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Abstract. In an effort to improve precision, applications often use many in-

strumental variables. The Fuller (1977, FULL) estimator has good properties under

homoskedasticity but it and the limited information maximum likelihood estimator

(LIML) are inconsistent with heteroskedasticity and many instruments. This paper

proposes a jackknife version of FULL and LIML that are robust to heteroskedastic-

ity and many instruments. Heteroskedasticity consistent standard errors are given.

We also give an IV estimator that is efficient under heteroskedasticity. We find that

RFLL performs nearly as well as FULL under homoskedasticity.
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1. Introduction

In an effort to improve precision, applications often use many instrumental variables.

Under homoskedasticity inference methods have been developed that account well for use

of many instruments. The Fuller (1977, FULL) estimator has good efficiency proper-

ties and good accurate inference methods exist. However, with heteroskedasticity it turns

out that FULL and the limited information maximum likelihood (LIML) estimators under

many instruments, as shown by Bekker and Van der Ploeg (2005) for LIML. Heteroskedas-

ticity seems common in applications, suggesting the need for estimators that are robust

to heteroskedasticity but retain good efficiency.

This paper proposes an adjustment to FULL and LIML that make them robust to

heteroskedasticity and many instruments, RFLL and RLML respectively. RLML is a

jackknife version of LIML that deletes own observation terms in the numerator of the

variance ratio. It can be interpreted as an optimal linear combination of forward and

reverse jackknife instrumental variable (JIV) estimators, analogous to Hahn and Haus-

man’s (2002) interpretation of LIML as an optimal linear combination of forward and

reverse two-stage least squares. We show that these estimators are as efficient as FULL

and LIML under homoskedasticity and the many weak instruments sequence of Chao and

Swanson (2005) but have a different limiting distribution under the many instrument se-

quence of Kunitomo (1980) and Bekker (1994). We also give heteroskedasticity consistent

standard errors under many weak instruments. We find in Monte Carlo experiments that

this estimator and its associated standard errors perform well in a variety of settings.

The RFLL and RLML estimators are not generally efficient under heteroskedasticity

and many weak instruments. We give a linear IV estimator that is efficient, that uses a

heteroskedasticity consistent weighting matrix and projection residual in the linear combi-

nation of instrumental variables. This estimator is as efficient as the continuous updating

estimator of Hansen, Heaton, and Yaron (1996), that was shown to be efficient relative to

JIV by Newey and Windmeijer (2005), under many weak instruments. Thus we provide

a complete solution to the problem of IV estimation in linear models with heteroskedas-

ticity, including a simple, robust estimator, and an efficient estimator that is relatively
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simple to compute.

We also propose a Hausman (1978) specification test for heteroskedasticity and many

instruments. This test is based on comparing FULL (or LIML) with few instruments

with FULL with many instruments. The variance estimator associated with this test is

the difference of the variance for the few and many instrument estimators plus the many

instrument correction.

In comparison with previous work, Hahn and Hausman (2002) had previously con-

sidered combining forward and reverse IV estimators. JIV estimators were proposed by

Phillips and Hale (1977), Blomquist and Dahlberg (1999), and Angrist and Imbens and

Krueger (1999), and Ackerberg and Deveraux (2003). The inconsistency of LIML and

bias corrected two stage least squares has been pointed out by Bekker and van der Ploeg

(2005), and also by Ackerberg and Deveraux (2003) and Chao and Swanson (2003). Here

we add focusing on FULL and by giving a precise characterization of the inconsistency.

Chao and Swanson (2004) have previously given heteroskedasticity consistent standard

errors and shown asymptotic normality for JIV under many weak instruments. Newey

and Windmeijer (2005) have shown that with heteroskedasticity the generalized empiri-

cal likelihood estimators are efficient. Our heteroskedasticity efficient estimator is much

simpler.

In Monte Carlo results we show that optimally combining forward and reverse JIV

overcomes the problems with JIV pointed out by Davidson and MacKinnon (2005). The

median bias and dispersion of RFLL is nearly that of FULL except in very weakly iden-

tified cases. These results suggest that the estimator is a promising heteroskedasticity

consistent and efficient alternative to FULL, LIML, and other estimators with many in-

struments.

2. The Model and Estimators

The model we consider is given by

y
n×1

= X
n×G

δ0
G×1

+ u
n×1

,

X = Υ+ V,
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where n is the number of observations, G the number of right-hand side variables, Υ is a

matrix of observations on the reduced form, and V is the matrix of reduced form distur-

bances. For the asymptotic approximations, the elements of Υ will be implicitly allowed

to depend on n, although we suppress dependence of Υ on n for notational convenience.

Estimation of δ0 will be based on a n × K matrix Z of instrumental variable observa-

tions. We will assume that Z1, ..., Zn are nonrandom and that observations (ui, Vi) are

independent of each other.

This model allows for Υ to be a linear combination of Z, i.e. Υ = Zπ for some K ×G

matrix π. Furthermore, columns of X may be exogenous, with the corresponding column

of V being zero. The model also allows for Z to be functions meant to approximate

the reduced form. For example, let Xi, Υi, and Zi denote the ith row (observation) for

X, Υ, and Z respectively. We could have Υi = f0(wi) be an unknown function of a

vector wi of underlying instruments and Zi = (p1K(wi), ..., pKK(wi))
0 for approximating

functions pkK(w), such as power series or splines. In this case linear combinations of Zi

may approximate the unknown reduced form, e.g. as in Donald and Newey (2001).

To describe the estimators let P = Z(Z 0Z)−1Z0. The LIML estimator δ̃ is given by

δ̃ = argmin
δ

Q̃(δ), Q̃(δ) =
(y −Xδ)0P (y −Xδ)

(y −Xδ)0(y −Xδ)
.

FULL is obtained as

δ̆ = (X 0PX − ᾰX 0X)−1(X 0Py − ᾰX 0y).

for ᾰ = [α̃− (1− α̃)C/T ]/[1− (1− α̃)C/T ] and α̃ = ũP ũ/ũ0ũ, where ũ = y −Xδ̃. FULL

has moments of all orders, is approximately mean unbiased for C = 1, and is second order

admissible for C ≥ 4 under standard large sample asymptotics.

The heteroskedasticity robust LIML estimator (RLML) is obtained by dropping i = j

terms from the numerator. It takes the form

δ̂ = argmin
δ

Q̂(δ), Q̂(δ) =

P
i6=j(yi −X 0

iδ)Pij(yj −X 0
jδ)

(y −Xδ)0(y −Xδ)
.

This estimator is the same as LIML except that
P

i(yi − X 0
iδ)

2Pii has been subtracted

from the numerator.
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This estimator is invariant to normalization. Let X̄ = [y,X]. Then d̂ = (1,−δ̂0)0 solves

min
d:d1=−1

d0
³P

i6=j X̄iPijX̄
0
j

´
d

d0X̄ 0X̄d
.

Another normalization, such as imposing that another d is equal to 1 would produce the

same estimator, up to the normalization. LIML also has this invariance property.

This estimator is as simple to compute as is LIML. Similarly to LIML, α̃ = Q̂(δ̂) is

the smallest eigenvalue of (X̄ 0X̄)−1
P

i6=j X̄iPijX̄
0
j . Also, first order conditions for δ̂ are

0 =
X
i6=j

XiPij

³
yj −X 0

j δ̂
´
− α̃

X
i

Xi(yi −X 0
i δ̂).

Solving gives

δ̂ =

⎛⎝X
i6=j

XiPijX
0
j − α̃X 0X

⎞⎠−1⎛⎝X
i6=j

XiPijyj − α̃X 0y

⎞⎠ .

This estimator has a similar form to LIML except that the terms involving Pii have been

deleted.

By replacing α̃ with some other value α̂ we can form a k-class version of a jackknife

estimator, having the form

δ̂ =

⎛⎝X
i6=j

XiPijX
0
j − α̂X 0X

⎞⎠−1⎛⎝X
i6=j

XiPijyj − α̂X 0y

⎞⎠
We can form a heterskedasticity consistent version of FULL by replacing α̃ with α̂ =

[α̃ − (1− α̃)C/T ]/[1− (1− α̃)C/T ] for some constant C. The small sample poperties of

this estimator are unknown, but we expect its performance relative to RLML to be similar

to that of FULL relative to LIML. As pointed out by Hahn, Hausman, and Kuersteiner

(2004), FULL has much smaller dispersion than LIML with weak instruments, so we

expect that same for RFLL. Monte Carlo results given below confirm these properties.

An asymptotic variance estimator is useful for constructing large sample confidence

intervals and tests. To describe it, let ûi = yi −X 0
i δ̂, γ̂ = X 0û/û0û, V̂ = (I − P )X − ûγ̂0,

Ĥ =
X
i6=j

XiPijX
0
j − α̂X 0X, Σ̂ =

X
i,j 6=k

XjPjiû
2
iPikX

0
k,

Σ̂2 =
X
i6=j

P 2ij

³
û2i V̂j V̂

0
j + V̂iûiûj V̂

0
j

´
.
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The variance estimator is

V̂ = Ĥ−1
³
Σ̂+ Σ̂2

´
Ĥ−1.

We can interpret δ̂ as a combination of forward and reverse jackknife IV (JIV) estima-

tors. For simplicity, we give this interpretation in the scalar δ case. Let ui(δ) = yi−X 0
iδ,

γ̂(δ) =
P

iXiui(δ)/
P

i ui(δ)
2, and γ̂ = γ̂(δ̂). First-order conditions for δ̂ are

0 =
∂Q̂(δ̂)

∂δ

µ
−1
2

¶X
i

ui(δ̂)
2 =

X
i6=j
[Xi − γ̂ui(δ̂)]Pij(yj −X 0

j δ̂).

The forward JIV estimator δ̄ is JIVE2 from Angrist, Imbens, and Krueger (1994),

being

δ̄ =

⎛⎝X
i6=j

XiPijXj

⎞⎠−1X
i6=j

XiPijyj .

The reverse JIV is obtained as follows. Dividing the structural equation by δ0 gives

Xi = yi/δ0 − ui/δ0.

Applying JIV to this equation to estimate 1/δ0 and then inverting gives the reverse JIV

δ̄
r
=

⎛⎝X
i6=j

yiPijXj

⎞⎠−1X
i6=j

yiPijyj.

Then collecting terms in the first-order conditions for RLML gives

0 = (1 + γ̂δ̂)
X
i6=j

XiPij(yj −X 0
j δ̂)− γ̂

X
i6=j

yiPij(yj −X 0
j δ̂)

= (1 + γ̂δ̂)
X
i6=j

XiPijXj(δ̄ − δ̂)− γ̂
X
i6=j

yiPijXj(δ̄
r − δ̂).

Dividing through by
P

i6=j XiPijXj gives

0 = (1 + γ̂δ̂)(δ̄ − δ̂)− γ̂δ̄(δ̄
r − δ̂).

If we replace γ̂ by some other estimator γ̄, such as γ̄ = γ̂(δ̂), and the γ̂δ̄ coefficient

following the minus sign by γ̄δ̂ we obtain a linearized version of this equation that can be

solved for δ̂ to obtain

δ̇ =
δ̄

1− γ̄(δ̄ − δ̄r)
.
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This estimator will be asymptotically equivalent to the RML estimator.

This result is analogous to that of Hahn and Hausman (2002) that under homoskedas-

ticity LIML is an optimal combination of forward and reverse bias corrected two stage

least squares estimators. We find a similar result, that RLML is a function of forward

and reverse heteroskedasticity robust bias corrected estimators.

3. The Problem with LIML and a Specification Test

As shown by Bekker and van der Ploeg (2005), LIML is inconsistent under many instru-

ments and heteroskedasticity. Some straightforward calculations can be used to show

why this is the case and pinpoint the precise condition that would be needed for consis-

tency. The Fisher condition for consistency is that the first derivative of the objective

function converges to zero when it is evaluated at the truth. Thus a necessary condition

for LIML is that ∂Q̃(β0)/∂β
p−→ 0. Let σ2i = E[u2i ], γi = E[Xiui]/σ

2
i = E[Viui]/σ

2
i , and

γn =
P

iE[Xiui]/
P

i σ
2
i =

P
i σ

2
i γi/

P
i σ

2
i . It can be shown that

(−2u0u/n)∂Q̃(β0)/∂β =
µ
X − X 0u

u0u
u

¶0
Pu/n = E[(X − γnu)

0
Pu/n] + op(1).

where the last equality will follow by X 0u/u0u − γn
p−→ 0 and convergence of quadratic

forms to their expectations. Then by independence of the observations,

E[(X − γnu)
0
Pu/n] =

X
i

E[(Xi − γnui)Piiui]/n =
X
i

(γi − γn)Piiσ
2
i /n.

Under many instrument asymptotics we will not have Pii −→ 0, and hence if γi 6= γn the

expectation will generally not converge to zero.

There are two basic conditions under which
P

i(γi−γn)Piiσ2i /n = 0 and LIML should

be consistent. They are

1) Pii is constant;

2) E[Viui]/σ
2
i does not vary with i.

The first condition will be satisfied if the instruments are dummy variables with equal

numbers of ones. This condition is given by Bekker and van der Berg (2005), and is

fererred to as equal group sizes. The second condition restricts the joint variance matrix
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of the structure and reduced form to satisfy

V ar(ui, V
0
i ) =

∙
σ2i σ2i γ

0

σ2i γ V ar(Vi)

¸
.

Of course, if either 1) or 2) are close to being satisfied, then the LIML estimator will be

close to being consistent.

Analogous arguments can also be used to show that, with heteroskedasticity, FULL is

inconsistent under many instruments and LIML is inconsistent under many weak instru-

ments.

4. Optimal Estimation with Heteroskedasticty

RLML is not asymptotically efficient under heteroskedasticity and many instruments. In

GMM terminology, it uses a nonoptimal weighting matrix, one that is not consistent under

heteroskedasticity. In addition, it does not use a heteroskedasticity consistent projection

of the endogenous variables on the disturbance, which leads to inefficiency in the many

instruments correction term. Efficiency can be obtained by modifying the estimator so

that the weight matrix and the projection are heterskedasticity consistent. Let

Ω̂(δ) =
nX
i=1

ZiZ
0
iui(δ)

2/n, B̂k(δ) =

ÃX
i

ZiZ
0
iui(δ)Xik/n

!
Ω̂(δ)−1,

D̂ik(δ) = ZiXik − B̂k(δ)Ziui(δ), D̂i(δ) =
h
D̂i1(δ), ..., D̂ip(δ)

i
,

Also let δ̄ be a preliminary estimator (such as RLML). An IV estimator that is efficient

under heteroskedasticity of unknown form and many instruments is

δ̂ =

⎛⎝X
i6=j

D̂i(δ̄)
0Ω̂(δ̄)−1ZjX

0
j

⎞⎠−1X
i6=j

D̂i(δ̄)
0Ω̂(δ̄)−1Zjyj .

This is a jackknife IV estimator with an optimal weigthing matrix Ω̂(δ̄)−1 and D̂i(δ̄)

replacing XiZ
0
i. The use of D̂i(δ̄) makes the estimator as efficient as the CUE under many

weak instruments.

The asymptotic variance can be estimated by

V̂ = Ĥ−1Σ̂Ĥ−1, Ĥ =
X
i6=j

XiZ
0
iΩ̂(δ̃)

−1ZjX
0
j , Σ̂ =

nX
i,j=1

D̂i(δ̃)
0Ω̂(δ̃)−1D̂j(δ̃).

This estimator has a sandwich form similar to that given in Newey andWindmeijer (2005).
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5. The Robust, Restricted CUE

The RLML has been made robust to heteroskedasticity by jackknifing where own obser-

vation terms are removed. In general this same approach can be used to make the con-

tinuous updating estimator (CUE) robust to restrictions on the weighting matrix, such

as homoskedasticity. For example, LIML is a CUE where homoskedasticity is imposed on

the weighting matrix and RLML is its robust version.

For expository purposes consider a general GMM setup where δ denotes a G × 1

parameter vector and gi(δ) an K × 1 vector of functions of the data and parameter

satisfying E[gi(δ0)] = 0. For example, in the linear IV environment, gi(δ) = Zi(yi−X 0
iδ).

Let Ω̃(δ) denote an estimator of Ω(δ) =
Pn

i=1E[gi(δ)gi(δ)
0]/n, where an n subscript on

Ω(δ) is suppressed for notational convenience. A CUE is given by

δ̂ = argmin
δ

ĝ(δ)0Ω̃(δ)−1ĝ(δ).

When Ω̃(δ) =
Pn

i=1 gi(δ)gi(δ)
0/n this estimator is the CUE given by Hansen, Heaton, and

Yaron (1996), that places no restrictions on the estimator of the second moment matrices.

In general, restrictions may be imposed on the second moment matrix. For example, in

the IV setting where gi(δ) = Zi(yi − X 0
iδ), we may specify Ω̃ (δ) to be only consistent

under homoskedasticity,

Ω̃(δ) = (y −Xδ)0 (y −Xδ)Z 0Z/n2.

In this case the CUE objective function is

ĝ(δ)0Ω̃(δ)−1ĝ(δ) =
(y −Xδ)

0
P (y −Xδ)

(y −Xδ)
0
(y −Xδ)

,

which is the LIML objective function (as is well known; see Hansen, Heaton, and Yaron,

1996).

A CUE will tend to have low bias when the restrictions imposed on Ω̃(δ) are satisfied

but may be more biased otherwise. A simple calculation can be used to explain this

bias. Consider a CUE where Ω̃(δ) is replaced by its expectation Ω̄(δ) = E[Ω̃(δ)]. This

replacement is justified under many weak moment asymptotics. The expectation of the

CUE objective function is then

E[ĝ(δ)0Ω̄(δ)−1ĝ(δ)] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ) + tr(Ω̄(δ)−1Ω(δ))/n,
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where ḡ(δ) = E[gi(δ)] and Ω(δ) = E[gi(δ)gi(δ)
0]. The first term is minimized at δ0 where

ḡ(δ0) = 0. When Ω̄(δ) = Ω (δ) then

tr(Ω̄(δ)−1Ω(δ))/n = m/n,

so the second term does not depend on δ. In this case the expected value of the CUE

objective function is minimized at δ0. When Ω̄(δ) 6= Ω(δ) the second term will depend

on δ, and so the expected value of the CUE objective will not be minimized at δ0. This

effect will lead to bias in the CUE, because the estimator will be minimizing an objective

function with expectation that is not minimized at the truth. It is also interesting to note

that this bias effect will tend to increase with n. This bias was noted by Han and Phillips

(2005) for two-stage GMM, who referred to the bias term as a "noise" term, and the other

term as a "signal."

We robustify the CUE by jackknifing, i.e. deleting the own observation terms in the

CUE quadratic form. Note that

E[
X
i6=j

gi(δ)
0Ω̄(δ)−1gj(δ)/n

2] = (1− n−1)ḡ(δ)0Ω̄(δ)−1ḡ(δ),

which is always minimized at δ0, not matter what Ω̄(δ) is. A corresponding estimator is

obtained by replacing Ω̄(δ) by Ω̃(δ) and minimizing, i.e.

δ̂ = argmin
δ

X
i6=j

gi(δ)
0Ω̃(δ)−1gj(δ)/n

2.

This is a robust CUE (RCUE), that should have small bias by virtue of the jackknife

form of the objective function. The RLML estimator is precisely of this form, for Ω̃(δ) =

(y −Xδ)0 (y −Xδ)Z0Z/n2.

6. Asymptotic Theory

Theoretical justification of the estimators proposed here is provided by asymptotic theory

where the number of instruments grows with the sample size. Some regularity conditions

are important for the results. Let Z 0i, ui, V
0
i , and Υ

0
i denote the i

th row of Z, u, V, and Υ

respectively. Here we will consider the case where Z is constant, leaving the treatment of

random Z to future research.
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Assumption 1: Z includes among its columns a vector of ones, rank(Z) = K,

Pii ≤ C < 1, (i = 1, ..., n).

The restriction that rank(Z) = K is a normalization that requires excluding redundant

columns from Z. It can be verified in particular cases. For instance, when wi is a

continuously distributed scalar, Zi = pK(wi), and pkK(w) = wk−1 it can be shown that

Z 0Z is nonsingular with probability one for K < n.1 The condition Pii ≤ C < 1 implies

that K/n ≤ C, because K/n =
Pn

i=1 Pii/n ≤ C.

Assumption 2: There is a G × G matrix Sn = S̃n diag (μ1n, ..., μGn) and zi such

that Υi = Snzi/
√
n, S̃n is bounded and the smallest eigenvalue of S̃nS̃0n is bounded away

from zero, for each j either μjn =
√
n or μjn/

√
n −→ 0, μn = min

1≤j≤G
μjn −→ ∞, and

√
K/μ2n −→ 0. Also,

Pn
i=1 kzik

4 /n2 −→ 0, and
Pn

i=1 ziz
0
i/n is bounded and uniformly

nonsingular.

Setting μjn =
√
n leads to asymptotic theory like Kunitomo (1980), Morimune (1984),

and Bekker (1994), where the number of instruments K can grow as fast as the sample

size. In that case the condition
√
K/μ2n −→ 0 would be automatically satisfied. Allowing

forK to grow and for μn to grow slower than
√
nmodels having many instruments without

strong identification. This condition then allows for some components of the reduced form

to give only weak identification (corresponding to μjn/
√
n −→ 0) and other components

(corresponding to μjn =
√
n) to give strong identification. In particular, this condition

allows for fixed constant coefficients in the reduced form.

Assumption 3: (u1, V1), ..., (un, Vn) are independent with E[ui] = 0, E[Vi] = 0, E[u8i ]

and E[kVik8] are bounded in i, V ar((ui, V 0
i )
0) = diag(Ω∗i , 0), and

Pn
i=1Ω

∗
i /n is uniformly

nonsingular.

This hypothesis includes moment existence assumptions. It also requres that the

average variance of the nonzero reduced form disturbances be nonsingular, as is useful for

the proof of consistency.
1The observations w1, ..., wT are distinct with probability one and therefore, by K < T, cannot all

be roots of a Kth degree polynomial. It follows that for any nonzero a there must be some t with
a0Zt = a0pK(wt) 6= 0, implying a0Z0Za > 0.
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Assumption 4: There is πKn such that ∆2n =
Pn

i=1 kzi − πKnZik2 /n −→ 0.

This condition allows an unknown reduced form that is approximated by a linear

combination of the instrumental variables. It is possible to replace this assumption with

the condition that
P

i6=j ziPijz
0
j/n is uniformly nonsingular.

We can easily interpret all these conditions in an important example of a linear model

with exogenous covariates and a possibly unknown reduced form. This example is given

by

Xi =

µ
π11Z1i + μnf0(wi)/

√
n

Z1i

¶
+

µ
vi
0

¶
, Zi =

µ
Z1i

pK(wi)

¶
,

where Z1i is a G2 × 1 vector of included exogenous variables, f0(w) is a G − G2 di-

mensional vector function of a fixed dimensional vector of exogenous variables w and

pK(w)
def
= (p1K(w), ..., pK−G2,K(w))

0. The variables in Xi other than Z1i are endogenous

with reduced form π11Z1i + μnf0(wi)/
√
n. The function f0(w) may be a linear combi-

nation of a subvector of pK(w), in which case ∆n = 0 in Assumption 4 or it may be

an unknown function that can be approximated by a linear combination of pK(w). For

μn =
√
n this example is like the model in Donald and Newey (2001) where Zi includes ap-

proximating functions for the optimal (asymptotic variance minimizing) instruments Υi,

but the number of instruments can grow as fast as the sample size. When μ2n/n −→ 0, it

is a modified version where the model is more weakly identified.

To see precise conditions under which the assumptions are satisfied, let

zi =

µ
f0(wi)
Z1i

¶
, Sn = S̃ndiag

¡
μn, ..., μn,

√
n, ...,

√
n
¢
, S̃n =

µ
I π11
0 I

¶
.

By construction we have Υi = Snzi/
√
n. Assumption 2 imposes the requirements that

nX
i=1

kzik4 /n2 −→ 0,
nX
i=1

ziz
0
i/n is bounded and uniformly nonsingular.

The other requirements of Assumption 2 are satisfied by construction. Turning to As-

sumption 3, we require that
Pn

i=1 V ar(ui, v
0
i)/n is uniformly nonsingular. For Assumption

4, let πKn = [π̃
0
Kn, [IG2 , 0]

0]0. Then Assumption 4 will be satisfied if for each n there exists

π̃Kn with

∆2n =
nX
i=1

kzi − π0KnZik2/n =
nX
i=1

kf0(wi)− π̃0KnZik2/n −→ 0.
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Theorem 1: If Assumptions 1-4 are satisfied and α̂ = op(μ
2
n/n) or δ̂ is LIML or

FULL then μ−1n S0n(δ̂ − δ0)
p−→ 0 and δ̂

p−→ δ0.

This result gives convergence rates for linear combinations of δ̂. For instance, in

the linear model example set up above, it implies that δ̂1 is consistent and and that

π011δ̂1 + δ̂2 = op(μn/
√
n).

The asymptotic variance of the estimator will depend on the growth rate of K relative

to μ2n. The following condition allows for two cases.

Assumption 5: Either I) K/μ2n is bounded and
√
KS−1n −→ S0 or; II) K/μ2n −→∞

and μnS
−1
n −→ S̄0.

To state a limiting distribution result it is helpful to also assume that certain objects

converge. Let σ2i = E[u2i ], γn =
Pn

i=1E[Viui]/
Pn

i=1 σ
2
i , Ṽ = V −uγ0n, having ith row Ṽ 0

i ;

and let Ω̃i = E[ṼiṼ
0
i ].

Assumption 6: HP = lim
n−→∞

Pn
i=1(1−Pii)ziz0i/n, Σp = lim

n−→∞

Pn
i=1(1−Pii)2ziz0iσ2i /n,

Ψ = limn−→∞
P

i6=j P
2
ij

³
σ2iE[Ṽj Ṽ

0
j ] +E[Ṽiui]E[uj Ṽ

0
j ]
´
/K.

We can now state the asymptotic normality results. In case I) we will have

S0T (δ̂ − δ0)
d−→ N(0,ΛI),ΛI = H−1P (ΣP + S0ΨS

0
0)H

−1
P , (1)

In case II) we will have

(μT /
√
K)S0T (δ̂ − δ0)

d−→ N(0,ΛII),ΛII = H−1P S̄0ΨS̄
0
0H
−1
P . (2)

The asymptotic variance expressions allow for the many instrument sequence of Kunitomo

(1980), Morimune (1983), and Bekker (1994) and the many weak instrument sequence of

Chao and Swanson (2003, 2005). When K grows faster than μ2n the asymptotic variance

of δ̂ may be singular. This occurs because the many instruments adjustment term S̄0ΨS̄
0
0

will be singular with included exogenous variables and it dominates the matrix ΣP when

K grows that fast.

Theorem 2: If Assumptions 1-6 are satisfied, α̂ = α̃ + 0p(1/T ) or δ̂ is LIML or

FULL, then in case I) equation (1) is satisfied and in case II) equation (2) is satisfied.
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It is interesting to compare the asymptotic variance of the RLML estimator with

that of LIML under when the disturbances are homoskedastic. Under homoskedasticity

the variance of V ar((ui, V 0
i )) will not depend on i, e.g. so that σ2i = σ2. Then γn =

E[Xiui]/σ
2 = γ and E[Ṽiui] = E[Viui]− γσ2 = 0, so that

Σp = σ2H̃p, H̃P = lim
n−→∞

nX
i=1

(1− Pii)
2ziz

0
i/n,Ψ = σ2E[Ṽj Ṽ

0
j ](1− lim

n−→∞

X
i

P 2ii/K).

Focusing on Case I, letting Λ = S0ΨS
0
0, the asymptotic variance of RLML is then

V = σ2H−1P H̃PH
−1
P + lim

n−→∞
(1−

nX
i=1

P 2ii/K)H
−1
p ΛH

−1
P .

For the variance of LIML assume that third and fourth moments obey the same restrictions

that they do under normality. Then from Hansen, Hausman, and Newey (2006), for

H = limn−→∞
Pn

i=1 ziz
0
i/n and τ = limn−→∞K/n, the asymptotic variance of LIML is

V ∗ = σ2H−1 + (1− τ)−1H−1ΛH−1.

With many weak instruments, where τ = 0 and maxi≤n Pii −→ 0, we will have

HP = H̃P = H and limn−→∞
P

i P
2
ii/K −→ 0, so that the asymptotic variances of RLML

and LIML are the same and equal to σ2H−1 +H−1ΛH−1. This case is most important

for practice, where K is usually very small relative to n. In such cases we would expect

from the asymptotic approximation to find that the variance of LIML and RLML are very

similar.

In the many instruments case where K and μ2n grow as fast as n we can compare the

leading terms in the asymptotic variances. It follows from asymptotic efficiency of least

squares relative to instrumental variables, with regressors zi and instruments (1− Pii)zi,

that

H−1 ≤ H−1P H̃PH
−1
P

in the positive semi-definite sense. Thus the leading term in the LIML asymptotic variance

is smaller than the leading term in the RLML asymptotic variance. Furthermore, it follows

from the results of Chioda and Jansson (2006) that the entire LIML asymptotic variance

is less than the RLML asymptotic variance, so that there is some efficiency loss in RLML

under homoskedasticity. As previously mentioned, this loss does not seem very important

for practice where n tends to be small relative to K.
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It remains to show consistency of the asymptotic variance estimator. This is straigh-

forward to do under many weak instruments, and will be included in the next version of

this paper. For many instruments, it appears that the variance estimator is not consistent.

Again, the many weak instrument case seems most relevant for practice.

7. Simulations

A Monte Carlo study provides some evidence about how RLML and RFLL behave. To

describe the design, let the first column of Z (denoted Z·1)be drawn from standard normal

distribution; the second column to the (K−1)th column of Z are constructed by Zi1 ·wir,

where wir = 1 with probability .5 and wir = 0 with probability .5 for 2 ≤ r ≤ K − 1 and

wi1, ..., wi,K−2 are independent, and ZiK = 1. The reduced form is given by X = Z·1+ v,

where vi˜N(0, 1). The structural disturbance is given by

ui = ρvi + ηi, ηi˜N(0, Z
2
i1).

We also set ρ = .3 and n = 800. This is a design that will lead to LIML being inconsistent

with many instruments.

Below we report results on median bias and the range between the .05 and .95 quantiles

for LIML, RLML, Jackknife, . Interquartile range results were similar. We find that LIML

is biased when there are many instruments, RLML is not, and that RLML also has smaller

spread than LIML. Here the performance of all the jackknife estimators is similar, because

identification is quite strong.

Median Bias
K LIML RFLL RLML JK
10 −.0064 .0001 .0001 −.0011
20 −.0140 −.0010 −.0010 −.0020
50 −.0362 .0005 .0005 −.0005
100 −.0873 .0001 .0001 −.0002

Nine Decile Range; .05 to .95.
K LIML RFLL RLML JK
10 −.2083 .2000 .2000 .1994
20 −.2166 .1991 .1992 .2010
50 −.2341 .1931 .1931 .1936
100 −.0873 .1935 .1935 .1940
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8. Appendix: Proofs of Theorems.

Throughout, let C denote a generic positive constant that may be different in different

uses and let M, CS, and T denote the conditional Markov inequality, the Cauchy-Schwartz

inequality, and the Triangle inequality respectively. The first Lemma is proved in Hansen,

Hausman, and Newey (2006).

Lemma A0: If Assumption 2 is satisfed and
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→

0 then
°°°S0n(δ̂ − δ0)/μn

°°° p−→ 0.

The next three results are proven in Chao, Newey, and Swanson (2006).

Lemma A1: If (wi, vi), (i = 1, ..., n) are independent, wi and vi are scalars, and P is

symmetric, idempotent of rank K then for w̄ = E[(w1, ..., wn)
0] and v̄ = E[(v1, ..., vn)

0],X
i6=j

Pijwivj =
X
i6=j

Pijw̄iv̄j +Op(K
1/2max

i≤n
[V ar(wi)V ar(vi)]

1/2)

+Op(max
i≤n

V ar(vi)
1/2[w̄0w̄]1/2 +max

i≤n
V ar(wi)

1/2[v̄0v̄]1/2).

Lemma A2: If i) P is a symmetric, idempotent matrix with rank(P ) = K, Pii ≤

C < 1; ii) (W1n, V1, u1), ..., (Wnn, Vn, un) are independent and Dn =
Pn

i=1E[WinW
0
in]

is bounded; iii) E [W 0
in] = 0, E[Vi] = 0, E[ui] = 0 and there exists a constant C such

that E[kVik4] ≤ C, E[u4i ] ≤ C; iv)
Pn

i=1E[kWink4] −→ 0; (v) for Σi = V ar((ui, v
0
i)),

λmin (Σi) ≥ C; vi) K −→∞; then for Σ̄n def
=
P

i6=j P
2
ij

¡
E[ViV

0
i ]E[u

2
j ] +E[Viui]E[ujV

0
j ]
¢
/K

and for Ξn = c01nDnc1n + c02nΣ̄nc2n > C with c1n and c2n being any sequence of bounded

nonzero vectors, it follows that

Yn = Ξ−1/2n (
nX
i=1

c01nWin +

c02n
X
i6=j

ViPijuj/
√
K)

d−→ N (0, 1) .

For the next result let S̄n = diag(μn, Sn), X̃ = [u,X]S̄−10n , and Hn =
Pn

i=1(1 −

Pii)ziz
0
i/n.

Lemma A3: If Assumptions 1-4 are satisfied and
√
K/μ2n −→ 0 thenX

i6=j
X̃iPijX̃

0
j = diag(0,Hn) + op(1).

In what follows it is useful to proved directly that the RLML estimator δ̂ satisfies

S0n(δ̂ − δ0)/μn
p−→ 0.
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Lemma A4: If Assumptions 1-4 are satisfied then S0n(δ̂ − δ0)/μn
p−→ 0.

Proof: Let Ῡ = [0,Υ], V̄ = [u, V ], X̄ = [y,X], so that X̄ = (Ῡ+ V̄ )D for

D =

∙
1 0
δ0 I

¸
.

Let B̂ = X̄ 0X̄/n. Note that kSn/
√
nk ≤ C. Then by tr(Ῡ0Ῡ) = tr(Snz

0zS0n)/n and

E[V̄ V̄ 0] ≤ CIn,

E[
°°Ῡ0V̄ °°2 /n2] = tr(Ῡ0E[V̄ 0V̄ ]Ῡ)/n2 ≤ Ctr(Snz

0zS0n)/n
3 −→ 0,

so that Ῡ0V̄ /n
p−→ 0 by M. Let Ω̄n =

Pn
i=1E[V̄iV̄

0
i ]/n = diag(

Pn
i=1 Ω

∗
i /n, 0) ≥ Cdiag(IG−G2+1, 0)

by Assumption 3. By M we have V̄ 0V̄ /n− Ω̄n
p−→ 0, so it follows that w.p.a.1.

B̂ = (V̄ 0V̄ + Ῡ0V̄ + V̄ 0Ῡ+ Ῡ0Ῡ)/n = Ω̄n + Ῡ
0Ῡ/n+ op(1) ≥ Cdiag(IG−G2+1, 0).

Since Ω̄n + Ῡ0Ῡ/n is bounded, it follows that w.p.a.1,

C ≤ (1,−δ0)B̂(1,−δ0)0 = (y −Xδ)0(y −Xδ)/n ≤ C
°°(1,−δ0)°°2 = C(1 + kδk2).

Next, as defined preceding Lemma A3 let S̄n = diag(μn, Sn) and X̃ = [u,X]S̄−10n .

Note that by Pii ≤ C < 1 and uniform nonsingularity of
Pn

i=1 ziz
0
i/n we have Hn ≥

(1− C)
Pn

i=1 ziz
0
i/n ≥ CIG. Then by Lemma A3, w.p.a.1.

Â
def
=
X
i6=j

PijX̃iX̃
0
j ≥ Cdiag(0, IG),

Note that S̄0nD(1,−δ0)0 = (μn, (δ0 − δ)0Sn)
0 and X̄i = D0S̄nX̃i. Then w.p.a.1 for all δ

μ−2n
X
i6=j

Pij(yi −X 0
iδ)(yj −X 0

jδ) = μ−2n (1,−δ0)

⎛⎝X
i6=j

PijX̄iX̄
0
j

⎞⎠ (1,−δ0)0
= μ−2n (1,−δ0)D0S̄nÂS̄

0
nD(1,−δ0)0 ≥ C kS0n(δ − δ0)/μnk

2
.

Let Q̂(δ) = (n/μ2n)
P

i6=j(yi−X 0
iδ)Pij(yj−X 0

jδ)/(y−Xδ)0(y−Xδ). Then by the upper

left element of the conclusion of Lemma A3 μ−2n
P

i6=j uiPijuj
p−→ 0. Then w.p.a.1

¯̄̄
Q̂(δ0)

¯̄̄
=

¯̄̄̄
¯̄μ−2n X

i6=j
uiPijuj/

nX
i=1

u2i /n

¯̄̄̄
¯̄ p−→ 0.

Since δ̂ = argminδ Q̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0).Therefore w.p.a.1, by (y − Xδ)0(y −

Xδ)/n ≤ C(1 + kδk2), it follows that

0 ≤

°°°S0n(δ̂ − δ0)/μn

°°°2
1 +

°°°δ̂°°°2 ≤ CQ̂(δ̂) ≤ CQ̂(δ0)
p−→ 0,
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implying
°°°S0n(δ̂ − δ0)/μn

°°°2 /µ1 + °°°δ̂°°°2¶ p−→ 0. Lemma A0 gives the conclusion. Q.E.D.

Lemma A5: If Assumptions 1-4 are satisfied, α̂ = op(μ
2
n/n), and S0n(δ̂−δ0)/μn

p−→ 0

then for Hn =
Pn

i=1(1− Pii)ziz
0
i/n,

S−1n

⎛⎝X
i6=j

XiPijX
0
j − α̂X 0X

⎞⎠S−10n = Hn + op(1), S
−1
n (

X
i6=j

XiPij ûj − α̂X 0û)/μn
p−→ 0.

Proof: By M X 0X = Op(n) and X 0û = Op(n). Therefore, by
°°S−1n °° = O(μ−1n ),

α̂S−1n X 0XS−10n = op(μ
2
n/n)Op(n/μn)

p−→ 0, α̂S−1n X 0û/μn = op(μ
2
n/n)Op(n/μn)

p−→ 0.

Lemma A3 (lower right hand block) and T then give the first conclusion. By Lemma A3

(off diagonal) we have S−1n
P

i6=j XiPijuj/μn
p−→ 0, so that

S−1n
X
i6=j

XiPij ûj/μn = op(1)−

⎛⎝S−1n
X
i6=j

XiPijX
0
jS
−10
n

⎞⎠S0n(δ̂ − δ0)/μn
p−→ 0.Q.E.D.

Lemma A6: If Assumptions 1 - 4 are satisfied and S0n(δ̂−δ0)/μn
p−→ 0 then

P
i6=j ûiPij ûj/û

0û =

op(μ
2
n/n).

Proof: Let β̂ = S0n(δ̂ − δ0)/μn and ᾰ =
P

i6=j uiPijuj/u
0u = op(μ

2
n/n). Note that

σ̂2u = û0û/n satisfies 1/σ̂2u = Op(1) by M. By Lemma A5 with α̂ = ᾰ we have H̃n =

S−1n (
P

i6=j XiPijX
0
j − ᾰX 0X)S−10n = Op(1) and Wn = S−1n (X 0Pu− ᾰX 0u)/μn

p−→ 0, so

P
i6=j ûiPij ûj

û0û
− ᾰ =

1

û0û

⎛⎝X
i6=j

ûiPij ûj −
X
i6=j

uiPijuj − ᾰ (û0û− u0u)

⎞⎠
=

μ2n
n

1

σ̂2u

³
β̂
0
H̃nβ̂ − 2β̂

0
Wn

´
= op(μ

2
n/n),

so the conclusion follows by T. Q.E.D.

Proof of Theorem 1: For RLML the conclusion follows from Lemma A4. For RFLL,

note that α̃ = op(μ
2
n/n), so by the formula for RFLL, α̂ = α̃+Op(1/n) = op(μ

2
n/n). Then

by Lemma A4 we have

S0n(δ̂ − δ0)/μn = S0n(
X
i6=j

XiPijX
0
j − α̂X 0X)−1

X
i6=j

(XiPijuj − α̂X 0u) /μn

= [S−1n (
X
i6=j

XiPijX
0
j − α̂X 0X)S−10n ]−1S−1n

X
i6=j

(XiPijuj − α̂X 0u) /μn

= (Hn + op(1))
−1op(1)

p−→ 0.Q.E.D.
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Let α̃(δ̄) =
P

i6=j ui(δ)Pijuj(δ)/u(δ)
0u(δ) and

D̂(δ) = ∂[
X
i6=j

ui(δ)Pijuj(δ)/2u(δ)
0u(δ)]/∂δ =

X
i6=j

XiPijuj(δ)− α̃(δ)X 0u(δ).

Lemma A7: If Assumptions 1 - 4 are satisfied and S0n(δ̄ − δ0)/μn
p−→ 0 then

−S−1n [∂D̂(δ̄)/∂δ]S−10n = Hn + op(1).

Proof: Let ū = u(δ̄) = y−Xδ̄, γ̄ = X 0ū/ū0u, and ᾱ = α̃(δ̄). Then differentiating gives

−∂D̂
∂δ
(δ̄) =

X
i6=j

XiPijX
0
j − ᾱX 0X − γ̄

X
i6=j

ūiPijX
0
j −

X
i6=j

XiPij ūj γ̄
0 + 2(ū0ū)ᾱγ̄γ̄0

=
X
i6=j

XiPijX
0
j − ᾱX 0X + γ̄D̂(δ̄)0 + D̂(δ̄)γ̄0,

where the second equality follows by D̂(δ̄) =
P

i6=j XiPij ūj − (ū0ū)ᾱγ̄. By Lemma A6 we

have ᾱ = op(μ
2
n/n). By standard arguments, γ̄ = Op(1) so that S−1n γ̄ = Op(1/μn). Then

by Lemma A5 and D̂(δ̄) =
P

i6=j XiPij ūj − ᾱX 0ū

S−1n

⎛⎝X
i6=j

XiPijX
0
j − ᾱX 0X

⎞⎠S−10n = Hn + op(1), S
−1
n D̂(δ̄)γ̄0S−10n

p−→ 0,

The conclusion then follows by T. Q.E.D.

Lemma A7: If Assumptions 1-4 are satisfied then for γn =
P

iE[Viui]/
P

iE[u
2
i ] and

Ṽi = Vi − γnui

S−1n D̂(δ0) =
nX
i=1

(1− Pii)ziui/
√
n+ S−1n

X
i6=j

ṼiPijuj + op(1).

Proof: Note that for W = z0(P − I)u/
√
n by I − P idempotent and E[uu0] ≤ CIn we

have

E[WW 0] ≤ Cz0(I − P )z/n = C(z − Zπ0n)
0(I − P )(z − Zπ0n)/n

≤ CI
nX
i=1

kzi − πnZik2 /n = O(∆2n) −→ 0,

so z0(P − I)u/
√
n = op(1). Also, by M, γ̃ = X 0u/u0u = γn + Op(1/

√
n). Therefore, it

follows by Lemma A1 and D̂(δ0) =
P

i6=j XiPijuj − u0uα̃(δ0)γ̃

S−1n D̂(δ0) =
X
i6=j

ziPijuj/
√
n+ S−1n

X
i6=j

ṼiPijui − S−1n (γ̂ − γn)u
0uα̃(δ0)

= z0Pu/
√
n−

X
i

Piiziui/
√
n+ S−1n

X
i6=j

ṼiPijuj +Op(1/
√
nμn)op(μ

2
n/n)

=
nX
i=1

(1− Pii)ziui/
√
n+ S−1n

X
i6=j

ṼiPijuj + op(1).Q.E.D.
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Proof of Theorem 2: Consider first the case where δ̂ is RLML. Then μ−1n S0n(δ̂−δ0)
p−→

0 by Theorem 1, implying δ̂
p−→ δ0. The first-order conditions for LIML are D̂(δ̂) = 0.

Expanding gives

0 = D̂(δ0) +
∂D̂

∂δ

¡
δ̄
¢
(δ̂ − δ0),

where δ̄ lies on the line joining δ̂ and δ0 and hence β̄ = μ−1n S0n(δ̄ − δ0)
p−→ 0. Then by

Lemma A6, H̄n = S−1n [∂D̂(δ̄)/∂δ]S−10n = HP + op(1). Then ∂D̂(δ̄)/∂δ is nonsingular

w.p.a.1 and solving gives

S0n(δ̂ − δ) = −S0n[∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1n S−1n D̂(δ0).

Next, apply Lemma A3 with Vi = Ṽi and

Win = (1− Pii)ziui/
√
n,

By ui having bounded fourth moment, and Pii ≤ 1,
nX
i=1

E
h
kWink4

i
≤ C

nX
i=1

kzik4 /n2 −→ 0.

By Assumption 6, we have
Pn

i=1E[WinW
0
in] −→ ΣP .Let Γ = diag (ΣP ,Ψ) and

Un =

µ Pn
i=1WinP
i6=j ṼiPijuj/

√
K

¶
.

Consider c such that c0Γc > 0. Then by the conclusion of Lemma A2 we have c0Un
d−→

N(0, c0Γc). Also, if c0Γc = 0 then it is straightforward to show that c0Un
p−→ 0. Then it

follows that

Un =

µ Pn
i=1WinP
i6=j Ṽipijuj/

√
K

¶
d−→ N(0,Γ),Γ = diag (ΣP ,Ψ) .

Next, we consider the two cases. Case I) hasK/μ2n bounded. In this case
√
KS−1n −→ S0,

so that

Fn
def
= [I,

√
KS−1n ] −→ F0 = [I, S0], F0ΓF

0
0 = ΣP + S0ΨS

0
0.

Then by Lemma A7,

S−1n D̂(δ0) = FnUn + op(1)
d−→ N(0,ΣP + S0ΨS

0
0),

S0n(δ̂ − δ0) = −H̄−1n S−1n D̂(δ0)
d−→ N(0,ΛI).
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In case II we have K/μ2n −→∞. Here

(μn/
√
K)Fn −→ F̄0 = [0, S̄0], F̄0ΓF̄

0
0 = S̄0ΨS̄

0
0

and (μn/
√
K)op(1) = op(1). Then by Lemma A7,

(μn/
√
K)S−1n D̂(δ0) = (μn/

√
K)FnUn + op(1)

d−→ N(0, S̄0ΨS̄
0
0),

(μn/
√
K)S0n(δ̂ − δ0) = −H̄−1n (μn/

√
K)S−1n D̂(δ0)

d−→ N(0,ΛII).Q.E.D.

Lemma A8: If (wi, vi), (i = 1, ..., n) are independent, wi and vi are scalars, and P is

symmetric, idempotent of rank K then for w̄ = E[(w1, ..., wn)
0] and v̄ = E[(v1, ..., vn)

0],X
i6=j

P 2ijwivj =
X
i6=j

P 2ijw̄iv̄j +Op(K
1/2max

i≤n
[V ar(wi)V ar(vi)]

1/2).

Proof. Let w̃i = wi − w̄i and ṽi = vi − v̄i. Note thatX
i6=j

P 2ijwivj −
X
i6=j

P 2ijw̄iv̄j =
X
i6=j

P 2ijw̃iṽj +
X
i6=j

P 2ijw̃iv̄j +
X
i6=j

P 2ijw̄iṽj .

Let Dn = maxi≤n[V ar(wi)V ar(vi)]. Note that
P

i6=j Pijw̃iṽj =
P

j<i Pij(w̃iṽj + w̃j ṽi).

Also,

E

⎡⎢⎣
⎛⎝X

j<i

P 2ijw̃iṽj

⎞⎠2
⎤⎥⎦ = nX

i=1

nX
s=1

X
j<i

X
t<s

P 2ijP
2
stE [w̃iṽjw̃sṽt] .

Note that in this sum, that i 6= j and that if i = t then j 6= s. Therefore the only nonzero

terms are i = s and j = t, so by CS and
P

i P
2
ij = Pjj ≤ 1, implying P 2ij ≤ 1,

E

⎡⎢⎣
⎛⎝X

j<i

P 2ijw̃iṽj

⎞⎠2
⎤⎥⎦ = nX

i=2

X
j<i

P 4ijE
£
w̃2i
¤
E
£
ṽ2j
¤
≤ Dn

X
i,j

P 2ij = DnK.

Then by M,
P

i6=j P
2
ijw̃iṽj = Op(D

1/2
n K1/2). Let w̃ = (w̃1, ..., w̃n)

0. Note that for P̃ =

[P 2ij ]i,j , X
i6=j

P 2ijw̃iv̄j = v̄0P̃ w̃ −
X
i

P 2iiw̃iv̄i.

By independence across i we have E[w̃w̃0] ≤ maxi≤n V ar(wi)In, so that by
P

i P
2
ik = Pkk

E[(v̄0P̃ w̃)2] = v̄0P̃E[w̃w̃0]P̃ v̄ ≤ max
i≤n

V ar(wi)
X
i,j,k

v̄iv̄jP
2
ikP

2
jk

≤ D2
n

X
k

(
X
i

P 2ik)(
X
j

P 2jk) = D2
n

X
k

P 2kk ≤ D2
nK,

E[

ÃX
i

P 2iiw̃iv̄i

!2
] =

X
i

P 4iiE[w̃
2
i ]v̄

2
i ≤ D2

nK.
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Then by M we have v̄0P̃ w̃ = Op(D
1/2
n K1/2) and

P
i P

2
iiw̃iv̄i = Op(D

1/2
n K1/2), so by T it

follows that X
i6=j

P 2ijw̃iv̄j = Op(D
1/2
n K1/2).

It follows similarly that
P

i6=j P
2
ijw̄iṽj = Op(D

1/2
n K1/2), so the conclusion follows by T.

Q.E.D.
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