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1 INTRODUCTION

Data with an underlying factor structure are increasingly used in empirical macroeco-

nomics and finance. Often these data consist of time series of observations for multiple

cross-sectional units (assets, portfolios, regions or industries). Quite a few new estimation

strategies have appeared in the empirical literature that use both cross-sectional and time

series variation in order to estimate global structural parameters. Often the parameter of

interest arises from aggregation or estimation using cross-sectional variation of individual

parameters for each entity. One example of such a structure is linear factor pricing model

in asset pricing (Fama & MacBeth 1973 and Shanken 1992), where for estimation we usu-

ally use time series of excess returns for a number of portfolios or assets priced by a small

number of risk factors. Each portfolio or stock may have its own (heterogeneous) expo-

sure to risk, often referred to as betas, which can be estimated separately from time series

observations for each portfolio. The parameter of interest, a risk premium, is defined as

the coefficient of proportionality in the cross-sectional relation between the average excess

return on a portfolio and its individual beta.

A vast majority of macroeconomic shocks are only weakly identified via structural

VARs that use only time series observations on leading macro variables. A new approach

to the estimation of causal effects of a macro shock on the economy is to use cross-sectional

variation in data on regions, countries or industries. For example, Serrato & Wingender

(2016) use cross-sectional variation in federal spending programs due to a Census shock

to identify the causal impact of government spending on the economy. Cross-sectional

variation among counties in government spending and in the accuracy of census-based

estimates of population provides a better justified treatment effect framework, allows for

the estimation of local fiscal multipliers, and finally gives a better global estimate of the

fiscal multiplier via aggregation of local multipliers. Hagedorn et al. (2015) estimate

the aggregate effect of unemployment-benefit duration on employment and labor force

participation using cross-sectional differences across US states. Sarto (2018) discusses

how heterogeneous sensitivities of regions to aggregate policy variables, so called micro-

global elasticities, can be used to recover macro elasticities of interest such as, for example,

a fiscal multiplier.

A shared feature of the above-mentioned examples is the use of time-series observa-

tions on multiple entities (stocks, portfolios, counties, states or industries), while data

on those entities are not independent and identically distributed. Moreover, variables

for different entities often display strong co-movements to the extent that the data have
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a factor structure, and estimation of these co-movements is the main goal. Indeed, the

realization of a risk factor in the economy moves returns on all portfolios simultaneously,

while a federal fiscal shock moves spending in all US counties, though in both cases het-

erogeneously so. A valid estimation procedure must explicitly model and account for the

data’s factor structure to the extent that the error terms (or residuals) can be consid-

ered idiosyncratic; see Kleibergen & Zhan (2015) and Anatolyev & Mikusheva (2018) for

how a factor structure that is unaccounted for can lead to misleading results. However,

idiosyncrasy of the errors usually implies only that the correlation among errors for dif-

ferent entities is relatively small and does not introduce first-order bias to the estimation

procedure. Usually, it is not reasonable to assume that errors for different entities are

completely independent; indeed, stocks in the same industry are likely to co-move even

after global-economy risks are removed, while errors for neighboring counties are more

likely to be correlated even after one accounts for federal shocks. At the same time, we

typically want to remain agnostic about the correlation structure of shocks and avoid

their structural modeling as long as this does not introduce biases.

The second typical feature of the above-mentioned examples is the two-step nature

of the estimation procedure, where in the first step we estimate entity-specific coefficients

(risk exposures/betas, local fiscal multipliers, micro-global elasticities) by running a time-

series regression separately for each entity. In the second step, we estimate the global

coefficient of interest by either aggregating entity-specific coefficients (Serrato & Wingen-

der 2016 and Hagedorn et al. 2015), or by running an OLS regression on the cross-section

of entity-specific coefficients (Fama & MacBeth 1973 and Sarto 2018), or by running an

IV regression on the cross-section of entity-specific coefficients (Anatolyev & Mikusheva

2018).

The goal of this paper is to establish central limit theorems (CLTs) and to provide a

tool for establishing asymptotic normality of estimates obtained in such two-step estima-

tion procedures and for finding ways to do asymptotically correct inference, while being

flexible in modeling the cross-sectional dependence of errors. The main difficulty here is

that even though the second step cross-sectional regression has nearly uncorrelated errors

(which is usually sufficient to obtain consistency of the two-step estimator), this condi-

tion is usually insufficient for a CLT, which typically requires that stronger discipline be

imposed on the dependence structure (such as independence, or a martingale difference

structure, or mixing). Our solution to this problem is to restrict the time series behav-

ior while staying agnostic about the cross-sectional dependence. We assume time-series

independence of idiosyncratic errors, which is consistent with market efficiency for factor
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asset pricing models and the non-predictability of macro shocks in macroeconomic set-

tings. The estimation noise in a two-stage procedure involves aggregation both over time

(from the first step) and over entities (from the second step). We show that under certain

conditions it is sufficient to have a CLT over just one of these directions, and we use the

time-series direction for that.

When the second step uses an OLS or IV estimator, the CLT must adapt to averages

of quadratic forms, as both the second-step-dependent variable and the second stage

regressor/instrument contain first-stage estimation noise. Our CLT has a linear and a

quadratic part. We also note that a need for a CLT for quadratic forms in factor models

sometimes arises for the first-step estimators (e.g., Pesaran & Yamagata 2018) or in higher

order asymptotic derivations (e.g., Bai & Ng 2010).

There is a growing literature that establishes different CLTs while acknowledging the

importance of cross-sectional dependence in the data, which stems from spatial relations

and/or from the presence of common factors. Kuersteiner & Prucha (2013) establish a

CLT for linear sums in a panel data context with growing cross-sectional dimension N and

fixed time-series dimension T allowing for cross-sectional dependence, and Kuersteiner &

Prucha (2020) extend these results to quadratic forms as well. Both papers impose condi-

tional moment restrictions, which allows the authors to construct a martingale difference

sequence in the cross-sectional direction. The main conditional moment restrictions imply

a correct specification of an underlying model, which need not be required by our CLT.

However, the mentioned papers allow more flexibility in modeling the time dependence,

and do not require large T . Another CLT that requires both large N and large T is

established in Hahn et al. (2020) for linear terms only.

This paper also contributes to the literature on the CLT for quadratic forms. Various

types of CLTs for quadratic forms have been previously established and used in the many

instrument literature (see for example, Chao et al. 2012, Hausman et al. 2012, Sølvsten

2020) and many covariate literature (see Cattaneo et al. 2018), as well as in the literature

on semi-parametric estimation (Cattaneo et al. 2014a, 2014b). The CLT used in those

papers are established for the cross-sectional dimension only, and rely heavily on the

independence assumption. We adapt the ideas used in Chao et al. (2012), specifically the

approach of de Jong (1987), to accommodate large cross-sectionally dependent panels; an

alternative approach, known as Stein’s method, is used in Sølvsten (2020).

Our second set of results is related to ways of conducting valid statistical inference.

Under strengthened conditions on the weakness of the cross-sectional correlation of errors,

we show that a conventional variance estimator is consistent, and so the usual asymptotic
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inference can be applied. When such strengthened conditions do not hold, we propose

instead a variant of a wild bootstrap scheme that replicates the original cross-sectional

dependence structure. We also conduct a small simulation experiment that provides

evidence on the approximation quality of our CLT and on the empirical size and power

of wild bootstrap in a moderately sized panel.

The paper proceeds as follows. Section 2 explains problems with establishing asymp-

totic Gaussianity for two-step and other estimators and test statistics, and shows how

discipline in the time series direction can help. Section 3 introduces assumptions on id-

iosyncratic errors, states central limit theorems for two cases, and discusses the relevance

of those cases to empirical practice. Section 4 discusses estimation of asymptotic vari-

ances for asymptotic inference and alternative inference tools based on the bootstrap.

Section 5 presents a small simulation experiment that reveals properties of asymptotic

and proposed bootstrap inference tools. Section 6 concludes. All proofs appear in the

Appendix.

2 GOALS AND EXAMPLES

Let the data contain observations on many units indexed by i = 1, ..., N, and observed

for multiple time periods t = 1, ..., T. We assume that both N and T increase to infinity

without restrictions on their rates. The goal of this paper is to find the conditions under

which the following statement will hold:

ΞN,T ≡ 1√
N

N∑

i=1

ξi ⇒ N (0,Σξ), (1)

where

ξi =

(
1√
T

∑T
s=1 vsγieis

1
T

∑T
s=1

∑
t<s wsteiteis

)
,

and Σξ is an asymptotic variance matrix. Here, eit are weakly cross-sectionally dependent

entity-specific (idiosyncratic)1 errors with E (eit) = 0. Errors eit are uncorrelated with the

variables vt and wst that are common to all units i = 1, ..., N (more exact conditions are to

appear in the next Section). We assume γi, i = 1, ..., N, to be non-random entity-specific

weights. Further, we want to study the circumstances when one can also consistently

estimate the asymptotic covariance – that is, sufficient conditions for a statement like

1

N

N∑

i=1

ξiξ
′
i

p→ Σξ. (2)

1By idiosyncratic error we mean the factor-removed part of entity-specific variables.
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As we argue below (see Examples 1–3), statements (1) and (2) are often needed in

order to conduct statistical inferences (testing or confidence set construction) about a

structural parameter, λ, which is estimated in two steps. We consider a case when in the

first step a researcher estimates a parameter βi for each entity/unit/state i = 1, ..., N ,

typically via running OLS or IV time series regressions. A typical linear estimator can

be written as β̂i = βi + εi, where the estimation error has the structure εi =
(
1 +

op(1)
)
1
T

∑T
t=1 vteit, with the op(1) term uniformly small over the units. In this setting, vt

is either a regressor common to all entities, or a common systematic part of entity-specific

regressors that have a factor structure.2

Example 1. There is a variety of estimation approaches that can be used at the second

step. The simplest of them is weighted averaging of the first step estimates, viz. λ̂ =
1
N

∑N
i=1 γiβ̂i. Such an estimator is used in Sarto (2018). In order to justify asymptotic

Gaussianity of λ̂ and to make statistical inferences about λ, one needs statements on the

asymptotic behavior of

√
T

N

N∑

i=1

γiεi =
1√
N

N∑

i=1

1√
T

T∑

t=1

vtγieit.

Note that the last expression has the structure of normalized averages stated as the first

component of ΞN,T from equation (1). Such ‘linear’ terms, where only the first component

of ΞN,T is involved, are very common in asymptotic derivations in factor models (e.g., Bai

& Ng 2006, 2010).

Example 2. The second estimation step may invoke a more complex estimator involving

a sample covariance between multiple first stage estimators or estimators for multiple first

stage parameters. For example, the Fama-MacBeth procedure employs the data on excess

returns to a set of portfolios {rit, i = 1, ..., N, t = 1, ..., T} and time series of a risk factor

{Ft, t = 1, ..., T}. Namely, it uses two collections of first stage parameters – the average

return on a portfolio β
(1)
i = Erit via the sample average return β̂

(1)
i = 1

T

∑T
t=1 rit, and the

2Our setting can accommodate entity-specific regressors, say vit, that have a factor structure them-
selves. Assume that vit = aiut + uit, where ut is a common co-movement in the regressors and uit is
idiosyncratic. Then

εi =
1

T

T∑

t=1

viteit =
1

T

T∑

t=1

ut(aieit) +
1

T

T∑

t=1

uiteit =
1

T

T∑

t=1

vte
∗
it,

where vt = (ut, 1)
′ and e∗it = (aieit, uiteit).
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risk exposure of a portfolio β
(2)
i = var(Ft)

−1cov(rit, Ft) via the time series OLS regression

of rit on Ft resulting in an estimate β̂
(2)
i . At the second stage of the Fama-MacBeth

procedure, one runs the OLS regression of the sample average return β̂
(1)
i on the portfolio

risk exposure estimated at the first step β̂
(2)
i . In this case,

λ̂ =
( N∑

i=1

β̂
(2)
i β̂

(2)
i

)−1
N∑

i=1

β̂
(1)
i β̂

(2)
i ,

the second step involves two sample covariances. If one wants to derive the asymptotic dis-

tribution of λ̂, one needs to establish the asymptotic distribution for a properly normalized

sample covariance of the two first step estimators 1
N

∑N
i=1 β̂

(1)
i β̂

(2)
i , where β̂

(j)
i = β

(j)
i +ε

(j)
i ,

with the estimation error having the structure ε
(j)
i =

(
1 + op(1)

)
1
T

∑T
t=1 v

(j)
t eit, the term

op(1) being uniform in i.

The normalized sample covariance of the two first step estimators contains several

terms:

1√
N

N∑

i=1

(
β̂
(1)
i β̂

(2)
i − E

[
β̂
(1)
i β̂

(2)
i

])

=
1√
N

N∑

i=1

(
β
(1)
i ε

(2)
i + β

(2)
i ε

(1)
i

)
+

1√
N

N∑

i=1

(
ε
(1)
i ε

(2)
i − E

[
ε
(1)
i ε

(2)
i

])
. (3)

The first term on the right-hand-side of equation (3) is similar to a weighted average of

first step estimators and has the form of the first component of ΞN,T (treating β
(j)
i as

constants similar to constants γi). The second term in equation (3) is more complicated

and calls for a Central Limit Theorem for quadratic forms:

T√
N

N∑

i=1

(
ε
(1)
i ε

(2)
i − E

[
ε
(1)
i ε

(2)
i

])

=
1

T
√
N

N∑

i=1

T∑

t=1

v
(1)
t v

(2)
t

(
e2it − E[e2it]

)
+

1√
N

N∑

i=1

1

T

T∑

s=1

∑

t<s

wsteiteis,

where wst = v
(1)
s v

(2)
t + v

(1)
t v

(2)
s . Here the first term can be treated as the first component,

and the second term as the second component of ΞN,T .

Example 3. Anatolyev & Mikusheva (2018) propose a split-sample estimator as an

alternative to the Fama-MacBeth procedure for factor asset pricing. There are three sets

of parameter estimates produced at the first stage: the sample average return β̂
(1)
i =
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1
T

∑T
t=1 rit and two estimates of the portfolio risk exposure computed as OLS estimates

in regressions of rit on Ft on different sub-samples, say, β̂
(2)
i and β̂

(3)
i . In our notation, the

usage of a sub-sample is accommodated by setting vt = 0 for those t not in the currently

used sub-sample. The second step IV estimator is constructed as an IV estimator in the

regression of β̂
(1)
i on β̂

(2)
i using β̂

(3)
i as instrument. That is,

λ̂ =
( N∑

i=1

β̂
(3)
i β̂

(1)
i

)−1
N∑

i=1

β̂
(3)
i β̂

(2)
i .

In order to make inferences on λ, one needs to obtain the asymptotic distribution of

sample covariances between different first step estimates. Statements like (1) and (2) are

instrumental to accomplish this.

The configuration in ΞN,T and a need for statements (1) and (2) occur in other situ-

ations as well.

Example 4. Pesaran & Yamagata (2018) suggest a new test for factor pricing models

that allows many portfolios to be considered simultaneously (with N and T both diverging

to infinity). The hypothesis of interest H0 : αi = 0 for all i = 1, ..., N , where αi is a pricing

error for the portfolio i. To estimate the pricing errors the authors use OLS estimates α̂i.

A large number of portfolios N does not allow one to establish join Gaussianity of all α̂i

or to consistently estimate their covariance. Pesaran & Yamagata (2018) propose to test

the hypothesis of interest using statistics based on a weighted sum of squares of α̂i. They

create a properly normalized statistic of the form

N∑

i=1

(
α̂2
i

σ2
i

− 1

)
,

where σ2
i are variances of pricing errors. This statistic is directly related to the sample

variance of the first step estimator, and a statement of its asymptotic Gaussianity directly

follows from (1) by the same logic as stated above. Pesaran & Yamagata (2018) develop

a CLT for quadratic forms that can be applied in this setting. They make an assumption

that the idiosyncratic components can be filtered to make them cross-sectionally inde-

pendent.3 Here we propose an alternative version of CLT that can be applied under less

restrictive assumptions on the cross-sectional dependence of eit’s.

3See Assumptions 2 and 3 in Pesaran & Yamagata (2018).
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Example 5. A data-rich IV environment of Bai & Ng (2010) is another example where

our linear-quadratic CLTs can be useful. The authors consider an IV setup with many

instruments in a panel, where the number of instruments, N , is potentially higher than

the number of observations, T . The instruments are generated by a factor model zit =

λ′
iFt+eit, with Ft and eit independent of the structural error εt, and time-series and cross-

sectional dependence in eit is allowed, though restricted. Bai & Ng (2010) consider the

bias-corrected GMM estimator that corrects for inconsistency of the baseline GMM. It is

consistent when N/T = O(1), however, its asymptotic Gaussianity is established under a

more restrictive assumption when N/T = o(1). The challenge is that when N/T = O(1),

the asymptotic expansion for this estimator has, in addition to a linear term, a quadratic

form in the idiosyncratic components eit similar to the second component of ΞN,T . Thus,

using statement (1), an asymptotic theory could be developed for the bias-corrected GMM

estimator without having to impose N/T = o(1).

In most of these examples, the set of idiosyncratic components {eit, i = 1, ..., N, t =

1, ..., T} cannot be regarded independent and/or identically distributed. In most realistic

applications, one is usually willing to assume that eit do not have a strong (detectable)

factor structure, but still allow for some correlation between different units, which would

not affect consistency. For example, it is reasonable to think that stocks of firms in the

same industry or of the same size may react to some local shocks and be correlated,

though when averaged over all stocks (and all industries), this co-movement of returns

would have no first-order impact on estimation.

Our attempt to be agnostic with regard to possible cross-sectional correlation among

errors and to avoid explicit modeling of its structure whenever possible comes at a cost

of more restrictive time series assumptions. In many applications of interest, it is more

credible to impose independence assumptions in a time-series direction rather than in

a cross-sectional direction. For example, the efficient market hypothesis implies mean

non-predictability of excess returns given past history, which is equivalent to a martingale

difference property for the errors. The definition of shocks in macroeconomics similarly

presumes their time-series independence. In this paper, we assume time-series indepen-

dence, which in some cases may be weakened to the martingale difference property or

stationarity with some proper mixing condition, but we do not pursue this generalization

here.
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3 CENTRAL LIMIT THEOREM

In this paper we consider asymptotics as both cross-sectional and time-series sample sizes,

N and T , increase to infinity. We allow the data-generating process for all variables to

vary with N and T . Define F to be a σ-algebra that contains at least the σ-algebras

generated by the full set of variables {vs, s = 1, ...,∞} and {wst, s, t = 1, ...,∞} for all

s and t. It may potentially also contain other events related to common shocks and

variables, as long as Assumption 3 stated below is satisfied. We treat γi as non-random

kγ × 1 vectors.

In order to simplify the notation, in what follows we will denote C to be a positive

generic constant, independent of N and T, which may be different in different equations,

but does not depend on or change with N or T . We will use the following notation: for

a square matrix A, we denote by tr(A) its trace, by max ev(A) – its maximal eigenvalue,

and by dg(A) a diagonal matrix of the same size with the elements from the diagonal of

A; ‖ · ‖ is the l2 norm for a vector or the operator norm for a matrix.

Assumption 1 The random kv-vector vs and kw-vector wst are measurable with respect

to the σ-algebra F for all s, t, and

(i) 1
T

∑T
s=1 E (vsv

′
s) → Ωv and 1

T 2

∑T
s=1

∑
t<s E (wstw

′
st) → Ωw, where Ωv and Ωw are

full rank matrices;

(ii) max1≤s≤T E
[
‖vs‖4

]
< C and max1≤t,s≤T E

[
‖wst‖4

]
< C;

(iii) E

[∥∥∥ 1
T 2

∑T
s=1

∑
t<s

(
wstw

′
st − E[wstw

′
st]
)∥∥∥

2
]
→ 0;

(iv) E

[∥∥∥ 1
T

∑T
s=1

(
vsv

′
s − E[vsv

′
s]
)∥∥∥

2
]
→ 0.

Assumption 2 max1≤i≤N ‖γi‖ < C.

Assumption 3 (i) Conditional on F , the random N-vectors et = (e1t, ..., eNt)
′ are

serially independent, and E(et|F) = 0 for all t;

(ii) max1≤i≤N,1≤t≤T E (e4it) < C.

Assumption 1 imposes very mild restrictions on the time-series behavior of the com-

mon (non-entity specific) variables. For example, the part related to vt is trivially satisfied
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if a time series equal to vtv
′
t is weakly stationary with summable auto-covariances. As-

sumption 2 restricts the influence of any one entity in the cross-sectional average and will

eventually contribute to asymptotic negligence of the cross-sectional summands needed

for the CLT. Assumption 3(i) is a restrictive assumption which imposes discipline on the

time-series structure, and the restriction E(et|F) = 0 is a form of strict exogeneity in the

first step regression. Uniform moment boundedness in Assumption 3(ii) is traditional.

Apparently, Assumptions 1, 2 and 3 are insufficient to establish a central limit theo-

rem, and we need to put some restrictions on the cross-sectional dependence and depen-

dence between idiosyncratic errors and common variables. Indeed, we will use a change

of summation ordering:

1√
N

N∑

i=1

ξi =




1√
T

∑T
s=1 vs

(
1√
N

∑N
i=1 γieis

)

1
T

∑T
s=1

∑
t<s wst

(
1√
N

∑N
i=1 eiteis

)

 ,

and establish asymptotic convergence in the time-series direction. In order to apply a

CLT in the time series direction we need some sort of asymptotic negligibility of sum-

mands with different time indexes, in particular, of terms like
{
vs(

1√
N

∑N
i=1 γieis)

}
s
and{

wst(
1√
N

∑N
i=1 eiteis)

}
s,t
. Our goal is to provide low-level assumptions. There is a trade-off

in how much dependence of idiosyncratic errors across entities and how much dependence

between idiosyncratic errors and common variables can be allowed. Below we consider two

particular cases. In the first case, full independence between the eit’s and F is assumed;

as a result, we can be agnostic about the structure of cross-sectional dependence, the

corresponding assumptions about it are relatively mild. In the second case, we allow for

conditional heteroscedasticity in eit that can be related to some common variables from

F producing dependence in higher-order conditional moments. This flexibility comes at

the cost of imposing some structure on the cross-sectional behavior of eit.

3.1 Independence from common variables

Assumption 4 (i) The errors et = (e1t, ..., eNt)
′, t = 1, . . . , T are independent from

the σ-algebra F and identically distributed across t;

(ii) For the N×N covariance matrix EN,T = E (ete
′
t), lim supN,T→∞max ev (EN,T ) < ∞,

and 1
N
tr
(
E2
N,T

)
→ a < ∞;

(iii) 1
N
γ′EN,Tγ → Γσ, where Γσ is full rank;

(iv) 1
N2

∑N
i1=1

∑N
i2=1

∑N
i3=1

∑N
i4=1 |E (ei1tei2tei3tei4t)| < C.
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Theorem 3.1 Under Assumptions 1, 2, 3 and 4, the central limit theorem stated in

equation (1) holds with Σξ =

(
ΣV 0
0 ΣW

)
, where ΣV = Γσ ⊗ Ωv and ΣW = aΩw.

Numerous papers that establish inferences in factor models commonly assume that

the set of factors is independent from the set of idiosyncratic errors, as in Assumption

4(i), though cross-sectional dependence of errors is allowed; see, for example, Assumption

D in Bai & Ng (2006). We intended for the first part of Assumption 4(ii) to impose weak

cross-sectional dependence as expressed by the covariance matrix; in particular, it means

that no strong factor structure is left in the errors; similar assumptions appear in Onatski

(2012) and Bai & Ng (2006). The convergence of the trace in Assumptions 4(ii) and 4(iii)

is needed for the asymptotic covariance matrix to be properly defined.

Assumption 4(iv) is another way to restrict pervasive dependence in multiple variables,

in particular, precluding outliers to realize in too many error terms simultaneously. For

example, imagine that the cross-sectional dependence is induced by several groups with

a factor structure, e.g., stock returns are correlated because there are industry-specific

shocks and geography-specific shocks. Imagine that there are a finite number, say G,

groups, indexed by g = 1, ..., G, which may be overlapping, with each having independent

shocks fg,t at time t. Stock i has non-zero loading πi,g only if it belongs to group g. Let

the set of groups, to which i belongs, be denoted by G(i). That is,

eit =
∑

g∈G(i)

πi,gfg,t + ηit,

where ηit’s are independent both cross-sectionally and across time and have finite fourth

cumulants. Then, Assumption 4(iv) is essentially equivalent to the following two condi-

tions: E(f 4
g,t) < C and 1

N

(∑N
i=1 |πi,g|

)2
< C for any g = 1, ..., G. Thus, for this example,

essentially Assumption 4(iv) imposes that the factors fg,t do not produce outliers too

often expressed as the moment condition and a statement about pervasiveness.

One of the important steps in the proof of Theorem 3.1 verifies asymptotic negligibility

of time-series summands by checking boundedness of the fourth moments of the cross-

sectional sums 1√
N

∑N
i=1 γieis and 1√

N

∑N
i=1 eiteis; that imposes the main way we restrict

cross-sectional dependence. The fourth cumulant conditions are reminiscent of those in

de Jong (1987), which we follow while proving our CLT using Heyde & Brown (1970).

There are alternative CLTs for quadratic forms such as Rotar’ (1973) that imposes weaker

moment conditions on the summands but stricter assumptions on the negligibility of

coefficients and eigenvalues of the quadratic form. In our case, following them would

require imposing stronger assumptions on the variables wst, which we would like to avoid.
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Another CLT for quadratic forms for time series data can be obtained using Bhansali et

al. (2007). The book by Giraitis et al. (2012) has a chapter on this subject and allows

for long memory time series as well.

3.2 Conditional heteroscedasticity

Assumption 4(i) of independence is much stronger than Assumption 3(i) about exogeneity:

it does not allow higher conditional moments of eit to co-move with the common variables;

in particular, it imposes conditional homoscedasticity. It may be especially problematic

in financial applications where time-varying volatility is of strong empirical relevance, and

returns on many stocks display patterns of changing volatility driven by some common

variables. The assumptions below allow for conditional heteroscedasticity.

Assumption 5 The errors eit have the following weak (unobserved) factor structure:

eit = π′
ift + ηit,

where the following assumptions hold:

(i) The kf × 1 process ft, where kf is fixed, is serially independent, conditionally on

F , with E(ft|F) = 0, E(ftf
′
t) = Ikf , max1≤t,s≤T E

[
(‖vs‖4 + 1)‖ft‖4

]
< C, and

max1≤s,t,t∗≤T E
[
‖wst∗‖4‖ft‖8

]
< C;

(ii) max ev
(∑N

i=1 πiπ
′
i

)
< C and 1√

N

∑N
i=1 πiγ

′
i → Γπγ;

(iii) The random variables ηit are independent both cross-sectionally and across time,

independent from both fs’s and F , have mean zero and variances var(ηit) = ω2
i that

are bounded from above and such that 1
N

∑N
i=1 ω

4
i → ω4 < ∞, 1

N

∑N
i=1 ω

2
i γiγ

′
i → Γω,

where Γω is finite and has full rank, and max1≤i≤N,1≤t≤T E (η4it) < C;

(iv) Additionally, if Γπγ 6= 0, then there exists a matrix Σfv such that

E



∥∥∥∥∥
1

T

T∑

s=1

(fsf
′
s)⊗ (vsv

′
s)− Σfv

∥∥∥∥∥

2

→ 0.

Theorem 3.2 Under Assumptions 1, 2, 3 and 5, the statement of the central limit the-

orem stated in equation (1) holds with Σξ =

(
ΣV 0
0 ΣW

)
, where ΣW = ω4Ωw and

ΣV =
(
Γ′
πγ ⊗ Ikv

)
Σfv (Γπγ ⊗ Ikv) + Γω ⊗ Ωv.
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An interesting feature of this example is that it allows the errors to be weakly cross-

sectionally dependent to the extent that they may possess a weak (latent) factor structure.

The condition E(ftf
′
t) = Ikf is a normalization and involves no loss of generality. Assump-

tion 5(ii) forces the factors to be weak to such an extent that the factor structure cannot

be consistently detected; it implies that the covariance matrix of idiosyncratic errors

would satisfy the first half of Assumption 4(ii). Moreover, this factor structure may be

closely related to the common variables in F , which causes the cross-sectional dependence

among the errors eit to change with the common variables and allows a very flexible form

of conditional heteroscedasticity. Indeed, the conditional cross-sectional covariance is

E(eitejt|F) = π′
iE(ftf

′
t |F)πj + I{i=j}ω

2
i .

Since we do not restrict E(ftf
′
t |F) beyond proper moment conditions, the strength of any

cross-sectional dependence as well as error variances may change stochastically depending

on realizations of the common variables.

The moment conditions in Assumption 5(i) help to establish asymptotic negligibility

of the time-series summands. Assumption 5(iii) about Γω and Assumption 5(iv) allow us

to define properly the asymptotic covariance matrix.

4 VALID INFERENCE

In this Section, we first discuss estimation of asymptotic variances for asymptotic inference

when this leads to valid inference. Then, we propose alternative tools based on the wild

bootstrap to apply in situations when asymptotic inference fails to provide asymptotically

correct inference.

4.1 Asymptotic inference

Statistical inferences such as confidence set construction and hypotheses testing about

the structural parameter typically require consistent estimation of asymptotic variances

of all important quantities that are asymptotically Gaussian. The easiest to implement

and thus the most appealing from an applied perspective are those that use the same

variables and have a structure similar to the original averages, such as the statement in

equation (2).

Notice that equation (2) contains the cross-sectional summation outside, and hence

it treats the cross-section as nearly uncorrelated observations, or at least it ignores the

cross-sectional correlation. A relevant analogue is the difference between the long-run

13



covariance and instantaneous covariance in a classical time series. However, implementing

an analogue of long-run covariance estimation here would be a challenge since we do not

have any cross-sectional stationarity or a measure of distance between cross-sectional

entities. Rather, we explore under which conditions the convergence in (2) holds.

Theorem 4.1 below obtains a statement for the case when the common variables

are independent from the idiosyncratic errors, while Theorem 4.2 establishes a similar

statement for the conditionally heteroscedastic case.

Theorem 4.1 If in addition to Assumptions 1, 2, 3, 4 we also have that

‖EN,T − dg(EN,T )‖ → 0 as N, T → ∞, (4)

then consistency statement (2) holds.

Theorem 4.2 If in addition to Assumptions 1, 2, 3, 5 we also have that Γπγ = 0, then

consistency statement (2) holds.

The additional assumption (4) in Theorem 4.1 strengthens conditions on the weakness

of the cross-sectional correlation; in particular, it requires that the covariance matrix

converges to a diagonal one. The additional assumption in Theorem 4.2 requires that the

weights used for averaging the cross-sectional entities are orthogonal to the loadings on

the latent factor structure, which precludes the latent factor structure (that represents

the cross-sectional dependence) from being amplified. This is a necessary assumption for

consistency of the variance estimator. Indeed, let assumptions 1, 2, 3, 5 hold, and consider

the first component of ξi:

ξ
(1)
i =

1√
T

∑

t

vtγieit = πiγ
′
iΥT + η̃i,

where η̃i =
1√
T

∑
t vtγiηit, and ΥT = 1√

T

∑T
t=1 ftvt. Note that

1√
N

∑N
i=1 η̃i ⇒ N (0, σ2

η) and
1
N

∑N
i=1 η̃

2
i

p→ σ2
η, as all conditions of Theorems 3.2 and 4.2 are satisfied by cross-sectionally

and time independent errors ηis. Assumption 5(iv) guarantees that ΥT ⇒ N (0,Σfv) as

T → ∞, while according to Assumption 5(ii), we have 1√
N

∑N
i=1 πiγ

′
i → Γπγ as N → ∞.

Thus,

1√
N

N∑

i=1

ξ
(1)
i ⇒ N

(
0,ΓπγΣfvΓ

′
πγ + σ2

η

)
,

while 1
N

∑N
i=1

(
ξ
(1)
i

)2 p→ σ2
η because 1

N

∑N
i=1 πiγ

′
iγiπ

′
i → 0 by Assumptions 2 and 5(ii).
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4.2 Bootstrap inference

As one way to conduct valid inferences in settings when 1
N

∑N
i=1 ξiξ

′
i is an inconsistent

estimator of the variance (in particular, when Γπγ 6= 0 under Assumption 5), we propose

the following simple wild bootstrap procedure. In each bootstrap repetition,

(i) simulate independent draws of random variables δt ∼ {+1,−1}, t = 1, ..., T, with

success probability 1/2;

(ii) compute the bootstrap analogues of errors e∗it = δteit, i = 1, ..., N, t = 1, ..., T ;

(iii) compute the bootstrap analogues ξ∗i using the definition of ξi, with e∗it in place of

eit for all i = 1, ..., N, t = 1, ..., T.

Then the distribution of Ξ∗
N,T = 1√

N

∑N
i=1 ξ

∗
i has the same asymptotic limit as that of ΞN,T

has, and can be used for inferences. Alternatively, the distribution of Ξ∗
N,T normalized by

the bootstrap analogue of the variance estimate 1
N

∑N
i=1 ξ

∗
i ξ

∗′
i can be used to approximate

the distribution of ΞN,T normalized by the variance estimate 1
N

∑N
i=1 ξiξ

′
i. We call the

two described bootstrap procedures bootstrap and bootstrap-t. In the next Section, we

implement both variations of the wild bootstrap for the setup of Assumption 5.

The wild bootstrap works because it introduces independence in the time direction

while preserving the (unknown) cross-sectional dependence. Specifically, we base our

proof of Theorem 3.2 on the change of order of summations in double/triple summations

over i and time index/indices. For example,

Ξ
(1)
N,T =

1√
N

N∑

i=1

ξ
(1)
i =

1√
T

T∑

t=1

(
1√
N

N∑

i=1

vtγieit

)
.

We then argue that our assumptions guarantee that the CLT with respect to summation

over t is applicable. If the assumptions of the CLT hold, then Ξ
(1)
N,T is asymptotically

Gaussian with mean zero and variance equal to the limit of 1
T

∑T
t=1 E

[(
1√
N

∑
i vtγieit

)2]
.

This limit clearly depends on how much there is cross-sectional correlation between eit

and ejt. Now, in the bootstrapped samples,

(
Ξ
(1)
N,T

)∗
=

1√
N

N∑

i=1

(
ξ
(1)
i

)∗
=

1√
T

T∑

t=1

(
1√
N

N∑

i=1

vtγieit

)
δt.

Conditional on the original sample, only δt’s are random, and they are independent and

have zero mean and unit variance. When T is large, this bootstrapped normalized sum
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satisfies the CLT and thus converges to a zero mean Gaussian random variable with

the variance equal to the limit of 1
T

∑T
t=1

(
1√
N

∑N
i=1 vtγieit

)2
as N, T → ∞. This limit

coincides with 1
T

∑T
t=1 E

[(
1√
N

∑N
i=1 vtγieit

)2]
under relatively weak assumptions, as long

as the Law of Large Numbers holds. For example, under Assumptions 5, we have:

lim
1

T

T∑

t=1

(
1√
N

N∑

i=1

vtγieit

)2

= lim
1

T

T∑

t=1

(
Γπγvtft +

1√
N

N∑

i=1

vtγiηit

)2

p→ ΓπγΣfvΓ
′
πγ + σ2

η .

A similar argument can be made about the second component as well. Indeed,

(
Ξ
(2)
N,T

)∗
=

1√
N

N∑

i=1

(
ξ
(2)
i

)∗
=

1

T

T∑

s=1

∑

t<s

(
1√
N

N∑

i=1

wsteiteis

)
δtδs.

For a bootstrapped statistic, conditional on the original sample, the weights 1√
N

∑N
i=1wsteiteis

are fixed, while δt’s are independent random variables, and all the conditions of Lemma

A.1 are satisfied. Thus, a zero mean Gaussian limit obtains as T → ∞. It is straightfor-

ward to verify that its variance converges to the asymptotic variance of Ξ
(2)
N,T .

In the simulation experiments in the following Section, we check, among other things,

that both wild bootstrap variations deliver correctly sized tests even when the asymptotic-

t tests fail to do so, and also that the bootstrap-based tests have a non-trivial power.

5 MONTE CARLO SIMULATIONS

The goals of this Section are to check finite sample performance of an asymptotic Gaussian

approximation for ΞN,T , to explore when the variance estimator Σ̂ξ =
1
N

∑N
i=1 ξiξ

′
i allows

to construct reliable asymptotic-t inferences, and to evaluate the performance of the wild

bootstrap and bootstrap-t procedures in terms of both size and power.

5.1 Setup

Our setup adheres to Assumption 5. We generate the errors eit according to the following

weak (unobserved) factor structure:

eit = π′
ift + ηit,

where ft ∼ iid N (0, 1) across t = 1, ..., T, γi = 1 for all i = 1, ..., N, and ηit = ωiǫη,it, where

ǫη,it are iid N (0, 1) across i and t. The standard deviations are set to ωi = cω (1 + |τi|) ,
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and the factor loadings are πi = (cπ + τi) /
√
N, where τi ∼ iid N (0, 1) across i = 1, ..., N.

The multiplier cω is tuned so that the average cross-sectional variance of ηit is unity. The

parameter cπ indexes the degree of cross-sectional dependence as measured by the strength

of the factor structure. Specifically, as
∑N

i=1 πiπ
′
i → 1 + c2π, this parameter is assumed to

be bounded for the Gaussian approximation to hold. We also have Γπγ = cπ, hence we

can expect consistency of variance estimation only when cπ = 0, so we will explore the

distortions for different values of cπ. The errors generated this way are cross-sectionally

dependent and heteroscedastic, while still satisfying Assumption 5.

The common variables are generated as follows: vt = cfvft +
√

1− c2fvǫv,t, with ǫv,t ∼
iid N (0, 1) across t = 1, ..., T, and wst = vsvt, s, t = 1, ..., T. All the disturbances ft, τi, ǫη,it

and ǫv,t are mutually independent. The parameter cfv indexes the dependence between

common variables and eit. The mean zero Assumption 3(i) requires cfv = 0; the non-zero

values of cfv index deviations from the null hypothesis E(ξi) = 0, and will be used to

study the power properties of the proposed wild bootstrap. In wild bootstrap samples,

we generate the bootstrap errors by e∗it = δteit, where δt = 2ζt − 1, and ζt ∼ iid B(1
2
)

across t, ..., T . The bootstrap analogues of γi, vt and wst are set equal to their original

sample values.

The distribution characteristics are computed from 10,000 simulations, while the re-

jection rates are based on 5,000 simulation runs. In all simulations, we set N = T = 500.

The number of bootstrap repetitions is 600.

5.2 Results

Table 1 contains distributional characteristics of ΞN,T . We report averages, coefficients of

skewness, coefficients of kurtosis, and right 5% quantiles of normalized marginal distribu-

tions of both elements of ΞN,T . For the exactly normal distributions, these values are 0,

0, 3 and 1.645, respectively.

The actual distribution of the linear component of ΞN,T is very close to Gaussian,

in all respects: all the moments and the right tail are almost equal to their theoretical

counterparts. The quadratic component of ΞN,T , however, albeit mean unbiased, is some-

what positively skewed and a bit leptokurtic. The shifted right quantile confirms slight

over-dispersion. The distortions, however, do not seem to increase with the strength of

the error factor structure.

In Table 2 we document the empirical rejection rates for tests with 10%, 5% and 1%

declared size based on the asymptotic-t, wild bootstrap and wild bootstrap-t approaches.
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Table 1: Characteristics of simulated finite-sample distribution of ΞN,T for N = T = 500

element of ΞN,T → linear quadratic

cπ ↓ mean skew kurt quant mean skew kurt quant

0.5 0.01 −0.05 3.01 1.63 −0.01 0.25 3.20 1.71
1 0.01 −0.04 2.97 1.64 −0.01 0.25 3.20 1.71
2 0.00 −0.00 2.95 1.65 0.02 0.20 3.11 1.71

Notes: Based on 10,000 simulations. The first component of ΞN,T is labeled ‘linear’ and second component

is labeled ‘quadratic’. ‘Mean’ stands for average, ‘skew’ for skewness coefficient, ‘kurt’ for kurtosis

coefficient, and ‘quant’ for right 5% quantile of simulated marginal distribution of components of ΞN,T

normalized by corresponding standard deviations. Rows with cπ = 0.5, 1 and 2 correspond to a very

weak, weak and moderately strong error factor structure.

In the asymptotic-t approach we create a t-statistic using Σ̂ξ as a variance estimator and

compare it with the symmetric standard Gaussian critical values. We also explore the

performance of two wild bootstrap procedures – one that bootstraps ΞN,T and another

that bootstraps the t-statistics (referred to in Table 2 as bootstrap ξ and bootstrap t). In

both bootstrap procedures, we compare the absolute value of the statistic from the sample

to the right quantile of the absolute value of the bootstrapped statistic. We verify the

empirical size by setting cfv = 0 and empirical power by setting cfv = 0.1 for relatively

small deviations from the null and cfv = 0.2 for relatively large deviations from the null.

As expected, the size of the test based on asymptotic approximations sometimes

deviates from nominal rates by a wide margin, especially for the linear component of

ξN,T , the gap quickly increasing with the strength of the error factor structure. This

happens due to inconsistency of the variance estimator Σ̂ξ and becomes more pronounced

with stronger cross-sectional dependence. What is surprising is that for the quadratic

component of ξN,T , the distortions are relatively minor and not very sensitive to the

strength of the factor structure. In contrast, both bootstrap procedures exhibit excellent

size control and stability thereof across the strength of the error factor structure for

both components of ξN,T . In terms of power, however, the two bootstrap statistics are

approximately equally powerful for the linear component of ξN,T , while there is a gap,

sometimes sizable, between power figures for its quadratic component. It seems that

bootstrapping the statistic itself is preferable.
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Table 2: Simulated rejection rates for asymptotic and wild bootstrap tests

element → linear quadratic

1% 5% 10% 1% 5% 10%

cπ ↓ asy bootstrap asy bootstrap asy bootstrap asy bootstrap asy bootstrap asy bootstrap

t ξ t t ξ t t ξ t t ξ t t ξ t t ξ t

Size: cfv = 0

0.5 2 1 1 8 5 5 14 10 10 0 1 1 3 6 5 6 10 10
1 7 1 1 16 5 5 24 10 10 0 1 1 3 6 5 6 10 10
2 25 1 1 38 5 5 46 10 10 0 1 1 3 6 6 7 11 12

Power: cfv = 0.1

0.5 9 6 6 22 17 17 32 27 26 0 2 1 3 7 6 7 12 12
1 39 16 16 56 35 35 67 47 46 1 2 2 3 7 6 6 13 11
2 79 29 29 87 51 51 90 63 63 1 6 3 5 14 9 11 20 17

Power: cfv = 0.2

0.5 35 28 26 58 51 49 68 63 62 1 5 3 5 13 9 10 19 16
1 90 73 71 96 88 87 97 93 93 2 10 5 9 21 15 17 30 25
2 100 93 92 100 98 98 100 99 99 18 45 29 40 61 50 53 68 61

Notes: The table contains actual rates, computed from 5,000 simulations for 10%, 5% and 1% declared size asymptotic-t (‘asy t’), bootstrap

(‘bootstrap ξ’) and bootstrap-t (‘bootstrap t’) two-sided tests for deviations of each component of ΞN,T from the zero value. The first component

of ΞN,T is labeled ‘linear’ and second component is labeled ‘quadratic’. The size figures are in panel with cfv = 0, and power figures are in

panels with cfv 6= 0. Rows with cπ = 0.5, 1 and 2 correspond to a very weak, weak and moderately strong error factor structure.
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6 CONCLUDING REMARKS

Possible directions for future research may be relaxing the error time-series independence

to martingale difference structures and inventing ways to consistently estimate the asymp-

totic variance matrix when it is not diagonal in the limit. Other interesting areas involve

establishing formal properties of the proposed wild bootstrap schemes, exploring the pos-

sibility of asymptotic refinements, and examining the superiority of one bootstrap scheme

over the other.

A APPENDIX: PROOFS

A.1 Preliminary results

We use the following central limit theorem for a vector valued martingale difference se-

quence:

Lemma A.1 Let the sequence (Zt,T ,Ft,T ), t = 1, .., T, be a martingale difference sequence

of r × 1 random vectors with ΣT = var
(∑T

t=1 Zt,T

)
. If the following two conditions hold

as T → ∞,

(1) (min ev(ΣT ))
−2
∑T

t=1 E
[
‖Zt,T‖4

]
→ 0,

(2) (min ev(ΣT ))
−2

E
[∥∥∑T

t=1 Zt,TZ
′
t,T − ΣT

∥∥2]→ 0,

then, as T → ∞,

Σ
−1/2
T

T∑

t=1

Zt,T ⇒ N (0, Ir).

Proof of Lemma A.1 Indeed, the statement of Lemma A.1 holds if for any non-

random r×1 vector λ, we have (λ′ΣTλ)
−1/2

∑T
t=1 λ

′Zt,T ⇒ N (0, 1). Let us define a scalar

martingale difference sequence zt = λ′Zt,T with variance σ2
T = var

(∑T
t=1 λ

′Zt,T

)
= λ′ΣTλ.

Let us check that all conditions of the central limit theorem by Heyde & Brown (1970)

are satisfied for δ = 1. Indeed,

1

σ4
T

T∑

t=1

E
[
|zt|4

]
=

1

(λ′ΣTλ)2

T∑

t=1

E
[
|λ′Zt,T |4

]
≤ 1

(‖λ‖2min ev(ΣT ))2

T∑

t=1

‖λ‖4E
[
‖Zt,T‖4

]
→ 0,
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and

E



∣∣∣∣∣

∑T
t=1 z

2
t

σ2
T

− 1

∣∣∣∣∣

2

 = E



∣∣∣∣∣

∑T
t=1(λ

′Zt,T )
2

λ′ΣTλ
− 1

∣∣∣∣∣

2



=
1

(λ′ΣTλ)2
E



∣∣∣∣∣λ

′

(
T∑

t=1

Zt,TZ
′
t,T − ΣT

)
λ

∣∣∣∣∣

2



≤ 1

(‖λ‖2min ev(ΣT ))2
‖λ‖4E



∥∥∥∥∥

T∑

t=1

Zt,TZ
′
t,T − ΣT

∥∥∥∥∥

2

→ 0.

These two conditions imply that σ−1
T

∑T
t=1 zt ⇒ N (0, 1). This finishes the proof. �

As a preliminary result, we establish a central limit theorem for quadratic forms. The

idea of this result comes from the CLT for quadratic forms by de Jong (1987). All random

variables are implicitly indexed by the sample sizes T (or N, T in the further application

to factor models), which are omitted to reduce clutter; for example, Wst in full notation

is indexed as Wst,T or Wst,N,T .

Lemma A.2 Let Wst = Wst(Xst, es, et) be a set of random vectors defined for all s > t,

where s, t ∈ {1, ..., T}, such that Xst is a random vector measurable with respect to the

σ-algebra F , and all et are independent from each other, conditionally on F . Assume that

E(Wst|F , et) = 0 and E(Wst|F , es) = 0. (A.1)

Define W (T ) =
∑T

s=1

∑
t<s Wst and ΣW,T = var(W (T )). Assume the following statements

hold as T → ∞:

(i) ΣW,T → ΣW , where ΣW is a full rank matrix;

(ii) T 4max1≤t,s≤T E
[
‖Wst‖4

]
< C;

(iii) E
[∥∥∑T

s=1

∑
t<sWstW

′
st − ΣW,T

∥∥2]→ 0;

(iv) T 4maxs1 6=s2,t1 6=t2
t1<s1,t2<s2

∣∣E
(
W ′

s1t2Ws2t1W
′
s2t2Ws1t1

)∣∣→ 0.

Then, as T → ∞,

W (T ) ⇒ N (0,ΣW ).

Lemma A.3 Let Wst = Wst(Xst, es, et) satisfy all conditions of Lemma A.2. Let Vs =

Vs(Xs, es) be a random vector defined for all s ∈ {1, ..., T} such that Xs is a random vector

measurable with respect to the σ-algebra F , and E(Vs|F) = 0. Define V (T ) =
∑T

s=1 Vs

and ΣV,T = var(V (T )). Assume the following statements hold as T → ∞:
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(a) ΣV,T → ΣV , where ΣV is a full rank matrix;

(b) T max1≤s≤T E
[
‖Vs‖4

]
→ 0;

(c) E

[∥∥∥
∑T

s=1 VsV
′
s − ΣV,T

∥∥∥
2
]
→ 0;

(d) T 3max1≤t<min{s1,s2}≤T

∥∥E
(
Ws1tV

′
s1
Vs2W

′
s2t

)∥∥→ 0.

Then, as T → ∞
(

V (T )
W (T )

)
⇒ N

((
0

0

)
,

(
ΣV 0
0 ΣW

))
.

Proof of Lemma A.2 The proof of this Lemma follows closely the proof and ideas

stated in de Jong (1987). Call Wst clean if

E (Ws1t1 ⊗Ws2t2 ....⊗Wsktk) = 0

when at least one index from the set {s1, t1, ..., sk, tk} has a value that occurs only once.

The functional form of Wst and the condition stated in (A.1) guarantee that in our case

Wst is clean. Indeed, if, for example, the index s1 occurs only once, then

E
(
Ws1t1 ⊗Ws2t2 ⊗ ....⊗Wsktk

)
= E

[
E(Ws1t1 ⊗Ws2t2 ⊗ ....⊗Wsktk |F , et1 , es2, et2 , ..., etk)

]

= E
[
E(Ws1t1 |F , et1, es2, et2 , ..., etk)⊗Ws2t2 ⊗ ....⊗Wsktk

]

= E
[
E(Ws1t1 |F , et1)⊗Ws2t2 ⊗ ....⊗Wsktk

]
= 0.

Now, W (T ) =
∑T

s=1

∑
t<sWst =

∑T
s=1 Zs,T , where Zs,T =

∑
t<s Wst. We denote by Fs the

σ-algebra generated by F and et for all t < s. Then, (Zs,T ,Fs) is a martingale difference

sequence. Below we check that all conditions of Lemma A.1 are satisfied.

Condition (i) implies that min ev(ΣW,T ) → C > 0. Now let us check condition (1) of

Lemma A.1:

E
[
‖Zs,T‖4

]
= E



∥∥∥∥∥
∑

t<s

Wst

∥∥∥∥∥

4



= E

[(
∑

t1<s

Wst1

)′(∑

t2<s

Wst2

)(
∑

t3<s

Wst3

)′(∑

t4<s

Wst4

)]

≤
∑

t<s

E
[
‖Wst‖4

]
+ C

∑

t1<s

∑

t2<s,t2 6=t1

E
[
‖Wst1‖2‖Wst2‖2

]
.
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The last statement follows from the fact that Wst is clean, and non-zero summands

are only those where either t1 = t2 = t3 = t4 or the set {t1, t2, t3, t4} consists of

two distinct elements each occurring twice. We also notice that E
[
‖Wst1‖2‖Wst2‖2

]
≤

1
2

(
E
[
‖Wst1‖4

]
+ E

[
‖Wst2‖4

])
≤ max1≤t,s≤T E

[
‖Wst‖4

]
< CT−4 due to condition (ii).

Hence, E
[
‖Zs,T‖4

]
≤ CT−2. Thus,

∑T
s=1 E

[
‖Zs,T‖4

]
≤ CT−1, implying that condition

(1) of Lemma A.1 holds.

Now let us turn to condition (2). First, notice that

ΣW,T = var(W (T )) = var

(
T∑

s=1

∑

t<s

Wst

)
=

T∑

s=1

∑

t<s

var(Wst),

the last equality holding because Wst is clean. Next,

E



∥∥∥∥∥

T∑

s=1

Zs,TZ
′
s,T − ΣW,T

∥∥∥∥∥

2

F




= E



∥∥∥∥∥

T∑

s=1

(
∑

t1<s

Wst1

)(
∑

t2<s

Wst2

)′

− ΣW,T

∥∥∥∥∥

2

F




= E



∥∥∥∥∥

T∑

s=1

∑

t<s

(WstW
′
st − E[WstW

′
st]) +

T∑

s=1

∑

t1 6=t2

Wst1W
′
st2

∥∥∥∥∥

2

F




= E



∥∥∥∥∥

T∑

s=1

∑

t<s

(WstW
′
st − E[WstW

′
st])

∥∥∥∥∥

2

F


+ E



∥∥∥∥∥

T∑

s=1

∑

t1 6=t2

Wst1W
′
st2

∥∥∥∥∥

2

F


 . (A.2)

The last equality holds because of the clean form, as the expectation of the Frobenius

norm is equal to the trace of the sums of various products of four terms, and any such

product that contains two of the same indexes t and two different indexes t1 6= t2, has

a zero expectation. Now, the first summand in equation (A.2) converges to zero due to

condition (iii) of the Lemma. Now consider the second term in (A.2):

E



∥∥∥∥∥

T∑

s=1

∑

t1 6=t2<s

Wst1W
′
st2

∥∥∥∥∥

2

F


 =

T∑

s1=1

∑

t1 6=t2

T∑

s2=1

∑

t3 6=t4

E
[
tr
(
Ws1t1W

′
s1t2

Ws2t3W
′
s2t4

)]

= C
T∑

s1=1

T∑

s2=1

∑

t1 6=t2

E[tr
(
Ws1t1W

′
s1t2

Ws2t1W
′
s2t2

)
],

the last equality holding because Wst is clean. The last summation can be divided into a

category when s1 6= s2, the corresponding sum being asymptotically o(1) due to condition
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(iv), and a category when s1 = s2, there being at most CT 3 of such summands, each

smaller than Cmax1≤t,s≤T E
[
‖Wst‖4

]
< CT−4. Thus,

E



∥∥∥∥∥

T∑

s=1

∑

t1 6=t2

Wst1W
′
st2

∥∥∥∥∥

2

F


→ 0. (A.3)

Putting statements (A.2) and (A.3) together we obtain that condition (2) of Lemma A.1

is satisfied. Thus, the conclusion of Lemma A.2 holds. �

Proof of Lemma A.3. Let us define Zs = (V ′
s ,
∑

t<sW
′
st)

′, and let Fs be defined as in

the proof of Lemma A.2. We will show that all conditions of Lemma A.1 are satisfied.

Notice that

E
[
VsW

′
st

]
= E

[
E(VsW

′
st|F , es)

]
= E

[
VsE(W

′
st|F , es)

]
= 0.

Thus,

ΣT = var

(
T∑

s=1

Zs

)
=

(
ΣV,T 0
0 ΣW,T

)
→
(

ΣV 0
0 ΣW

)
.

The right-hand-side is a full rank matrix by condition (i) of Lemma A.2 and condition

(a) of Lemma A.3. Thus, the minimal eigenvalue of ΣT is separated away from zero for

large T . Now,

T∑

s=1

E
[
‖Zs‖4

]
≤ C

T∑

s=1

E
[
‖Vs‖4

]
+ C

T∑

s=1

E



∥∥∥∥∥
∑

t<s

Wst

∥∥∥∥∥

4

 .

The first term here is bounded by T max1≤s≤T E
[
‖Vs‖4

]
which goes to zero by condition

(b) of Lemma A.3, while convergence to zero of the second sum has been already shown

during the proof of Lemma A.2. Thus, condition (1) of Lemma A.1 holds. Next,

E



∥∥∥∥∥

T∑

s=1

ZsZ
′
s − ΣT

∥∥∥∥∥

2

 ≤ E



∥∥∥∥∥

T∑

s=1

ZsZ
′
s − ΣT

∥∥∥∥∥

2

F




= E



∥∥∥∥∥

T∑

s=1

VsV
′
s − ΣV,T

∥∥∥∥∥

2

F


+ 2E



∥∥∥∥∥

T∑

s=1

(
∑

t<s

Wst

)
V ′
s

∥∥∥∥∥

2

F




+ E



∥∥∥∥∥

T∑

s=1

(
∑

t<s

Wst

)(
∑

t<s

Wst

)′

− ΣW,T

∥∥∥∥∥

2

F


 .
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Here we use that the Frobenius norm of a matrix equals to the sum of squares of all

elements and can be decomposed into sums over four blocks of the matrix. Condition (c)

guarantees that

E



∥∥∥∥∥

T∑

s=1

VsV
′
s − ΣV,T

∥∥∥∥∥

2

F


 ≤ CE



∥∥∥∥∥

T∑

s=1

VsV
′
s − ΣV,T

∥∥∥∥∥

2

→ 0.

During the proof of Lemma A.2 we show that

E



∥∥∥∥∥

T∑

s=1

(
∑

t<s

Wst

)(
∑

t<s

Wst

)′

− ΣW,T

∥∥∥∥∥

2

F


→ 0.

Finally,

E



∥∥∥∥∥

T∑

s=1

(
∑

t<s

Wst

)
V ′
s

∥∥∥∥∥

2

2


 =

T∑

s1=1

∑

t1<s1

T∑

s2=1

∑

t2<s2

tr
(
E
(
Ws1t1V

′
s1Vs2W

′
s2t2

))

=
T∑

s1=1

T∑

s2=1

∑

t<min{s1,s2}
tr
(
E
(
Ws1tV

′
s1
Vs2W

′
s2t

))

≤ CT 3 max
1≤s1,s2,t≤T

∥∥E
(
Ws1tV

′
s1
Vs2W

′
s2t

)∥∥→ 0.

Here we used that E
(
Ws1t1V

′
s1
Vs2W

′
s2t2

)
= 0 if t1 6= t2 and condition (d) of the Lemma.

To conclude, condition (2) of Lemma A.1 also holds. �

Lemma A.4 For an N × N symmetric matrix A = (aij) denote ⊙ to be the Hadamard

product. Then ‖A⊙ A‖ ≤
√
N‖A‖2.

Proof. Using the equivalence of norms, we have

‖A⊙A‖ ≤ ‖A⊙A‖F =

√ ∑

1≤i,j≤N

a4ij ≤
√

max
1≤i,j≤N

a2ij

√ ∑

1≤i,j≤N

a2ij ≤ ‖A‖‖A‖F ≤
√
N‖A‖2.

�

A.2 Proofs for Independent case

Proof of Theorem 3.1. We will check that all conditions of Lemma A.3 are satisfied

for

Wst =
1

T
√
N
wst

N∑

i=1

eiteis =
1

T
wst

e′tes√
N
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and

Vs =
1√
TN

N∑

i=1

γieis ⊗ vs =
1√
T

γ′es√
N

⊗ vs.

(i) First notice that due to Assumption 4(ii)

E

[(
e′tes√
N

)2
]
=

tr
(
E2
N,T

)

N
→ a.

Due to the independence between the common variables and eit and because Wst is clean,

we have:

ΣW,T = var

(
T∑

s=1

∑

t<s

Wst

)
=

1

T 2

T∑

s=1

∑

t<s

E(wstw
′
st)E

[(
e′tes√
N

)2
]
→ aΩw,

and the limit is a positive definite matrix.

(ii) By Assumption 4(i) and the i.i.d. nature of et, we have:

T 4
E
[
‖Wst‖4

]
= E

[
‖wst‖4

]
E

[(
e′tes√
N

)4
]
≤ C

N2

N∑

i1=1

N∑

i2=1

N∑

i3=1

N∑

i4=1

E
[
(ei1tei2tei3tei4t)

2 ] < C.

Here we used that |E (ei1tei2tei3tei4t) | ≤ max1≤i≤N,1≤t≤T E (e4it) < C and Assumption 4(iv).

(iii) Next,

T∑

s=1

∑

t<s

WstW
′
st − ΣW,T =

1

T 2

T∑

s=1

∑

t<s

wstw
′
st

[(
e′set√
N

)2

− 1

N
tr(E2

N,T )

]

+
1

N
tr
(
E2
N,T

)
[
1

T 2

T∑

s=1

∑

t<s

(wstw
′
st − E (wstw

′
st))

]

= A1 + A2,

hence it is enough to prove that E
[
‖A1‖2

]
→ 0 and E

[
‖A2‖2

]
→ 0. The latter is postulated

by Assumption 1(iii). Notice that all summands in A1 are uncorrelated with each other

due to Assumptions 3(i) and 4(i). Thus,

E
[
tr(A1A

′
1)
]
=

1

T 4

T∑

s=1

∑

t<s

E
[
‖wst‖4

]
E



((

e′set√
N

)2

− tr(E2
N,T )

N

)2



≤ 1

T 4

T∑

s=1

∑

t<s

E
[
‖wst‖4

]
E

[(
e′set√
N

)4
]
<

C

T 2
.

In the last inequality, we use the proof of statement (ii) above. This implies that condition

(iii) of Lemma A.2 holds.

26



(iv) If the set {s1, s2, t1, t2} contains four distinct indexes, then

T 4
∣∣E
(
W ′

s1t2
Ws2t1W

′
s2t2

Ws1t1

)∣∣ ≤ E
[
‖wst‖4

] tr
(
E
(
es1e

′
s1
et1e

′
t1
es2e

′
s2
et2e

′
t2

))

N2

≤ C

N2
tr
(
E4
N,T

)
≤ C

N2
N max ev

(
E4
N,T

)
≤ C

N
→ 0.

We now move to conditions (a)-(d) of Lemma A.3.

(a) By Assumptions 4(iii) and 1(i) we have

ΣV,T =

(
1

N
γ′EN,Tγ

)
⊗
(

1

T

T∑

s=1

E (vsv
′
s)

)
→ Γσ ⊗ Ωv,

and the limit is a full rank matrix.

(b) Next,

TE
[
‖Vs‖4

]
=

1

T
E

[∥∥∥∥
1√
N
γ′es

∥∥∥∥
4
]
E
[
‖vs‖4

]
,

where E
[
‖vs‖4

]
≤ C due to Assumption 1(ii). Assumptions 2 and 4(iv) imply that

E

[∥∥∥∥
1√
N
γ′es

∥∥∥∥
4
]
=

1

N2

N∑

i1=1

N∑

i2=1

N∑

i3=1

N∑

i4=1

E (ei1tei2tei3tei4t) γ
′
i1
γi2γ

′
i3
γi4

< max
1≤i≤N

‖γi‖4
1

N2

N∑

i1=1

N∑

i2=1

N∑

i3=1

N∑

i4=1

|E (ei1tei2tei3tei4t) | < C.

(c) Next,

T∑

s=1

VsV
′
s − ΣV,T =

(
1

N
γ′EN,Tγ

)
⊗
(

1

T

T∑

s=1

(
vsv

′
s − E (vsv

′
s)
)
)

+
1

T

T∑

s=1

(
γ′ese

′
sγ

N
− γ′EN,Tγ

N

)
⊗ (vsv

′
s)

= A1 + A2.

Notice that A1 and A2 are uncorrelated, hence

E



∥∥∥∥∥

T∑

s=1

VsV
′
s − ΣV,T

∥∥∥∥∥

2

F


 = tr (E(A′

1A1)) + tr (E(A′
2A2)) .
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Assumption 1(iv) guarantees the convergence of the first term. Notice that the summands

in A2 are uncorrelated due to time independence of errors, hence

tr (E(A′
2A2)) =

1

T 2

T∑

s=1

E

[∣∣∣∣
γ′ese

′
sγ

N
− 1

N
γ′EN,Tγ

∣∣∣∣
2
]
E
[
‖vs‖4

]

≤ C

T
E

[∣∣∣∣
γ′ese

′
sγ

N
− 1

N
γ′EN,Tγ

∣∣∣∣
2
]
.

Given the bounds on the fourth moment of N−1/2γ′es derived in the proof of part (b) we

get that condition (c) holds.

(d) By Assumption 4(i) we have that

T 3
∥∥E
(
Ws1tV

′
s1
Vs2W

′
s2t

)∥∥ =

∥∥∥∥E
(
ws1tv

′
s1
vs2w

′
s2t

)
E

(
e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

)∥∥∥∥ .

Using that scalars can be reshuffled to make two same-index et stand back to back and

employing time series independence of errors, we obtain that

∣∣∣∣E
(
e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

)∣∣∣∣ =
1

N2

∣∣tr
(
γγ′

E(es2e
′
s2
)E(ete

′
t)E(es1e

′
s1
)
)∣∣

≤ 1

N2
tr(γγ′)max ev

(
E3
N,T

)
≤ C

N
.

Here we use Assumption 2 to get N−1tr(γγ′) < C and Assumption 4(ii). Given Assump-

tion 1(ii) we obtain that

T 3 max
1≤t<min{s1,s2}≤T

∥∥E
(
Ws1tV

′
s1Vs2W

′
s2t

)∥∥ ≤ C

N
→ 0.

Thus, condition (d) of Lemma A.3 is satisfied. This concludes the proof of Theorem 3.1.

�

Proof of Theorem 4.1. We will prove the following three statements for

ξV,i =
1√
T

T∑

s=1

γieis ⊗ vs

and

ξW,i =
1

T

T∑

s=1

∑

t<s

wsteiteis:

(i) N−1
∑N

i=1 ξV,iξ
′
V,i

p→ ΣV ;
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(ii) N−1
∑N

i=1 ξW,iξ
′
W,i

p→ ΣW ;

(iii) N−1
∑N

i=1 ξV,iξ
′
W,i

p→ 0.

Let us start with statement (i). Denote by σ2
i the diagonal and by σij the off-diagonal

elements of matrix EN,T . Notice that the additional assumption of Theorem 4.1 implies

that

Γσ = lim
γ′EN,Tγ

N
= lim

1

N

N∑

i=1

γiγ
′
iσ

2
i .

Let us define Σ̃V,T =
(
N−1

∑N
i=1 γiγ

′
iσ

2
i

)(
T−1

∑T
s=1E (vsv

′
s)
)
, and notice that Σ̃V,T → ΣV .

Thus,

1

N

N∑

i=1

ξV,iξ
′
V,i − Σ̃V,T =

1

NT

N∑

i=1

T∑

t=1

T∑

s=1

(
(γiγ

′
ieiseit)⊗ (vsv

′
t)− I{s = t}σ2

i (γiγ
′
i)⊗ E(vtv

′
t)
)

=
1

NT

N∑

i=1

T∑

t=1

(e2it − σ2
i ) (γiγ

′
i)⊗ (vtv

′
t)

+
1

NT

N∑

i=1

T∑

t=1

∑

s 6=t

(γiγ
′
ieiseit)⊗ (vsv

′
t)

+
1

NT

N∑

i=1

T∑

t=1

(
γiγ

′
iσ

2
i

)
⊗
(
vtv

′
t − E (vtv

′
t)
)

= A1 + A2 + A3.

Notice that the three terms are uncorrelated, so it is enough to prove that tr
(
E(AjA

′
j)
)
→

0 for j = 1, 2, 3. Indeed, if the expectation of the Frobenius norm of a matrix converges

to zero, this implies that each entry converges to zero as well. First,

tr (E(A1A
′
1)) = tr

(
E

[
1

N2T 2

N∑

i,j=1

T∑

t=1

T∑

s=1

(
γiγ

′
iγjγ

′
j(e

2
it − σ2

i )(e
2
js − σ2

i )
)
⊗ (vtv

′
tvsv

′
s)

])

=
1

N2T 2

N∑

i,j=1

T∑

t=1

tr
(
γiγ

′
iγjγ

′
jcov(e

2
it, e

2
jt)
)
tr
(
E(vtv

′
tvtv

′
t)
)

≤ 1

T 2

T∑

t=1

max
1≤i≤N

‖γi‖4 max
1≤i≤N

E
[
(e2it − σ2

i )
2
]
E
[
‖vt‖4

]
≤ C

T
.

Here we used that eit’s are independent from each other for different t by Assumption

3(i), which forces s = t. The last inequality uses Assumptions 1(ii), 3(ii) and 2.
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Consider the term A2 and notice that any two summands in the two-directional sum

(over t and over s) are uncorrelated due to time series independence of et’s and all sum-

mands are mean zero. Thus,

tr (E(A2A
′
2)) =

1

N2T 2

T∑

t=1

∑

s 6=t

N∑

i,j=1

tr
(
E(γiγ

′
iγjγ

′
jeiteisejtejs)⊗ E(vsv

′
tvtv

′
s)
)

=
1

N2

N∑

i,j=1

tr(γiγ
′
iγjγ

′
jσ

2
ij)

1

T 2

T∑

t=1

∑

s 6=t

tr
(
E (vsv

′
tvtv

′
s)
)
.

We notice that T−2
∑T

t=1

∑
s 6=t tr

(
E (vsv

′
tvtv

′
s)
)
≤ E

[
‖vt‖4

]
< C due to Assumption 1(ii).

Denote r, r∗ to be indexes that go over 1, ..., kγ. For any fixed value of r, r∗ denote

B(r,r∗) =
(
(γiγ

′
i)r,r∗

)N
i=1

, an N × 1 vector. Then,

1

N2

N∑

i,j=1

tr(γiγ
′
iγjγ

′
jσ

2
ij) =

1

N2

N∑

i,j=1

∑

r,r∗

(γiγ
′
i)r,r∗(γjγ

′
j)r,r∗σ

2
ij

=
∑

r,r∗

1

N2

N∑

i=1

(γiγ
′
i)r,r∗(γiγ

′
i)r,r∗σ

4
i

+
∑

r,r∗

1

N2
B(r,r∗)′[(EN,T − dg(EN,T ))⊙ (EN,T − dg(EN,T ))

]
B(r,r∗)

≤ k2
γ max
1≤i≤N

‖γi‖4
(

1

N2

N∑

i=1

σ4
i +

√
N‖EN,T − dg(EN,T )‖

N2

)

≤ C√
N

→ 0,

where in the second to last inequality we used Lemma A.4 and the last inequality is due

to Assumptions 2, 4(ii) and the additional assumption stated in Theorem 4.1. This shows

that tr (E(A2A
′
2)) → 0.

Finally, tr (E(A3A
′
3)) → 0 due to Assumption 1(iv). This ends the proof of statement

(i).
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Let us turn to statement (ii):

1

N

N∑

i=1

ξW,iξ
′
W,i − ΣW,T =

1

T 2N

N∑

i=1

T∑

s=1

∑

t<s

(
e2ite

2
is − σ4

i

)
wstw

′
st

+
1

T 2N

N∑

i=1

T∑

s1=1

∑

t1<s1

T∑

s2=1

∑

t2<s2,
{s1,t1}6={s2,t2}

ws1t1w
′
s2t2

eit1eis2eit2eis1

+
1

N

N∑

i=1

σ4
i

1

T 2

T∑

s=1

∑

t<s

(
wstw

′
st − E(wstw

′
st)
)

= A1 + A2 + A3.

Again, A1, A2 and A3 are uncorrelated with each other. Thus, we can deal with each one

of them separately. We show that the expectation of the Frobenius norm of each matrix

converges to zero, this implies that each entry converges to zero as well.

Let us start with

tr (E(A1A
′
1)) =

1

T 4N2

N∑

i,j=1

T∑

s,s∗=1

∑

t<s,t∗<s∗

tr
(
E(wstw

′
stws∗t∗w

′
s∗t∗)

)
E(bi,t,sbj,t∗,s∗),

where

bi,t,s = e2ite
2
is − σ4

i = (e2it − σ2
i )(e

2
is − σ2

i ) + σ2
i (e

2
is − σ2

i ) + σ2
i (e

2
it − σ2

i ).

Notice that E(bi,t,sbj,t∗,s∗) 6= 0 only if at least one of the indexes from the set {t, t∗, s, s∗}
appears twice. Thus, the summation over time index is three-dimensional and there are

at most CT 3N2 non-zero summands in tr (E(A1A
′
1)). Let us bound every summand from

above. Notice that since t < s and t∗ < s∗, all indexes in the set {t, t∗, s, s∗} can appear

at most twice; also errors with different time indexes are independent from each other, so

the largest moment of the error term we will have is the fourth. To sum up, each non-zero

summand is bounded above by T−4N−2Cmax1≤t,s≤T E
[
‖wst‖4

]
max1≤i≤N,1≤t≤T E

[
(e4it)

2 ]
,

thus tr (E(A1A
′
1)) ≤ C/T → 0.

The term tr (E(A2A
′
2)) includes summation over eight time indexes but most of the

summands are zeros. The non-zero terms place at least four restrictions on the time

indexes. We note that the non-trivial part of the sum in tr (E(A2A
′
2)) includes summation

over i, j = 1, ..., N and over time indexes {s1, s∗1, t1, t∗1, s2, s∗2, t2, t∗2}, where in the last set

any distinct index appears at least twice. The summands are

1

T 4N2
E
(
ws1t1w

′
s∗
1
t∗
1

w′
s∗
2
t∗
2

ws2t2

)
E
(
eit1eis1eit∗1eis∗1ejt2ejs2ejt∗2ejs∗2

)
.
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Notice also that due to restrictions that t’s are strictly smaller than their corresponding

s’s, each time index can appear at most four times, hence we get at most fourth power of

each error term.

First, consider the case when the set {s1, s∗1, t1, t∗1, s2, s∗2, t2, t∗2} contains at most three

distinct indexes (this makes the summation over time three-dimensional). We can show

that each summand is bounded by T−4N−2 max1≤t,s≤T E
[
‖wts‖4

]
max1≤i≤N,1≤t≤T E

(
e4it
)2

≤ C/ (T 4N2) in absolute value, and as there are at most N2T 3 of them (two-dimensional

cross-sectional and three-dimensional over time summations), the sum of such terms will

go to zero.

Finally, we consider the case when the set {s1, s∗1, t1, t∗1, s2, s∗2, t2, t∗2} contains four

distinct indexes. Then each summand of this type is bounded in absolute value by

C
|σij |a(σ2

i )
b(σ2

j )
c

T 4N2
max

1≤s,t≤T
E
[
‖wst‖4

]
,

where a + b + c = 4, and the values of a, b and c depend on which indices coincide with

which; however, due to the conditions {s1, t1} 6= {s2, t2} and t1 < s1, t2 < s2, we know

that the set {s1, s2, t1, t2} contains at least three distinct indexes. Thus, c and b are either

0 or 1 each, and a ≥ 2. Hence, due to Assumption 1(ii), the corresponding sum is bounded

above by

C

N2

N∑

i=1

N∑

j=1

|σij |a(σ2
i )

b(σ2
j )

c ≤ C

N2
max
1≤i≤N

σ4
i

N∑

i=1

N∑

j=1

σ2
ij

=
C

N2

N∑

i=1

σ4
i +

C

N2

N∑

i=1

N∑

i 6=j

σ2
ij (A.4)

≤ C

N
max
1≤i≤N

σ4
i +

C

N2
‖EN,T − dg(EN,T )‖2F ≤ C

N
.

In the first inequality, we use |σij | ≤ σiσj . In the second inequality, we use the definition

of the Frobenius norm. In the last inequality, we use that for any symmetric matrix A,

we have ‖A‖2F ≤ N‖A‖2 and assumption stated in Theorem 4.1. Thus, tr (E(A2A
′
2)) → 0.

Next, Assumption 1(iii) implies the convergence of A3. This finishes the proof of (ii).

Finally, we need to prove statement (iii) that

1

NT 3/2

N∑

i=1

T∑

s=1

∑

t<s

T∑

s∗=1

(γi ⊗ vs∗)w
′
steis∗eiteis →p 0.

As before, we look at the expectation of the square of the sum above, which involves

six-dimensional summation over time indexes and two-dimensional summation over cross-

section (over i, j) and is normalized by N−2T−3. Due to time-series independence of eit,
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the six-dimensional summation over time indexes has mostly zeros and can be reduced

to three-dimensional summation over time indexes as the set {s1, t1, s∗1, s2, t2, s∗2} should

have any distinct index to appear at least twice.

First, consider only those terms for which the set {s1, t1, s∗1, s2, t2, s∗2} contains at

most two distinct indexes; there are at most N2T 2 of such terms. Since t1 < s1 and

t2 < s2, each time index can appear at most four times; thus, the highest power of

each individual shock can be the fourth. As a result, each summand is bounded above by

N−2T−3max1≤i≤N ‖γi‖2max1≤t≤T E
[
‖vt‖2

]
max1≤t,s≤T E

[
‖wst‖2

]
max1≤i≤N,1≤t≤T E

(
e4it
)3/2

.

Given Assumptions 1(ii) and 3(ii), the sum of these terms is bounded above by C/T .

Finally, consider only those terms for which the set {s1, t1, s∗1, s2, t2, s∗2} contains ex-

actly three distinct indexes. The summation over these indexes is equal to

tr

(
1

N2

N∑

i,j=1

γiγ
′
j

(
C1σijσ

2
i σ

2
j + C2σ

3
ij

)
)
.

The term σ3
ij appears when {s1, t1, s∗1} = {s2, t2, s∗2}, while σijσ

2
i σ

2
j arises when the sets

{s1, t1, s∗1} and {s2, t2, s∗2} have two coinciding indexes each. Therefore,

tr

(
1

N2

N∑

i,j=1

γiγ
′
jσijσ

2
i σ

2
j

)
= tr

(
1

N2

N∑

i=1

γiγ
′
iσ

6
i

)
+ tr

(
1

N2

∑

i 6=j

(γiσ
2
i )(γ

′
jσ

2
j )σij

)

=
1

N2

N∑

i=1

‖γi‖2σ6
i +

1

N2

∑

i 6=j

tr(γiγ
′
j)σ

2
i σ

2
jσij

≤ max
1≤i≤N

‖γi‖2
(

1

N
max
1≤i≤N

σ6
i +

‖EN,T − dg(EN,T )‖
N

max
1≤i≤N

σ4
i

)
→ 0.

Also,

tr

(
1

N2

N∑

i,j=1

γiγ
′
jσ

3
ij

)
=

1

N2

N∑

i=1

‖γi‖2σ6
i +

1

N2

∑

i 6=j

tr(γiγ
′
j)σ

3
ij

≤ max
1≤i≤N

‖γi‖2
(

1

N
max
1≤i≤N

σ6
i +

1

N2

N∑

i,j=1

σ2
ij max

1≤i≤N
σ2
i

)
→ 0.

Here we used the statement N−2
∑N

i,j=1 σ
2
ij → 0, which is proved in equation (A.4). This

ends the proof of Theorem 4.1. �
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A.3 Proofs for Conditional Heteroscedasticity case

Proof of Theorem 3.2. In order to apply Lemma A.3 we check conditions (i)-(iv) of

Lemma A.2 and conditions (a)-(d) of Lemma A.3 for

Wst =
1

T
wst

e′tes√
N

and

Vs =
1√
T

γ′es√
N

⊗ vs.

(i) Due to serial independence of eit conditionally on F , we have

ΣW,T =
1

T 2

T∑

s=1

∑

t<s

E

[
wstw

′
stE

((
e′tes√
N

)2

|F
)]

.

Notice that (e′tes)
2 = tr ((e′set) (e

′
tes)) = tr ((ete

′
t) (ese

′
s)) , and hence, given the conditional

independence assumption,

E

[(
e′tes√
N

)2

|F
]
=

1

N
tr
(
E(ete

′
t|F)E(ese

′
s|F)

)
.

Recall that et = πft + ηt. We will use the notation Ωη = E (ηtη
′
t) = dg{ω2

i }Ni=1. Then,

E

[(
e′tes√
N

)2

|F
]
=

1

N
tr
(
(πE(ftf

′
t |F)π′ + Ωη) (πE(fsf

′
s|F)π′ + Ωη)

)

=
1

N

N∑

i=1

ω4
i +∆N,T ,

where

∆N,T ≤ C

N
E
[
(‖ft‖2 + 1)(‖fs‖2 + 1)|F

]
.

Indeed, ∆N,T has three terms each of which is easy to bound. For example,

1

N
tr
(
ΩηπE(fsf

′
s|F)π′) ≤ 1

N
max
1≤i≤N

ω2
i · tr

(
E(fsf

′
s|F)π′π

)

≤ 1

N
max
1≤i≤N

ω2
i ·max ev(π′π) · E

[
‖fs‖2|F

]
.

Since we assumed that max1≤i≤N ω2
i < C and from Assumption 5(ii), it follows that

∥∥∥∥∥
1

T 2

T∑

s=1

∑

t<s

E [wstw
′
st∆N,T ]

∥∥∥∥∥ ≤ C

NT 2

T∑

s=1

∑

t<s

E
[
‖wst‖2(‖ft‖2 + 1)(‖fs‖2 + 1)

]
≤ C

N
→ 0,
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where the last inequality is due to Assumption 5(i). So, we obtain that

ΣW,T (T,N) = lim
1

T 2

T∑

s=1

∑

t<s

E [wstw
′
st]

1

N

N∑

i=1

ω4
i = ω4Ωw = ΣW .

(ii) Notice that
e′tes√
N

=
f ′
tπ

′πfs√
N

+
f ′
tπ

′ηs√
N

+
f ′
sπ

′ηt√
N

+
η′tηs√
N
.

Using the Marcinkiewicz–Zygmund inequality for a second power applied twice we notice

that in order to bound E
[(
e′tes/

√
N
)4|F

]
from above it is enough to bound the fourth

moment of each summand. Using serial and cross-sectional conditional independence of

η’s as well as their conditional independence from f ’s, we obtain

E



(

1√
N

N∑

i=1

ηitηis

)4

 =

1

N2

N∑

i=1

E
[
(ηitηis)

4
]
+ C

1

N2

∑

i1 6=i2

E
[
η2i1tη

2
i1s
η2i2tη

2
i2s

]
≤ C,

E



∥∥∥∥∥

1√
N

N∑

i=1

πiηis

∥∥∥∥∥

4

 ≤ 1

N2

N∑

i=1

E
[
‖πiηis‖4

]
+ C

1

N2

∑

i1 6=i2

‖πi1‖2‖πi2‖2E
[
η2i1sη

2
i2s

]
≤ C

N2
,

where we use Assumption 5(ii,iii), and that
∑

i ‖πi‖4 ≤
(∑

i ‖πi‖2
)2 ≤ C. Hence,

E

[(
e′tes√
N

)4

|F
]
≤ C

N2
E
[
‖ft‖4‖fs‖4|F

]
+

C

N2

(
E
[
‖ft‖4|F

]
+ E

[
‖fs‖4|F

])
+ C.

Finally, due to Assumption 5(i),

T 4
E
[
‖Wst‖4

]
≤ E

[∥∥∥∥wst
e′tes√
N

∥∥∥∥
4
]
≤ CE

[
‖wst‖4(‖ft‖4 + 1)(‖fs‖4 + 1)

]
< C.

Thus, condition (ii) of Lemma A.2 holds.

(iii) Let us define a σ-algebra A = F ∪ {ft, t = 1, ..., T}. Let us now denote

ϑst = E

[(
e′set√
N

)2

|A
]
= E

[(
(πfs + ηs)

′(πft + ηt)
)2

N
|A
]

=
1

N

(
(f ′

sπ
′πft)

2
+ f ′

sπΩηπ
′fs + f ′

tπΩηπ
′ft +

N∑

i=1

ω4
i

)
.
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We have:

T∑

s=1

∑

t<s

WstW
′
st − ΣW,T =

1

T 2

T∑

s=1

∑

t<s

wstw
′
st

[(
e′set√
N

)2

− ϑst

]

+
1

T 2

T∑

s=1

∑

t<s

(
wstw

′
stϑst − E [wstw

′
stϑst]

)

= A1 + A2,

so, it is enough to prove convergence of each term separately. Now, E [tr(A1A
′
1)] is equal

to

1

T 4

T∑

s1,s2=1

∑

t1,t2

E

[
tr(ws1t1w

′
s1t1

ws2t2w
′
s2t2

)

((
e′s1et1√

N

)2

− ϑs1t1

)((
e′s2et2√

N

)2

− ϑs2t2

)]
.

Notice that in order for a summand from the last sum to be non-zero we need that some

indexes in the set {s1, s2, t1, t2} coincide, and we obtain at most CT 3 non-zero summands.

Each non-zero summand is bounded above by a constant due to the moment assumptions

formulated in Assumption 5(i,iii). Thus, E [tr(A1A
′
1)] → 0.

Notice that due to Assumption 5, and similar to the argument above,

∣∣∣∣∣ϑst −
1

N

N∑

i=1

ω4
i

∣∣∣∣∣ ≤
C

N
(‖fs‖+ ‖ft‖+ 1)4. (A.5)

Thus,

A2 =

(
1

N

N∑

i=1

ω4
i

)
1

T 2

T∑

s=1

∑

t<s

(
wstw

′
st − E (wstw

′
st)
)

+
1

T 2

T∑

s=1

∑

t<s

(
wstw

′
st

(
ϑst −

1

N

N∑

i=1

ω4
i

)
− E

[
wstw

′
st

(
ϑst −

1

N

N∑

i=1

ω4
i

)
])

,

where the first sum converges to zero due to Assumption 1(iii), while expectation of the

second moment of the second term is bounded by

1

T 4

∑

s1,s2

∑

t1,t2

C

N2
E
[
(‖fs1‖+ ‖ft1‖+ 1)4(‖fs2‖+ ‖ft2‖+ 1)4‖ws1t1‖2‖ws2t2‖2

]
≤ C

N2
,

due to inequality (A.5) and Assumption 5(i). Thus, condition (iii) of Lemma A.2 holds.

Let us check condition (iv):

T 4
E
(
W ′

s1t2
Ws2t1W

′
s2t2

Ws1t1

)
=

1

N2
E
[
w′

s1t2
ws2t1w

′
s2t2

ws1,t1E(e
′
s1
et1e

′
t1
es2e

′
s2
et2e

′
t2
es1|F)

]
,
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where we used that the scalar products e′tes = e′set are scalars and they can be reshuffled to

make two same-index et stand back to back. Let us bound the N ×N matrix E(ete
′
t|F) =

πE(ftf
′
t |F)π′ + Ωη:

max ev
(
E(ete

′
t|F)

)
≤ max ev

(
π′
E(ftf

′
t |F)π

)
+max ev (Ωη)

≤ tr
(
π′
E(ftf

′
t |F)π

)
+ max

1≤i≤N
ω2
i

≤ max ev(ππ′)E
(
‖ft‖2|F

)
+ C

≤ CE
(
‖ft‖2 + 1|F

)
. (A.6)

As a result,

∣∣E(e′s1et1e
′
t1
es2e

′
s2
et2e

′
t2
es1 |F)

∣∣ =
∣∣tr
(
E(et1e

′
t1
|F)E(es2e

′
s2
|F)E(et2e

′
t2
|F)E(es1e

′
s1
|F)
)∣∣

≤ N max ev


 ∏

t∈{s1,s2,t1,t2}
E(ete

′
t|F)




≤ N
∏

t∈{s1,s2,t1,t2}
max ev (E(ete

′
t|F))

≤ NC
∏

t∈{s1,s2,t1,t2}
E
(
‖ft‖2 + 1|F

)
.

Also using Assumption 5(i) we obtain that

T 4
∣∣E
(
W ′

s1t2Ws2t1W
′
s2t2Ws1t1

)∣∣ ≤ C

N
max

1≤s,t,t∗≤T
E
[
‖wst‖4‖ft∗‖8

]
→ 0.

Thus, condition (iv) holds as well.

Now we will check assumptions (a)-(d) of Lemma A.3. First, we find the limit of the

covariance matrix ΣV,T .

E

[(
γ′es√
N

)(
γ′es√
N

)′
|F
]
=

(
γ′π√
N

)
E[fsf

′
s|F ]

(
π′γ√
N

)
+

1

N

N∑

i=1

ω2
i γiγ

′
i

→ Γ′
πγE (fsf

′
s|F) Γπγ + Γω.

Here we used Assumptions 5(ii,iii). Therefore,

ΣV,T = var

(
T∑

s=1

Vs

)
= E

[
1

T

T∑

s=1

E

((
γ′es√
N

)(
γ′es√
N

)′
|F
)
⊗ (vsv

′
s)

]

=
1

T

T∑

s=1

E
[(
Γ′
πγfsf

′
sΓπγ + Γω

)
⊗ (vsv

′
s)
]

→ (Γ′
πγ ⊗ Ikv)Σfv(Γπγ ⊗ Ikv) + Γω ⊗ Ωv.
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The limit matrix is positive definite since both Γω and Ωv are positive-definite due to

Assumptions 1(i) and 5(iii).

Now note that due to Assumption 5(ii),

E

[∥∥∥∥
γ′et√
N

∥∥∥∥
4

|F
]
=

1

N2
E
(
‖γ′πft + γ′ηt‖4|F

)
≤ CE

(
‖ft‖4|F

)
+

C

N2
E
(
‖γ′ηt‖4

)
,

E
(
‖γ′ηt‖4

)
= E



∥∥∥∥∥

N∑

i=1

γ′
iηit

∥∥∥∥∥

4

 ≤

N∑

i=1

‖γi‖4E(η4it) + C

N∑

i1,i2=1

‖γi1‖2‖γi2‖2ω2
i1
ω2
i2
.

Due to Assumptions 2 and 5(iii) we have that E
(
‖γ′ηt‖4

)
≤ CN2, and thus

E

[∥∥∥∥
γ′et√
N

∥∥∥∥
4

|F
]
≤ CE

(
‖ft‖4 + 1|F

)
.

Collecting the pieces,

TE
(
‖Vs‖4

)
≤ CTE

[
1

T 2
E

[∥∥∥∥
γ′es√
N

∥∥∥∥
4

|F
]
⊗ ‖vs‖4

]
≤ C

T
E
[(
‖fs‖4 + 1

)
‖vs‖4

]
→ 0.

This gives us the validity of condition (b) of Lemma A.3.

(c) Denote Γω,N = N−1
∑N

i=1 ω
2
i γiγ

′
i → Γω. Then,

T∑

t=1

VtV
′
t − ΣV,T =

1

T

T∑

t=1

(
γ′et√
N

e′tγ√
N

)
⊗ (vtv

′
t)

− 1

T

T∑

t=1

E

[(
γ′π√
N
ftf

′
t

π′γ√
N

+ Γω,N

)
⊗ (vtv

′
t)

]

=
1

T

T∑

t=1

(
γ′et√
N

e′tγ√
N

− γ′π√
N
ftf

′
t

π′γ√
N

− Γω,N

)
⊗ (vtv

′
t)

+
1

T

T∑

t=1

[(
γ′π√
N
ftf

′
t

π′γ√
N

+ Γω,N − E

[
γ′π√
N
ftf

′
t

π′γ√
N

+ Γω,N

])
⊗ (vtv

′
t)

]

= A1 + A2.

Notice that given the conditional independence of ηit’s, the two terms in the last expres-

sion, A1 and A2 are uncorrelated, so in order to check condition (c) of Lemma A.3 we can
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prove convergence to zero of E
[
‖A1‖2

]
and E

[
‖A2‖2

]
separately. First,

E
[
‖A1‖2

]
= E



∥∥∥∥∥
1

T

T∑

t=1

(
γ′π√
N
ft

η′tγ√
N

+
γ′ηt√
N
f ′
t

π′γ√
N

+

(
γ′ηt√
N

η′tγ√
N

− Γω,N

))
⊗ (vtv

′
t)

∥∥∥∥∥

2



≤ 1

T 2

T∑

t=1

E

[∥∥∥∥
γ′π√
N
ft

η′tγ√
N

+
γ′ηt√
N
f ′
t

π′γ√
N

+

(
γ′ηt√
N

η′tγ√
N

− Γω,N

)∥∥∥∥
2

‖vt‖4
]

≤ 1

T
CE

[
(‖ft‖2 + 1)‖vt‖4

]
→ 0.

The former inequality is due to ηt’s being conditionally serially uncorrelated, and thus the

summation over t can be taken outside the expectation of the square; the latter inequality

uses bounds on the moments of η′tγ/
√
N we derived before. Second, the convergence of

term A2 is due to Assumptions 5(iv) and 1(iv). Putting all terms together, we obtain

that condition (c) is satisfied.

Finally, we check the condition (d):

T 3
∥∥E
(
Ws1tV

′
s1
Vs2W

′
s2t

)∥∥ =

∥∥∥∥E
[
ws1tv

′
s1
vs2w

′
s2t
E

(
e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)]∥∥∥∥ .

Using that scalars could be reshuffled to make two same-index et stand back to back and

employing conditional independence we obtain:

∣∣∣∣E
(
e′s1γ√
N

γ′es2√
N

e′s1et√
N

e′s2et√
N

|F
)∣∣∣∣ =

1

N2

∣∣tr
(
γγ′

E(es2e
′
s2 |F)E(ete

′
t|F)E(es1e

′
s1 |F)

)∣∣

≤ 1

N2
tr(γγ′)

∏

s∈{s1,s2,t}
max ev

(
E(ese

′
s|F)

)

≤ C

N
E


 ∏

s∈{s1,s2,t}

(
‖fs‖2 + 1

)
|F


 .

We use Assumption 2 that N−1tr(γγ′) < C and the bound (A.6) we derived before. In

the last equality, we also exploit that ft’s are conditionally independent of each other.

Thus, Assumption 5 (i) implies that

T 3 max
1≤t<min{s1,s2}≤T

∥∥E
(
Ws1tV

′
s1
Vs2W

′
s2t

)∥∥ ≤ C

N
→ 0.

Thus, condition (d) of Lemma A.3 is satisfied. This concludes the proof of Theorem 3.2.

�
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Proof of Theorem 4.2. We will prove three statements:

(i) N−1
∑N

i=1 ξV,iξ
′
V,i → ΣV ;

(ii) N−1
∑N

i=1 ξW,iξ
′
W,i → ΣW ;

(iii) N−1
∑N

i=1 ξV,iξ
′
W,i → 0.

(i) Given assumption Γπγ = 0, we have ΣV = Γω ⊗ Ωv. Then,

1

N

N∑

i=1

ξV,iξ
′
V,i =

1

NT

T∑

t=1

T∑

s=1

(
N∑

i=1

γiγ
′
i(π

′
ifs + ηis)(π

′
ift + ηit)

)
⊗ (vsv

′
t). (A.7)

After we open up the brackets there will be three different types of terms. We will show

that
1

NT

T∑

t=1

T∑

s=1

N∑

i=1

(γiγ
′
iηisηit)⊗ (vsv

′
t)

p→ ΣV , (A.8)

while terms that involve π′
iwsπ

′
iwt or ηitπ

′
ifs converge to zero in probability. Indeed,

1

NT

T∑

t=1

T∑

s=1

N∑

i=1

(γiγ
′
iηisηit)⊗ (vsv

′
t)− ΣV,T =

1

NT

T∑

t=1

T∑

s 6=t

N∑

i=1

(γiγ
′
iηisηit)⊗ (vsv

′
t)

+
1

NT

T∑

t=1

N∑

i=1

(γiγ
′
i)⊗

(
η2itvtv

′
t − ω2

iE (vtv
′
t)
)
.

We check that the first sum in the last expression is negligible:

E


tr



(

1

NT

T∑

t=1

T∑

s 6=t

N∑

i=1

(γiγ
′
iηisηit)⊗ (vsv

′
t)

)2



 ≤ 1

N2T 2

T∑

t=1

T∑

s 6=t

N∑

i=1

‖γi‖4ω4
iE
[
‖vt‖2‖vs‖2

]

≤ C

N2

N∑

i=1

‖γi‖4ω4
i → 0.

Here we use the conditional cross-sectional and temporal independence of ηit, that is, for

s 6= t we have E(ηitηisηjt∗ηjs∗|F) = ω4
i if i = j and {t, s} = {t∗, s∗}, and zero otherwise.

We also use Assumptions 2 and 5(iii). As for the second sum, we notice that all summands
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in the expression below are uncorrelated with each other, hence

tr


E



(

1

NT

N∑

i=1

T∑

t=1

(
γiγ

′
iη

2
it

)
⊗ (vtv

′
t)− ΣV

)2





=
1

N2T 2

N∑

i=1

T∑

t=1

tr
(
E

[((
γiγ

′
iη

2
it

)
⊗ (vtv

′
t)− E

[(
γiγ

′
iη

2
it

)
⊗ (vtv

′
t)
])2])

≤ C

N2T 2

N∑

i=1

T∑

t=1

‖γi‖4E
[
‖vt‖4

]
→ 0.

Thus, we showed the convergence (A.8).

Now consider terms in (A.7) that involve π′
ifsπ

′
ift:

1

NT

T∑

t=1

T∑

s=1

(
N∑

i=1

γiγ
′
iπ

′
ifsπ

′
ift

)
⊗ (vsv

′
t)

=

(
1

N

N∑

i=1

(γiγ
′
i)⊗ (π′

i ⊗ π′
i)⊗ Ikv

)(
1

T

T∑

t=1

T∑

s=1

Ikγ ⊗ vec(fsf
′
t)⊗ (vsv

′
t)

)
.

Using Assumption 2 and 5(ii) we can show that

∥∥∥∥∥
1

N

N∑

i=1

(γiγ
′
i)⊗ (π′

i ⊗ π′
i)

∥∥∥∥∥ ≤ 1

N

N∑

i=1

‖γi‖2 ‖πi‖2 ≤ C
1

N

N∑

i=1

‖πi‖2 → 0.

Now observe that

E



∥∥∥∥∥
1

T

T∑

t=1

T∑

s=1

vec(fsf
′
t)⊗ (vsv

′
t)

∥∥∥∥∥

2

F




= tr

(
1

T 2
E

[
T∑

t=1

T∑

s=1

T∑

t∗=1

T∑

s∗=1

(
vec(fsf

′
t) vec(fs∗f

′
t∗)

′)⊗ (vsv
′
tvs∗v

′
t∗)

])

≤ C
1

T 2
E

[
T∑

t=1

T∑

s=1

‖ft‖2‖fs‖2‖vs‖2‖vt‖2
]
< C.

Here the equality is due to ft’s being serially independent and mean zero conditionally on

F by Assumption 5(i) and vt ∈ F ; hence, among the four summation indexes at most two

may be distinct. The last inequality is due to Assumption 5(i). Thus, we showed that

1

NT

T∑

t=1

T∑

s=1

(
N∑

i=1

γiγ
′
iπ

′
ifsπ

′
ift

)
⊗ (vsv

′
t)

p→ 0.
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And finally, we show that

1

NT

T∑

t=1

T∑

s=1

(
N∑

i=1

γiγ
′
iπ

′
ifsηit

)
⊗ (vsv

′
t)

p→ 0.

This holds because ηit’s are mean zero, cross-sectionally independent and independent

from ft conditionally on F . This implies that the mean of the sum above is zero, and all

summands are uncorrelated with each other. The second moment of the sum is bounded

above by

C

N2T 2

T∑

t=1

T∑

s=1

N∑

i=1

‖γi‖4‖πi‖2ω2
iE
[
‖ft‖2‖vt‖2‖vs‖2

]
→ 0.

Thus, we proved statement (i).

Let us turn to statement (ii):

1

N

N∑

i=1

ξW,iξ
′
W,i − ΣW,T =

1

T 2N

N∑

i=1

T∑

s=1

∑

t<s

wstw
′
st

(
e2ite

2
is − ω4

i

)

+
1

T 2N

N∑

i=1

T∑

s=1

∑

t<s

T∑

s∗=1

∑

t∗<s∗,{s,t}6={s∗,t∗}
wstw

′
s∗t∗eiteiseit∗eis∗

+
1

N

N∑

i=1

ω4
i

1

T 2

T∑

s=1

∑

t<s

(
wstw

′
st − E(wstw

′
st)
)

= A1 + A2 + A3.

As for A1, we can notice that all summands with indexes {s, t} 6= {s∗, t∗} are uncorrelated

with each other, so the correlation for summands with different indexes i can come only

from the π′
ift part. Thus,

E
[
‖A1‖2F

]
=

1

T 4N2

T∑

s=1

∑

t<s

E



∥∥∥∥∥

N∑

i=1

wstw
′
st

(
e2ite

2
is − ω4

i

)
∥∥∥∥∥

2

F




≤ C

T 4N2

T∑

s=1

∑

t<s

N∑

i=1

(
E
[
‖wst‖4

]
max1≤i≤N,1≤t≤T E

(
η4it
)2

+
∑N

j=1 ‖πi‖4‖πj‖4E
[
‖wst‖4‖ft‖4‖fs‖4

]
)

→ 0.

In the last convergence we used that due to Assumption 5,

C

N2

N∑

i=1

N∑

j=1

‖πi‖4‖πj‖4 ≤
C

N2
max
1≤i≤N

‖πi‖4
(

N∑

i=1

‖πi‖2
)2

→ 0, (A.9)
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and hence the term A1 converges to zero.

Term E
[
‖A2‖2F

]
equals the following expression:

1

T 4N2

N∑

i,j=1

T∑

s1,s∗1,
s2,s∗2

∑

tm<sm,
t∗m<s∗m

{sm,tm}6={s∗m,t∗m}

E
[
tr(ws1t1w

′
s∗
1
t∗
1

ws2t2w
′
s∗
2
t∗
2

)eit1eis1eit∗1eis∗1ejt2ejs2ejt∗2ejs∗2
]
.

(A.10)

Notice that if sm < tm, s
∗
m < t∗m and {sm, tm} 6= {s∗m, t∗m} for m = 1, 2, the only ways

when the expectation

E(eit1eis1eit∗1eis∗1ejt2ejs2ejt∗2ejs∗2 |F) 6= 0 (A.11)

can be non zero is when we place at least four restrictions on the time indexes. Indeed,

if {s1, s∗1, t1, t∗1} are all distinct, then to get a non zero expectation we need indexes to

coincide as sets: {s1, s∗1, t1, t∗1} = {s2, s∗2, t2, t∗2}. If the set {s1, s∗1, t1, t∗1} contains three

distinct indexes, for example, s1 = s∗1 (this is one restriction), then the set {s2, s∗2, t2, t∗2}
should contain (t1, t

∗
1) (these are two restrictions), and the remaining indexes should be

either equal to each other (one restriction) or equal to the ones previously mentioned (two

restrictions). Thus, instead of eight-dimensional summation over time indexes in equation

(A.10) we have a four-dimensional summation.

Let us consider those terms in (A.10) when the summation index j is equal to i.

Notice that since each t index is strictly smaller than the corresponding s index, then any

distinct time index can appear in the set {s1, s∗1, t1, t∗1, s2, s∗2, t2, t∗2} at most four times,

thus any individual error term eit may appear in at most power four. Thus, all non-zero

terms are bounded above by max1≤i≤N,1≤s,t,t∗≤T E
[
‖wst‖4

(
E (η4it) + C‖ft∗‖4

)2]
< C due

to Assumption 5(i,iii). There are at most CT 4N of such terms while the normalization is

N−2T−4, hence that sum converges to zero.

Now consider those terms in (A.10) when i 6= j. Since eit = π′
ift + ηit, with ηit’s

independent of each other both cross-sectionally and temporally, i 6= j and {sm, tm} 6=
{s∗m, t∗m}, we have that all terms including ηit are zero, and only a non-trivial part of the

term in (A.11) is the one including π′
ift in place of eit. So, every non-zeros term in the

sum (A.10) is bounded by ‖πi‖4‖πj‖4E
[
‖wst‖4‖ft‖8

]
. So, the sum in (A.10) over j 6= i is

bounded above in the same manner as stated in equation (A.9). Thus, we showed that

A2
p→ 0. The convergence A3

p→ 0 comes from Assumption 1(iii). This finishes the proof

of (ii).
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Finally, let us prove statement (iii):

1

NT 3/2

N∑

i=1

T∑

s=1

∑

t<s

T∑

s∗=1

(γi ⊗ vs∗)w
′
steis∗eiteis

p→ 0.

As before, we look at the expectation of the square of the sum above, which involves six-

dimensional summation over time indexes and two-dimensional cross-sectional summation

(over i, j) and is normalized by N−2T−3. Due to time-series independence of eit, the six-

dimensional summation over time indexes has mostly zeros and can be reduced to three-

dimensional summation over time indexes as the set {s1, t1, s∗1, s2, t2, s∗2} should have any

distinct index to appear at least twice. If we consider the cases when i = j, then all terms

are bounded above by a constant and the number of non-zero terms is NT 3; given the

normalization, this sum converges to zero. When we sum over i 6= j, the only part of eit

that yields a non-trivial effect is π′
ift; hence this sum is bounded by

1

N2

T∑

i,j=1

‖γi‖‖γj‖‖πi‖3‖πj‖3 max
1≤s,t,s∗≤T

E
[
‖vs∗‖2‖wst‖2‖fs∗‖2‖fs‖2‖ft‖2

]

≤ C

(
1

N

N∑

i=1

‖γi‖‖πi‖3
)2

≤ 1

N2
max
1≤i≤N

‖γi‖2 max
1≤i≤N

‖πi‖4
N∑

i=1

‖πi‖2 → 0.

This ends the proof of Theorem 4.2. �
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