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Abstract

I study monetary and fiscal policy in liquidity trap scenarios, where the zero bound
on the nominal interest rate is binding. I work with a continuous-time version of the
standard New Keynesian model. Without commitment the economy suffers from de-
flation and depressed output. I show that, surprisingly, both are exacerbated with
greater price flexibility. I find that the optimal interest rate is set to zero past the lig-
uidity trap and jumps discretely up upon exit. Inflation may be positive throughout,
so the absence of deflation is not evidence against a liquidity trap. Output, on the
other hand, always starts below its efficient level and rises above it. Thus, monetary
policy promotes inflation and an output boom. I show that the optimal prolongation
of zero interest rates is related to the latter, not the former. I then study fiscal policy
and show that, regardless of parameters that govern the value of “fiscal multipliers”
during normal or liquidity trap times, at the start of a liquidity trap optimal spending
is above its natural level. However, it declines over time and goes below its natural
level. I propose a decomposition of spending according to “opportunistic” and “stim-
ulus” motives. The former is defined as the level of government purchases that is
optimal from a static, cost-benefit standpoint, taking into account that, due to slack
resources, shadow costs may be lower during a slump; the latter measures deviations
from the former. I show that stimulus spending may be zero throughout, or switch
signs, depending on parameters. Finally, I consider the hybrid where monetary policy
is discretionary, but fiscal policy has commitment. In this case, stimulus spending is
positive and initially increasing throughout the trap.
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and Matthew Rognlie for detailed comments and suggestions. All remaining errors are mine.



1 Introduction

The 2007-8 crisis in the U.S. led to a steep recession, followed by aggressive policy re-
sponses. Monetary policy went full tilt, cutting interest rates rapidly to zero, where they
have remained since the end of 2008. With conventional monetary policy seemingly ex-
hausted, fiscal stimulus worth $787 billion was enacted by early 2009 as part of the Amer-
ican Recovery and Reinvestment Act. Unconventional monetary policies were also pur-
sued, starting with “quantitative easing”, purchases of long-term bonds and other assets.
In August 2011, the Federal Reserve’s FOMC statement signaled the intent to keep inter-
est rates at zero until at least mid 2013. Similar policies have been followed, at least during
the peak of the crisis, by many advanced economies. Fortunately, the kind of crises that
result in such extreme policy measures have been relatively few and far between. Perhaps
as a consequence, the debate over whether such policies are appropriate remains largely
unsettled. The purpose of this paper is to make progress on these issues.

To this end, I reexamine monetary and fiscal policy in a liquidity trap, where the zero
bound on nominal interest rate binds. I work with a standard New Keynesian model that
builds on Eggertsson and Woodford (2003).! In these models a liquidity trap is defined as
a situation where negative real interest rates are needed to obtain the first-best allocation.
I adopt a deterministic continuous time formulation that turns out to have several advan-
tages. It is well suited to focus on the dynamic questions of policy, such as the optimal exit
strategy, whether spending should be front- or back-loaded, etc. It also allows for a simple
graphical analysis and delivers several new results. The alternative most employed in the
literature is a discrete-time Poisson model, where the economy starts in a trap and exits
from it with a constant exogenous probability each period. This specification is especially
convenient to study the effects of suboptimal and simple Markov policies—because the
equilibrium calculations then reduce to finding a few numbers—but does not afford any
comparable advantages for the optimal policy problem.

I consider the policy problem under commitment, under discretion and for some inter-
mediate cases. I am interested in monetary policy, fiscal policy, as well as their interplay.
What does optimal monetary policy look like? How does the commitment solution com-
pare to the discretionary one? How does it depend on the degree of price stickiness?
How can fiscal policy complement optimal monetary policy? Can fiscal policy mitigate
the problem created by discretionary monetary policy? To what extent is spending gov-

IEggertsson (2001, 2006) study government spending during a liquidity trap in a New Keynesian model,
with the main focus is on the case without commitment and implicit commitment to inflate afforded by
rising debt. Christiano et al. (2011), Woodford (2011) and Eggertsson (2011) consider the effects of spending
on output, computing “fiscal multipliers”, but do not focus on optimal policy.



erned by a concern to influence the private economy as captured by "fiscal multipliers",
or by simple cost-benefit public finance considerations?

I first study monetary policy in the absence of fiscal policy. When monetary policy
lacks commitment, deflation and depression ensue. Both are commonly associated with
liquidity traps. Less familiar is that both outcomes are exacerbated by price flexibility.
Thus, one does not need to argue for a large degree of price stickiness to worry about the
problems created by a liquidity trap. In fact, quite the contrary. I show that the depression
becomes unbounded as we converge to fully flexible prices. The intuition for this result
is that the main problem in a liquidity trap is an elevated real interest rate. This leads
to depressed output, which creates deflationary pressures. Price flexibility accelerates
deflation, raising the real interest rate further and only making matters worse.

As first argued by Krugman (1998), optimal monetary policy can improve on this dire
outcome by committing to future policy in a way that affects current expectations favor-
ably. In particular, I show that, it is optimal to promote future inflation and stimulate a
boom in output. I establish that optimal inflation may be positive throughout the episode,
so that deflation is completely avoided. Thus, the absence of deflation, far from being at
odds with a liquidity trap, actually may be evidence of an optimal response to such a situ-
ation. I show that output starts below its efficient level, but rises above it towards the end
of the trap. Indeed, the boom in output is larger than that stimulated by the inflationary
promise.

There are a number of ways monetary policy can promote inflation and stimulate
output. Monetary easing does not necessarily imply a low equilibrium interest rate path.
Indeed, as in most monetary models, the nominal interest rate path does not uniquely
determine an equilibrium. Indeed, an interest rate of zero during the trap that becomes
positive immediately after the trap is consistent with positive inflation and output after
the trap.” I show, however, that the optimal policy with commitment involves keeping
the interest rate down at zero longer. The continuous time formulation helps here because
it avoids time aggregation issues that may otherwise obscure the result.

Some of my results echo findings from prior work based on simulations for a Poisson
specification of the natural rate of interest. Christiano et al. (2011) reports that, when the
central bank follows a Taylor rule, price stickiness increases the decline in output during
a liquidity trap. Eggertsson and Woodford (2003), Jung et al. (2005) and Adam and Billi

2For example, a zero interest during the trap and an interest equal to the natural rate outside the trap.
This is the same path for the interest rate that results with discretionary monetary policy. However, in that
case, the outcome for inflation and output is pinned down by the requirement that they reach zero upon
exiting the trap. With commitment, the same path for interest rates is consistent with higher inflation and
output upon exit.



(2006) find that the optimal interest rate path may keep it at zero after the natural rate
of interest becomes positive. To the best of my knowledge this paper provides the first
formal results explaining these findings for inflation, output and interest rates.

An implication of my result is that the interest rate should jump discretely upon exit-
ing the zero bound—a property that can only be appreciated in continuous time. Thus,
even when fundamentals vary continuously, optimal policy calls for a discontinuous in-
terest rate path.

Turning to fiscal policy, I show that, there is a role for government spending dur-
ing a liquidity trap. Spending should be front-loaded. At the start of the liquidity trap,
government spending should be higher than its natural level. However, during the trap
spending should fall and reach a level below its natural level. Intuitively, optimal govern-
ment spending is countercyclical, it leans against the wind. Private consumption starts
out below its efficient level, but reaches levels above its efficient level near the end of the
liquidity trap. The pattern for government spending is just the opposite.

The optimal pattern for total government spending masks two potential motives. Per-
haps the most obvious, especially within the context of a New Keynesian model, is the
macroeconomic, countercyclical one. Government spending affects private consumption
and inflation through dynamic general equilibrium effects. In a liquidity trap this may be
particularly useful, to mitigate the depression and deflation associated with these events.

However, a second, often ignored, motive is based on the idea that government spend-
ing should react to the cycle even based on static, cost-benefit calculations. In a slump,
the wage, or shadow wage, of labor is low. This makes it is an opportune time to produce
government goods. During the debates for the 2009 ARRA stimulus bill, variants of this
argument were put forth.

Based on these notions, I propose a decomposition of spending into "stimulus" and
"opportunistic" components. The latter is defined as the optimal static level of govern-
ment spending, taking private consumption as given. The former is just the difference
between actual spending and opportunistic spending.

I show that the optimum calls for zero stimulus at the beginning of a liquidity trap.
Thus, my previous result, showing that spending starts out positive, can be attributed
entirely to the opportunistic component of spending. More surprisingly, I then show
that for some parameter values stimulus spending is everywhere exactly zero, so that,
in these cases, opportunistic spending accounts for all of government spending policy
during a liquidity trap. Of course, opportunistic spending does, incidentally, influence
consumption and inflation. But the point is that these considerations need not figure into

the calculation. In this sense, public finance trumps macroeconomic policy.



Another implication is that, in such cases, commitment to a path for government
spending is superfluous. A naive, fiscal authority that acts with full discretion and per-
forms the static cost-benefit calculation chooses the optimal path for spending.

These results assume that monetary policy is optimal. Things can be quite different
when monetary policy is suboptimal due to lack of commitment. To address this I study
a mixed case, where monetary policy is discretionary but fiscal policy has the power to
commit to a government spending path. Positive stimulus spending emerges as a way to
tight deflation. Indeed, the optimal intervention is to provide positive stimulus spending
that rises over time during the liquidity trap. Back-loading stimulus spending provides a
bigger bang for the buck, both in terms of inflation and output. Since price setting is for-
ward looking, spending near the end promotes inflation both near the end and earlier. In
addition, any improvement in the real rate of return near the end of the liquidity trap im-
proves the output outcome level for earlier dates. Both reasons point towards increasing
stimulus spending.

If the fiscal authority can commit past the trap, then it is optimal to promise lower
spending immediately after the trap, and converge towards the natural rate of spending
after that. Spending features a discrete downward jump upon exiting the trap. Intuitively,
after the trap, once the flexible price equilibrium is attainable, lower government spend-
ing leads to a consumption boom. This is beneficial, for the same reasons that monetary
policy with commitment promotes a boom, because it raises the consumption level dur-
ing the trap. Thus, the commitment to lower spending after the trap attempts to mimic
the expansionary effects that the missing monetary commitments would have provided.

The model is cast in continuous time and this is one of the distinguishing features of
my analysis. Why is continuous time simpler and more powerful here? One answer is
that continuous time is useful whenever one needs to solve for endogenous switching
times, as in the balance of payment crisis model in Krugman (1979), the Baumol-Tobin
model of inventory money demand, or in other sS menu-cost models. This is also the
situation here because the solution has a bang-bang property, with the interest rate being
kept at zero up to some endogenous exit time. In other words, the advantage has little to
do with technical tools, such as the use of Pontryagin’s maximum principle, and more to
do with the fact that time is of the essence, that is, we are solving for an exit time and it is
simpler and natural to allow that key choice variable to be continuous.

The rest of the paper is organized as follows. Section 2 introduces the model. Section
3 studies the equilibrium without fiscal policy when monetary policy is conducted with
discretion. Section 4 studies optimal monetary policy with commitment. Section 5 adds
fiscal policy and studies the optimal path for government spending alongside optimal



monetary policy. Section 6 considers mixed cases where monetary policy is discretionary,

but fiscal policy enjoys commitment.

2 A Liquidity Trap Scenario

The model is a continuous-time version of the standard New Keynesian model. The envi-
ronment features a representative agent, monopolistic competition and Calvo-style sticky
prices; it abstracts from capital investment. I spare the reader another rendering of the de-
tails of this standard setting (see e.g. Woodford, 2003, or Gali, 2008) and skip directly to
the well-known log-linear approximation of the equilibrium conditions which I use in the
remainder of the paper.

Euler Equation and Phillips Curve. The equilibrium conditions, log linearized around

zero inflation, are

#(t) = o H(i(t) —r(t) — 7(t) (1a)
7t(t) = prr(t) — xx(t) (1b)
i(t) 2 0 (10)

where p, 0 and « are positive constants and the path {r(t)} is exogenous and given. We
also require a solution (77(t), x(t)) to remain bounded. The variable x(t) represents the
output gap: the log difference between actual output and the hypothetical output that
would prevail at the efficient, flexible price, outcome. Inflation is denoted by 7(¢) and
the nominal interest rate by i(t). Finally, r(¢) stands for the “natural rate of interest”,
i.e. the real interest rate that would prevail in an efficient, flexible price, outcome with
x(t) = 0 throughout.

Equation (1a) represents the consumer’s Euler equation. Output growth, equal to
consumption growth, is an increasing function of the real rate of interest, i(t) — 7t(¢). The
natural rate of interest enters this condition because output has been replaced with the
output gap. Equation (1b) is the New-Keynesian, forward-looking Phillips curve. It can
be restated as saying that inflation is proportional, with factor ¥ > 0, to the present value

of future output gaps,
n(t) = K/ e Px(t+s)ds.
0

Thus, positive output gaps stimulate inflation, while negative output gaps produce defla-

tion. Finally, inequality (1c) is the zero-lower bound on nominal interest rates (hereafter,



ZLB).

As for the constants, p is the discount rate, o 1listhe intertemporal elasticity of substi-
tution and « controls the degree of price stickiness. Lower values of x imply greater price
stickiness. As k¥ — oo we approach the benchmark with perfectly flexible prices, where
high levels of inflation or deflation are compatible with minuscule output gaps.

A number of caveats are in order. The model I use is the very basic New Keynesian
setting, without any bells and whistles. Basing my analysis on this simple model is con-
venient because it lies at the center of many richer models, so we may learn more general
lessons. It also facilitates the normative analysis, which could quickly become intractable
otherwise. On the other hand, the analysis abstracts from unemployment, and omits dis-
tortionary taxes, financial constraints and other frictions which may be relevant in these

situations.

Quadratic Welfare Loss. [ will evaluate outcomes using the quadratic loss function

L=> / " et (x(t)z + /\n(t)z) dt. )
0

According to this loss function it is desirable to minimize deviations from zero for both
inflation and the output gap. The constant A controls the relative weight placed on the
inflationary objective. The quadratic nature of the objective is convenient and can be de-
rived as a second order approximation to welfare around zero inflation when the flexible
price equilibrium is efficient.> Such an approximation also suggests that A = A/« for
some constant A, so that A — 0 as k — oo, as prices become more flexible, price instability

becomes less harmful.

The Natural Rate of Interest. The path for the natural rate {r(f) } plays a crucial role in
the analysis. Indeed, if the natural rate were always positive, so that 7(t) > 0 forall t > 0,
then the flexible price outcome with zero inflation and output gap, 7t(t) = x(¢) = 0 for
all t > 0, would be feasible and obtained by letting i(t) = () for all t > 0. This outcome
is also optimal, since it is ideal according to the loss function (2).

The situation described in the previous paragraph amounts to the case where the ZLB
constraint (1c) is always slack. The focus of this paper is on situations where the ZLB

constraint binds. Thus, I am interested in cases where r(t) < 0 for some range of time.

3In order to be efficient, the equilibrium requires a constant subsidy to production to undo the monop-
olistic markup. An alternative quadratic objective that does not assume the flexible price equilibrium is
efficient is § [;° e =" ((x(t) — %)% + Am(t)?) dt for ¥ > 0. Most of the analysis would carry through to this
case.



For a few results it is useful to further assume that the the economy starts in a liquidity
trap that it will eventually and permanently exit at some date T > 0:

r(t) <0 t<T
r(t) >0 t>T.

I call such a case a liquidity trap scenario. A simple example is the step function

1=

te[0,T)
7 ote|T, )

r(t) =

where 7 > 0 > r. [ use the step function case in some figures and simulations, but it is not
required for any of the results in the paper.

Finally, I also make a technical assumption: that r(s) is bounded and that the integral
fot r(s)ds be well defined and finite for any ¢ > 0.

3 Monetary Policy without Commitment

Before studying optimal policy with commitment, it is useful to consider the situation
without commitment, where the central bank is benevolent but cannot credibly announce
plans for the future. Instead, it acts opportunistically at each point in time, with absolute
discretion. This provides a useful benchmark that illustrates some features commonly as-
sociated with liquidity traps, such as deflationary price dynamics and depressed output.
I will also derive some less expected implications on the role of price stickiness. The out-

come without commitment is later contrasted to the optimal solution with commitment.

3.1 Deflation and Depression

To isolate the problems created by a complete lack of commitment, I rule out explicit
rules as well as reputational mechanisms that bind or affect the central bank’s actions
directly or indirectly. I construct the unique equilibrium as follows.* For t+ > T the
natural rate is positive, r(f) = 7 > 0, so that, as mentioned above, the ideal outcome
(7(t),x(t)) = (0,0) is attainable. I assume that the central bank can guarantee this out-

4In this section, I proceed informally. With continuous time, a formal study of the no-commitment case
requires a dynamic game with commitment over vanishingly small intervals.



Figure 1: The equilibrium without commitment, featuring i(t) = 0 for t < T and reaching
(0,0) att = T.

come so that (7(t),x(t)) = (0,0) for t > T.> Taking this as given, at all earlier dates
t < T the central bank will find it optimal to set the nominal interest rate to zero. The
resulting no-commitment outcome is then uniquely determined by the ODEs (1a)—(1b)
with i(t) = 0 for t < T and the boundary condition (7z(T), x(T)) = (0,0).

This situation is depicted in Figure 1 which shows the dynamical system (1a)—(1b) with
i(t) = 0 and depicts a path leading to (0,0) precisely at t = T. Output and inflation are
both negative for t < T as they approach (0,0). Note that the loci on which (7t(f),x(t))
must travel towards (0,0) is independent of T, but a larger T requires a starting point
further away from the origin. Thus, initial inflation and output are both decreasing in T.
Indeed, as T — oo we have that 77(0),x(0) — —o0.

Proposition 1. Consider a liquidity trap scenario, with r(t) < 0 for t < T and r(t) > 0
fort > T. Let t"(t) and x"(t) denote the equilibrium outcome without commitment. Then

5 Although this seems like a natural assumption, it presumes that the central bank somehow overcomes
the indeterminacy of equilibria that plagues these models. A few ideas have been advanced to accomplish
this, such as adhering to a Taylor rule with appropriate coefficients, or the fiscal theory of the price level.
However, both assume commitment on and off the equilibrium path. Although this issue is interesting, it
seem completely separate from the zero lower bound. Thus, the assumption that (7(t), x(t)) = (0,0) can
be guaranteed for t > T allows us to focus on the interaction between no commitment and a liquidity trap
scenario.



inflation and output are zero after t = T and strictly negative before that:
' (t) = x"(t) =0 t>T

' (t) <0 x"(t) <0 t<T.

Moreover, 1t(t) and x(t) are strictly increasing in t for t < T. In the limit as T — oo, if the
natural rate satisfies fOTr(t; T)ds — —oo, then

71€(0, T), (0, T) — —oo.

The equilibrium features deflation and depression. The severity of both depend, among
other things, on the duration T of the liquidity trap. Both becomes unbounded as T — 0.
In this sense, discretionary policy making may have very adverse welfare implications.

This outcome coincides with the optimal solution with commitment if one constrains
the problem by imposing (77(T),x(T)) = (0,0). In other words, the ability to commit to
outcomes within the interval t € [0, T) is irrelevant; also, the ability to commitonce t = T
is reached is also irrelevant. What is crucial is the ability to commit ex ante at t < T to
outcomes for t = T.

How can the outcome be so dire? The main distortion is that the real interest rate
is set too high during the liquidity trap. This depresses consumption. Importantly, this
effect accumulates over time. Even with zero inflation consumption becomes depressed
by o1 ftT r(t)ds. For example, with log utility o = 1 if the natural rate is -4% and the trap
lasts two years the loss in output is at least 8%. Moreover, matters are just made worse by
deflation, which raises the real interest rate even more, further depressing output, leading
to even more deflation, in a vicious cycle.

Note that it is the lack of commitment during the liquidity trap t < T to policy ac-
tions and outcomes after the liquidity trap t > T that is problematic. Policy commitment
during the liquidity trap ¢t < T is not useful. Neither is the ability to announce a credible
plan at t = T for the entire future t > T. Indeed, if we add (7r(T),x(T)) = (0,0) as a
constraint, then the no commitment outcome is optimal, even when the central bank en-
joys full commitment to any choice over (7(t), x(t),i(t));.r satisfying (1a)-(1b) for t < T
and t > T. What is valuable is the ability to commit during the liquidity trap to pol-

icy actions and outcomes after the liquidity trap. In particular, to something other than
(72(T), x(T)) = (0,0).

10



3.2 Elbow Room with a Higher Inflation Target: The Value of Commit-

ment

Before studying optimal policy it is useful to consider the effects of commitment to simple
non-optimal policies that avoid the depression and deflation outcomes obtained with full
discretion.

Consider a plan that keeps inflation and output gap constant at

n(t)=—-r>0 x(t)= —%z >0 forallt>0.

It follows that i(t) = r(t) + 7t(t), so thati(t) = 0 for t < T whilei(t) =7+ T > 7 > 0 for
t>T.

Although this policy is not optimal, it behaves well in the limit as prices become fully
flexible. Indeed, in this limit as ¥ — co the output gap converges uniformly to zero while
inflation remains constant. Thus, if we adopt the natural case where A = Ak — 0,
the loss function converges to its ideal value of zero, L(x) — 0. Compare this to the
dire outcome without commitment in Proposition 2, where the output gap and losses
converge to —oo.

Just as in the case without commitment, this simple policy sets the nominal interest
rate to zero during the liquidity trap, for t < T. Note that after the trap, for t > T, the
nominal interest rate is actually set to a higher level than the case without commitment.
Thus, the advantages of this simple policy do not hinge on lower nominal interest rates.
Quite the contrary, higher inflation here coincides with higher nominal interest rates, due
to the Fischer effect. One may still describe the outcome as resulting from looser monetary
policy, but the point is that the kind of monetary easing needed to avoid the deflation
and depression does not require lower equilibrium nominal interest rates. Obviously,
these observations translates into long term interest rates at f = 0: a commitment to
looser future monetary policy does not necessarily translate into lower yields on long
term bonds. As we shall see in the next section, the optimal policy with commitment
does feature lower, indeed zero, nominal interest rates.

This idea is more general. For any path for the natural interest rate {r(t)}, set a con-
stant inflation rate given by

n(t) =7 = —rtnzi(r)w(t)

and an output gap of x(t) = ¥ = x7. This plan is feasible with a non-negative nominal
interest rates i(t) > 0. These simple policy capture the main idea behind calls to tol-
erate higher inflation targets that leave more “elbow room” for monetary policy during

11



liquidity traps (e.g. Summers, 1991; Blanchard et al., 2010). However, given the forward
looking nature of inflation in this model, what is crucial is the commitment to higher in-
flation after the liquidity trap. This contrasts with the conventional argument, where a
higher inflation rate before the trap serves as a precautionary sacrifice for future liquidity
traps.

It is perhaps surprising that commitment to a simple policy can avoid deflation and
depressed output altogether. Of course, they do so at the expense of inflation and over-
stimulated output. If the required inflation target 77 or output gap ¥ are large, or if the
duration of the trap T is small, these plans may be quite far from optimal, since they
require a permanent sacrifice for the loss function.® This motivates the study of optimal

monetary policy which I take up in the next section.

3.3 Harmful Effects from Price Flexibility

I now return to the case without without commitment. How is this bleak outcome af-
fected by the degree of price stickiness? One might expect things to improve when prices
are more flexible. After all, the main friction in New Keynesian models is price rigidi-
ties, suggesting that outcomes should improve as prices become more flexible. The next
proposition shows, perhaps counterintuitively, that the reverse is actually the case.

Proposition 2. Without commitment higher price flexibility leads to more deflation and lower
output: if k < «’ then

" (t, k") < 7" (t,k) <0 and x"(t, &) < x"(t,x) <O forallt <T.
Indeed, for given T > 0 and t < T in the limit as xk — oo then
n(t,x),x(t,k) = —o0 and L(x) — oo.

Sticky prices are beneficial because they dampen deflation, this in turn mitigates the
depression. In fact, the most favorable outcome is obtained when prices are completely
rigid, x = 0. At the other end of the spectrum, in the limit of perfectly flexible prices, as

x — oo, the depression and deflation become unbounded.

®The reason the output gap ¥ is strictly positive is the New Keynesian model’s non-vertical long-run
Phillips curve. Some papers have explored modifications of the New Keynesian model that introduce
indexation to past inflation. Some forms of full indexation imply that a constant level of inflation affects
neither output nor welfare. Thus, with the right form of indexation very simple policies may be optimal or
close to optimal. Of course, this is not the case in the present model without indexation.

12



To see this more clearly, note that the Phillips curve equation (1b) implies that, for a
given negative output gap, a higher « creates more deflation. More deflation, in turn, in-
creases the real interest rate i — 77. By the Euler equation (1a), this requires higher growth
in the output gap, but since x(T) = 0 this translates into a lower level of x(t) for earlier
dates t < T. In words, flexible prices lead to more vigorous deflation, raising the real
interest rate, increasing the desire for saving, lowering demand and depressing output.
Lower output reinforces the deflationary pressures, creating a vicious cycle. The proof in
the appendix echoes this intuition closely.

A similar result is reported in the analysis of fiscal multipliers by Christiano et al.
(2011). They compute the equilibrium when monetary policy follows a Taylor rule and
the natural rate of interest is a Poisson process, taking two values. They show numerically
that output may be more depressed when prices are more flexible. They do not pursue
a limiting result towards full flexibility.” My result is somewhat distinct, since it applies
to a situation with optimal discretionary monetary policy, instead of a given Taylor rule.
Also, it holds for any deterministic path for the natural rate. Another difference is that
with Poisson uncertainty an equilibrium fails to exist when prices are sufficiently flexible.
Despite these differences, the logic for the effect is the same in both cases.®

The zero lower bound and the lack of commitment are not critical for this result. The
same conclusions follow for any path of the natural rate {r(t)} if we assume the central
bank sets the nominal interest rate above the natural rate i(t) = r(t) + A with A > 0 for
some period of time ¢ € [0, T] and then returns to implementing the first-best outcome
x(t) = m(t) = 0and i(t) = r(t) for t > T.” The zero lower bound and the lack of
commitment serve to motivate such a scenario. However, another justification may be
policy mistakes of this particular form, where interest rates are set too high (or too low)
for a fixed amount of time.

As I discuss later, when the central bank commits to an optimal policy, price flexibility
can be beneficial. Surprisingly, it may still be harmful, but it depends on parameters.

7Basically the same Poisson calculations in Christiano et al. (2011) appear also in Woodford (2011) and
Eggertsson (2011), although the effects of price flexibility are not their focus and so they do not discuss its
effects.

8De Long and Summers (1986) make the point that, for given monetary policy rules, price flexibility may
be destabilizing, even away from a liquidity trap, in the sense of increasing the variance of output.

90f course a symmetric result holds for A < 0. There is a boom in output alongside inflation. The
undesirable boom and inflation are amplified when prices are more flexible, in the sense of a higher «.
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Is there a Discontinuity at Full Flexibility? Not really.

The result that price flexibility makes matters worse may seem puzzling, especially in
the limit, since it seems to contradict the notion that perfectly flexible prices lead to zero
output gaps. That is, at k = oo we expect x(t) = 0 for all + > 0, but, paradoxically, as
kK — oo we obtain x(t) — —oo instead. Does this reveal an inherent discontinuity in the
New Keynesian model?

No. The result is best seen as arising from a discontinuity in monetary policy at x =
oo, not a discontinuity in the model itself. The equilibria obtained for finite x described
in Proposition 2 satisfy 7(t) < 0 and 7(T) = 0. If one takes these two features as a
requirement then there is no equilibrium with ¥ = co. Economically, this suggests a form
of continuity: an explosive outcome converges to a situation where an equilibrium seizes
to exist. In any case, when x = co, monetary policy must allow strictly positive inflation
for an equilibrium to exist. In this sense, the discontinuity in outcomes is produced by a
discontinuity in monetary policy regarding inflation at ¥ = co.

To see this more clearly, consider a liquidity trap scenario with r(t) =r < 0for t < T.
Consider indexing monetary policy by a single parameter, 77, a target rate of inflation.
Specifically, suppose 7t(t) = @ forallt > T and i(t) = 0 for t < T. For any finite x this
pins down an equilibrium uniquely. Note that if 77(T) = 0 then the equilibrium coincides
with the discretionary case. Indeed, Proposition 2 still describes the outcome for t < T in
the limit (1/x,, ©,) — (0,0). However, suppose that as 1/x, — 0 we let {71,} to be an
increasing sequence converging to —r > 0. Provided this convergence is fast enough, the
outcome converges to the one with flexible price so that lim,,—,« x5, (#) — 0 for all ¢.

Of course, the particular limit (1/x,, T,) — (0,0) is motivated by the lack of commit-
ment, but the point is that this can be seen as motivating a jump in monetary policy at
k = oo, which creates the discontinuity in outcomes.

A more practical lesson from this discussion is that the benefits of flexible prices only
accrue with monetary policies that accept higher inflation. In other words, price flexibility

only does its magic if we use it.

4 Optimal Monetary Policy with Commitment

I now turn to optimal monetary policy with commitment. The central bank’s problem
is to minimize the objective (2) subject to (1a)—(1c) with both initial values of the states,
71(0) and x(0), free. The problem seeks the most preferable outcome, across all those

compatible with an equilibrium. In what follows I focus on characterizing the optimal
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path for inflation, output and the nominal interest rate.'?

4.1 Optimal Interest Rates, Inflation and Output

The problem can be analyzed as an optimal control problem with state (7t(t), x(¢)) and
control i(f) > 0. The associated Hamiltonian is

H

%xz + %Anz + o Yi—r—71) + i (om — Kx) .

The maximum principle implies that the co-state for x must be non-negative throughout

and zero whenever the nominal interest rate is strictly positive

ux(t) >0, (3a)
i(t)px(t) = 0. (3b)
The law of motion for the co-states are
pe(t) = —x(t) + xpr(t) + ppx(t), (3c)
in(t) = —A7(t) + 0 px(t). (3d)

Finally, because both initial states are free, we have

ux(0) =0, (3e)
ur(0) =0. (3f)

Taken together, equations (1a)-(1c) and (3a)—(3f) constitute a system for {7(t), x(t), i(t),
Hr(t), px(t) }re(o,00)- Since the optimization problem is strictly convex, these conditions,
together with appropriate transversality conditions, are both necessary and sufficient for
an optimum. Indeed, the optimum coincides with the unique bounded solution to this
system.

Suppose the zero-bound constraint is not binding over some interval ¢ € [t1, f5]. Then
it must be the case that u,(t) = pix(t) = 0 for t € [t1, 1], so that condition (3c) implies

19T do not dedicate much discussion to the question of implementation, in terms of a choice of (pos-
sibly time varying) policy functions that would make the optimum a unique equilibrium. It is well
understood that, once the optimum is computed, a time varying interest rate rule of the form i(tf) =
i*(t) + Pr(mt(t) — (1)) + Px(x(f) — x*(t)) ensures that this optimum is the unique local equilibrium for
appropriately chosen coefficients 1,; and ¢x. Eggertsson and Woodford (2003) propose a different policy,
described in terms of an adjusting target for a weighted average of output and the price level, that also
implements the equilibrium uniquely.
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x(t) = xpur(t), while condition (3d) implies ji(t) = —A7(t). As a result,

£(t) = Kjin(t) = —kAT(E) = L (i(t) — r(8) — 7(8)).

Solving for i(t) gives
i(t) = I(r(t), (1)),
where
I(r,t) =r(t)+ (1 — ko),

is a function that gives the optimal nominal rate whenever the zero-bound is not binding.
This is the interest rate condition derived in the traditional analysis that assumes the ZLB
never binds (see e.g. Clarida, Gali and Gertler, 1999, pg. 1683). Note that this rate equals
the natural rate when inflation is zero, I(r,0) = r. Thus, it encompasses the well-known
price stability result from basic New-Keynesian models. Away from zero inflation, the
interest rate generally departs from the natural rate, unless cAx = 1.

Given this result, it follows that I*(r(t), 7r*(t)) > 0 is a necessary condition for the
zero-bound not to bind. The converse, however, is not true.

Proposition 3. Suppose {7t*(t),x*(t),i*(t)} is optimal. Then at any point in time t either
i*(t) = I(r(t), m*(t)) or i*(t) = 0. Moreover if

I(T’(t), ﬂ*(f)) <0 Vt € [to, tl)
then
i*(t) =0  Vte [ty ]
for ty < fy. Likewise, if tg > 0 then i*(t) = 0 for t € [fo, to] for {y < to.

According to this result, the nominal interest rate should be held down at zero longer
than what current inflation warrants. That is, the optimal path for the nominal interest

rate is not the upper envelope

i*(t) # max{0, I(r(t), 7 (£)) 1.

Instead, the nominal interest rate should be set below this envelope for some time, at zero.

The notion that committing to future monetary easing is beneficial in a liquidity trap
was first put forth by Krugman (1998). His analysis captures the benefits from future
inflation only. It is based on a cash-in-advance model where prices cannot adjust within
a period, but are fully flexible between periods. The first best is obtained by committing
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to money growth and inducing higher future inflation. Thus, inflation is easily obtained
and costless in the model. Eggertsson and Woodford (2003) work with the same New
Keynesian model as I do here. They report numerical simulations where a prolonged
period of zero interest rates are optimal. My result provides the first formal explanation
for these patterns. It also clarifies that the relevant comparison for the nominal interest
rate i*(t) is the unconstrained optimum I(r(t), t*(¢)), not the natural rate r(t); the two
are not equivalent, unless koA = 1. The continuous time framework employed here helps
capture the bang-bang nature of the solution. A discrete-time setting can obscure things
due to time aggregation.

One interesting implication of my result is that the optimal exit strategy features a
discrete jump in the nominal interest rate. Whenever the zero-bound stops binding the
nominal interest must equal I(r(t), 77%(t)), which given Proposition 3, will generally be
strictly positive. Thus, optimal policy requires a discrete upward jump, from zero, in
the nominal interest rate. Even when economic fundamentals vary smoothly, so that
I(r(t), 7*(t)) is continuous, the best exit strategy calls for a discontinuous hike in the
nominal interest rate.

Does commitment to the optimal policy, with prolonged zero interest rates, imply
lower long term interest rates? Relative to the discretionary equilibrium are yields on
long term bonds available at t = 0 lower? Not necessarily. Consider the liquidity trap
scenario. Zero interest rates are generally prolongued past T, this lowers the yield rate on
medium-term bonds at t = 0. However, upon exit from the zero lower bound at T > T,
the short-term interest rate is set to I(r(T), 7(T)) > r(T) with strict inequality as long
as long as koA # 1. Once again, as in Section 3.2, looser monetary policy, in this case
optimal monetary policy, is not necessarily unambiguously associated with lower long-
term interest rates. By implication, this may imply higher yield on very long term bonds.

The previous result characterizes nominal interest rates, but what can be said about
the paths for inflation and output? This question is important for a number of reasons.
First, output and inflation are of direct concern, since they determine welfare. In contrast,
the nominal interest rate is merely an instrument to influence output and inflation. Sec-
ond, as in most monetary models, the equilibrium outcome is not uniquely determined
by the equilibrium path for the nominal interest rate. A central bank wishing to imple-
ment the optimum needs to know more than the path for the nominal interest rate. For
example, the central bank may employ a Taylor rule centered around the target path for
inflation i(t) = i*(t) + (7 (t) — r*(¢)) with ¢ > 1. Finally, understanding the outcome
for inflation and output sheds light on the kind of policy commitment required.

The next proposition characterizes optimal inflation and output.
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Proposition 4. Suppose the first-best outcome is not attainable and that {70*(t), x*(t),i*(¢)} is
optimal:

1. Inflation must be strictly positive at some point in time: rt(t) > 0 for some t > 0.

2. Output is initially negative x(0) < 0, but becomes strictly positive at some point, x(t) > 0
for some t > 0.

3. Furthermore, if (a) koA = 1 then inflation is initially zero and is nonnegative throughout,
1*(0) = 0and 7t*(t) > 0 forall t > 0; (b) koA < 1 then t*(t) > 0 forall t; (c) koA > 1
then 77°(0) < 0 with strict inequality if x(0) < 0.

Inflation must be positive at some point. Depending on parameters, initial inflation
may positive or negative. In some cases, inflation may be positive throughout. Output,
on the other hand, must switch signs. The initial recession is never completely avoided.

According to this proposition, there are two things optimal monetary policy accom-
plishes. First, it promotes inflation to mitigate or reverse the deflationary spiral during the
liquidity trap. This lowers the real rate of interest, which lessens the recession. Second,
it stimulates future output to create a boom after the trap. This percolates back in time,
making consumers, who anticipate a boom, lower their desired savings. In other words,
the root problem during a liquidity trap is that desired savings and the real interest rate
are too high. Optimal policy addresses both.

In this model the two goals are related: inflation requires a boom in output. Thus, pur-
suing the first goal already leads, incidentally, to the second, and vice versa. However, the
nominal interest rate path implied by Proposition 3 stimulates a larger boom than what is
required by the inflation promise alone. To see this, suppose that along the optimal plan
I(r(t), 7*(t)) > 0fort > t1,and I(r(t), 7*(t)) < 0 otherwise. The optimal plan then calls
for i*(t) = 0 over some interval f € [t1, t;]. However, consider an alternative plan that has
the same inflation at t1, so that 77(t;) = 71%(¢1), but, in contradiction with Proposition 3,
features i(t) = I(r(t), t(t)) for all t > t;.!! Suppose also that, for both plans, the long-run
output gap is zero: limy_,e x(f) = lim; 00 x*(f) = 0. It then follows that x(t1) < x*(¢1).
In this sense, holding down the interest rate to zero stimulates a boom that is greater than
the one implied by the inflation promise.

Proposition 4 singles out a case with koA = 1 where inflation starts and ends at zero

and is positive throughout. This case occurs when the costate 1 (t) on the Phillips curve

Note that, depending on the value of koA, the interest rate may even be greater than the natural rate
r(t). The fact that this policy is consistent with positive inflation and output after the trap even though
it may have higher interest rates than the discretionary solution underscores, once again, that monetary
easing does not necessarily manifest itself in lower equilibrium interest rates.
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Figure 2: A numerical example showing the full discretion case (black) and optimal com-
mitment case (blue).

is zero for all + > 0. This case turns out to be an interesting benchmark with other inter-
esting implications for government spending.

Figure 2 plots the equilibrium paths for a numerical example. The parameters are set
toT =2,0=1« = .5and A = 1/«. These choices are made for illustrative purposes
and to ensure that koA = 1. They do not represent a calibration. The choices are tilted
towards a flexible price situation. Relative to the New Keynesian literature, the degree of
price stickiness is low (high x) and the planner is quite tolerant of inflation (low A). It is
also common to set a lower value for ¢, on the grounds that investment, which may be
quite sensitive to the interest rate, has been omitted from the analysis.

The black line represents the equilibrium with discretion; the blue line, the optimum
with commitment. With discretion output is initial depressed by about 11%, at the op-
timum this is reduced to just under 4%. The optimum features a boom which peaks at
about 3% at t = T. The discretionary case features significant deflation. In contrast, be-
cause koA = 1 optimal inflation starts at zero and is always positive. Both paths end at
origin, which represents the ideal first-best outcome. However, although the optimum
reaches it later at T = 2.7, it circles around it, managing to stay closer to it on average.
This improves welfare.

One implication of Proposition 4 is that, whenever the first best is unattainable, op-
timal monetary policy requires commitment. Output is initially negative x*(0) < 0, but
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must turn strictly positive x*(#') > 0 at some future date for t' > 0. This implies that, if
the planner can reoptimize and make a new credible plan at time #/, then this new plan
would involve initially negative output x*(#') < 0. Hence, it cannot coincide with the
original plan which called for positive output.

Note that the kind of commitment needed in this model involves more than a promise
for future inflation, at time T, as in Krugman (1998). Indeed, my discussion here em-
phasizes commitment to an output boom. More generally, the planning problem features
both 7t and x as state variables, so commitment to deliver promises for both inflation and
output are generally required.

Liquidity traps are commonly associated with deflation, but these results suggest that
the optimum completely avoids deflation in some cases. This is more likely to be the case
if prices are less flexible (low «), if the intertemporal elasticity of substitution is high (low
0), or if the central bank is not too concerned about inflation (low A). Note that if we set
A = A/xk, then koA = Ao, so the degree of price flexibility x drops out of the condition
determining the sign of initial inflation. In the other case, when xcA < 1, the optimum
does feature deflation initially, but transitions through a period of positive inflation as
shown by Proposition 4. Numerical simulations return to deflation and a negative output
gap.

It is worth noting that prolonged zero nominal interest rates are not needed to pro-
mote positive inflation and stimulate output after the trap. Indeed, there are equilibria
with both features and a nominal interest rate path given by i(t) = max{0, I(r(t), t(¢)) }.
In the liquidity trap scenario, the same is true for the interest rate path considered under
pure discretion, i(t) = 0 fort < T and i(t) = r(t) for t > T. Without commitment,
a unique equilibrium was obtained by adding the condition that the first best outcome
n(t) = x(t) = 0 was implemented for + > T. However, positive inflation and output,
7t(T),x(T) > 0 are also compatible with this very same interest rate path. This is possi-
ble because equilibrium outcomes are not uniquely determined by equilibrium nominal
interest rates. Policy may still be described as one of monetary easing, even if this is not

necessarily reflected in equilibrium nominal interest rates.'?

12To be specific, suppose policy is determined endogenously according to a simple Taylor rule, with a
time varying intercept, i(t) = i(t) + ¢ 7t(t) with ¢ > 1. In the unique bounded equilibrium, a temporarily
low value for i(t) typically leads to higher inflation 7t(t), but not necessarily a lower equilibrium interest
rate i(t). The outcome for the nominal interest rate i(¢) depends on various parameters. Either way, the
situation with temporarily low i(t) may be described as one of “monetary easing”.
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4.2 A Simple Case: Fully Rigid Prices

To gain intuition it helps to consider the extreme case with fully rigid prices, where x = 0
and 7t(t) = 0 for all t > 0.!* Consider the liquidity trap scenario, where r(t) < O fort < T
and r(t) > 0 for t > T, and suppose we keep the nominal interest rate at zero until some
time T > T, and implement x(t) = 7(t) = 0 after T. Output is then

x(tET) =07t /tTr(s)ds.

When T = T, the integrand is always negative, so that output is negative: x(t,T) < 0
for t < T. In fact, the equilibrium coincides with the full discretion case isolated by
Proposition 1. When T > T the integral includes strictly positive values for r(t) for t €
(T, T]. This increases the path for x(t; T). For any date t < T output increases by the
constant ¢~ fTT r(s)ds > 0. Starting at t = 0, output rises and peaks at T, then falls until
it reaches zero at T. The boom induced at T percolates to earlier dates, increasing output
in a parallel fashion.

Larger values of T shrink the initially negative output gaps, but lead to larger positive
gaps later. Starting from T = T an increase in T improves welfare because the loss from
positive output gaps are second order, while the gain from reducing existing negative
output gaps is first order. Formally, minimizing the objective V(T) = 3 [;” e *'x(t; T)%dt
yields

T*
V(1) :r(T*)al/ e Plx(t; T)dt = 0,
0

and it follows that T < T* < T where x(0, T) = 0. According to this optimality condition,
the present value of output should be zero [y~ e *'x(t)dt = 0, implying that the current
recession and subsequent boom should average out, in present value.

When prices are fully rigid inflation is zero regardless of monetary policy. Hence,
creating inflation cannot be the purpose of monetary easing. Instead, committing to zero
nominal interest rates is useful here because it creates an output boom after the trap. This
boom helps mitigate the earlier recession. The logic here is completely different from the
one in Krugman (1998), which isolated the inflationary motive for monetary easing. Next

I turn to a graphical analysis of intermediate cases, where both motives are present.

13The same conditions we will obtain for ¥ = 0 here can be obtained if we consider the limit of the general
optimality conditions derived above as x — 0. However, it is more revealing to derive the optimality
condition from a separate perturbation argument.
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Figure 3: Fully rigid prices. The path for output with T = Tand T > T.

4.3 Stitching a Solution Together: A Graphical Representation

To see the solution graphically, consider the particular liquidity trap scenario with the
step function path for the natural rate of interest: r(t) =r < Ofort < Tbutr(t) =7 >0
for t > T. It is useful to break up the solution into three separate phases, from back to
front. I first consider the solution after some time T > T when the ZLB constraint is no
longer binding (Phase III). T then consider the solution between time T and T with the
ZLB constraint (Phase II). Finally, I consider the solution during the trap ¢t € [0, T] (Phase

.

After the Storm: Slack ZLB Constraint (Phase III). Consider the problem where the
ZLB constraint is ignored, or no longer binding. If this were true for all time ¢t > 0 then
the solution would be the first best 77(t) = x(t) = 0. However, here I am concerned with
a situation where the ZLB constraint is slack only after some date T > T > 0, at which
point the state (77(T), x(T)) is given and no longer free, so the first best is generally not
feasible.

The planning problem now ignores the ZLB constraint but takes the initial state (779, xo)
as given. Because the ZLB constraint is absent, the constraint representing the Euler equa-
tion is not binding. Thus, it is appropriate to ignore this constraint and drop the output
gap x(f) as a state variable, treating it as a control variable instead. The only remain-
ing state is inflation 77(¢).!* Also note that the path of the natural interest rate {r(t)} is
irrelevant when the ZLB constraint is ignored.

4One can pick any absolutely continuous path for x(t) and solve for the required nominal interest rate
as a residual: i(t) = ox(t) + 7(t) + r(t). Discontinuous paths for x(¢) can be approximated arbitrarily
well by continuous ones. Intuitively, it is as if discontinuous paths for {x(¢)} are possible, since upward
or downward jumps in x(t) can be engineered by setting the interest rate to co or —oo for an infinitesimal
moment in time. Formally, the supremum for the problem that ignores the ZLB constraint, but carries both
7t(t) and x(t) as states, is independent of the current value of x(t). Since the current value of x(t) does not
meaningfully constrain the planning problem, it can be ignored as a state variable.
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X = ¢

Figure 4: The solution without the ZLB constraint.

I seek a solution for output x as a function of inflation 7r. Using the optimality con-
ditions with py(f) = 0 one can show that i(t) = I(7t(t),7(t)) as discussed earlier, with
output satisfying

x(t) = ¢r(t)

and costate pi(t) = £7(t), where ¢ = H—VPHAK so that ¢ > p/«x. The last inequality
implies that the ray x = ¢ is steeper than that for 1 = 0. Thus, starting with any
initial value of 7t the solution converges over time along the locus x = ¢ to the origin
(7z(t),x(t)) — (0,0). These dynamics are illustrated in Figure 4.

Just out of the Trap (Phase II). Consider next the problem for t > T incorporating the
ZLB constraint for any arbitrary starting point (77(T), x(T)). The problem is stationary
sincer(t) =7 > 0fort > T.

If the initial state lies on the locus x = ¢, then the solution coincides with the one
above. This is essentially also the case when the initial state satisfies x < ¢, since one can
engineer an upward jump in x to reach the locus x = ¢7.!> After this jump, one proceeds

with the solution that ignores the ZLB constraint. In contrast, the optimum features an

15For example, set i(t) = A/e > 0 for a short period of time [0, &) and choose A so that x(g) = ¢7(e). As
¢ | 0 this approximates an upward jump up to the x = ¢ locus at t = 0.
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Figure 5: The solution for t > T with the ZLB constraint.

initial state that satisfies x > ¢7. Intuitively, the optimum attempts to reach the red line
as quickly as possible, by setting the nominal interest rate to zero until x = ¢r.

These dynamics are illustrated in Figure 4 using the phase diagram implied by the
system (la)—(1b) with i(t) = 0. The steady state with ¥ = 77 = 0 involves deflation and a
negative output gap: 7 = —7 < 0 and x = —£7 < 0. As a result, for inflation rates near
zero the output gap falls over time. As before, the red line denotes the locus x = ¢, for
the solution to the problem ignoring the ZLB constraint. For two initial values satisfying
x > ¢, the figure shows the trajectories in green implied by the system (1a)—(1b) with
i(t) = 0. Along these paths x(t) and 77(¢) fall over time, eventually reaching the locus
x = ¢m. After this point, the state follows the solution ignoring the ZLB constraint,

staying on the x = ¢ line and converges towards the origin.

During the Liquidity Trap (Phase I) During the liquidity trap t < T the ZLB constraint
binds and i(t) = 0. The dynamics are illustrated in Figure 6 using the phase diagram
implied by equations (1a) and (1b) setting i(t) = 0. For reference, the red line denoting
the optimum ignoring the ZLB constraint is also show.

Unlike the previous case, the steady state X = 7t = 0 for this system now has positive

inflation and a positive output gap: 7 = —r > 0 and x = —£r > 0. In contrast to the

24



Figure 6: The solution for t < T and r(t) = —7 < 0 with the ZLB constraint binding.

previous phase diagram, also featuring i(t) = 0, for inflation rates near zero the output
gap rises over time. Two trajectories are shown in green. In one case, inflation is initially
negative; in the other it is positive. Both cases have an the output gap initially negative
and turning positive some time before t = T. Both trajectories start below the red line
and end up aboveitatt=T.

Figure 7 puts the three phases together to display two possible optimal paths for all
t > 0. The two trajectories illustrated in the figure are quite representative and illustrate
the possibilities described in Proposition 4.

As these figures suggest one can prove that the nominal interest rate should be kept
at zero past T. The following proposition follows from Proposition 3 and elements of the

dynamics captured by the phase diagrams.

Proposition 5. Consider the liquidity trap scenario withr(t) =r < O0fort < Tandr(t) =7 >
0 for t > T. Suppose the path {7t*(t), x*(t),i*(t)} is optimal. Then there exists a T > T such
that

i(ty=0 Vvtelo,T].

There are two ways of summarizing the optimal plan. In the first, the central bank
commits to a zero nominal interest rate during the liquidity trap, for t € [0, T]. It also

makes a commitment to an inflation rate and output gap target (77*(T), x*(T)) after the
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X = ¢

Figure 7: Two possible paths of the solution for t > 0.

trap. However, note that here
x*(T) > ¢r*(T)

so that the promised boom in output is higher than that implied by the inflation promise.
Commitment to a target at time T is needed not just in terms of inflation, but also in terms
of the output gap.

Another way of characterizing policy is as follows. The central bank commits to set-
ting a zero interest rate at zero for longer than the liquidity trap, so that i(t) = 0 for
t € [0, T] with T > T. It also commits to implementing an inflation rate 7t(T) upon exit of
the ZLB, at time T. In this case, no further commitment regarding x(T) is required, since
x(T) = ¢7t(T) is ex-post optimal given the promised 77(T). Note that the level of inflation
promised in this case may be positive or negative, depending on the sign of 1 — xcA. A
commitment to positive inflation once interest rates become positive is not necessarily a

feature of all optimum.

5 Inflation or Boom?

It is widely believed that the main purpose of monetary easing in a liquidity trap is to
promote inflation. The model confirms that an optimum has positive inflation and that it
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Figure 8: Commitment to to inflation but not an additional boom in output.

commits to prolonging zero interest rates. Are the two connected?

I now argue that they are not. Recall that there is more to the it than inflation, since the
optimum also calls for an output boom after the trap. I will argue that keeping interest
rates at zero has everything to do with stimulating this boom and little, or nothing, to do
with generating inflation. Three different special cases of the model will help cement this
conclusion.

Fully Rigid Prices. When prices are fully rigid, so that x = 0, inflation is just not in the
cards, so only the output boom motive can be present. Yet I have shown in Section 4.2
that prolonging zero interest rates is still optimal in this case. Thus, promoting inflation
is not necessary for a commitment to prolonging zero interest rates. The next example
argues that it is also not sufficient.

Commitment to Inflation Promises Only. Consider a central bank in a liquidity trap
scenario. Optimal policy can be summarized by a commitment to keeping the interest
rate at zero up to time T together with a commitment to inflation and output upon exit,
(77(T),x(T)). One can then imagine the central bank at t = T re-optimizing and com-

mitting over the continuation plan t > T, subject to fulfilling its prior commitments to
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inflation and output 77(T) and x(T).'°

Now consider stripping the central bank of a commitment to output x(T). Suppose
at t = 0 it can announce a commitment to keeping interest rates at zero up to time T
and a promised exit inflation rate 77(T). In particular, it can make no binding promises
regarding output x(T). As before, at t = T the central bank is allowed to optimize and
commit over the continuation ¢ > T, but it honors its prior commitment, in this case
inflation 77(T) only.

Then, for any 71(T), as long I(r(T), t(T)) > 0 (which is guaranteed, for example, if
koA = 1) the optimum will feature i(f) = I(r(t),m(t)) > 0 for all t+ > T. Index the
resulting equilibrium by the choice of exit inflation 77(T) and note that setting 77(T) = 0
leads to an outcome that is identical to that of the discretionary equilibrium. Things are
only made worse by committing to negative exit inflation, 77(T) < 0. Thus, some positive
exit inflation, 7t(T) > 0, is desirable and strictly improves on the discretionary outcome,
although it falls short of the full optimum.

This shows that a commitment to inflate does not lead to a commitment to prolong
zero interest rates. Promising inflation is not sufficient for prolonged zero interest rates.'”
Indeed, interest rates may be above or below the natural rate after t = T, depending on
the sign of koA — 1. As pointed out in Section 3.2, once again a commitment to looser
future monetary policy does not necessarily translate into lower long term interest rates
or, equivalently, lower yields at t = 0 on long term bonds.

Of course, the discussion here is about equilibrium interest rates. One interpretation is
that the equilibrium with 77(T) > 0 is implemented by some form of loose monetary pol-
icy, even if it does not necessarily lead to lower interest rates in equilibrium. For example,
one popular interpretation is that after time T policy is conducted according to a Taylor
rule with a time varying intercept: i(t) = i(t) + ¢7t(t) and ¢ > 1. Then i(t) = —p7*(¢)
which is indeed negative at t = T and rises over time, converging to zero. In this sense,

the central bank is committing to loose monetary policy. However, even in this case, it

16To see why this form of communication and commitment is enough, recall that the planning problem
is recursive in the state variables (7t(t), x(t)). Thus, given (77(T), x(T)) the continuation plan at t = T
coincides with the original plan at t = 0. Before T the commitment to set i(f) = 0 pins down a unique
solution for the paths of 77(t) and x(t).

7t is true, however, that the commitment to zero interest rates up to time T is binding. To see this
suppose the central bank could only commit to exit inflation, but not to the interest rate path before T. As
before, suppose at T it can bind itself to an optimal continuation plan given 77(T'). The resulting equilibrium,
for a given promise 71(T) > 0, has lim;_,7 x(t) = 0 and then jumps up discontinuously to x(T) = ¢7(T).
Intuitively, x(t) > 0 is not possible without commitment. The interest rate path is i(t) = 0 before T but
includes an “instant” with an “infinite” interest rate at, or immediately before, t = T that allows x(t) to
jump upward. Although peculiar, realistic values of ¢ are small, so this difference in the equilibrium is
minor.
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Figure 9: The optimum with the added constraint that 77(¢) < 0 for all t > 0.
does not involve a commitment to keeping interest rates at zero.

An Outside Constraint to Avoid Inflation. A third useful exercise is to consider im-
posing an arbitrary restriction to avoid positive inflation: 7(t) < 0 for all + > 0. This
restriction cannot be motivated within the basic New Keynesian model laid out here. The
costs from inflation are already included in the loss function. However, one may still want
to account for political or economic constraints outside the model that make an increase
in inflation more costly. The extreme case is the one considered here, where inflation is
just ruled out.

The optimum in this restricted case is illustrated in Figure 9. The optimal path goes
along the same arc as the no-commitment solution shown in Figure 1. However, instead
of reaching the origin at t = T it now goes through the origin earlier and reaches a strictly
positive output level at t = T. To minimize the quadratic objective it is best for output to
take on both signs: the boom in output at later dates helps mitigate the recession early on.
Positive inflation is avoided here by promising to approach, in the long run, the origin
from the bottom-left quadrant, with deflation and negative output.

To sum up, if inflation is to be avoided because of some outside imposition, then the
optimum still calls for a commitment to prolonged zero interest rates. A plan to inflate is
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not needed to justify a commitment to keeping interest rates at zero longer.

Once again, this highlights the non-inflationary role monetary policy plays in a liquid-
ity trap. Note that low interest rates are crucial in accomplishing this outcome. Indeed,
if we considered the best equilibrium with the restriction that 77(¢) < 0 for all + > 0 and
ni(t) = I(m(t),r(t)) for t > T, then we isolate the no-commitment solution as shown in
Figure 1.

6 Government Spending: Opportunistic and Stimulus

I now introduce government spending as an additional instrument. I first consider the
full optimum, with commitment, over both fiscal and monetary policy.

As in Woodford (2011), the basic New Keynesian model is augmented with public
goods provided by the government that enter the representative agent’s utility function
U(c, g,n) and are produced by combining varieties in the exact same way as final con-
sumption goods. As before, we focus on the linearized equilibrium conditions and a

quadratic approximation to welfare. The planning problem becomes

min /O e ((e() + (1= D)g(0) + Am(h)? + ng(t)?) b

4,8

subject to

x(0), 7t(0) free.

Here the constants satisfy I' € (0,1) and 7 > (1 —T')I" > 0; the variable c(t) = (C(t) —
C*(t))/C*(t) ~ log(C(t)) —log(C*(t)) represents the private consumption gap, while
g(t) = (G(t) — G*(t))/C*(t) represents the government consumption gap, normalized
by private consumption.

Note that this problem coincides with the previous one if one imposes ¢(t) = 0 for all
t > 0. Government spending appears in the objective function here for two reasons: pub-
lic goods are valued in the utility function and, through the resource constraint, they also
affect the required amount of labor, for any given private consumption c. Spending does
not affect the consumer’s Euler equation, but does affect the Phillips curve. Intuitively,
both private and public spending increase the wage, which creates inflationary pressure.
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The coefficient I' € (0,1) represents the first best, or flexible-price equilibrium, gov-
ernment spending multiplier, i.e. for each unit increase in spending, output increases
by I' units, consumption is reduced by 1 — I' units. The loss function captures this, be-
cause given spending g, the ideal consumption level is c = — (1 — I')g. The Phillips curve
shows that c = —(1 —I')g also corresponds to a situation with zero inflation, replicating
the flexible-price equilibrium.

6.1 A Non-Optimal Policy of Filling in the Gap

The potential usefulness of the additional spending instrument ¢ can be easily seen noting
that spending can zero out the first two quadratic terms in the loss function, ensuring
c(t)+(1-T)g(t) = m(t) = 0 forall t > 0. This requires a particular path for spending
satisfying

o1

§(t) = 7= (1) — (1))

For simplicity, suppose we set i(t) = 0 fort < T and i(t) = r(t) for t > T. Then spending

is declining for t < T and given by

0.—1

g(t) = 1_1,/0 r(s)ds + (0).

After this, spending is flat g(t) = ¢(T) for t > T. Since this policy ensures that the first
two terms in the objective are zero, to minimize the quadratic loss from spending, the
optimal initial value g(0) is set to ensures that g(¢) takes on both signs: ¢(0) is positive
and g(T) is negative. As a result, the same is true for consumption ¢(t) = —(1 —T')g(¢).

Although this plan is not optimal, it is suggestive that optimal spending may take on
both positive and negative values during a liquidity trap. We prove this result in the next
subsection.

6.2 The Optimal Pattern for Spending

It will be useful to transform the planning problem by a change variables. In fact, I will
use two transformations. Each has its own advantages. For the first transformation, de-

fine the output gap x(t) = c(t) + (1 — I')g(#). The planning problem becomes

min /O "o (x(02 4 An(e) + yg(1)?) dt

X, 74,8
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subject to

#(H) = (1=T)g(t) + o (i(t) = r(t) — (1))
7t(t) = pr(t) — xx(t)
i(t)y >0

x(0), 7t(0) free.

This is an optimal control problem with i and ¢ as controls and x, 77 and g as states.
According to the objective, the ideal level of government spending, given current state
variables x(t) and 77(t) is always zero. However, spending also appears in the constraints,
so it may help relax them. In particular, spending enters the constraint associated with
the consumer’s Euler equation. Indeed, the change in spending, ¢, plays a role that is
analogous to the nominal interest rate, but unlike the interest rate, the change in spending
is not restricted by a zero lower bound.

Since government spending relaxes the Euler equation, it should be zero whenever the
zero-bound constraint is not binding, which is the case when the zero lower bound is not
binding. Conversely, if the zero-bound constraint binds and i(f) = 0 then government

spending is generally non-zero.

Proposition 6. The conclusions in Proposition 3, regarding the nominal interest rate i(t), extend
to the model with government spending. In addition, whenever the zero lower bound is not binding
government spending is zero: g(t) = 0. Suppose the zero lower bound binds over the interval
(to, t1) and is slack in a neighborhood to the right of t1, then g(t) < 0 in a neighborhood to the
left of t. Similarly, if ty > 0 and the zero lower bound is slack to the left of to then g(t) > 0in
a neighborhood to the right of tg. Government spending is always initially nonnegative g(0) > 0
and strictly so if x(0) < 0.

The proposition suggests a typical pattern, confirmed by a number simulations, where
spending is initially positive, then declines and becomes negative and finally returns to
zero. In this sense, optimal government spending is front loaded.

It may seem surprising that spending takes on both positive and negative values. The
intuition is as follows. Initially, higher spending helps compensate for the negative con-
sumption gap at the start of a liquidity trap. However, recall that optimal monetary pol-
icy eventually engineers a consumption boom. If government spending leans against the
wind, we should expect lower spending. The next subsection refines this intuition by
decomposing spending into an opportunistic and a stimulus component.

Figure 10 provides a numerical example, following the same parametrization used for
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Figure 10: A numerical example. The optimum without spending (blue) versus the opti-
mum with spending displaying output (red) and displaying consumption (green).

the example in Section 4, with the additional parameters I' = 0.5 and # = .5. The figure
shows both consumption and output. As we see from the figure consumption is not as

affected as output is in this case.

6.3 Opportunistic vs. Stimulus Spending

Even a shortsighted government that ignores dynamic general equilibrium effects on the
private sector, finds reasons to increase government spending during a slump. When the
economy is depressed, the wage, or shadow wage, is lowered. This provides a cheap
opportunity for government consumption.

To capture this idea, I define an opportunistic component of spending, the level that
is optimal from a simple static, cost-benefit calculation. To see what this entails, take
the utility function U(C, G, N) and take some level of private consumption C as given.
Then opportunistic spending is defined as the solution to maxg U(C, G, N) subject to the
resource constraint relating C,G and N. For example, if the resource constraint were
simply N = C + G, then one maximizes U(C, G,C + G) taking private spending C as
given. The first order condition Uz = —Uy can be thought of as a Samuelsonian rule
Ug/Uc = —Upn/Uc, equating the marginal utility of public goods relative to consump-
tion goods to the marginal cost, equal here to the real wage. Private spending will gener-
ally affect the optimal level of public goods, by affecting the marginal benefit or marginal
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cost. With separable utility, opportunistic spending is decreasing in private spending, be-
cause a fall in private consumption, holding the consumption of public goods constant,
lowers the marginal disutility of labor.

I need to make this concept operational using the quadratic approximation to the wel-
fare function and for variables expressed in terms of gaps. They translate to minimizing
the loss function

§'(e) = argmax {(c+a-T)g+ng*}.

Define stimulus spending as the difference between actual and opportunistic spending,

Note that

c+(1-T)g"(c) = ye,

with the constant ¢ = 5/ (5 + (1 —T)?) € (0,1). Thus, opportunistic spending leans
against the wind, ¢ < 1, but does not close the gap, i > 0.
Using these transformations, I rewrite the planning problem as

min 1/ e Pt (c(t)2 + Am(t)? + ﬁg(t)2> dt
2 Jo

f/n/i/g’\

subject to

¢(t) = o (i(t) — r(t) — (1))

c(0), (0),

where A = A/ and 7§ = /. According to the loss function, the ideal level of stimulus
spending is zero. However, stimulus may help relax the Phillips curve constraint.
This problem is almost identical to the problem without spending. The only new

optimality condition is

. xk(1—-T

3 =" @
This leads to the following result.
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Proposition 7. Stimulus spending is always initially zero: $(0) = 0. (a) If xk = 0or koA =1
then stimulus spending is zero, §(t) = 0 forall t > 0; (b) if koA > 1 then stimulus spending

turns positive initially; (c) if 0 < koA < 1 then stimulus spending turns negative initially.

The proposition provides three instances where we should expect stimulus spending
to be zero. First, unlike total spending, stimulus spending is always initially zero, so that
total spending is entirely opportunistic.'® This result is especially relevant in a liquidity
trap scenario, since then ¢ = 0 coincides with the start of the liquidity trap and it implies
that the entire initial increase in spending can be attributed to the opportunistic motive.
Second, when prices are completely rigid, so that x = 0, spending cannot affect inflation
so that stimulus spending is zero and spending is always opportunistic. This highlights
the somewhat indirect role that stimulus spending plays during a liquidity trap in this
model as a promoter of inflation.!” Third, even for x > 0 the costate for the Phillips curve,
unlike the costate for the Euler equation, can take on both signs or remain at zero, de-
pending on parameters. The third result exploits this fact to provide another benchmark,
with koA = 1, where stimulus spending is always zero.

Whenever stimulus spending is zero it is as if spending were chosen according to a
purely static, cost-benefit calculation that ignores any dynamic general equilibrium feed-
back effects on private spending. By implication, government spending can be chosen
by a naive agency, lacking commitment, that performs such a static cost-benefit calcula-
tion. The fact that, in these special cases, government spending can be chosen without
commitment contrasts sharply with the importance of commitment to monetary policy.

Figure 11 displays the optimal paths for total, opportunistic and stimulus spending for
our numerical example (with the same parameters as those behind Figure 10). Spending
starts at 2% of output above it’s efficient level. It then falls at a steady state reaching
almost 2% below its efficient level of output. In this example, spending is virtually all
opportunistic. Stimulus spending is virtually zero.

Away from this benchmark, numerical simulations show that stimulus starts at zero,
it has a sinusoidal shape, switching signs once. When koA > 1 it first becomes positive,

then turns negative, eventually converging to zero from below; when koA < 1 the reverse

18 Another implication of equation (4) is that stimulus spending, unlike total spending, may be nonzero
even when the zero lower bound constraint is not currently binding and will never bind in the future. This
occurs whenever inflation is nonzero. Indeed, since total spending must be zero, stimulus spending must
be canceling out opportunistic spending. This makes sense. If we have promised positive inflation, for
example, then we require a positive gap. Opportunistic spending would call for lower spending, but doing
so would frustrate stimulating the promised inflation.

19 Although the model has Keynesian features and conclusions in the sense of price stickiness, private
spending is forward looking and satisfies Ricardian equivalence, so it is not directly affected by government
spending’s effect on current income as in standard ISLM discussions.
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Figure 11: Total spending (blue), opportunistic spending (green) and stimulus spending
(red) for a numerical example.

pattern obtains: first negative, then turns positive, eventually converging to zero from
above. In most cases, stimulus spending is a small component of total spending.

The results highlight that positive stimulus spending is just not a robust feature of
the optimum for this model. Opportunistic spending does affect private consumption,
by affecting the path for inflation. In particular, by leaning against the wind, it promotes
price stability, mitigates both deflations and inflations. However, the effects are inciden-
tal, in that they would be obtained by a policy maker choosing spending that ignores

these effects.

7 Spending with Discretionary Monetary Policy

I now relax the assumption of full commitment and consider the mixed case where mon-
etary policy is assumed to be discretionary, as in Section 3, while fiscal policy can commit
to a path for government spending, at least over some intermediate horizon.

One motivation for these assumptions is the fact that government spending deci-
sions feature both legislative and technical lags in implementation over the medium run.
Spending may be planned and legislated over a horizon of at least a year or two. Re-
versing these decisions may be politically difficult or simply impractical from a technical

point of view, e.g. if infrastructure construction is under way. In sharp contrast, mone-
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tary policy is determined almost instantaneously, at frequent meetings, and the nominal
interest rate can easily react to the current state of the economy. This may tend to make
monetary policy discretionary over the short and medium run—the relevant time frame
for countercyclical policies, which is the present focus.

Of course, this comparison may be inverted when one considers the long run deter-
minants of inflation and spending. At least for advanced economies, it may be more
accurate to assume monetary policy can commit to avoid inflationary bias pressures. On
the other hand, fiscal policy may not overcome time inconsistency or other political econ-
omy problems that lead to excess government spending and debt. The medium-run lags
in fiscal policy are not helpful in resolving these biases in the level of spending. Likewise,
the monetary authorities commitment to avoid inflationary pressures may be irrelevant
(or even unhelpful) in solving the extraordinary kind of commitments needed during a
liquidity trap. Thus, there is no contradiction in assuming that the relative commitment
powers are different in the long run, than over the medium term required to respond to a

liquidity trap.

7.1 Commitment to spending during the liquidity trap

I will consider a liquidity trap scenario, where r(t) < 0 for t < T and r(tf) > 0 for t > T.
The central bank sets nominal interest rates with full discretion. In contrast, government
spending can be credibly announced, at least until time T. I first assume that spending
after T is chosen with discretion. This implies that ¢(#) = 0 for ¢t > T. I then turn to the
case where commitment is possible for the entire path of government spending.

Under these assumptions, at time t = T the first best is attainable. I suppose then
that the monetary and fiscal authorities jointly reoptimize and implement the first best:
c(t) = nt(t) = g(t) = 0forall t > T. Next, I characterize the equilibrium for t < T.

Fort < T, the central bank acts only takes into account the short run effects of its policy
choices. At any point in time, it takes as given the behavior of future output and inflation.
In continuous time, this implies that it only considers current output and inflation. How-
ever, the latter is essentially out if its control, since inflation is proportional to an integral
of future output gaps. This makes the central bank’s behavior easy to characterize. zero.

At any point in time ¢ it’s choice for the nominal interest rate i(¢) depends entirely on
the current output gap x(t). Since there is no upper bound on the nominal interest rate
x(t) > 0 is not possible: if x(t) > 0 occurred then the central bank would increase i(t)
without bound. In the limit, this would bring x(¢) immediately down to zero. If x(¢) < 0
the unique optimum is to set i(f) = 0. When x(#) = 0 the central bank is content to keep

37



x(t) = 0 by setting i(t) so that x(t) = 0, unless this requires i(¢) < 0 in which case it sets
i(t) = 0.
This motivates the following problem

T
/0 e P ((c(t) + (1= T)g(D)* + Am(t) + yg(t))dt

¢(t) = o7 (i(t) — 7(t) — (1))

x(0), 7t(0) free

This is the same problem as before, with the new constraints x(t) < 0and ¢(T) = n(T) =
0and i(t)x(t) = 0. The latter constraint implies thati(t) = 0 whenever x(t) < 0, since this
is the best response from a monetary policy. As it turns out, this latter constraint is not
binding anyway, because there is no conflict of interest when x(#) < 0 in setting the inter-
est rate. Thus, my approach is to drop the constraint that i(¢)x(¢) = 0 and show that the
solution to the relaxed problem satisfies it. In this formulation, c and 7 are state variables,
while i and g are controls. Due to the presence of the inequality ¢(t) + (1 —T)g(¢) < 0, one
must invoke a generalized Maximum Principle for optimal control problems with mixed
(state and control) constraints. Working with the implied necessary conditions yields the
following sharp characterization.

Proposition 8. Consider a liquidity trap scenario and assume that fiscal policy can commit to a
path for spending g(t) time t € [0, T| but monetary policy is discretionary. Then the equilibrium
outcome satisfies the following properties: (a) consumption is negative and increasing; (b) total
spending is positive; (c) opportunistic spending is positive and decreasing; (d) there exists a time
t* € (0,T) such that x(t) < 0and 7(t) < 0fort < t* and x(t) = 7(t) = 0 for t > t*; (e)
stimulus spending is initially zero, §(0) = 0, but strictly increasing until t = t*; (f) for t > t*
total spending g(t) is positive and decreasing, reaching zero at t = T.

Since the output gap cannot be positive, the same is true for inflation, 7r(t) < 0 for all

t. This then implies that consumption is negative and increasing, until it hits zero exactly
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att = T. As a result, opportunistic spending is positive and decreasing. As before,
stimulus spending is initially zero. As long as x(t) < 0, so that the mixed constraint is
slack, stimulus spending is positive and increasing over time because there is deflation
and government spending can help relieve these deflationary pressures. However, due
to these incentives, the output gap reaches zero at some intermediate date t* € (0,T)
and stays at zero thereafter. During this time, total spending is constrained and given by
g(t) = —c(t)/(1 —=T) > 0. Indeed, spending fills the gap, as discussed in Section 6.1,
declining towards zero att = T.

Why does the solution hit x(¢) = 0 for some time? Note that with full commitment,
the solution involved an output boom, with positive output gaps sometime before t = T.
Since this is no longer possible, the constraint that x(#) < 0 binds over a latter interval of
time.

7.2 Commitment to spending after the liquidity trap

I now relax the assumption that fiscal policy cannot commit past T and spending to be
chosen for the entire future {g(t)}{2,.

It is useful to split the problem into two segments, before and after T. The problem
before T looks just as before but dropping the constraint that 77(T) = ¢(T) = 0 and
including the value function for the continuation in the objective

T
/0 e P ((c(t) + (1 =T)g(1))* + Am(t)? + g (t)*)dt + e " Ly(c(T), m(T))

where L7 is the value function for the continuation problem after T. It is defined as the
solution to

La(erra) = [ € P(ET+9)+ (1= D)g(T+9)P +An(T+9) + g T+

subject to all of the constraints outlined in the planning problem from the previous sub-
section except with initial conditions c¢(0) = cr and 77(0) = 7r7. Note that because of the
restriction that x(T +s) < 0, this loss function is only defined for 7rr < 0.

Since the first best is attainable after T when ¢(T) = 7(T) = 0, the only reason for
deviating from this is to improve the solution before T. Deflation is not helpful, thus the
solution still entails 77(T) = 0. However, a consumption boom ¢(T) > 0 is very helpful
because it raises consumption at all earlier dates where consumption is negative.

I now outline the solution to Lt (cr,0) for positive consumption cr. The basic idea is
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that positive consumption is consistent with a zero output gap if government spending
is negative. Thus, one feasible plan is to hold spending constant at a negative level con-
sistent with cr. A better solution, to minimize the losses coming from the 7¢? term, is to
start with this same level of spending, but have it increase over time to eventually reach
zero. During this transition, consumption rises, which requires a lower interest rate. We
are constrained then by the zero lower bound. Thus, the optimum calls for i(T +s) = 0
and

§r+5) =~ -Der + 7 [ e

for t € [T, T + A], where A is defined so that §(T + A) = 0, and g(t) = 0fort > T + A.
Since x(t) = 7(t) = 0, such a plan implies a tail cost

A
Lr(cr,0) = 17/ e PG (T + s)*ds.
0

This function attains it’s minimum at ¢t = 0 so that %LT(O, 0) =0.
Turning to the problem before T, the new optimality condition is the transversality
condition

uelT) = 5 Lr(e(T),0)

Since the solution entails y.(T) > 0 it follows that ¢(T) > 0, which implies that ¢(T) < 0.

Proposition 9. Consider a liquidity trap scenario and assume that fiscal policy can commit to a
path for g(t) for all time t > 0 but monetary policy is discretionary. Then the equilibrium outcome
is as in Proposition 8 except that spending is negative at the end of the trap and consumption is
positive, ¢(T) < 0 and c(T) > 0, and both converge to zero at some finite time T > T. The
nominal interest rate is zeroup to T, i(t) = 0 fort < T.

Optimal fiscal policy entails a commitment to austerity towards the end and after the
liquidity trap, g(t) < 0 in the neighborhood of t = T. Recall that the full optimum, with
commitment to both monetary and fiscal policy, also entailed g(t) < 0 towards the end
of the trap, but not after the trap; optimal spending is zero for t > T (see Proposition
according to Proposition 6). In contrast, here spending serves the purpose of stimulating
a boom in consumption, which helps mitigate the earlier consumption slump, much in
the same way as optimal monetary policy would. Indeed, it is interesting to note that the
optimal fiscal commitment induces the discretionary monetary authority to prolong zero
interest rates. Although monetary policy cannot commit, when fiscal policy can, it creates
a temporary drop in spending that lowers the interest rate that keeps the output gap at

Zero.
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Figure 12: An example with mixed commitment. Left panel: {g(#)} commitment up to
T. Right panel: {g(t)} commitment for all + > 0. Total spending (blue), opportunistic
spending (green) and stimulus spending (red).

7.3 A Numerical Example

Figure 12 shows the equilibrium outcome for government spending as a fraction of output
when monetary policy is discretionary but fiscal policy can commit. The example uses the
same parameters and is thus directly comparable to the example displayed in Figure 11,
which shows the full optimum, with commitment for both monetary and fiscal policy.

When fiscal policy can only commit during the trap optimal spending is higher than
in the full commitment solution. Indeed, both opportunistic and stimulus spending are
higher, since the recession and deflation are made worse by discretion in monetary policy.
At some point (around ¢ = 1.5) the solution hits the constraint that the output gap cannot
be positive and spending is constrained from then onwards falling to zero att = T.

When fiscal policy can commit past the trap, optimal spending is still higher than the
full commitment solution, but lower than when spending can only commit during the
trap. The solution now features a signicant negative spending at ¢t = T. This serves to to
create a temporary boom in consumption (of size ¢(T) = (1 —I')g(T)) as well as reduce
the quadratic cost from spending. The austerity measure is temporary: some time before
t = 3 the solution is back to c(t) = 7t(t) = g(t) = 0.

Overall, these examples illustrate that the solution for government spending may be
quite affected by the lack of commitment in monetary policy and the assumed horizon of

commitment for fiscal policy.
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8 Conclusion

This paper has revisited monetary policy during a liquidity trap. The continuous time
setup up offers some distinct advantages in terms of the analysis and results that are
obtained. Some of my results support the findings from prior work based on simulations.
Optimal monetary policy in the model is engineered to promote inflation and an output
boom. It does so, in part, by committing to holding the nominal interest rate at zero for
an extended period of time.

To the best of my knowledge, my results on government spending have no clear paral-
lel in the literature. In particular, the decomposition between opportunistic and stimulus
spending is novel and leads to unexpected results.

When both fiscal and monetary policy are coordinated, I find that optimal govern-
ment spending starts at a positive level, but declines and become negative. However, I
show that most of these dynamics are explained by a cost-benefit motive for spending,
which, by definition, ignores the effects this spending has on private consumption and
inflation. At the model’s optimum, stimulus spending is always initially zero. Moreover,
depending on parameters. stimulus may be identically zero throughout or deviate from
zero changing signs. However, simulations show stimulus spending playing a modest
role.

This situation can be very different when monetary policy is suboptimal due to the
lack of commitment. In this case, the model’s optimal policy calls for positive and in-
creasing stimulus spending during the trap and lower spending after the trap.
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A Proof of Proposition 1

Recall that 7t(t) = x(f) = 0 for + > T. In integral form the equilibrium conditions for
t < T are

x(t) = /T oL (r(s) + 72(s))ds,
g
m(t) = K/ e P x(s)ds.
t

Substituting inflation 77(¢) we can write this as a single condition for the output path

{x()} ) )
x(t) = (7‘1/ (r(s) + K/ e_f’(z_s)x(z)dz> ds.
t s

Define the operator associated with the right hand side of this expression:
T T T
T[x](t) = ? / <r(s) + K/ e_P(Z_S)x(z)dz> ds =a(t) + K/ m(z — t)x(z)dz
t s t

with a(t) = ¢! ftTr(z)dz and m(s) = (cp)~'(1 — e™%), note that m is nonnegative,
strictly increasing, with m(0) = 0 and lims_e m(s) = M = (cp)~! > 0.

The operator T maps the space of continuous functions on (—oo, T] onto itself. An
equilibrium x* is a fixed point T[x*] = x*. Since an equilibrium represents a solution to
an initial value problem for a linear ordinary differential equation, there is a unique fixed
point x*. The T operator is linear and monotone (since m > 0), so that if x* > x? then
T[x%] > T[x"].

Fix an interval [f, T]. Although T is not a contraction, starting from any continuous
function x that is bounded on [f, T] and defining x, = T"[xo] we obtain a sequence that
converges uniformly on [#, T| to the unique fixed point x, — x*. To prove this claim, note
that since |xo(t)| < Band |r(t)| < R then

T
1 (t) — xo(8)] < ]a(t)|—|—1c/t m(z— 1) |xo(8)] < (%w) KM|T — .
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In turn

T
[x2(t) = x1(8)] = [Tlxa](#) = Tlxo] (#)| < K/t m(z — ) |x1(z) = xo(2)| dz

2 [T —t?

=< KM/tT|x1(Z) — xo(z)|dz < (%+B) (kM)* ==~

By induction it follows that

R 2| T —t"
|xn(t) — xn_l(t)| S <m + B) (KM) T
It follows that
e R
_ _ t < T B KM|T*f‘.
Y b s (1< (7 +8) e
As a consequence for any m > n
m [ee]
o —xn(D < Y Pyl € Y Jxg - xjoa(t)]
j=n+1 j=n+1

Since the right hand converges to zero as n — oo, for any ¢ > 0 and #' < T there exists an
N such that for all n,m > N we have

lxn(t) — xm(t)| < e

forall t > t'. Thus, {x,} is a Cauchy sequence on a complete metric space, implying that
xp — x* where x* is a bounded function. Since the operator T is continuous it follows
that x* is a fixed point x* = T|[x*].

Note that starting from the zero function x((t) = 0 for all  we obtain x1(f) = a(t) <0
for t < T. Since the operator T is monotone, the sequence {x,} is decreasing xy > x1 >
- >xy > -+ Thus, x*(t) < x1(t) < 0forall t < T. This implies 77*(f) < 0 for t < T.

N ext I establish that both inflation and output x*(¢) and 77%(¢) are monotone. Note
that 2 T[x](t) ft '(z — t)x(z)dz. Since a’(t) = —o~'r(t) > 0 and x*(t) < O for
t < T we have that T[x (t) = x*(t) is strictly increasing in ¢ for t < T and x*(t) > 0.
Write

T () = K/ e P*x*(t+z)dz
0

Hence, differentiating we find 7t*(t) = « OT “e~PZ¢*(t + z)dz, which implies 77*(t) > 0
for t < T given that x*(¢t) > 0 for t < T.
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Finally note that
T T
x*(tT) = 0_1/ (r(s; T)+ " (s; T))ds < 0_1/ r(s; T)ds
t t

and since fOTr(s; T)ds — —oo as T — oo it follows that ftTr(s,' T)ds — —oo, implying
x*(£; T) — —oo for t < T. Using that x*(¢, T) < 0, this implies that

) t+1
(t,T) = K/ e PN x* (5, T)ds < K/ e PN x* (s, T)ds
t t
t+1
<kx*(t+71;T) / e P57 s
t

As T — oo we have that x*(f +1; T) — —oo, so it follows that 7w*(f; T) — —oo for any t.

B Proof of Proposition 2

Consider two values ko < k7 with associated equilibria x;§ and xj. Let T[-;x] be the op-
erator defined in the proof of Proposition 1 associated with k. Define the sequence x;, =
T"[x;;%1]). Since x§(t) < 0 for t < T, it follows that xq (t) = T[x§;x1] < T[x{; x0] = xo(t)
for t < T. Since the operator T|[-; k1] is monotone, this implies that {x,} is a declining
sequence. Since the sequence converges to xj. This proves that xj(t) > x1(t) > --- >
Xn(t) > -+ > xf(t) for t < T. This implies that 7] (t) < 7§(t) fort < T.

To prove the limit result as x; — oo it suffices to show that T[x§;x1|(t) — —oo for all
t < T,since x{(t) < T[x§;x1](t). That this is the case follows from

T T
Tl ] (£) = a(t) + K1/ m(z — t)x;(2)dz < Kl/ m(z — t)a(z)dz
t t
where I am using that x;(f) < a(t) for t < T as established in the proof of Proposition
1. The result follows from the fact that ftT m(z —t)a(z)dz < 0 for all t < T. The same

implication for 7t*(¢; x) then follows.
The following estimate for the loss function

) T/2 T/2
L> / e Pix(t)dt > / e Pix(t;x)2%dt > x(T/2;1<)2/ e Pidt
0 0 0

where I have used that x is nonpositive and increasing. The result then follows since
x(T/2;x) = —oo.
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C Proof of Proposition 3

Differentiating the law of motion for y, we obtain a linear non homogeneous second-
order differential equation

fie(t) = =2(b) + K (t) + ppia ()
=~ (i(t) — r(t) — 70(t)) — kAT(E) + ko e (t) + pfix(t)

Equivalently, since I* (7, t) = r(t) 4+ (1 — okA) 7, we can write this as
jix() = oI (e (8), £) = (1)) + w0 p(t) + pfi ().

Now suppose at the optimum we have i(f) > 0 for t € (t1,t1 +¢) with e > 0. Then it
must be that uy(t1) = fix(t1) = 0, which provides a convenient initial condition for the
differential equation derived above. The solution for jiy is then

pa(t) = (7_1/;1 w(s —t) (I"(7t(s),s) —i(s)) ds (5)

where

(1—e"%) (6)

where r;1 > 0 and rp < 0 are the two distinct real roots to the characteristic equation
r> — ko 'r —p = 0. Note that w(x) > 0 for x > 0. It follows that if i(t) = 0 and
I*(mt(t),t) < Oforallt € (fo,t1), then puy(t) < Oforall f € [tg,t1). A contradiction with
the optimality condition that . (t) > 0 for all + > 0. A symmetric argument holds for £,
as long as tp > 0. This completes the proof.

Proof that solution to ODE takes stated form. Consider a 2nd order non-homogeneous
ODE of the form

wrp(F) + agpi(t) +i(t) = a(t)

where a(t) = ¢! (I*(r(t),t) —i(t)), the coefficients are a1 = —xc~! and ay = —p; the
initial conditions are given by u(t1) = ji(t1) = 0. To solve this equation postulate that

t
—rap(t) + (t) = e [ era(s)ds ?)

f

for some constants r; and r;, that will turn out to be the roots of the characteristic equa-
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tion. This guess works because it implies, by differentiating both sides,
t
—ri(t) +ji(t) = rae™ / e a(s)ds + a(t) = r2 (=rip(t) + (1)) +a(t)

tq

= rirap(t) — (r1 +r2) p(t) + ji(t) = a(t)

Matching coefficients gives
rntr=—-a nr=

14
:>rl—|—r—1+zx2:0:>oc1—|—r1¢x2+r%:0
1

which is just the characteristic equation. In our case

—ap /a5 — 4y ot/ take T

'= 2 - 2

so that the two roots are real, distinct and one root is positive and the other negative. We
can taker; > 0Oand rp < 0.
Now write equation (7) as

t
u(t) = erlt/ e " A(s)ds

5]

where A(t) = fttl e "20=1q(s)ds. Or simply

t ps
y(t):/ / e 210y (2)dzds
ti Jh
t

t
:/ a(z)e2(-2) (/ e‘rl(s_t)ds> dz
t z

t
_ / a(2)T(t — 2)dz
51

(it is useful to think of the change in the order of integration done in the second equality
graphically: we are integrating over a triangle below the 45 degree line), where we have
computed

e2(t=2)

—r(s—t)t &7 " ( n(t-z) _ — o
- e |5 - <e 1 1) =T(t—z).

_erZ(t—z)

erz(tfz) /t efrl(sft)ds _
z
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Note that T'(0) = 0, T'(x) > 0 for x and I'(x) < 0 for x < 0. Finally when ¢ < #; it is more
convenient to define
w(x) = -T(—x)

and write

u(t) = /ta(z)l“(t —2z)dz = — /tl a(z)T(—(z—t))dz = /ttl a(z)w(z — t)dz

t t

justifying the stated solution above.

D Proof of Proposition 4

The initial conditions require ix(0) = p1,(0) = 0. The non-negativity requirement for p
then requires ji,(0) = —x(0) > 0, implying x(0) < 0.

To establish that inflation must be positive at some point, consider the perturbation
x(t,e) = x(t) + e and

nt(te) = K/ e Px(t+s,e)ds = K/ e Px(t+s)ds+ K/ e Peds = rt(t) + gs.
0 0 0

Note that the perturbation is feasible for all ¢ > 0 since higher inflation relaxes the ZLB
constraint 0x(t) > —r(t) — 7t(t). In terms of the loss function

L(e) = %/Ooo et (x(t,e)2 + )\n(t,s)2> dt

we have

PR R K 1 K [ _
L(O)—/0 e (x(t)+)\{—)7t(t)) dt—En(O)Jr)\F—)/O e Pr(t)dt <O0.

Hence, negative inflation 77(t) < 0 for all + > 0 with strict inequality over some range,
implies L'(0) < 0, a contradiction with optimality.

To establish that x(t) must be positive for some t > 0, proceed by contradiction. Sup-
pose x(t) < 0 for all + > 0. This implies that 77(¢) < 0 for all + > 0, a contradiction.

Case with koA = 1. Now suppose koA = 1. Let us guess and verify that u-(t) = 0 for
all t > 0 and px(t) = ocAm(t). Note that

filt) = —Am(t) + 0 p(t) = 0
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and
fx(t) = —x(t) + poAmn(t) = oA(pm(t) — xx(t)) = oA7(t)

are both satisfied. Set i(t) = 0 whenever 77(t) > 0and i(t) = r(t) otherwise. Set 71(0) = 0.
The unique bounded solution to the ODEs for x and 7t is optimal.

Since py(0) = 0 this implies that we must have 71(0) = 0. Since px(t) > 0 it follows
that 77(t) > 0. Indeed, 77(t) = 0 whenever the zero lower bound is not binding so that

ux(t) =0and i(t) = I(r(t), (t)) = I(r(t),0) = r(t).

Case with koA < 1. I first show that 77(t) > 0 for all + > 0. Define

f(t) = ept/ e 1y (s)ds.
t
Suppose that there exists a date T such that 77(7) < 0. Then since
ne() = x"(7) —xf(1) 2 0

it follows that f(7) < 0, which implies that y(t) < 0 for some f > 7. Now define a date
7' as follows. If ji-(7) > 0, then let T’ be the earliest date after T when y, turns strictly
negative: T = infi{t : t > T A uz(t) < 0}. If uz(7) < O then let T/ be the latest date
before T such that yi; turns strictly negative: T/ = sup,{t : t < T A ur(t) > 0}. Note
that, in both cases, f(1) = e P(T=Df (1) + eT fTT/ e Pur(s)ds < 0 and by definition
fTT/ e Pur(s)ds > 0. This implies f(7’) < 0. By construction we also have p,(7’) = 0
and ji-(7') <0.

Next I argue that f(7') <0, pr(7") = 0and ji(7") < 0 are incompatible. If 7(7') < 0
then

() = =An(T) 4+ o ue (7)) > —An(7') > 0.

While if 77(t") > 0 then
() = (e = Nr(7)) — ok f()ds > 0.

Either way we obtain a contradiction.

This establishes that 77(t) > 0 for all + > 0. Next I argue that 7t(¢f) > 0 for all + > 0.
Towards a contradiction, suppose 7t(t) = 0 for some t > 0. If (t) = 0 for all ¢, then
x(t) = 0 for all + > 0 and this is the first best allocation, which is not possible if () < 0
for some positive measure of time. Thus, consider the case where 7(t) # 0 for some
positive measure. Let T denote the earliest date where 77(7) = 0 and either [  7(t) >0
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or [T m(t) > 0.

By the arguments above it follows that f(7) < 0. If this inequality is strict then we
can proceed as before and obtain a contradiction. Thus, suppose f(7) = 0. Note also
that unless u(7) = 0 then f(t) < 0 for some t in the neighborhood of 7; this also
would lead to a contradiction. Thus, assume i (7) = 0. Using that [~ e Py (z)dz =
[Fe P Dy (z)dz since f(T) = 0, we have

ie(t) = (e 'k = () — ok / " gpla 1 (z)dz

t

integrating yields

Un(T) —uz(t) = (0*11(*1 —A) /tT 7t(s)ds — le/tT /ST e’p(z’s)yn(z)dzds

Define the Piccard operator

Tln] (£) = (oL = A) /t " r(s)ds + oIk /t "z — By (2)dz

where m(s) = (0p) (1 — e %). This is similar to the operator defined in the proof of
Proposition 1. As explained in more detail there, starting from the zero function, u%(t) =
0 for all + > 0, and using that 77(#) > 0 we construct a declining sequence T"[u%] = u'(t)
that converges to the fixed point. Indeed, if [ . 7t(s)ds > 0, then (T —¢) < 0, and
the fixed point has pi(t) < 0 for t € (T —¢,7). Likewise, if [T 7(s)ds > 0, then
(Tt +¢€) > 0, so the fixed point has p(t) > 0 for t € (7,7 + ¢). Either way, it follows
that we have a point v/, with either T/ = T — e or T/ = T + ¢, such that f(7t') < 0. This
leads to a contradiction as before. We conclude that 7z(¢) > 0 for all t > 0.

Case with koA > 1. Assume that instead 77(0) > 0, then

1:(0) = k7 17(0) —kf(0) =0

implies that f(0) > 0, which implies that pi,(t) > 0 for some t > 0. Now define a date 7/
as the earliest date when i turns strictly positive: T = inf;{t : t > 0 A p(t) > 0}. Note
that we have f(0) = e *7 f(T') + fOT/ e P ux(s)ds > 0 and by definition fOT, e P uq(s)ds <
0. This implies f(7’) > 0. By construction we also have j(7') = 0 and ji(7’) > 0.

Next I argue that f(7') > 0, pz(7") = 0 and ji;(7') > 0 are incompatible. If 7(7') <0
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then
u () = x () —xf(T) <0

which is a contradiction with optimality. If 77(7") > 0 then
() = (e = Nr(7)) — ok f()ds < 0.

A contradiction since by construction ji(t’) > 0. This establishes that 77(0) < 0.
Next I argue that 77(0) < 0if x(0) < 0. If r(0) = 0 then f(0) = 0. This implies that
17(0) = ii7(0) = 0. However, we also have 77(0) < 0 and thus

jin(0) = (¢ = A)7(0) < 0.

This implies that j1,;(t) < 0 in a neighborhood of ¢+ = 0. This implies that we can find a
point T/ > 0 such that f(7') > 0, u(7") = 0 and i (7") > 0, which once again leads to a
contradiction.

E Proof of Proposition 5

If koA > 1 then Proposition 4 implies that 7z(t) > 0 for all ¢. This implies that I(r, 7) =
r+ (1 —xoA)mr < 0fort < T and the result follows from Proposition 3. Similarly, if x = 0
the result is immediate since 77(f) = 0 for all t > 0.

If instead koA < 1and k # 0 then we must rule out that 77(¢t) > —r/(1 —koA) > —r >
0 for t < T. Towards a contradiction, suppose that 7t(¢') > —7 for some ' < T. Then
since from x(0) < 0 it follows that p7t(#') — kx(#') > 0 (see the phase diagram). Thus,
we have that 77(t') > 0 and x(#') < 0. This situation is absorbing: for any ¢t > t' with
prt(t) —xx(t) > 0and 7t(t) > —7 > —r(t) we have 77(t) > 0 and %(t) < 0. This is the case
because at any point in time either i(t) = 0 which implies %(t) = o~ (—r(t) — 7(t)) < 0
or else i(t) = I(r(t), (t)) in which case %(t) = —xAm(t) < 0. In either case, x(t) <
—xkA7t(t) < kAr < 0. It follows that x(f) — —oo and 71(t) — co. This violates the present
value condition 7(t) = « [~ e Px(t + s)ds and is therefore not feasible.

Moreover, since x(t) < 0 for all t > t” for some ¢’ > t' it follows that 7(t) >
p7t(t) — xx(t) > prn(t) for all t above some . This implies e P'7r(t) — oco. As a re-
sult [e P'r(t)?dt = co. Similarly, for all ¢ large enough we have #(t) < —xAn(t) <
—kAel7t(¢"). This implies that x(t) < ’T")‘(ept — 1)7t(") (recall that x(+") < 0). This
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implies that

KA () e Pta < _Tx/\n(t”) + max{A,0}

e Plx(t) <
implying that [ e P'x(t)2dt = oo. As a result the loss is infinite, L = oo, and this plan
cannot be optimal even if we were to ignore the requirement that 77(t) = « [, e " x(t +
s)ds.

The argument above assumed no jumps in x. One may allow for upward jumps in the
path for x, but they are not optimal. To see this, suppose an upward jump in x occurs at
some point t'. Then limy |y iy (t) > limyp fix(t) and since piy(t) = 0 for t € [/, t' 4 ¢) then
limgyp iy (t) < 0. Hence, px(t) < 0in a neighborhood to the left of ', a contradiction with
the optimality conditions.

F Proof of Proposition 6

Write the Hamiltonian as

1 .
H= 5 (xz + Am? ~|—17g2> +u(L=T)A+0 (i — 7t —1)) + prlpr — kX) + Ugh

where ¢(t) = A(t) is the law of motion for government spending and A(t) € R is a new,
unrestricted, control variable. The initial state ¢(0) is free. The optimality conditions are
just as before with the addition of

(1= T)px(t) + pg(t) =0

fig(t) = pug(t) —ng(t)

Solving for spending gives

8(6) = = (=pe(t) + (1) = = (=x(t) + k(1)
It follows that in regions where the zero lower bound is not binding, where 1 (t) =
1ix(t) = 0, spending is zero: g(t) = 0. It also follows that g(0) > 0 since y(0) = 0 and
x(0) < 0 by Proposition 4. Indeed, ¢(0) > 0 if and only if x(0) < 0.
I now argue that the conclusions of Proposition 3 extend to the case with government
spending, so that I*(r(t),t) > 0 in a neighborhood to the left of ;. The same is true in a
neighborhood to the right of ty as long as t; > 0. Differentiating the law of motion for the
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costate y, and using the expression for ¢(t) from above gives

fix = =X+ Kjig + Pix
= Yi—m—r)—(1—=T)¢ — kAT + k0o ‘piy + pfix

. 1-T S - .
= —0 = 10(8), ) = (U= D)= = (=ppin + fixe) + 50 i +
Rearranging we arrive at the second order ordinary differential equation
1—T)? 1-T)2 _
(102 g (1 05 ot =at)

The associated characteristic equation has real positive and negative roots

[p2 4 Aol _ a2 _4kel
p + 10 + 1+(17F)2 10 |0 + 1+(171“)2
1 7
T = 5 > |0 ry =

2

< 0.

This then implies that the solution for u,(t) is given by equations (5)-(6). The rest then
follows as in the proof of Proposition 3.
When ty > 0, applying equation (7) we can write

%g(t) = —ripx(t) + px(t) + (r1 — ) px(t)

= / (I (1(5),5) — i())ds + (1 — ) (1)

fo

In a neighborhood to the right of ty we have established that (I*(r(t),s) —i(t)) > 0 and
ux(t) > 0 implying that ¢(f) > 0. A symmetric argument, but interchanging the two
roots 71 and rp in this expression, establishes that g(#) < 0 in a neighborhood to the left
of tg.

G Proof of Proposition 7

The results immediately using equation (4) combined with the proof behind Proposition

4 part 3, which characterizes the sign of the multiplier i, (t).
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H Proof of Proposition 8

An extended Maximum principle is required to attack this problem (see Seierstad and
Sydseeter (1987) or Vinter (2000)). One forms the Hamiltonian

H =5 e+ (1=T)g)+ A4 ng + e (0 (= 7= 1(1))) + i (o7 — (e + (1= T)g)

1
2 2

and associated Lagrangian
L=H+¢(c+(1-T)g).

The necessary conditions are then
He(t) >0 =0ifi(f) >0

$0) = oy (e Kinlt) = 9(0)

where ¢(t) > 0 and
¢(t) (c(t) + (1 =T)g(t)) =0

The costates evolve according to

oL

fe=—52=—(c+ (1 =T)g) +ppe+xpr—¢
oL

P = 5= A+ oy

and satisfy the initial conditions

#e(0) = pn(0) = 0.

Since x(t) = ¢(f) + (1 —T)g(t) < 0 it follows that 7r(t) < 0 for all £ > 0. Also,
ue(t) > 0. Thus, - (t) is non-negative and monotone increasing, strictly so unless 7t(t) =
x(t) =0 forall t.

Since

¢(t) = Hi(t) —m(t) —r(t) >0t —r>0

and ¢(T) = 0 it follows that c(¢) is strictly negative and strictly increasing over t € [0, T).
Next we argue that u.(t) > 0 forall t € (0, T). Whenever x(t) < 0 we have

fre(t) = —x(t) + ppc(t) +repr ()

55



and when x(t) = 0 we have

jie(t) = pielt) = e ppet)

since c(t) < 0 for t < T it follows that ji.(t) > 0 and pu.(t) is strictly increasing. Given
that pc(0) = 0, it follows that pc(t) > 0fort € (0, T).

Since ji.(t) > 0 it follows that i(f) = 0 almost everywhere for t € [0, T).

Next I argue that there is a data t* € (0, T) such that for f < t* we have x(t) < 0 and
for t > t* we have x(t) = 0. The optimality conditions imply that if ¢(¢) = 0 then

2
e(t) + (1= T)glt) = =i el + 7 Sz o)

(1=T)2+y
the right hand side is strictly increasing, thus, there is at most one time * € [0, T| where
it equals zero. Note that the right hand side is strictly negative at t = 0 since ¢(0) < 0 and
#7(0) = 0. This implies that () > 0 for t > 0. The right hand side is strictly positive
att = T since ¢(T) = 0 and we have just established that . ;(T) > 0. Thus, t* exists and
t* € (0, 7).
It follows that for t € [0, t*] we have

) = oy (e ()

and hence g(f) > 0. Note that g(t) is the sum of the opportunistic component, which is
positive and decreasing, and the stimulus component, which is positive and increasing.
Total spending may be non monotone.

I've shown that once the output gap hits zero it stays there c(t) + (1 —I')g(f) = 0 and
since x(t) = 7t(t) = 0 for t > t* and ¢(T) = 0, this implies that total spending equals

g(t) = —ﬁc(t) =-1-T r(s)ds

for t € [t*, T] which is positive and decreasing.

I Proof of Proposition 9

As discussed in the text, the optimality conditions are the same as in the proof of Propo-
sition 8, except for the terminal conditions. The full set of terminal condition actually are
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as follows:

0
ue(T) = ELT(CT' 7T)

0
Hn(T) > a_LT(CT/ T)

where the inequality must hold with equality if 77 < 0.

The function Lt is convex and attains its global minimum at (ct, rr) = (0,0). For
given cr the minimum for Lt (cy, -) is attained at 7t = 0. Following the arguments in the
proof of Proposition 8, the costates are nonnegative, pi.(t), u(t) > 0 for all + > 0. This
implies that 7 = 0 and ct > 0.

Since i(t) > 0,r(t) < 0and 7t(t) < 0, consumption ¢(t) is monotone increasing. I now
argue that ¢(0) > 0 is never optimal. This would imply that if ¢(#) = 0 then

c(0) +(1-T)g(0) = —1—¢(0)+ (1(1 i

ATy —TR )

since p7(0) = 0 and u(t) > 0 this rules out ¢(0) > 0, since otherwise x(0) > 0 which is
not feasible. Also, if c¢(0) = 0 then it must be that x(¢) = 0 for all t € [0, T] since otherwise
¢$(t) = 0and x(t) > 0 for some t € (0,T). Also, given the characterization for t > T we
have x(t) = 7(t) = 0 and c(¢t) > 0 for all + > 0. This implies that g(¢) < 0 for all + > 0.
But then the following plan improves welfare

g(t) =g(t)+(1—-Te

oqQ

for small e > 0. This is true because [;° e ! (x(t)? + A7mt(t)?)dt = 0 and

Vaey [ € E0+A-T)eR =y [e¥i(g(t)+(1-T)e) >0

for small enough ¢ > 0.
The rest of the arguments now follow the proof of Proposition 8.
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