifica-
tion of strategies 6°*(6°), ¢°*(8?), ¢2%(0° 6%, m° ) and o’%(6P,
8k . mb c) and a spec1ﬁcat10n of posterior probabilities p2* (672,67 ,, m?%,c,)
and p,+1(0,", 5 1> mP, ¢,) such that the following conditions hold:

() Atdater+1, give.n any 67, )% my and c, glven posterior p;*(67°,
65 ,, m?, ¢c,) and given strategies 0,+1(0tb, 05 1, m?,¢c,) and 62*(8}) for
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agent b., the strategy 6,°%(07, 0/, ,, m?, c,) for agent a solves the problem
of maximizing the objective function

LYY X L Xvie.iul

ob 0+1 ml mgﬂ-l Misq Ceel
( -
a b a b
XAt+1\€l+1!m!’ m;,mg,,M; ., ct)
a a a fa a b 3
x°r+l(mr+llot s Vi+1s m,, C:)":+1('";+1I0 +ls mt’ t)

xob*(mblob)Pzﬂ(orb’ 1107, z‘-'n,mnc)~ (15)

Denote the maximized value of the objective function to this problem
. G (e t+1 mg, c,).
(i) At date ¢, given 67 and given strategy 62*(8)), the strategy s°*(8°)
solves the problem of maximizing the ob_]ectwe function

LY YYX{U[c],00] +BVer]07, 65, mi,c,]}

6751 O,b mﬂ’ mg ¢,
X4,(c,m?, m})o?(m7107) ol *(m}167) p(851,6°167).  (i8)

(iii) The posterior p?%(67, 675, m?, c,) satisfies Bayes’ rule (14) given
o2*(6}) and the specified arguments, if possible, and is arbitrary other-

wise.

(iv) Similar conditions apply for strategy 62%(82, 851, m?, ¢,) of agent b at
t+1.

(v)  Similar conditions apply for strategy o2*(6}) of agent b at t.

(vi) Similar conditions apply for the posterior p2* (67,605 ., mé,c,) of
agent b.

Given an equilibrium allocation for some specified game we can construct
now a new allocation mechanism which has as an equilibrium the same
allocation. First, let the (new) message space of agent i at date ¢ be the set of
possible values for 6/, and similarly at date ¢ + 1 let the message space be the
set of possible values for 8 and 0, ,. Each agent i is restricted to announcing
values for his privately observed parameter values, or history of parameter
values, at each date t=1¢,¢+ 1 and in fact in what follows will be given an
incentive to do so truthfully. The new mechanism, however, allows these
announcements at date ¢ to be scrambled. In particular, under the old
mechanism at date ¢ agent i may have been selecting a message m; at random
from M/ in an effort to conceal his message and to conceal actual parameter
value 0' By the same token agent j# i was attempting to infer m; from ¢,
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and thus to infer also 8. From this point of view, then, it is apparent that the
old particular message space M, in use was of n~ special revelance, and one
could have replaced it with any alternative that aJdowed the same degree of
scrambling desired by agent i. In short the old message could just as easily
have been taken to be 8/, the set of possible values of parameter 4/, since this
allows any degree of scrambling including the degree desired by agent i. This
replacement is now assumed. In addition the new mechanism builds in this
degree of scrambling automatically by incorporating it as part of its internal
operation. The scrambler is a lottery on , effected by an announcement of §;
by agent i at date ¢.

More formally, then, let the allocation rule of the new mechanism, denoted
(+), be constructed as follows. First, let #/(8) = o/*(6}). Here then =/(6;)
denotes a lottery over internal computer messages m’ € 0, here as a function
of the value of 6/ named by agent i, just as if the internal message had been
sent by agent i originally. That is, «/(m!|6}) is the probability that the
computer names m} given that agent i announces 6. The message m' is
however known to agent i, just as if it had been sent by agent i. Second let
a,(m?, m?) = A, (m? m®). Here then m,(m? m?) is a lottery over consump-
tions c,, so that «,(c,|m? m?) is the probability the computer picks ¢, given
internally generated named values m? and m? for 6° and 6%, respectively.
Conditional on messages, then, the computer is doing exactly what it did
before, under the old game. Third, let

a b pa b pgb
w,+1(c,+1|m,,m,,0, H t‘-lbl’ot a01+l’ct)

_ a b a b
= Z Z At+l(ct+1|mt’mt’mt+l’m1+1act)
mi, mf’ﬂ

Xaz?i(mﬁlim?’ 9:0’ gx":-le C!)
bx b b pb pb
Xot+l(mt+l!mt’0t ’0t+l’ct)‘ (17)

Here then 7, ,(c,,|m? m?, 602,62 ,,68,0% ¢, is the probability of alloc-
ation ¢, given earlier computer-generated message m® and m? and named
values at date ¢ + 1 of the parameters 6 and 6%, by agent a and 6 and 67,
by agent b. It may be noted here that unlike the rule at date ¢, reference to all
internally generated messages m?,, and m?,, at date t + 1 can be suppressed
since date 7+ 1 is the last date and there is nothing to learn for the future.
That is, the computer is programmed to send internal messages to itself and
then to generate random consumption allocations according (o the old game.
But agents need not keep track of these date ¢ + 1 messages per se. In short,
the new allocation rule =, ,(c,,,| ) over c,,, entirely encompasses the
randomness in old allocation rule 4,,,(c,,,|-) and in the strategies
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o, }1((m}1] +), i=a, b. Finally, note that both & and 6/, , are incorporated
into the allccation rule at date t+ 1, i=aq, b, but this is simply because both
enter the strategy of agent i at date 1 + 1.

Now let v/(8;) denote a (deterministic) strategy of agent / at date 1, a
named value in ;. Similarly let 'y,+1(0,‘, 6,,,, m!,c,) denote a (deterministic)
strategy for agent i at date ¢ + 1, again named a doubleton in ©/ X 8/, ,. Itis a
relatively easy matter to establish that the new mechanism wnth message space
©, and O/ x @], for agent i at date ¢ and ¢ + 1, respectively, i =a, b, and
with rules 7 specified above, has an ethbnum with truthtelling strategies

Y,(6/)=06; and v}, ,(0},6;.,,m,c,)=(0}0 . 1), that is, with named values
equal to actual values. Thus the new mechanism will achieve the same
probabilisiic allocation of resources as the original mechanism.

For suppose, to emphasize sequential aspects, agent a _adopts an arbitrary
strategy v,’(6°) at date ¢, possibly naming a value of 8¢ distinct from the
actual value 6. Suppose further this generates a message m? under the
scrambier #,°(6%), this message being seen by agent a. Agent a assumes
however that agent b announces truthfully at date ¢, generating message m®
under the scrambler #°(8”). Then at cate ¢ + 1, given actual parameter draw

%1, agent a has posterior p,+1(0”|0,", 95 1, m{, c,), exactly the same posterior
agent a would have had in the old mechanism for the specified paih
(07,67, ,, m{, c,). That is, for every (m?, c¢,) outcome and for parameter draws
67 and 6/, ,, agent a draws exactly the same inferences about 8 as before.
This is apparent from Bayes rule (14) and the assumption that agent b is
telling the truth so that in effect his messages are sent in exactly the same
probabilistic way as before. Off this path, the posterior can be arbitrary and
can be taken to be what it was before. Now at date ¢ + 1, agent a can name
the actual values of his parameter draws (87,67 ,), or he can name counter-
factual values (42, 4 ,). If he names truthfully and assumes agent b is naming
truthfully, he can generate by construction of the new mechanism the same
distribution over outcomes he would have faced under the old mechanism
under the specified path. Alternatively, if he announces counterfactually,
naming {42, 4% ,), that, by virtue of the COIlStl’u»thﬂ of the new mechanism,
would be like employing the sirategy 5.2%(82, 82 ,, m?, c,), a random strategy
that was available to agent a under the oid mechaaism under path
(07,67 ,, m?, c,) but not chosen. Thus truthtellmg weakly dominates for agent
a at date ¢ + 1 for all paths 67, 87 ,, m{, and c,. Thus the maximized value of
objective function of agent a at date ¢ is given by V**[87,6/ ,, m!,c,] as
before.

Working backwards in this way to date 7, again suppose agent a continues
to assume that agent b cmploys the truthtelling strategy under actual parame-
ter draw 62, activating ihe scrambler 7,°(6). Then under actual parameter
draw 6 agent a faces essentially the same decision problem as in the old
mechanism, because the second period value function is the same. Again he
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could effect the same distribution of consumption outcomes as opefore, by
announcing truthfully, since his old random strategy and the old probabilistic
generation of c, are incorporated into @, Alternatively, he could announce
counterfactually, saying 0°, activating scrambler 7, 4(6). But this would be
like employing the random strategy ¢°*(67) under the old mechanism, a
choice available at date ¢ and draw 6° but not chosen. Thus truthtelling
weakly dominates at date ¢.

Of course similar arguments apply for agent b at date ¢ and at date ¢ + 1.
Thus both agents adopt truthtelling strategies in the new mechanism, and as is
cbvious by the above arguments the same distribution of consumption alloca-
tion of resources is achieved as under the equilibrium of the old mechanism.

Te summarize the discussion thus far, we can restrict ourselves wiiliout loss
of generality to the above described class of new mechanisms, with truthtelling
as equilibrium strategies. That is, the equilibrium outcome of any mechanism
in the class given initially, with the specified message spaces and outcome
functions, satisfies the constraints just described, namely, for every path
s 3‘11, m¢,c,, and for every counterfaciual announcement at date ¢+ 1,
aras t+1°

Va* [0’0, t+1° mza cy]

=) ) Z 2 Ve(cti1,0%,)

6b 65, mb ey

a
XW:H( C1lmy, m,,0,, z+1s0 0r+1s )

b b
XWI (mtwtb)ptafl(ab 0t+1|0ta’ I+l’mt’ )

2 E Z E E Va(cf-é-v01‘-11-1)'”:+1(cr+1|m?9mtb’ 0‘;‘1’ t+1991b9 0t+1’c )

8% 85, mb e

Xﬂfb(mtbwtb)ptafl(otbs 0t+1|01a’ t+1° mt ’ C,) (18)
where
Pta+*1\0rb!01a’ 01‘:-19 my, ct)

Ew(clm,,m") b(mb(6?) p(82167,62.,)

ZZw(clm,, m ) (mf’llf,”) (ablgta, r+1) ) (19)

and
pta-o-*;(ab 0+1| t 1+l’mt’c)

—_ b
=p(65,16°,6%,,6") pex(602167,05 ,, me,c,).

Here, as before, the posterior p2% (62,02 ,1-) should be filled in for all
67, 85,1, m{, ¢, combinations, creating the possibility that the posterior must
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be specified, if only in an arbitrary way, for off-path values. Now, however,
agents a and b are essentially restricted to deviations which were maximizing
actions for some parameter under the old game and for which formulas (19)
and (14) apply. Thus there are no off-path values.

Similarly, at date ¢ for every parameter draw 67 and every counterfactual
announcement at date ¢, 62,

Z Z Z E z {Ja\cv 00) + By [0‘0, 1> M, C,] }

0% 0" bm, <
X (cm?, m)n?(m?|67)nb(m?162) p(62,067,167)

=Y XYY Y Y {U(c.07) + BVox[07,65,, m?,c,]}

0% 62 mb mf ¢
X, (c,|mé, mb)m(m?|62) mb(m?162) p(82, 67.,167). (20)

These constraints can be simplified further. In particular under the mecha-
nism 7,(-) and 7, ,(-) the truthtelling strategy is mammmng for agent a for
all possible messages m?, given actual parameters §° and 6, and previous
consumptions c,, as (18) makes clear. Thus even in the absence of information
on m¢, truthtelling would be maximizing for agent a. More formally, suppose
agent a announced 0" at date ¢, possibly different from the actual 0,“, and
though 67 is scramble d via =2( (62), dehvermg some message m¢, this is not
seen by agent a. For a partlcular m?,0°,6°, 6% ,,c, combination, multiply
both sides of (18) by w“(m“|0"), dehvenng in the ob_]ectlve function the new
but obvious posterior p2¥(87,8/% ., m3i87, 87, 84 ¢,). Summing over m?
values thus yields truthte]hng as the maximizing strategy in the absence of
information on mj. Tlus makes clear that explicit dependence on m? in the
posterior agent a, m? in the postenor of agent b, and m?, m? in the rules =,
and =, can be suppressed That is, let

a*(c)02,60)= ¥ w(c|m?, m?)n2(m?\62)mb(m?id}),
m;’,mf’

%* ja Ab ga b
W1+1(ct+1|0t 90: ’ot L t+1’01 ’0+1’ )

a b
2 7Tt+l(ct-¥-l|'nnmnol ’ t+l’0t ’0r+1’ )
m{, m,

w2 (m?)62) m2(m?id}).

Then constraints (18) may be written for all actual paths (87,6, ¢,), an-
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nouncements §° at date ¢, and all counterfactual announcements, d°,4° | at
date r + 1,

)IDNDD V"(c;'_u,0,11)w,’:1(c,+1|0“ 6°,67,65,,6,,6%, C)

0'b 0,&_1 cl+l

b a a
t+1(01 ’ l+l|0t ’ t+1’01 » € )

= Z E Z Va(ct+l’ 1+1)Wr+l( t+l|ota90tb9ora’0111’0117’ 01+1’ )

ab o,+| Cl+l

XP:+1(0zb’ 07.1167,05,, z‘ivv:) (21)

Even further simplications are now seen to be possible. For recall from the
earlier discussion that

P:z:l(ab 6 +1|010’ 01‘11’ 0"':1 = S:a(ata)’ C:)
=pr(02167,65 ¢, 62 =82(67)) p (65,167, 67.,,62), (22)

where, given 67, agent a employs the announcement rule §*= §7(87), with
0(-) defined over all 2. Also, as in previous formula,

pf+*1(0b|01a’01‘:-1’éa=8(00) C,)

— w*[cléa_aa(aa) 0b]p oblota’ t+1)
L [eld? = 82(87), 0] p(87167,6%)
4,

(23)

Thus multiplying p2*(62|-) in rlght-hand side of (22) by the term in the
denominator of the nght-hand side 5f (23) yields the numerator of the latter
term. In short, muliiplying both sides of (21) by the denominator factor yields

Z Z 2 Va(cf-l-l’of‘il)

9 6%, i
sztl(ct+l|§a=8a(aa) 0b 00 ot‘fb-l’atb’otz-l’ct)
XW*[tha—ﬁ (0a) 0b]p(0b|0'a’ t+1) ( :+l'0ta’0t‘:~190b)
2 Z E E Va\cf+ls9ﬂkl)

9’ 6, l+l Cr+i
x'”t+‘( t+l|0 S'a(ola),otb’a“a, r+170tb’0r[-’+1’ )
xa* |6 =8:(67),6"] p (62167, 65.,) p (821107, 62, 6?),

(24)
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A A

A ~
~ ~ 22 fHa a PO Sy P - emn ot
for all announcements ( \u, 5 9, +1 )- Iucquahty (24) may be r

obvious notation as an incentive constraint at date 7 + 1,

Z Z Z Va(cf+1=0111)7’[6:’c1+1|0:a’01b’ 0:1’ t+1° arb’an-l]

6f 6%, i1

xp(62,6%,107,62,)

2 z Z Z Va(ct+l’ t+1)'”[cn c1+1'01 ’0lb’ otﬂ9 t+101b’ 0[-)6»1]

ab 0,+1 €41
b gb
XP(0z » 051107, :+1) (25)
for all paths 62,62 ,, c,, and for all named values ¢ and (6%, 67 ,). Hers of
course
ja gb b gb
Z W(cnct+1|0ta’01 900 t+l’at ’0+l)
Cr+1
= Zw(ct’ct+l|ota’0tb’ 010’ t+l’étb’ ]’ (26)
Cr+1

for all 0:", e 5” g > 1 so that the marginal distribution of c, is independent
of future announcements. Again, inequality (25) ensures agent a would tell the
truth in the second period no matter what 0" was announced in the first
period, at leasi on the presumption tha{ agent b follows a truthtelling strategy
throughout.

Similarly, with truthtelling established for the second period, so that future
parameter announcements are coincident with actual histories and contem-
porary realizations, eq. (20) reduces for each actual % and all named values
0 to an incentive constraint at date 7, namely,

YL YY Y [us(cs,67) + BV(cti1,050)]

< 0%, 9P 8%, cn
b b b b a
er{c,, ct+l|0ta’ 0: ’0ta’ t+1’0t ’ +1] p(0 0+1’ t+l|0 )

2 z Z z E 2 [Ua(c:" ata) +.3Va(cf+l’0ra+l)]

< 6%, o’b 0&1 Cr+1
) b b b 9e a
X'IT[C,,CH_IIOI", 01 ’ota’ ta-i-l-gt ’ +1]P 0: 9 +1’ +l|0t ) (27)

In short we are reduced to:

Programming problem 4.1

Find the lotteries w(c,,c,.,|6° 6", 67 6% ,,6" 67,) over consumptions
c,=(c? c?) and c,,;=(c’ 1, ¢l 1), given date ¢ parameter announcements



442 R.M. Townsend, Information constrained insurance

é“ and 5” and date t + 1 announcements of histories §° and 6° and con-
temporary values 82 ; and 65, ,, which maximize the ObJeCdVC function

¥{EZE T L K [0s(eh ) + B°(ctn 02.)]
6P 0%1 65, < Cn1
XW[C,,cleta,ﬂtb,o‘a, :+1’0b 0+1]P(pa t+1901b’0+1)
AYZE T L T [0t 8)+ B (chn )]
67 8b 6%, 8b, € €1
xw[cncﬁllora’otb’ora’ H-l’ob 0+l]p( t z+l’0tba0+l)’ (28)

subject to constraints (25) and (Z7", to analogue incentive constraints for agent
b, and to constraint (26) with

'”(Cn Ct+1|0’;a’ 0:1’, 67,05, 0rb, 6/, t+1 ) >0, (29)
Z ZW(C,,CH_IIH:", é:b9 otas t+1’01b’0+1) =1. (30)

Individual rationality constraints can also be imposed.

Thus far sequential, dynamic programming considerations have been em-
phasized, with truthtelling at date 7+ 1 as a maximizing strategy for agent a
for any possible history, and with truthtelling at date ¢ as a maximizing
strategy at date ¢ on the premise that the truth will be told in the future. But
this is equivalent with saying that if at the beginning of date ¢ agent a
contemplated all possible strategies §7(6,) mapping date ¢ parameter value 6
into date ¢ announcement 7 and at the same time jointly contemplated all
possible stratggies 6°.1(0°,0/, ,, c,) mapping the specified history into an-
nouncement 62, §2 ,, then truthtelling would be a maximizing choice for these
strategies. Afterall, the dynamic programming algorithm is just a way to derive
optimal strategies. Thus we may write for each actual 6

Y XY XY [ud(e,07) +BVa(ctir, 051)]

< 8:‘11 0," 0,’3,1 Cr+1
b ga b b b a
XW(C,,CH_IW 01 991 H 1+1’01 ’0+l)p(0r s Vet 1o t+1|0 )

2 Z Z Z Z E [Ua("f,ora) +BVa(Cf+1,0ﬁ+1)]

6, 8t 0,‘:,1 Ce+1
“a_aa‘bAa:a_a a pa
XW(C,,CHIW, _81 (01 )90r ’(é; ’0t+l) —6t+1(0t ,0,+1,C, ’

(0tb’ atil)P(atb’ 0tl-,c-1’gta+l|0ra)’ (31)

for all passible strategies 87(6°) and 82, ,(672, 0% ,, c,).
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In particular, then, truthtelling strategies weakly dominate anything in the
more restricted class of strategies under which 4 announcements at date ¢

must necessarily be followed by (0:", 0:‘1,1) announcements at date ¢+ 1, that
is, reannouncements of 4 at ¢ + 1 coincident with earlier announcement 0° at
date ¢. Under this restriction the parameter announcement §° merely appears
twice, which 6 does also in similar expression. This suggests that one can get
by with allocation rule

A a gb pa b = b b gb
W(Cnct+l'01 ’01 ’0t+l’ 0t+l) -W(Cv ct+l'0ta’ 01 ’ata’ ta-i-lﬁof ’ot+l)’

and with announcements of contemporary values only each date. In fact, agent
a would tell the truth under such an allocation rule, by the restricted version
(31), as would agent b by a similar expression, and so the same distribution of
consumption allocations would be generated. This leads to the alternative
programming problem, now in the form suggested by Myerson (1986),

Programming problem 4.2

Find the lotteries #(c,,c,.,|02, 02,05 ,,0% ) over consumptions ¢, and
¢,+1» effected by announcements of parameters 6 and 6” at date ¢ and 62,
and 67, at date ¢+ 1, which maximize the objective function

}‘a{ZZ 2 XXX [U(cr, 07) + Bre(ctiy, 631)]

ora 0,” 0{11 0‘-’:,.1 € Cr41

A b pa b a fa b pb
Xw(cvct+llota’ 0: ’ t+1901+1)p(0t ’ t+1’01 90:4»1)}

N{EE S T8 L [03(e809)  89°(ctnt)

0" 6P 67165, ¢

X ﬁ(ct’ ct+1lota’ atb’ t‘-li-l’ 01&1)1’(0:“’ t‘:-l’ atb, 01130-1)}s (32)

subject to constraints, for each actual 672,

22X XX Y [u(cs,68) + BVa(ctiy,051)]

¢ 0%, 8P @b, iy

A b b gb
x"(cnct+1|0ta90tb’ tqf-l’ot-&-l)p(ot ’0t+1’0t‘:.-1|0ta)

>Y Y Y X Y [ve(er,07) +BV(cir,050)]

¢ 0%, 6% 65,
X'ﬁ(C,, cr+llyta(01a)’ otb’ Yta+l(ara’ t‘:-l’ Ct)a 0::_1)
xp(07,0/.1.65.1167), (33)
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for all strategies v2(6°) and vS (6705, ¢c,), and similarly for incentive
constraints for agent b.

5. Numerical examples: Optimal learning as optimal scrambling

Numerical computation of solutions to program 4.1 proved tedious due to
dimensionality problems. Particularly demanding are the period ¢+ 1 incen-
tive constraints as these must be conditioned among other things on the date ¢
allocation, c,. To simplify the problem both 6 and 67 ; were set at degenerate
values, and this was assumed to be common knowledge. Thus only agent a
anaounces at ¢, and only agent b announces at ¢ + 1. Thus reannouncement at
date 7 + 1 of date ¢ values was no longer necessary. The essential scrambling
possibility remained in tact, however, as in announcing 8%, agent b must
integrate over §° values unless 67 is perfectly inferred by the outcome of the
lottery over c, value: at date ¢.

Numerical examples displayed active scrambling, at ieast for some parame-
ter values. For the example here preferences are defined by

Ue(c?,67) = (cf)”, 67 {0.2,09},

b
(1, 85:) = (c2) "™, 82, € (02,09},

with utility functions of the same form for agent g at t+1 and 674, =0.30
and for agent b at ¢ with 8= 0.90. Parameters 67 and 6>, are generated
with known prior dlstnbutmn

(0.2,0.9) with prob. 0.3,
(0.9,0.9) with prob. 0.2,
(0.2,0.2) with prob. 0.1,
(0.9,0.2) with prob. 0.4.

(ola’ 01b+1)

Alsolet ef=ef =el=el =5, 8=095 A=0.5 and A’=0.5. The grid on
the triangle of feasible consumptions is set at increments of 0.25, computed by
successive refinements. To mitigate remaining dimensionality problems, no
individual rationality constraints are imposed. The solution is displayed in the
obvious notation in table 10. To be noted here is that the allocation ¢, =
(1.75, 8.25) occurs both for §7= 0.2 (with prob. 1) and 67 = 0.9 (with prob.
0.0339681) so that at 67 = 0.2, for example, agent b remains uncertain of a’s
true parameter value.

Revealing of the role being played by this scrambling is th P reto optimal
solution when announcements of agent a at date ¢ are necessarily public, In

P3N0V v
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Table 10
Optimal scrambling.
gla (C’a‘ C:’ W(Cn ala) 010* al’:‘l (c!e-*l'ctb«rl) "(Cr’l’ara*oﬂl)
02 (1.75,8.25) 1.0 02,02 (4.75,5.25) 1.0
(0.2,0.9) (2.0,8.0) 10
(0.0 ,10.0) 0.1159346
0.9 (1.75,8.25) 0.0339681 } 09,02 (3.75,6.25) 1.0
(3.25,6.75) 0.85443844
: 1.0 ,9.0) 0.8610602006
0.9,0.9 [( : }
( ) | (10.0,0.0) 0.138397942

that case there is an incentive constraint for agent b at ¢+ 1 for every 6°
announcement. The solution is reported in table 11.

Clearly with 6° announcements public, there is no longer a gain to ad-
ditional lotteries over c, values, and the ¢, = (1.75,8.25) possibility at §°=0.9
of table 10 is suppressed in table 11. Striking also now, in table 11, is the
absence of insurance for agent b at date ¢ + 1 in the 7 = 0.2 branch, with the
shock invariant c,,; = (2.5,7.5) of table 11 replacing (4.75,5.25) and (2.0, 8.0)
for 65, =0.2 and 8%, , = 0.9, respectively, in table 10. Evidently, the lottery in
table 11 which does distinguish 8% ,=0.2 and 8% ,=09 for the §°=09
branch is not worthwhiie in table 11 at the 2 = 0.2 branch, a region in which
agent b has relatively low consumption. Without this Iottery, as under 6% = 0.2
in table 11, consumption at date ¢ + 1 cannot depend on agent b’s announce-
ment. But since agent b is kept somewhat uninformed about what 6 branch
he is in table 10, agent b is never put in a position of choosing between the
5.25 and 8.0 entries of table 10, when 7 =0.2 and he is to report 67 ,, but
rather chooses between those points the outcomes at 8°= 0.9 branch, where
there is a lottery. Evidently, with somewhat higher expected consumption,
lotteries can distinguish effectively.

Table 11
Scrambling suppressed with public announcements.
o7 (cla’cfb) n(c,, 67) 010’01[11 (Cra+1'C1b+l) ”(cr+lvera-0:i:»1)

0.2 (1.75,8.25) 10 (0.2,0.2) (2.5,7.5) 1.0
0.2,0.9) (2.5,7.5) 1.0

{ {0.0,10.0) 0.1042598 )
| ’ .9,0. .75,6.25 1.0

09\ (25.675) 0.8957402} 09,02) (375,629

(09,09) { (10.90) 0.89189814}

(10.0,0.0) 0.108190186
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6. A capital accumulation environment with endogenously limited insurance

To move away from the pure risk sharing environments considered above
consider an economy with one underlying consumption good, two consump-
tion periods, and a continuum of households with names on the unit interval.
Each household is subjected to preferences shocks 6, and 4, , in the first and
second consumption periods, respectively, with prob(d,) denoting both the
probability of shock 8, and tne fraction of households who experience shock 6,
and similarly at date ¢ + 1. Shocks 6, and 6, , are drawn indenendently with
beginning of period realizations known only to the individual household. Thus
preference shocks are the source of private information as above. Each
household has endowment y,(¢,) of the consumption good at date ¢, where e,
is a common, publicly observed shock. For simplicity y, . (,,,) is supposed to
be zero. Finally, the consumption good can be stored in the first period, after
the realization of shock e, say in amount K,,,(e,} per capita, yielding
(1-96)K,,,(e,) units of consumption available per capita in the second
period.

To set up the programming problem for the determination of Pareto
optimai aliocations let 7,(c,, 0, ¢,) denote the probability at date ¢ of con-
sumption bundle ¢, at date 7 for the representative houschold conditioned on
announced (and actual) preference shock 6, and on the common endowment
shock ¢,. Similarly, let =, ,(c,.q,0,,6,,,,¢,) denote the probability a: date
t+1 of consumpuon bundle ¢, at date ¢+ 1 for the representative house-
hold conditioned on its announcements of §, and 6,,, and on the shock ¢, at
date r. An implicit restriction is thus imposed, that prob(c,,,|c,,0,,6,.¢€,)
cannot depend on c,. This simplification allowed computations to be done as
before on a personal computei. Of course possible time dependence of the
lottery at date ¢ + 1 on shock 6, is still incorporated.

With g8 as the common discount rate and Ulc, 0] as the period-by pericd
utility function of the representative household, the relevant program from the
standpsint of @ ¢ = O planniuyg period is:

rProgramming problem 6.1

Maximi-e the objective function

Zprob(e,){ Tprob(8) L7, (c,, 6, ,)Ule, ]
€ 8, ¢

+ﬁ§ OZ, pTOb(gn 8“_1) Z Wt(ct+1’ 059 gt-t—l’ 8,)U[C,+1, 01+1]}’

t Ui Crvy

subject to the date 7 resource constraint, Ve,
Lprob(d) Lem(e,be) =y (e) - K, {e,).
0, Cr
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the date ¢ + 1 resource constraint, Ve,,

;prOb(gt) z prOb(6t+1) Z C‘,+17T(C,+1, 01’ 9:-&-1’ 8,)

t 641 Cevl
= (1 - S)Kt+l(et)9

subject to the date ¢ + 1 incentive constraints, ¥0,,0,,,,0/,,, ¢,

Z U(cr+1’ 0:+1)"(Ct+1’ 90415 er)

Cerl

= Z U(ct+1’ 01+1)”(ct+1’ 0t’ 01’4-19 sl)’

Ci+1
subject to the date ¢ incentive coastraints, V6, 9/, ¢,,

Z U(cn 6)n(c,, 0, €) + Z B prob(é,.,)

3 oﬁ»l

X Z U(cr+1’0t+1)77(ct+1’0n0t+1a 5:)

Cesl

2 z U(ct’ at)w(ct’ 01” el) + Z B prOb(0!+l)

Ce L
4
X Z U(ct+l! 6’t+1)7’(ct+l’ 9, 9 0t+1, st)’
Cos1
where of course
OSW(C“ 919 sx)s v"l’st’cl’
2 7(c,0.6)=1, (LA
Ce
/
OSW\CHDGI,@HI,Q), Vcr+190t=03+1’5t9

ZW(C_,_,_-!,Q,e’_‘_], &'.",)=1, Vo,,9,+1, €.

Cre1
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For numerical examples let U(c,8)=[c®—1]/6 with € {0.5,0.9} drawn
each period with probability 1 for each value. All consumptions were re-
stricted to lie between 0 and 22.5 and on a grid with increments of 0.05. For
B =1 and & = 0 and for the y,(¢,) = & branch (only) the solution is depicted in
table 12. In contrast, the full information storage solution for the y,(e,) =8

branch (only) is depicted in (able 13.
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Table 12

Private information, optimal solution — under storage.

01 ¢ W(Cr’gl‘sl) 0: 0.'+l Crv 9z+l(c.wl 0 0+1)
0.5 2.05 1.0 (0.5,0.5) 35 1.0 .
0.0 0.4553
©0.09) { 11.8 0.5447}
no 745 10% ("G 0.5) 1.55 10
(0.9.0.9) 1.55 1.0

The {ull information solution offers full insurance against 6, shocks period
by period (with no intertemporal dependence). The private information solu-
tion offers less insurance against 6, and 6, , shocks, especially in the second
period. Apparently, as a result of this, the expected utility for a given second
pericd crdowment is less under private information than under full informa-
tiou, and the storage solutions reflect this, with storage half of the first period
endowment for the full information solution, 4 and 5 for y(¢,)=8 and
yi(g,) =10, respectively, and at 3.26 and 3.90 respectively for the private
information soiution. (The coefficient of variaticn of storage is greater for the
full information solution than for the private information solution.)

However, setting (1-8)=0.8 and =009 yields a different qu_‘tative
solution. With storage less productive: and the future discounted more, the full
information solution for storage is now 0.825 and 0.9375, for y,(¢,) =8 and
y,{¢,) = 10, respectively. Under private information the storage solution is 2.0
and 1.5, respectively, uniformly more. Intuition is aided by table 14, for
v.(¢,) = 8 branch only, which again reveals a strong intertemporal dependence:
6,= (.5 househiolds receive less (expected) consusption at date 1 and more
consumption at date 2 than do £ — 0.2 households. It is this tie-in of date 7 + 1
consumption to date ¢ claims that allows the inceniive constraint to be
satistied, and apparently storage is increased in the private information
solution io »llow date ¢ claims to have more bite. (The coefficient of variation

Talls 12
Lauie 1.)

Full information, optimal storage solution.

Br ¢ W(“I“‘qf‘et) g~'g+l Crs1 ‘”H—I(CMI’G 0+l)

0.5 145 10 (0.3,0.5) i4s 1.0
(0.5.0.9) 6.58 10

0.9 6.55 10 (0.9.0.5) 1.45 1.0

(0.9,0.9; 6.55 1.0
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Table 14
Private information, optimal solution — over stora-.

01 ¢ '”(Cnover) 8{*91*1 Cray ﬂul(cwl'ar'aux)

0.5 3.35 10 (0.5,0.5) 24 1.0
0.0 0.2484\ *
(03.09) { 425 0.7510)

0.9 (0.0 0.1067} (0.9,0.5) 0.4 1.0

: \9s8 0.8933 (0.9,0.9) 0.4 1.0

of storage is less for ful: information than for private information, again the
opposite of before.)

7. Concluding remarks

It seems we are only at the beginning of efforts to understand the implica-
tions of private information for the operation of actual economies. For
prototype economies for which revelation principle methods seem most secure,
we need to build up experience and intuition, aided by numerical experimenta-
tion. And, we should seek to extend existing theoretical and numerical
methods not only to more complicated private information environments but
also to environments with limited commitment problems and other impedi-
ments to trade. The intent should be the development of a widely operational
mapping from the supposed primitives of environments to allocations and
institutions. In doing so we may seek to explain allocations and institutions
and have on hand a reliable base for policy analysis.
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