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Abstract

This paper studies linear instrumental variables (IV) estimation in time series settings where

many instruments are available. Motivation comes from GMM estimation of rational expec-

tation models, including the New Keynesian Phillips curve, Euler equations, and Taylor rules.

The paper surveys and summarizes ideas from the cross-sectional literature on many weak in-

struments, establishes new results for a split-sample approach, and discusses extensions and

adaptations of the cross-sectional results to time series settings. The main challenge of estima-

tion with many weak instruments comes from endogeneity of the estimated instrument, which

can be solved using sample splitting, cross-fitting, jackknifing and deleted diagonal approaches.

This paper shows that the split-sample approach is agnostic to the method used to estimate

the optimal instrument, allowing for a variety of machine learning estimators to be employed,

and produces easy-to-implement, asymptotically reliable statistical inferences under both weak

and strong identification.
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1 Introduction

Many structural macroeconometric relations, including the New Keynesian Phillips Curve,

Euler equations, and Taylor rules, are known to be weakly identified when estimated by

GMM using aggregated macro-data, see i.e. Mavroeidis (2004). One important and

probably underused feature of these models is that they are formulated as conditional

moment restrictions, leading to potentially many unconditional moment equations which

may be used for estimation. Specifically, all lags of any available macro variable can serve
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as a valid instrument. The potential of exploiting this wealth of available information to

produce more accurate inferences about structural parameters makes usage of many weak

instruments very promising. There have been many recent advances in understanding

the statistical issues and developing reliable methods to exploit many weak instruments

in cross-sectional settings (i.g. Hausman et al (2012), Belloni at all (2012) among many)

– an adaption of these methods to time series is lagging behind.

The main goals of this paper are: to survey and systematize recent advances in cross-

sectional studies of many weak instruments; to establish some missing results; and to

investigate how these tools can be adapted to empirical macroeconometric applications.

The paper advocates for the use of split-sample IV estimation as the easiest and most

versatile approach for extracting information from an abundant set of instruments, and

delivering clean statistical inferences on the structural coefficient. This approach, as

we argue, is very adaptable to the additional challenges posed by time series data. We

establish new results about the consistency and asymptotic distributions of the split-

sample estimator, and discuss weak identification robust inferences. The paper also

surveys machine learning (ML) approaches popular in time series settings that can be

freely combined with the sample splitting idea to select/ estimate the optimal instrument.

We frame the central issue of using many instruments as the problem of endogeneity

of the estimated instrument. The optimal instrument in a model with homoskedastic

martingale-difference errors coincides with the best predictor of the endogenous regressor

given the available set of instruments. A variety of ML techniques can be used to select the

best predictive model and to construct the optimal instrument. The challenge, however,

is that fitting the endogenous regressor with a very flexible model also fits the endogenous

part of the regressor in a flexible way. Similarly, selecting an instrument out of a large

set of available instruments based on its predictive power for the endogenous regressor

favors the instruments showing larger in-sample correlation with the endogenous first-

stage error term. As we argue, flexible estimation/selection of instruments leads to

the constructed optimal instrument being endogenous, despite each original instrument

being exogenous. When the instruments contain a strong signal about the regressor, the

problem of endogenous selection is reflected in large finite-sample biases, while in the

case where the information is limited, we may end up with an inconsistent estimator and
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misleading inferences.

The idea of the sample splitting approach (Angrist and Krueger (1995)) is straight-

forward. The researcher splits the sample into two parts: the first part of the sample is

used to estimate the best predictor for the endogenous regressor based on available in-

struments; this estimated instrument is then applied to the second subsample to conduct

regular, just-identified linear IV inferences using weak identification robust approaches.

The sample splitting makes the estimated instrument exogenous both in cross-sectional

and, with some small adaptations, in time series settings. The approach can be combined

with any ML technique used on the first subsample. Other options to construct an exoge-

nous instrument in cross-sectional applications include cross-fitting, jackknife (Angrist et

al. (1999)) and deleted diagonal (Hansen et al. (2008)) ideas. This paper surveys the

existing asymptotic results in cross-section for these approaches. Unfortunately, as we

show, their applicability to time series data is currently more limited and we discuss the

potential pitfalls.

The time series nature of macroeconometric applications raises additional challenges.

We pay special attention to the problem of autocorrelated errors, as well as the dis-

tinction between weak exogeneity assumptions, which are common in time series, and

the strict exogeneity typical for cross-sectional data. We point out ways of obtaining

reliable asymptotic statements without assuming consistency of the estimation/selection

of optimal instruments, and acknowledging the implied non-ergodicity of the estimated

averages. This is achieved by making statistical inferences conditional on the first sub-

sample and using stable martingale central limit theorems.

The paper is structured in the following way. Section 2 motivates the importance of

many weak instruments in time series data by highlighting a series of empirical examples.

Section 3 surveys the cross-sectional literature, explains the issue of endogeneity in the

estimated instrument, and lists some available solutions. Section 4 surveys cross-sectional

asymptotic results established in the literature for the jackknife and deleted diagonal

approaches, and obtains new results for the split-sample estimator. Section 5 is devoted

to the additional challenges of time series data and discusses the ways cross-sectional

methods may be adapted and their potential pitfalls. We also pay attention to Factor

IV methods.
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2 Empirical examples

In structural macroeconometrics it is common to have a large number of potential in-

struments. For example, when estimating rational expectations models the exclusion

restriction is often formulated as a conditional expectation, where the conditioning is on

all information available at the time the expectation is taken. This makes all lags of any

macro variables valid instruments. Despite the seeming abundance of potential instru-

ments, structural estimation using aggregate data often suffers from weak identification,

at least when a relatively small number of carefully chosen instruments is used.

Example 1. New Keynesian Phillips Curve. The NKPC is a rational expectation

model capturing a trade-off between the rate of inflation and the level of economic activity.

A theoretical justification of the NKPC comes from the Calvo model. There exists a

diverse range of empirical specifications, but the most common is the following:

πt = λxt + γfEtπt+1 + γbπt−1 + ut. (1)

Here πt is inflation in period t, xt is a proxy for marginal costs (often the labor share

or output gap), ut is unpredictable structural error, and Et is a rational expectation

formed at time t. Gali and Gertler (1999) proposed GMM-IV estimation of the NKPC

by forming the moment condition

E[(πt − λxt − γfπt+1 − γbπt−1)Zt−1] = 0,

where one can use any variable observed at time t−1 in the instrument set Zt−1. Kleiber-

gen and Mavroeidis (2009) show that ‘weak instrument problems arise if marginal costs

have limited dynamics or if their coefficient is close to zero, that is, when the NKPC

is flat, since in those cases the exogenous variation in inflation forecasts is limited.’ A

survey paper by Mavroeidis et al (2014) reports that ‘estimation of the NKPC using

macro data is subject to a severe weak instruments problem. Consequently, seemingly

innocuous specification changes lead to big differences in point estimates.’ �

Example 2. Euler equation. Euler equations for consumption or output are an

important part of many macroeconomic models. There are multiple specifications used
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in empirical work – below is a formulation suggested by Fuhrer and Rudenbusch (2004):

ct = α + ϕEtct+1 − φrt +
J∑

j=1

αjct−j + ut,

where ct and rt are the logs of consumption (output) and the real interest rate. GMM

estimation of the Euler equation was proposed by Hansen and Singleton (1982), who

suggested using lags of available variables as instruments. Yogo (2004) raised the issue

of weak identification of the coefficient of intertemporal substitution. Acsari et al (2020)

provides a comprehensive survey of different specifications and estimation approaches to

the Euler equation. �

Example 3. Taylor rule. A Taylor rule is a policy reaction function that describes

how a Central bank conducts monetary policy. One common specification is

rt = r̄ + β(Etπt+1 − π̄) + γEtxt+1 + ϵt,

where rt is the Federal Funds rate, πt the inflation rate, xt the output gap, and r̄ and

π̄ are equilibrium rates. Clarida et al (1998) suggested a GMM approach to estimating

the Taylor rule that allows the researcher to use any lagged variables as instruments.

Mavroeidis (2004) draws attention to weak identification of the Taylor rule. �

Example 4. Factor pricing. Factor pricing models assume that the expected excess

return on a stock or a portfolio of assets is equal to the price of risk (or risk premia) λ,

for some risk factor Ft, multiplied by the portfolio’s quantity of risk βi:

Erit = λβi, βi = (V ar(Ft))
−1cov(Ft, rit).

One commonly used estimation procedure is the Fama-MacBeth approach (Fama and

MacBeth (1973), Shanken (1992)) that first estimates βi by running time series regressions

of excess returns rit on the realization of risk factor Ft for each asset separately. Then, one

runs a cross-sectional regression of the average return for each asset on its estimated βi to

obtain an estimate of the risk premia λ. This procedure can be interpreted as a classical

TSLS estimator with a large number of instruments. The number of instruments here

equals to the number of assets used for estimation multiplied by the number of factors,

5



and the βi play the role of the first-stage coefficients. When factors Ft are only weakly

correlated with excess returns, we are faced with a problem of weak instruments (see,

Anatolyev and Mikusheva (2020)). �

Simplified setting. In this paper we address the issue of statistical inference on a

structural parameter β, the coefficient on the single endogenous regressor Xt, in the

presence of many potential instruments Zt. We pay special attention to issues of weak

identification and the time series nature of the data. We discuss only models linear in β

and correspondingly the linear IV formulation. Hansen and Singleton (1982) introduced

the GMM approach for the estimation of non-linear Euler equations. However, issues of

many weak instruments and weak identification are significantly more complicated in the

non-linear setting, and our understanding of them is very limited; they are left out of the

current paper.

Our setting abstracts away from several complications that may arise in practice.

Firstly, we assume that the structural equation has no included controls. This assumption

is not very restrictive if the number of potential controls is small as we can assume that

the equation of interest is obtained after partialling them out. However, the need to

partial out many (or an increasing number of) controls poses a separate and very hard

problem. An excellent survey is proveded by Anatolyev (2019). Secondly, we assume

that we deal with a single endogenous regressor. The results can be easily generalized

to multiple endogenous regressors as long as we are interested in joint inferences on all

structural coefficients. Inference under weak identification on each structural coefficient

separately is a complicated econometric issue (see Kleibergen and Mavroeidis (2009)).

Finally, we assume away any complications that may arise from the persistence (unit root

behavior) of some regressors or instruments. Specifically, we assume that all variables are

stationary enough for some forms of the law of large numbers and central limit theorem

to hold.
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3 Cross-Section: statement of the problem

3.1 Many Instruments: constructing optimal instrument

In this section we concentrate our attention on cross-sectional data and assume that we

observe an i.i.d. sample (Yi, Xi, Zi) for i = 1, .., n. We consider a linear IV model with

one-dimensional endogenous regressor X and K-dimensional instrument Z

Yi = βXi + ei, E[ei|Zi] = 0.

Chamberlain (1987) derived the optimal instrument fi that minimizes the variance of the

IV estimate: fi =
E[Xi|Zi]

E[e2i |Zi]
.Many papers in this literature aim to find an estimation and in-

ference procedure that achieves semi-parametric efficiency under homoskedasticity, while

at the same time delivering valid results under heteroscedasticity (heteroscedasticity-

robust). In accordance with this goal, we look for an optimal instrument of the form

fi = E[Xi|Zi]. (2)

In practice the optimal instrument is not known and has to be estimated – Newey (1990)

suggested estimating fi non-parametrically.

In this paper we consider only two-step estimators, which covers vast majority of

available estimators. In the first step one constructs a model of the best predictor for

Xi based on the potential predictors/features Zi using some regularized non-parametric

estimation and selection methods. Denote this estimated optimal instrument as f̂i =

Ê[Xi|Zi]. In the second step, the estimated optimal instrument is employed in the just

identified linear IV:

β̂ =

∑n
i=1 f̂iYi∑n
i=1 f̂iXi

. (3)

Let us mention several prominent approaches for first-step estimation. Donald and

Newey (2001) proposed an instrument selection procedure based on a Mallows criteria.

Belloni et al (2010) and Belloni et al (2012) suggest using LASSO estimation on the first

step to construct the optimal instrument. Okui (2011) proposes a shrinkage estimator,

assuming that there is a known set of strong instruments that delivers a consistent es-

timator of β. Carrasco (2012) suggests several regularization procedures based on the
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spectral decomposition of the conditional expectation operator. Among her proposals

are the principal components approach and Tikhonov’s regularization of the conditional

expectation operator. There have been also recent suggestions to use other Machine

Learning techniques for the optimal instrument construction, such as the random forest

(Ash et al (2018)).

All procedures mentioned above deliver semi-parametric efficient estimators under

some set of assumptions. Typically this involves some assumption placed on the form

of the optimal instrument, which allows for its consistent estimation. For example, the

LASSO procedure of Belloni et al (2010) delivers the desired results if the first-stage

regression is approximately sparse, that is, a relatively small number of the instruments

successfully approximates the optimal instrument. Donald and Newey (2001) assumes a

known ordering among instruments (or groups of instruments) by strength/informativeness.

Another type of assumption often needed is a regularity condition placed on the condi-

tional expectation operator. For example, Belloni et al (2012) restrict eigenvalues of

empirical Gram matrix, while Carrasco (2012) assumes that the conditional expecta-

tion operator is a Hilbert-Schmidt operator. All papers mentioned above assume strong

identification of the IV model.

3.2 Weak Instruments

In this section we provide a very brief summary of known facts about weak identification

in a just identified case. Specifically, we consider the identification strength of the optimal

instrument as if it is known, and take the ‘optimal’ instrument to be the one defined in

(2). We acknowledge the limitation of this definition and recognize that the weak IV

literature has an unresolved debate about the choice of a powerful test, and direction of

power, for over-identified linear IV models. However, we intend to stay away from this

debate and solve a somewhat simpler problem, maintaining definition (2) as a goalpost.

Let us write the (infeasible) first-stage regression as:

Xi = E[Xi|Zi] + vi = fi + vi, (4)

where vi is the prediction error with E[vi|Zi] = 0. Weak identification arises when the

uncertainty coming from the prediction error vi is empirically important; that is, cases
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with low signal-to-noise ratio in equation (4). This ratio is captured by the concentration

parameter

µ2 =
n (E[f 2

i ])
2

σ2
, (5)

where σ2 is the asymptotic variance of 1√
n

∑n
i=1 fivi. When the concentration parameter

is not very large, the finite-sample distribution of the (infeasible) optimal IV estimate β̂o

and its t-statistic are not well approximated by the gaussian distribution. We can write

the error of the optimal IV estimate as

β̂o − β =

∑n
i=1 fiYi∑n
i=1 fiXi

− β =

∑n
i=1 fiei∑n

i=1 f
2
i +

∑n
i=1 fivi

.

Asymptotic gaussianity of this quantity is usually based on the normalized numerator

being well approximated by a gaussian distribution, while the normalized denominator

is close to a constant. The latter approximation fails when the signal-to-noise ratio

is small, as the stochastic mean-zero term
∑n

i=1 fivi remains empirically important in

comparison to the term
∑n

i=1 f
2
i , which is taken by standard asymptotic theory to be the

only important term.

When the signal-to-noise ratio is low, the denominator is not just noisy, it is endoge-

nously noisy. Indeed, in most cases we seek an instrumental variables estimate because

we suspect the regressor Xi to be endogenous, or equivalently, that the prediction error

vi is correlated with the structural error ei. This implies that the near gaussian terms∑n
i=1 fiei and

∑n
i=1 fivi are correlated. This endogeneity makes the infeasible optimal

IV estimate biased (towards the OLS limit) and standard t-statistic based inferences

misleading (of incorrect size), when the concentration parameter is small.

Stock and Yogo (2005) suggested a pre-test, commonly know as the first-stage F -test,

that assesses empirically whether the usual TSLS estimator, and corresponding t-statistic,

provides reliable inferences in a given application. Such a pre-test usually guides a

researcher in choosing between identification-robust tests/confidence sets (if identification

is deemed weak) or standard TSLS t-statistics. In the just-identified heteroscedastic case

one can use a heteroscedasticity-robust form of this pre-test. In a recent survey, Andrews

et al (2019) explain why there is no generally acceptable pre-test for weak identification

in an over-identified linear IV model under conditional heteroscedasticity, although there

is one for the just-identified case.
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A wide literature is devoted to identification-robust testing and confidence set con-

struction. The most well known and often used tests are the Anderson-Rubin statistic,

Kleibergen’s (2002) KLM and the conditional likelihood ratio of Moreira (2003). They

are justified in settings with a small number of instruments and are equivalent in the

just-identified case. The recommendation for the just-identified setting is to always use

identification-robust tests rather than employing the weak identification pre-test. This

recommendation follows from a statement that the robust tests mentioned above are

asymptotically efficient in a just-identified homoskedastic case, if identification is strong.

3.3 Main problem: endogeneity of the estimated instrument

Problematic simulations. A recent thought-provoking paper by Angrist and Frand-

sen (2020) assesses the utility of machine learning techniques in modern applied labor

economics applications. Discussed in great detail is the use of machine learning techniques

for instrument selection. The authors create simulation exercises based on two applica-

tions: identification of the return to education using quarter of birth as instruments

(Angrist and Krueger (1991)); and the effect of a movie’s opening-weekend viewership on

subsequent sales, with instruments generated by weather indicators (Gilchrist and Sands

(2016)). The authors diligently design the simulation settings to match the empirical

examples along many directions, including the heterogeneity of the first-stage effects and

heteroscedasticity.

The amazing conclusion of Angrist and Frandsen (2020) is that the use of machine

learning techniques for construction of the optimal instrument in these two applications

does not deliver the results many hope for. The authors explored the performance of

IV regression using both LASSO and random forest estimators for the first stage and

contrasted it with OLS, TSLS and several jackknife and split-sample estimators we will

discuss below. In almost all cases the IV estimators using LASSO and random forest

estimates delivered large biases, comparable to that of TSLS and OLS without much

improvement in terms of variance. The performance of the both machine learning meth-

ods depends significantly on the choice of regularization parameter (the cross-validation

or plug-in penalties for the LASSO, or the leaf-size for the random forest) with none of

the standard choices being totally satisfactory in these applications. These results rhyme
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well with the simulation evidence in Hansen and Kozbur (2014), where the authors report

less than stellar performance of IV estimators using LASSO first stage when the signal

on the first stage is weak.

Essence of the problem. Estimating the optimal instrument in a very flexible way,

or selection from among many instruments, may lead to over-fitting the endogenous part

of regressor X. This makes the estimated optimal instrument endogenous, E[f̂iei] ̸= 0,

even though each individual instrument is exogenous, and leads to the bias of the IV

estimator. We explain this phenomenon below in the context of the TSLS estimator,

following Bekker (1994).

Assume the optimal instrument fi = π′Zi is a linear combination of the available K

instruments and assume that Z ′Z is a matrix of rank K. The TSLS estimator uses the

following estimated optimal instrument:

f̂i = X ′Z(Z ′Z)−1Zi = fi + v′Z(Z ′Z)−1Zi,

where the estimation error is correlated with the structural error, since the prediction

error vi is endogenous. Under conditional homoskedasticity we find the following formula

for the endogeneity of the estimated instrument:

E

[
1

n

n∑
i=1

(f̂i − fi)ei

]
=

E[viei]
n

tr(Z(Z ′Z)−1Z ′) =
K

n
σev.

As we see, the endogeneity of the estimated optimal instrument is increasing in the

number of available instruments as the endogenous part of regressor X is being fitted

more flexibly. A larger number of instruments, or a more flexible first stage, may result

in a large finite-sample bias of the two-step estimator. Under asymptotics in which the

number of instruments K is growing, this may even lead to inconsistency.

Similar observations can be made about other IV estimators that have relatively sim-

ple form (e.g. see Hansen and Kozbur (2014) for ridge-first stage). Unfortunately, the

exact form of the bias is unavailable for first-stage estimators that involve simultane-

ous variable selection and estimation, and hence do not have a simple analytical form.

Nevertheless, the logic behind the endogeneity of the estimated instrument is somewhat

similar. Among many instruments that have similar explanatory power, the ones that
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are most correlated with the endogenous part of the regressor X, in sample, are more

likely to be selected as they deliver better fit. Again the more flexible first-step predic-

tion model leads to a more endogenous estimated instrument f̂i. Similar arguments are

stated in Dovi (2020), who showed in simulations large size distortions of the weak iden-

tification robust tests applied after selection of instruments from a large set of available

instruments (endogenous instrument selection).

Most machine learning techniques fight the over-fitting bias with a regularization

scheme; however, this approach may fail when the signal is low or is not of the form that

the proposed technique was created to recover (e.g., not sparse in the case of LASSO). In

such cases we may again end up with an endogenous estimated optimal instrument, which

results in large bias of the IV estimator. This was clearly demonstrated in simulations

conducted in Hansen and Kozbur (2014) which showed that a weak signal (dense or

sparse) cannot be well recovered in a first-stage estimation done by ridge or LASSO.

3.4 Solutions to endogeneity problem

There are several econometric ideas proposed that effectively solve the problem of corre-

lation between the estimated optimal instrument and the structural error.

Sample splitting. Angrist and Krueger (1995) proposed a split-sample estimator,

which randomly splits the sample in two subsamples, the first of which is used to estimate

the form of the optimal instrument, while the second is used to estimate the structural

parameter β. In the case of TSLS this means we estimate the first-stage coefficients

π̂1 = (Z ′
1Z1)

−1Z ′
1X1, where the subscript 1 denotes estimation using only observations

in the first subsample. The estimation of the structural coefficient employs only obser-

vations from the second subsample and uses f̂i = π̂′
1Zi. This approach guarantees the

exogeneity of the estimated optimal instrument.

The idea of sample splitting can be applied to any method of instrument selection or

optimal instrument estimation. Assume that a researcher randomly splits the data set

into two subsamples indexed by I1 and I2. Denote A1 and A2 the full set (Xi, Yi, Zi)

of random variables in the two subsamples. The researcher uses some regression or ML

approach to estimate the optimal instrument f̂i = f̂(A1, Zi) using data in A1, evaluates
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the estimated instrument for each observation i ∈ I2, and then runs just-identified IV on

the second subsample with instrument f̂i. We denote β̂SS, the split-sample estimator of

β, defined as:

β̂SS =

∑
i∈I2 f̂(A1, Zi)Yi∑
i∈I2 f̂(A1, Zi)Xi

. (6)

Whenever the method used for the construction of the optimal instrument is specified,

we add this to the name of the estimator. For example, SS-LASSO is the estimator that

estimates f̂i using LASSO regression of X on the instruments in the I1 sample only, and

then runs just identified IV on the subsample I2. We usually assume that the number of

observations in the second subsample I2 increases to infinity with the sample size, but it

is not required for the two subsamples to be of the same size.

Cross-fit. To salvage the efficiency loss from using only part of the sample for structural

estimation, the researcher may use the two subsamples symmetrically: fitting the first

stage on each subsample separately and producing the estimated optimal instrument in

each subsample by using the fitted model estimated on the opposite one. Specifically,

for i ∈ I1 the estimated instrument f̂i = f̂(A2, Zi) is a function of A2 and Zi only, while

for i ∈ I2 the corresponding f̂i = f̂(A1, Zi) is a function of A1 and Zi. The cross-fit

split-sample estimator of the structural parameter β is defined as:

β̂CFSS =

∑
i∈I1 f̂(A2, Zi)Yi +

∑
i∈I2 f̂(A1, Zi)Yi∑

i∈I1 f̂(A2, Zi)Xi +
∑

i∈I2 f̂(A1, Zi)Xi

. (7)

The formulation above make sense if the two subsamples are of equal size, but we may also

consider other alternatives such as weighted averages of the two individual split-sample

estimates.

Jackknife. An extreme form of the sample splitting idea is the jackknife or leave-one-

out (Angrist et al. (1999)) estimator, where in order to estimate the optimal instrument

for observation i one uses the sample containing all observations except i. In the case

where the first stage is estimated using OLS, this means (3) using f̂i = π̂′
(−i)Zi, with

π̂(−i) = (Z ′
(−i)Z(−i))

−1Z ′
(−i)X(−i), where the index (−i) indicates the matrix including all

observations but i.
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This idea may be applied to any other ML approach applied on the first step. For

jackknife estimators let us for any index i denote A−i the full set (Xj, Yj, Zj) of ran-

dom variables in the samples excluding observation (Xi, Yi, Zi). Then the jackknife IV

estimator is

β̂JIV E =

∑
i f̂(A−i, Zi)Yi∑
i f̂(A−i, Zi)Xi

.

It is worth pointing out that for a complicated ML algorithm this estimator is com-

putationally demanding as it requires re-running the ML first-stage estimation on each

data set A−i separately. For clarity, in this paper we name these estimators as JIVE-

combined with the name of the first-stage estimator, e.g JIVE-LASSO runs a separate

LASSO estimation for each observation i on the first stage. We refer to the estimator

introduced in Angrist et al. (1999), in which the first stage is estimated using least

squares, as JIVE-OLS.

Deleted diagonal estimators. Direct implementation of the jackknife form described

above can be numerically demanding. However, Angrist et al. (1999) showed that the

jackknife IV estimator with the OLS first step (JIVE-OLS) can be calculated as β̂JIV E =

X′P̃ Y

X′P̃X
, where the n × n matrix of weights P̃ can be calculated from projection matrix

P = Z(Z ′Z)−1Z ′ by eliminating diagonal elements and re-scaling rows: P̃ij =
Pij

1−Pii
if

i ̸= j, and P̃ii = 0. Notice that the JIVE-OLS estimate is the solution to the optimization

problem that minimizes the quadratic form (Y − βX)′P̃ (Y − βX), using the deleted

diagonal weights P̃ . Han and Phillips (2006) show that, when the number of the moment

conditions is large, the minimizer to the theoretical GMM objective function is not the

true parameter. For TSLS, the value of the theoretical objective function at the true

parameter value is equal to E [e′Pe] =
∑

i PiiEe2i ̸= 0. As argued in Han and Phillips

(2006), this leads to the bias of TSLS we discussed above. The JIVE-OLS estimator

solves this problem, since P̃ii = 0.

Based on this idea, the JIVE-OLS formulation has inspired another class of estimators

that is also called jackknife, though may or may not be associated with a direct jackknifing

procedure. To distinguish these alternative estimators, in this paper we use the term

deleted diagonal. Assume we have an estimator that is defined as the optimizer of some

objective function that is either a quadratic form or ratio of two quadratic forms, say
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TSLS, ridge, or LIML. In order to correct for the endogeneity bias, we instead solve a

slightly corrected optimization problem which deletes diagonal elements of the quadratic

form in the numerator. This idea works successfully for many estimators (TSLS, LIML,

ridge) and results in DD-LIML (Hausman et al (2012), referred to in the literature as

HLIM), and the DD-ridge (Hansen and Kozbur(2014)). Each one of these estimators

with the deleted diagonal has superior finite-sample performance in comparison to the

original estimators, as demonstrated in multiple simulation setups, and are consistent in

larger number of settings.

Simulation evidence. It is worth noticing that in Angrist and Frandsen (2020) the

JIVE-OLS and SS-OLS estimators systematically outperformed estimators with sophis-

ticated ML approaches (LASSO and random forest) used on the first stage and without

corrections for the endogeneity. This suggests that the endogeneity of the estimated in-

strument, in presence of a weak signal, may be the main challenge in the application of

modern regularized methods to instrument selection. Another interesting observation is

that the last proposed solution, ‘deleting the diagonal’, does not solve the problem of

pre-test or model selection. For example, assume we employ the LASSO on the first step

to select the parsimonious prediction model. Using the deleted diagonal approach for the

second step estimation of the structural parameter with the selected instruments, does

not account for the fact that the selected instruments may include some instruments

that have high in sample correlation with the endogenous part of the regressor. This

was demonstrated by Hansen and Kozbur (2014) in simulations, where the LASSO with

deleted diagonal showed unimpressive performance.

4 Asymptotic inferences with many instruments

This section discusses asymptotic inference in the cross-sectional setting. We attempt

to answer the important empirical question of when reliable statistical procedures exist

for estimation with many available instruments in a low signal environment. The first

subsection addresses the question of what theoretical restrictions on the concentration

parameter and the number of instruments allow for an estimator to be consistent. The
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next subsection asks a similar question about asymptotic gaussianity of the estimator

and its standard errors. Then we ask what empirical criteria a practitioner may check

to pre-test if the signal is strong enough for gaussian inferences. The final subsection

discusses identification robust testing as a default approach under very low signal.

4.1 When does a consistent estimator exist?

The signal strength of the optimal instrument that is required to achieve a consistent

estimator, as measured by the concentration parameter (5), depends crucially on how

much is known and how much we are willing to assume about the form of the optimal

instrument. Let us start with the simplest case in which the optimal instrument is fully

known and available, that is, fi is a part of our data set and its identity is known. In

this case, the optimal IV estimator β̂o is consistent as long as µ2 → ∞ as the sample

size increases. Under very mild assumptions
√

µ2 is the convergence rate of the optimal

estimator (Stock et al. (2002)).

Conversely, assume that nothing is known about the form of the optimal instrument

and that we search among all linear combinations of the available K instruments (for

this result we assume that K < n). That is, assume the optimal instrument is linear

fi = π′Zi, but that no information about the direction of π is available. Then, a necessary

and sufficient condition for consistency of the IV estimator is µ2
√
K

→ ∞. The strength

of identification should not just be large, but large in comparison to the complexity of

the first-stage estimation, measured by the square root of the number of instruments.

This necessary condition comes from a result in Mikusheva and Sun (2020) which states

that, in the best possible circumstances (such as a linear, gaussian, homoskedastic model

with known reduced form covariance of the error term), if µ2
√
K

is bounded asymptotically

and the direction of π is completely unknown, then one cannot consistently distinguish

any two values of β. There are a number of estimators that are consistent under het-

eroscedasticity and some relatively minor technical assumptions when µ2
√
K

→ ∞. These

include JIVE-OLS, DD-LIML and DD-Fuller (Hausman et al (2012)), with earlier results

for the homoskedastic case obtained by Chao and Swanson(2005). Notice, that all these

estimators are agnostic about the direction of the optimal instrument.
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Consistency of split-sample IV with ML first stage. The negative result of Miku-

sheva and Sun (2020) critically relies on the direction of the optimal instrument being

completely unrestricted and unknown. If a researcher has some knowledge about the

optimal instrument and may adjust her first-stage estimation accordingly, then the re-

quirement on the strength of identification is less stringent and depends on the rate of

consistency of the first-step estimator. The following statement characterises the consis-

tency of the estimator under such conditions.

Theorem 1 Assume that the data is i.i.d., E[ei|Zi] = E[vi|Zi] = 0 and E[e2i |Zi] < C,

0 < c < E[v2i |Zi] < C almost surely. Assume that the prediction error for the estimation

approach used on the first step is such that E
[
(f̂i − fi)

2
]
= O( rn

n
) and E[f̂ifi] ≥ cE[f 2

i ].

For the sample split estimator assume that the number of observations in I2 is at least

[αn] for α > 0. For the cross-fit assume that the number of observations is equal in the

both subsamples. If µ2
√
rn

→ ∞ , then β̂CFSS and β̂SS are consistent for β.

Theorem 1 shows that if one has information about the optimal instrument and can

use it to improve the optimal instrument estimation rate, characterized by rn, then the

requirements on the strength of the optimal instrument may be weakened. If nothing is

known about the instruments and the search is done among all linear combinations of K

available instruments (with the assumption that K < n), then the approriate rate for the

optimal instrument estimation is rn = K, returning us to the earlier condition µ2
√
K

→ ∞.

If one is willing to impose assumptions on the first stage and use them, then better

rates for optimal instrument estimation can be achieved. One such potential restriction is

sparsity or approximate sparsity (Belloni et al, 2010) that allows the optimal instrument

to be well approximated by a linear combination of a small number of the available

instruments. In this case we may allow the number of available instruments, K, to be

(much) larger than the sample size n. Let us assume that

fi = Z ′
iπ0 +Ri, ∥π0∥0 ≤ s,

where the approximation error is small in the following sense
√

1
n

∑
iR

2
i ≤ C

√
s
n
, and the

number of important terms is small s = o(n/ log(K)). The leading proposal to estimate

the predictive sparse regression is via LASSO (Tibshirani, 1996). Under appropriate mo-

ment assumptions and assumptions on sub-matrices of Z ′Z, Belloni et al (2010, Theorem
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1) obtain the following rate of convergence for LASSO estimation of the first stage:

∥π̂ − π0∥2 = Op

(
s log(K ∨ n)

n

)
.

The amazing feature of LASSO is that it allows the number of instruments K be much

larger than n, but this number appears in the rate rn = s log(K ∨n) only as a logarithm.

The main impact on rn is the sparsity of the first stage s, which reflects the number of

important instruments needed to approximate the optimal instrument well. This number

may grow very slowly with the sample size if the first stage is sparse. Thus, according to

Theorem 1 the split-sample IV estimator of β with LASSO estimation of the sparse first

stage, is consistent as long as µ2√
s log(K∨n)

→ ∞. It should be noted that, unlike SS-OLS,

the SS-LASSO is not invariant or agnostic to linear transformations of the instruments.

4.2 Are inferences standard?

In linear weak IV with a small number of instruments, once the TSLS estimator becomes

consistent it is also asymptotically gaussian and standard TSLS formulas provide valid

confidence sets. This is not the case with many available instruments. Two related

phenomena concerning the asymptotic normality of many instrument estimators can be

seen in the literature (e.g. Hansen et al (2008), Chao et al (2012)). Firstly, novel

asymptotic statements are often used, such as a central limit theorem for quadratic

forms, that are not used in standard TSLS asymptotics. Secondly, in many weak IV

settings the usual TSLS standard errors formulas are incorrect.

Explanation of the problem. In order to explain the complication that arises

from flexible first-stage estimation, let us consider the prototypical estimator β̂ defined

in equation (3), that uses estimated instrument f̂i:

β̂ − β =

∑n
i=1 fiei +

∑n
i=1(f̂i − fi)ei∑n

i=1 fiXi +
∑n

i=1(f̂i − fi)Xi

. (8)

The consistency result requires proving that term
∑n

i=1 fiXi = Op(µ
2) dominates the

other three sums in (8). According to Theorem 1, this is true for the split-sample esti-

mator whenever µ2
√
rn

→ ∞.

For gaussian inference with regular standard errors, we also require that the numerator

term
∑n

i=1 fiei = Op(µ) asymptotically dominates term
∑n

i=1(f̂i − fi)ei. In the case of
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the split-sample estimator described in Theorem 1, the latter term has asymptotic order

Op(
√
rn). The condition for the leading term in the numerator to dominate is µ2

rn
→ ∞.

There is a gap between the rate required for consistency, and the stricter rate required

for standard gaussian inference to be valid. Assume that the strength of identification

is such that the estimator is consistent ( µ2
√
rn

→ ∞), but µ2

rn
is asymptotically bounded.

Then, the asymptotic distribution of the estimator depends more finely on the first-stage

procedure and calls for asymptotic theorems for the term
∑n

i=1(f̂i − fi)ei. The biggest

challenge in determining the asymptotic distribution of the last term is the complicated

dependence between summands. Specifically, the first-stage estimation error f̂i − fi, will

exhibit dependence over i if the first-stage estimation relies on common observations. For

complicated ML procedures on the first stage, this dependence may be very intricate.

Some DD and JIVE estimators. This issue has been successfully solved for deleted

diagonal style estimators and several JIVE estimators, including JIVE-OLS, JIVE-Ridge,

DD-TSLS, DD-LIML and DD-Fuller (Chao et al (2012), Hansen et al (2008), Hausman

et al (2012), Hansen and Kozbur (2014)). We discuss these results for the example of

DD-TSLS. The DD-TSLS estimator equals to the ratio of two quadratic forms X′P̃ Y

X′P̃X
,

where P̃ equals to the projection matrix P with a deleted diagonal. It implicitly uses

the estimated instrument

f̂i = i′P̃X = i′P̃ f +
∑
j ̸=i

P̃ijvj,

with i denoting a selection vector with the ith component equal to 1 and all other elements

equal to zero. For simplicity, let us ignore for a moment the distinction between i′P̃ f and

fi – this will be reasonably small for well chosen P̃ . The prediction mistake introduced

in Theorem 1 is

1

n

n∑
i=0

E(f̂i − fi)
2 ≍ 1

n

n∑
i=0

E

[∑
j ̸=i

P̃ijvj

]2
≍ K

n
.

Thus, in this example we have the rate rn = K, and by reasoning similar to Theorem 1,

DD-TSLS (as well as the other DD estimators mentioned above) will be consistent when

µ2
√
K

→ ∞. However, standard gaussian inferences require
∑n

i=1 fiei to dominate the

numerator in equation (8), and hence µ2

K
→ ∞. In the gap between these two rates, the
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rate needed for consistency and the rate needed for standard inferences, the asymptotic

behavior of
∑n

i=1(f̂i − fi)ei becomes the dominating one.

The first-stage estimation error of the optimal instrument f̂i − fi =
∑

j ̸=i P̃ijvj is a

weighted average of all but its own endogenous errors. This means that the estimation

errors will be heavily correlated over i – notice also that (f̂i − fi) is correlated with ej

(when j ̸= i), as vj is part of the first-stage estimation error and vj is correlated with

ej. As a result, getting a central limit theorem for
∑n

i=1(f̂i − fi)ei is highly non-trivial

in general and calls for more structure to be put on f̂i − fi. Such structure exists in the

above mentioned DD and JIVE estimators, and the leading term in
∑n

i=1(f̂i − fi)ei is

given by
∑n

i=1

∑
j ̸=i P̃ijvjei. Chao et al (2012) and Hansen et al (2008) establish a central

limit theorem for quadratic forms of this type, that provides conditions for gaussianity

of the leading term. Hausman et al. (2012) provides methods for estimating standard

errors that work for several JIVE and DD-type estimators.

To summarize, once the identification is strong enough for a number of JIVE and DD

estimators (including JIVE-OLS, JIVE-Ridge, DD-TSLS, DD-LIML) to become consis-

tent ( µ2
√
K

→ ∞), these estimators are also asymptotically gaussian (under mild additional

assumptions). However, the standard errors needed for asymptotically valid inferences

differ and require a quadratic form CLT to be used. It is worth pointing out that the stan-

dard errors proposed by Hausman et al. (2012) contain variance estimates for both terms

appearing in the numerator of (8) and work well once the corresponding IV estimator is

consistent.

Split-sample estimators. The theorem below establishes conditions for asymptotic

gaussianity of the split-sample estimator β̂SS. It shows that once the split-sample esti-

mator is consistent, inference can be performed in a standard way, treating the estimated

instrument f̂i as the only available instrument in a just-identified setting.

Theorem 2 Assume that the data is i.i.d., E[εi|Zi] = 0, and E[|εi|4|Zi] < C for εi =

(ei, vi)
′ and E[f 4

i ] < C. Assume that the size of subsample I2 is growing to infinity as

n → ∞. Let the following assumptions hold:

(i) 1

(E[f̂2
i |A1])

2E
[
|f̂i|4|A1

]
< C almost surely;

(ii) 1
an

∑
i∈I2 f̂ifi →

p 1 for some A1-measurable sequence of random variables an;
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(iii) µ2
n = a2n∑

i∈I2
E[f̂2

i |A1]
→p ∞.

Then β̂SS is consistent and is asymptotically mixed gaussian. Define a variance estimator

Σ2
n =

∑
i∈I2

f̂2
i ê

2
i

(
∑

i∈I2
f̂iXi)

2 , where êi = Yi − β̂SSXi. Then

Σ−1
n (β̂SS − β) ⇒ N(0, 1) as n → ∞.

An interesting feature of Theorem 2 is that it does not require or imply that the esti-

mated variance Σn or the informativeness of the constructed instrument an converges to

a constant. To the contrary, Theorem 2 allows the scale of the deviations β̂SS − β to be

asymptotically random. This is important as the theorem does not require or assume

that the estimation/selection of instruments in the first stage is consistent, but rather

accommodates the asymptotic uncertainty of the first-stage estimator. The idea behind

the proof is to do all inferences conditional on the first subsample. Notice that f̂i is

exogenous in the conditional environment, and so the second stage is a standard IV esti-

mation with one instrument. This estimate is consistent and (conditionally on the first

subsample) asymptotically gaussian with the usual formula for standard errors as long

as the signal in f̂i guarantees consistency (condition (iii)).

It is worth pointing out that Theorem 2 does not specify what technique is used in the

first stage, only the prediction mistake rate. This makes the split-sample estimator suit-

able for use with a variety of ML approaches, which may be adapted to any information

about the first stage the researcher possesses.

Cross-fit estimator. Theorem 1 is applicable to both split-sample and cross-fit esti-

mators equally as they are either consistent or inconsistent under the same conditions.

One may expect the cross-fit split-sample estimator to be more efficient asymptotically

as it is effectively using both subsamples, while β̂SS uses only part of the sample in the

second stage. Indeed, if µ2

rn
→ ∞ and the standard term

∑
i fiei dominates the numer-

ator, β̂CFSS is asymptotically more efficient than β̂SS. However, we cannot recommend

β̂CFSS to wide use as its asymptotic behavior when µ2
√
rn

→ ∞ but µ2

rn
9 ∞, is not well

understood.

Unfortunately, the corresponding conditions for gaussianity of the cross-fit estimator

β̂CFSS (or whether it is asymptotically gaussian at all) are unknown when µ2
√
rn

→ ∞,
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but µ2

rn
9 ∞. The challenge is that the term determining the distribution of the cross-fit

estimator: ∑
i∈I1

f̂(A2, Zi)ei +
∑
i∈I2

f̂(A1, Zi)ei

has a very complicated cross-term dependence. In particular, one can establish asymp-

totic gaussianity of
∑

i∈I1 f̂(A2, Zi)ei conditional on (A2,Z1) with the random asymptotic

variance depending on A2 and Z1. A symmetric statement for the other sum can be ob-

tained conditionally on A1 and Z2. However, the joint distribution of two sums is unclear

as the conditioning variables in the first sum A2 are correlated with the error terms ei

forming the second sum over i ∈ I2. It seems that more details about asymptotics of the

first-step estimation, for example, the influence function representation of f̂i − fi, would

be useful here.

4.3 Can we pre-test for weak identification?

An empirical researcher typically wants to know whether confidence sets or t-tests based

on the gaussian approximation are reliable in a particular setting. A pre-testing procedure

for weak identification may be useful for this purpose. The empirical plan is to use

gaussian confidence sets and t-statistics if the pre-test suggests that the information in

the instruments is strong enough to support asymptotically gaussian inferences, and to

use some weak identification robust procedure otherwise.

Pre-tests for weak identification when the number of instruments is small are typically

evaluated using the first-stage F statistic, or some robust version of it. However, the first-

stage F -statistic is a less universally applicable pre-test than most researchers believe

(see, Andrews et al (2019)). Specifically, it was designed for the TSLS estimator in a

homoskedastic setting with a small number of instruments. Forms of the first-stage F

pre-test that work for heteroscedastic/autocorrelated errors in a just identified linear IV

also exist. Typically, the first-stage F does not work well outside of these two models

(Andrews et al. (2019)) and it should not be used in settings with many instruments

(Mikusheva and Sun (2020)).

This subsection discusses how to construct a pre-test, while the next section discusses

construction of robust tests/confidence sets. The correct pre-test depends crucially on
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the estimator that will be used after strong identification is detected. As we saw in the

previous section, we are aware of two classes of estimators that are asymptotically gaus-

sian once the consistency condition is satisfied: (i) several JIVE and DD-type estimators;

and (ii) split-sample estimators for a wide class of ML first stages.

The main requirement of a good pre-test for weak identification is that it should pro-

vide size guarantees to the combined procedure including the pre-test and the procedure

used after the pre-test. One approach is to first derive a distribution for the t−statistics

under the assumption of weak identification; that is, in a setting where the t- statistics

are not asymptotically gaussian. We can then identify the parameter which governs the

accuracy of the gaussian approximation, and determine what values of that parameter

guarantee acceptable size distortions.

Pre-test for DD-TSLS estimator. Mikusheva and Sun (2020) derived the asymp-

totic approximation for the DD-TSLS Wald statistic, under assumptions that imply it

is not consistent, and suggested a pre-test that can be used. Specifically, the pre-test

statistic has the following form F̃ = 1√
KΥ̂

∑n
i=1

∑
j ̸=i PijXiXj, where Υ̂ is an estimator of

uncertainty in the first stage. Mikusheva and Sun (2020) show that, under mild regularity

conditions, the DD-TSLS estimator β̂DD and an estimator of its variance V̂ (suggested

in Chao et al (2012)) converge jointly:(
(β̂DD − β0)

2

V̂
, F̃

)
⇒

(
ξ2

1− 2ϱ ξ
ν
+ ξ2

ν2

, ν

)
, (9)

where ξ and ν are two normal random variables with means 0 and µ2
√
K
, unit variances,

and a correlation coefficient ϱ that is related to the endogeneity of the structural error.

Statement (9) holds for a wide range of values for µ2
√
K

and shows the distortions from

gaussianity of the DD-TSLS estimator when it is inconsistent. Notice that when µ2
√
K

is

large, the typical realization of ν is also large, and the the limit of the first component

approaches ξ2, so that the Wald statistic is approximately χ2
1 distributed.

According to statement (9), the theoretical parameter µ2
√
K
controls the size distortions

of the DD-TSLS Wald statistic, while the statistic F̃ provides empirical characterization

of its size. Mikusheva and Sun (2020) suggest a pre-test for weak identification that

compares F̃ to a cut-off of 4. If one uses the 5%-size DD-TSLS Wald test when F̃ is
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above the cut-off, and a 5%-size weak identification robust test otherwise, then the full

procedure has asymptotic size less than 15%. The ideas and results of Mikusheva and

Sun (2020) can most likely be extended to other DD-type estimators and several JIVE

estimators that have DD-form.

Pre-test for the split-sample estimator. A distinct feature of the split-sample es-

timator introduced in equation (6) is that the selection and construction of the optimal

instrument happens on a subsample I1 that is not used in the estimation of the struc-

tural coefficient. This makes the estimated instrument f̂i = f̂(A1, Zi) exogenous and the

second step regression just identified. While the first-stage F pre-test does not produce

reliable results in over-identified linear IV with heteroscedastic errors (Andrews et al.,

2019), there is a form of the first-stage F pre-test that works reliably in a just identified

linear IV.

We suggest the following procedure. First, estimate the first-stage model (predicting

Xi using Zi) using data A1 only – the researcher has full freedom in choosing any ML ap-

proach for this stage. Produce the prediction f̂i = f̂(A1, Zi) on the sample i ∈ I2. Then,

run the regression of Xi on f̂i for the sample i ∈ I2, and calculate the heteroscedastic-

ity robust F -statistic. If the F statistic exceeds 10 the researcher can rely on gaussian

confidence sets as stated in Theorem 2, otherwise she should use a weak identification

robust test, some of which are suggested in the next subsection. The size of the two-step

inference procedure is asymptotically less than 15%.

4.4 Robust tests when identification is weak

In empirical settings where the optimal instrument does not contain sufficient information

for producing a consistent estimator, it is common to report statistical inferences through

identification-robust confidence sets. Identification-robust confidence sets are constructed

by inverting robust tests for point hypothesis about the structural parameter H0 : β = β0

(i.e. finding the set of null hypotheses that cannot be rejected). Robustness to weak

identification means having asymptotically correct size uniformly over a wide range of

identification strengths, including weak identification.

The null hypothesis H0 : β = β0 in the linear IV model is equivalent to testing many
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moment conditions:

E[Zij(Yi − β0Xi)] = 0 for j = 1, ..., K.

It is easy to construct a test of asymptotically correct size for any single instrument by

calculating the sample correlation between the instrument and the quasi-error (Yi−β0Xi).

However, with multiple instruments, such a test will likely have close to trivial power. The

biggest challenge is to aggregate information across an increasing number of instruments,

while properly accounting for the uncertainty about the optimal instrument.

One way to use an increasing number of instruments is to aggregate all of them using

the deleted diagonal idea. This results in the Anderson-Rubin type test proposed in

Mikusheva and Sun (2020):

DD-AR(β0) =
1√
KΦ̂

∑
i ̸=j

Pij(Yi − β0Xi)(Yj − β0Xj),

where Pij is the n × n projection matrix on the space of instruments and Φ̂ is an esti-

mator of the asymptotic variance (refer to Mikusheva and Sun (2020) for details). The

test rejects the null if the statistic exceeds the (1 − α)-quantile of the standard normal

distribution. The test relies on the central limit theorem for quadratic forms with deleted

diagonal as in Chao et al. (2012). The important feature of this test is its consistency

against fixed alternatives whenever µ2
√
K

→ ∞, that is, whenever, estimators that are

agnostic about the direction of the optimal instrument, such as JIVE-OLS or DD-LIML,

are consistent. This test works well when no information about the direction of the

optimal instrument is available.

If one expects that a relatively small number of instruments may capture most of the

information (i.e., the first stage is sparse), then the maximum score statistic will have

superior power properties. This idea was proposed in Belloni et al. (2012), where the

test statistic has the form:

Λ(β0) = max
j=1,...,K

|
∑n

i (Yi − β0Xi)Zi,j|√∑n
i (Yi − β0Xi)2Z2

i,j

.

See Belloni et al. (2012) for the details of how to construct critical values. The power of

this test comes from the most informative instrument in the given set.
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Sample splitting for testing. Here we propose a new split-sample testing idea that

fits well with the previously introduced split-sample estimator. It allows the researcher

to use any information about the form of optimal instrument by using the ML approach

best fit for the application.

The proposed test proceeds as follows. As before we randomly split the data set into

two subsamples indexed by I1 and I2. The researcher uses the method of her choice

to estimate the optimal instrument using only observations i ∈ I1, and then constructs

the estimated optimal instrument on the second subsample: f̂i = f̂(A1, Zi) for i ∈ I2.

The linear IV regression on the second subsample using the exogenous estimated optimal

instrument f̂i is a just identified IV model. We suggest using the Anderson-Rubin test:

SS-AR(β0) =

(
1√
|I2|

∑
i∈I2(Yi − β0Xi)f̂i

)2

Σ̂
,

where Σ̂ is a consistent heteroscedasticity-robust estimator of the variance of 1√
|I2|

∑
i∈I2 f̂iei.

The test rejects the null when the test statistic exceeds the (1 − α)-quantile of the χ2
1

distribution. In the just identified case, the Anderson-Rubin statistic is equivalent to

all commonly used weak identification robust tests (KLM, CLR) and is asymptotically

efficient under strong identification. The common consensus in the literature is that in a

just identified model no pre-test for weak identification is needed, and Anderson-Rubin

confidences sets should always be used, independently of the identification status of the

model.

The power trade-off between the proposed split-sample test and the two tests discussed

above is a balance between two forces. The sample split is more flexible and adaptive

to estimation of the optimal instrument, and may produce better power by using a more

powerful estimate. On the other hand, the sample split uses only half of the sample for

testing the structural parameter and thus may be less efficient than the other two tests

discussed here.

5 Many Weak Instruments in Time Series

The cross-sectional literature on many weak instruments pointed towards one big obstacle

arising from a very flexible first stage: the estimated optimal instrument may be endoge-
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nous. It also suggests several solutions that work successfully in cross-sectional settings.

The successful approaches include sample splitting, cross fit, jackknife and deleting the

diagonal. Another method, that is very popular in the time series literature but has had

almost no traction in cross-section, is Factor model IV (FIV).

This section is structured in the following way. First, we point out two additional

challenges posed by time series data. Next, we discuss the promises and pitfalls of the

Factor IV approach. We then introduce split-sample procedures that can be used in many

weak IV with autocorrelated data, paying special attention to the peculiarities of time

series data. Finally, we describe theoretical challenges that prevent us from proposing

modifications of cross-fit, jackknife or deleted diagonal approaches to time series data and

suggest what type of theoretical results would be helpful for making these approaches

possible.

5.1 Challenges of Time Series

The challenges that arise from times series data are related to two features: autocorrela-

tion of error terms, and weak exogeneity of instruments.

Challenge 1: Autocorrelated errors. In the New Keynsian Phillips Curve example,

the error in the structural equation

et = πt − λxt − γfπt+1 − γbπt−1 = ut − γf (πt+1 − Etπt+1) (10)

is a moving-average (MA(1)) process. Similarly, the errors in other rational expectations

models tend to be autocorrelated. Autocorrelation of structural errors calls for using

heteroscedasticity and autocorrelation (HAC) robust standard errors in all statistical in-

ferences. At the same time, there are also opportunities to exploit the dependence in order

to improve efficiency, for example, by choosing the optimal weighting matrix in GMM.

These considerations are equivalent to the question of choosing the optimal instrument.

If errors follow a martingale process, then the result of Chamberlain (1987) still holds

and the optimal instrument is ft = E[Xt|Zt]

E[e2t |Zt]
. However, if the errors are autocorrelated,

then the optimal instrument has a more complicated structure (Hansen, 1985, Hansen et

al, 1988, and Anatolyev, 2003). The optimal instrument depends on the Wold decompo-
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sition of the structural error and suggests first filtering the structural equation in order

to obtain structural equations with martingale-difference errors. Filtering is a delicate

task according to Hayashi and Sims (1983), who warn against backward-filtering (known

as GLS) and suggest a forward-filtering procedure. A survey by Anatolyev (2006) on

methods for creating optimal instruments with time series data, shows that all methods

of constructing the optimal instrument that exploit the autocorrelation structure, assume

that a consistent estimator for β exists and the covariance structure of the error term can

be estimated consistently. This is infeasible in our setting with a potentially weak signal,

thus we will maintain the previous goal post and focus on estimating ft = E[Xt|Zt].

Challenge 2: Weak exogeneity. In cross-section, the exogeneity assumption is typ-

ically formulated as E[ei|Zi] = 0, and when combined with independence across i it

implies that E[ei|Z] = 0, where Z is the full set of instruments for all observations. This

statement has important implications for theory as it allows us to employ arguments

that first condition on instruments and exogenous regressors, after which we may treat

instruments as fixed.

In economic applications in time series, the typical exclusion restriction is formulated

using a weak exogeneity condition

E[et|Zt, Zt−1, ...] = 0,

which assumes that et is uncorrelated with all instruments (and functions of them) taken

at the current and past periods. This allows the structural shock to have an effect on

future values of the instrument, and it is very likely that such an effect exists as all

variables used in macro estimation simultaneously develop as a dynamic process. This

means that we typically cannot make a strict exogeneity assumption that is formulated as

E[et|Zs, s ∈ {1, ..., T}] = 0. The absence of strict exogeneity puts additional restrictions

on what can and should be done with time series data, as it warns against mixing

observations from different periods. For example, Hansen and West (2002) provide a

formal argument against using GLS-type procedures in this setting.
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5.2 Existing method: Factor Model IV

Factor Models provide a very attractive paradigm for parsimonious description of macroe-

conomic data sets containing a large number of macroeconomic indexes. The underlying

assumption is that the cross-series dependence between indexes (or instruments in our

setting) is driven by a relatively small number of unobserved factors:

Zt = λFt + ϵt,

where Zt is K × 1 vector of instruments observed at time t, λ is K × r matrix of non-

random loadings and Ft is a set of r× 1 factors. It is commonly assumed that r is much

smaller than K. In its strictest form, a factor model assumes that all components of the

error terms ϵt are uncorrelated both cross-sectionally and over time. An approximate

factor model allows for very weak correlation in ϵt. The discovery of factor structure

is typically done via Principle Component Analysis (PCA). Bai (2003) and Bai and Ng

(2002) establish asymptotic properties of PCA and suggest a method for selecting the

number of factors.

There is a consensus in the empirical literature that factor models fit the typical

macroeconomic data very well. Stock and Watson (2005) put together a widely used set of

quarterly macro indicators that includes 132 individual series. About eight to nine factors

explain the vast majority of variation contained in the data. Similar observations can be

made about other modern large data sets of macroeconomic indexes, such as FRED-QD

and FRED-MD put together by McCracken and Ng (2020). Since introduction, factor

models have been widely used for forecasting (e.g., Stock and Watson (2002 a,b)) and in

structural estimation (e.g. Stock and Watson (2005), Bernanke et al. (2005)).

Bai and Ng (2010) propose to use factor models as a mechanism for constructing

higher quality instruments. Their idea is to extract a small number of principle compo-

nents Ft and use them as a smaller set of informative instruments, rather than using all

individual series Zt. Namely,

β̂FIV =
X ′PF̂Y

X ′PF̂X
, PF̂ = F̂ (F̂ ′F̂ )−1F̂ ′, (11)

where F̂ are estimated factors obtained by PCA on the set of instruments. The hope

here is that the use of a small number of factor-instruments alleviates the bias coming
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from using many instruments, while preserving most of economic information contained

in the data.

One positive feature of FIV is that it constructs instruments using only data on Z

but not on X or Y . This alleviates a lot of concerns about endogeneity of the selected

instruments. Aside from the PCA estimation mistake, this makes F̂t weakly exogenous.

Thus, the second step (11) IV regression is a standard one. If identification is strong,

the usual TSLS inferences apply. In the case of weak identification, the standard robust

tests deliver valid results as shown in Kapetanios and Marcellino (2010) and Kapetanios

et al (2016).

The biggest issue with FIV is its efficiency. The positive result in Bai and Ng (2010)

states that if the endogenous regressor also obeys a factor structure, in particular, if

Xt = µFt + vt, (12)

where vt is uncorrelated with instruments Zt, then FIV delivers a semi-parametric efficient

estimator. Indeed, if the regressor X is correlated with the instruments only through

factors then it is clear that the optimal instrument is a linear combination of these

factors, and PCA does a good job of estimating this. However, the question arises of how

likely assumption (12) is to hold in a particular application. Indeed, the factors that best

explain variation in Z are not always best in explaining X. Bai and Ng (2009) suggest

to pair ideas of FIV with different instrument selection criteria or boosting, that use

the regressor X to assess the informativeness of the instrument. These selection criteria

bring back the concerns about endogeneity of the selected instrument, and as such can

be considered as another ML approach among many other discussed below.

5.3 New suggestion: Sample splitting

Let us define Zt to be the sigma-algebra generated by instruments observed up until time

t. The main structural equation is

Yt = βXt + et, E[et|Zt] = 0

and we define the ‘optimal’ instrument as: ft = E[Xt|Zt], which implies Xt = ft + vt

where E[vt|Zt] = 0.
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It is common in applications to use lags of the endogenous regressor and dependent

variable as instruments. Thus, we assume that et and vt are measurable with respect to

Zt+p, where p is the lag between the observed regressor/ dependent variable and the first

time they enter the set of instruments. For example, in the NKPC example one of the

regressors is future inflation πt+1, while the instruments may (and often do) include lagged

inflation πt−1, thus p = 2. If p = 1, then (et, vt) forms a martingale difference sequence

with respect to the filtration Zt, and error terms are not autocorrelated. In the NKPC

example, the error terms are not martingale differences but rather an autocorrelated

process with MA(1) structure.

Split-sample estimator. Given the success in developing robust asymptotic inference

in cross-section using the split-sample approach, we extend the idea to the time series

setting as well. We divide the sample into two subsamples with a gap of p−1 observations

in between them (to guarantee exogeneity). The first subsample is used to elicit informa-

tion about the optimal instrument, while the second is used for running just identified IV

regression with the estimated instrument. As before, we do not require the subsamples

to be of equal size and are rather agnostic about the method used on the first subsample

to construct the estimated optimal instrument.

To simplify the notation, we re-numerate the observations so the first subsample

has non-positive indexes t = −τ0, ...,−p + 1, while the second subsample is indexed by

t = 1, ..., τ with T = τ0 + τ + 1. We assume that as the total sample size increases we

have τ → ∞. Assume that the first subsample is used to estimate ft, employing some

regression or ML technique. The estimated instrument f̂t for t > 0 is constructed using

the model estimated on the first subsample applied to the instrument Zt. This implies

that f̂t is measurable with respect to Zt and thus is weakly exogenous for all t > 0. The

split-sample estimator is defined as

β̂SS =

∑τ
t=1 f̂tYt∑τ
t=1 f̂tXt

. (13)

The properties of the split-sample estimator may be highly influenced by the ran-

domness of the first stage, even when the sample size is large, due to inconsistent es-

timation/selection on the first stage. For example, assume that the estimated optimal
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instrument is constructed as f̂t = π̂′Zt, where π̂ is a K × 1 vector of loadings estimated

on the first sample. We want to avoid making the assumption that either π̂ converges to

a non-random vector, or that f̂t − ft converges to zero so fast that its randomness does

not matter. Instead, since the vector of loadings π̂ is measurable with respect to Z0, we

can derive asymptotic statements conditionally on the sigma-algebra Z0.

Theorem 3 Assume there exist a sequence of almost sure positive-definite random ma-

trix ητ and sequences of random variables µτ both measurable with respect to Z0 such that

the following two conditions are satisfied for εt = (et, vt)
′:

η−1
τ

τ∑
t=1

f̂tεt ⇒ N(0, I2), Z0 − stably as τ → ∞, (14)

1

aτ

τ∑
t=1

f̂tft →p 1. (15)

If µτ = aτ
∥ητ∥ →p ∞ then β̂SS is consistent for β. In addition, β̂SS is asymptotically mixed

gaussian:

Σ−1
T (β̂SS − β) ⇒ N(0, 1) Z0 − stably as τ → ∞,

where ΣT = ητ,11
aτ

.

The concept of stable convergence, discussed in a textbook by Hausler and Luschgy

(2015), is a middle ground between weak convergence and convergence in probability. It

allows for a stochastic normalization in the central limit theorem. In simplified terms,

the stable convergence can be thought as a weak convergence conditional on the sigma-

algebra Z0 (the first subsample). As we will not assume the consistency of the model

estimation/selection on the first subsample, it is critical to preserve the randomness

introduced by it to the split-sample estimation. In order to construct reliable inferences,

we consider asymptotic approximations (τ → ∞) on the second subsample only, while

using finite-sample inferences (through conditioning) on the first subsample.

Martingale CLT. One may ask under what conditions the central limit theorem (14)

would hold in the split-sample setting. Firstly, consider the case where p = 1 and thus

f̂tεt is a martingale-difference sequence with respect to filtration Zt+1. Here we can
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appeal to a martingale central limit theorem (see, Hausler and Luschgy (2015) Theorem

6.1 and Remark 6.8). It implies that if maxt E
[
∥εt∥2+2δ|Zt

]
< ∞ a.s. for some δ > 0 and

η−2
τ

τ∑
t=1

E[εtε′t|Zt]f̂
2
t →p I2 and

1

∥ητ∥1+δ

τ∑
t=1

f̂ 2+2δ
t →p 0, (16)

then statement (14) holds. The second of the two conditions in (16) is a very typical

Lyapunov condition of asymptotic negligibility.

The first condition in (16) may come from the law of large numbers for non-ergodic se-

quences. For example, assume that the errors are conditionally homoskedastic E[εtε′t|Zt] =

Σ and the estimated optimal instrument is constructed as f̂t = π̂′Zt, where π̂ is a

K × 1 vector of random estimated loadings measurable with respect to Z0. Denote

ξ = π̂′E[ZtZ
′
t]π̂, then

1

τ

τ∑
t=1

f̂ 2
t − ξ = π̂′

(
1

τ

τ∑
t=1

ZtZ
′
t − E[ZtZ

′
t]

)
π̂.

Then, some combination of a large-dimensional law of large numbers for stationary vari-

ables ZtZ
′
t in some norm, as well as restrictions on some norm of π̂, will give the first

statement in (16). Depending on the methods used on the first subsample, many different

combinations of assumptions may fit the bill. Also, notice that randomness (inconsis-

tency) of π̂ would make ητ random as well through ξ.

Now let us allow for autocorrelated errors by considering the case of p = 2. Now

we have that εt is measurable with respect to Zt+2 but may be not measurable with

respect to Zt+1, while E[εt|Zt] = 0 and f̂t is measurable with respect to Zt. This is

the situation we encounter in the NKPC example. Let us define u1t = E[εt|Zt+1] and

u2t = εt − E[εt|Zt+1]. Then u1t is measurable with respect to Zt+1 and E[u1t|Zt] = 0,

while u2t is measurable with respect to Zt+2 and E[u2t|Zt+1] = 0. In general f̂tet is not a

martingale difference sequence in this case. However, we can re-arrange the summands

to give:

1√
τ

τ∑
t=1

f̂tεt =
1√
τ

τ∑
t=1

f̂t(u1t + u2t) =
1√
τ

τ∑
t=2

(f̂tu1t + f̂t−1u2,t−1) + op(1).

Notice that sequence f̂tu1t+ f̂t−1u2,t−1 is both measurable with respect to Zt+1 and mean

zero conditionally on Zt. Thus, it is a martingale difference sequence, and the previous
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discussion about the martingale central limit theorem applies. This argument sketches

why statement (14) may hold for autocorrelated errors, though in practice it also implies

that asymptotic variances should be calculated using HAC robust procedures.

Inference procedures based on sample splitting. As we have already noted, a

key advantage of the split-sample idea is that the IV regression on the second subsample

is just-identified. The theory of weak identification is well developed for this case, and

also allows for HAC robust inferences. Many issues that plague the weak IV literature,

such as difficulties constructing a good pre-test for weak identification (Andrews et al

(2019)), power trade-offs for robust tests, and empty Anderson-Rubin confidence sets

(Davidson and MacKinnon (2014)), all apply to over-identified linear IV only. There

is a consensus that the robust AR test/confidence set should be the default inference

procedure in a just-identified linear IV setting, independently on whether or not weak

identification is an issue. Indeed, the Anderson-Rubin procedure in the just identified

setting is of asymptotically correct size and is asymptotically efficient under both weak

and strong identification. It is also very easy to implement.

Specifically, in order to test H0 : β = β0, one calculates the implied error term

et(β0) = Yt − β0Xt and tests whether or not variable ξt = f̂tet(β0) has mean zero using a

standard Wald test:

AR(β0) =

(
1√
τ

∑τ
t=1 ξt

)2
σ̂2

,

where σ̂2 is a consistent proxy for the random normalization (ηη′)11 appearing in condition

(14). For example, if p = 1 and ξt is a martingale difference, then

σ̂2 =
1

τ

τ∑
t=1

(
ξt −

1

τ

τ∑
s=1

ξs

)2

is a consistent proxy under the relatively general assumptions that are needed for the

stable martingale central limit theorem (see Lemma 6.5 in Hausler and Luschgy (2015)).

For autocorrelated errors one simply needs to use a HAC robust estimator of the asymp-

totic variance. The test accepts the null hypothesis if the AR statistic does not exceed

the (1 − α)-quantile of the χ2
1 distribution. The Anderson-Rubin confidence set is con-

structed by inverting the AR test, that is, by collecting all values of β0 not rejected by
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the test. In this case, test inversion can be done analytically as the AR statistic is a ratio

of two quadratic functions of β0 (see Mikusheva (2010)).

We suggest that, if a researcher decides to use the split-sample approach, she reports

inferences mainly via the AR confidence set. The researcher may also choose to report

the split-sample estimate as well, since it always lies inside the AR confidence set in a

just-identified linear IV. The reliability of the split-sample estimate can be assessed by

reporting the (HAC) robust first-stage F -statistic, applying a cut-off of roughly 10.

There is an alternative to the split-sample approach if identification is weak. A weak

identification robust test for time series with many instruments is proposed in Dovi

(2020). It uses ideas similar to the maximum score test proposed by Belloni et al (2012).

Dovi (2020) applies it to the NKPC and shows that the power is superior in comparison

to a random choice of instruments.

Machine Learning techniques to be used on the first subsample. One attractive

feature of the split-sample approach is that it is agnostic about which procedure is used

on the first subsample to estimate ft = E[Xt|Zt]. Here we want to mention several ML

approaches that have been successfully used in applied macroeconomic research for such

a forecasting task.

Firstly, there exist several methods that have strong theoretical foundations and re-

sults on the speed of convergence that are tailored to time series. Carrasco and Rossi

(2016) consider multiple regularization approaches to forecasting using a large number

of predictors including ridge, Landweber-Fridman estimation, and partial least squares.

They obtained rates of convergence under a wide range of assumptions including ap-

proximate factor structure on one extreme and an ill-posed model on the other. They

proposed a cross-validation method for choosing the tuning parameter and establish its

optimality. Babii et al (2020) proposed LASSO selection in a time-series context, estab-

lished consistency and asymptotic normality of the estimated coefficients under proper

mixing conditions, and derived HAC-type estimators for standard errors.

Secondly, there are several methods that demonstrate great empirical results in appli-

cations but may miss formal theoretical statements on consistency or a speed of conver-

gence. For example, Bai and Ng (2009) proposed several promising ideas on how to select
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good instruments. One of their suggestions, a procedure called boosting, has solid justi-

fication in cross-section (Luo and Spindler (2017)) but its theoretical properties in time

series settings are unknown. Bai and Ng (2009) also propose selecting the instruments

with highest t-statistics in one regressor at a time regressions.

Thirdly, there is also a very broad and mature literature on forecasting, which is hard

to summarize in one short article. Methods proposed in that literature can certainly be

used on the first subsample to form the efficient instrument. Here we refer to a paper by

Stock and Watson (2012) making a comprehensive comparison of different methods for

forecasting using many predictors, including Bayesian model averaging, empirical Bayes

and bagging.

5.4 What about other approaches in Time Series?

In the cross-sectional setting there are several additional methods available to correct

for estimated instrument endogeneity. These include cross-fit, jackknife, and deleted

diagonal approaches. In their simplest forms none of these methods seem to be valid

for time series. Both problems with time series data, autocorrelated errors and weakly

exogenous instruments, play a role here.

The problem of autocorrelated errors may be relatively easily resolved by small modi-

fications of the procedures when there is m-dependence (that is, errors at least m periods

apart are independent) or when autocorrelation decays quickly. For example, the deleted

diagonal method may be modified by deleting m-diagonals, that is, elements Pij with

|i − j| ≤ m. The jackknife may be modified by excluding from the first-step estimation

for t not just its own observation but also m observations before and m observations

after.

Solving the issue of weak exogeneity is much more challenging. The cross-sectional

deleted diagonal approach treats the projection matrix P (which is a transformation of all

instruments for all observations) as fixed, which is possible due to the strict exogeneity

typical for cross-sectional data. In time series, the conditioning on all instruments is

invalid as endogenous variables (regressors or the dependent variable) are correlated with

future values of the instruments or (often) become future instruments themselves. As

such, the projection matrix P is not just random but is correlated with the endogenous
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variables. Similarly, the standard jackknife in time series uses in the first step future

observations of the instruments that are correlated with (or even include) endogenous

variables, making the estimated optimal instrument endogenous.

One potential fix for the jackknife is to estimate the first stage for observation t using

only past observations but not the future ones (excluding the m most recent if there is an

issue of the autocorrelated errors). That is, to estimate f̂t one uses some machine learning

technique applied to the sample only including observations with indexes s < t−m, and

then runs a just identified linear IV similar to (13). In this formulation, f̂t is measurable

with respect to Zt and thus is weakly exogenous. The exact equivalent of Theorem 3 holds

for this modified jackknife. However, checking condition (14) may be more challenging.

Specifically, while the stable martingale central limit theorem is still a powerful tool,

establishing sufficient conditions for a non-ergodic law of large numbers (16) is more

complicated. In the modified jackknife case we have f̂t = π̂′
tZt not f̂t = π̂′Zt as in the

split-sample case. The first-step estimates π̂t are slowly changing and highly correlated,

but not the same.
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Häusler, E. and Luschgy, H. (2015): Stable Convergence and Stable Limit Theorems.

Springler. Probability Theory and Stochastic Modelling.

Hausman J., W. Newey, T. Woutersen, J. Chao and N. Swanson (2012): “Instrumental

variable estimation with heteroskedasticity and many instruments” Quantitative Eco-

nomics, 3 , pp. 211–255.

Hayashi, F., and Sims, C. (1983): “Nearly Efficient Estimation of Time Series Models

with Predetermined, but not Exogenous, Instruments.” Econometrica, 51(3), pp. 783-

798.

Kapetanios G., L. Khalaf and M. Marcellino (2016): “Factor-based Identification-robust

Inference in IV regressions” J. Appl. Econ. 31, pp. 821–842.

Kapetanios G. and M. Marcellino (2010): “Factor-GMM estimation with large sets of

possibly weak instruments,” Computational Statistics and Data Analysis, 54, pp. 2655-

2675.

Kleibergen F. (2002): “Pivotal statistics for testing structural parameters in instrumental

variables regression,” Econometrica, 70, pp. 1781–1803.

Kleibergen F. and S. Mavroeidis (2009): “Weak Instrument Robust Tests in GMM and

the New Keynesian Phillips Curve,” Journal of Business & Economic Statistics, Vol. 27,

40



No. 3, pp. 293-339.

Luo, Ye, and Martin Spindler (2017): “L2-Boosting for Economic Applications.” Amer-

ican Economic Review, 107 (5), pp. 270-73.

Maestas, N., Mullen, K.J., and Strand, A. (2013): “Does Disability Insurance Receipt

Discourage Work? Using Examiner Assignment to Estimate Causal Effects of SSDI

Receipt,” American Economic Review 103, pp. 1797–1829.

Mavroeidis, S. (2004): “Weak Identification of Forward-looking Models in Monetary

Economics,” Oxford Bulletin of Economics and Statistics, 66, pp. 609-635.

Mavroeidis, S., M. Plagborg-Møller, and J. H. Stock (2014): “Empirical Evidence on

Inflation Expectations in the New Keynesian Phillips Curve,” Journal of Economic Lit-

erature, , 52(1), pp. 124–188.

McCracken, M., and S. Ng (2020): “FRED-QD: A Quaterly Database for Macroeconomic

Research,” mimeo.

Mikusheva, A. (2010): “Robust Confidence Sets in the Presence of Weak Instruments,”

Journal of Econometrics, 157, pp. 236-247.

Mikusheva, A. and Sun, L. (2020):“Inference with Many Weak Instruments,”working

paper

Moreira, M. (2003): “A Conditional Likelihood Ratio Test for Structural Models,” Econo-

metrica, 71(4), pp. 1027-1048.

Newey, W K. (1990): “Efficient Instrumental Variables Estimation of Nonlinear Models,”

Econometrica, 58, pp. 809-837.

Newey, W. and Smith, R. (2004): “Higher Order Properties of GMM and Generalized

Empirical Likeliood Estimators,” Econometrica, 71, pp. 219-255.

Newey W. and F. Windmeijer (2009) “Generalized Method of Moments with Many Weak

Moment conditions” Econometrica, 77 (3), pp. 687–719.

Okui, R. (2011): “Instrumental Variable Estimation in the Presence of Many Moment

Conditions,” Journal of Econometrics, 165, pp. 70-86.

Shanken, J. (1992): “ On the Estimation of Beta-Pricing Models,” Review of Financial

Studies, 5, pp. 1-33.

Stock, J.H., Watson, M.W. (2002a): “Forecasting using principal components from a

large number of predictors,” Journal of the American Statistical Association 97, pp.

41



1167- 1179.

Stock, J.H., Watson, M.W. (2002b): “ Macroeconomic forecasting using diffusion in-

dices,” Journal of Business and Economic Statistics 20, pp. 147-162.

Stock, J.H., Watson, M.W. (2005): “Implications of Dynamic Factor Models for VAR

Analysis,” Mimeo.

Stock J.H., and Watson M.W. (2012): “Generalized Shrinkage Methods for Forecasting

Using Many Predictors,” Journal of Business & Economic Statistics, 30 (4), pp. 481-493.

Stock, J.H., J.H. Wright, and M. Yogo (2002): “A Survey of Weak Instruments and Weak

Identification in Generalized Method of Moments,” Journal of Business & Economic

statistics, 20(4), pp. 518-529.

Stock, J.H., and Yogo, M. (2005): “Testing for weak instruments in Linear Iv regression.”

In Identification and Inference for Econometric Models: Essays in Honor of Thomas

Rothenberg, pp. 80–108.

Tibshirani, R. (1996): “Regression Shrinkage and Selection via Lasso,” Journal of Sta-

tistical Society, Ser. B, 58, pp. 267-288.

Wang, R. and Shao, X. (2020): ‘’Hypothesis Testing for High-Dimensional Time Series

Via Self-Normalisation,” Annals of Statistics 2020, 48(5), pp. 2728 - 2758.

Yogo, M. (2004): “Estimating the elasticity of intertemporal substitution when instru-

ments are weak,” Review of Economics and Statistics, 86 (3), pp. 797-810.

6 Appendix

Proof of Theorem 1. We prove the consistency of the sample split estimator, the

proof for the cross-fit is similar.

β̂SS − β =

∑
i∈I2 fiei +

∑
i∈I2(f̂i − fi)ei∑

i∈I2 f̂ifi +
∑

i∈I2 fivi +
∑

i∈I2(f̂i − fi)vi

We notice that cE[f 2
i ] ≤ E[f 2

i v
2
i ] ≤ CE[f 2

i ], thus µ2 ≍ nE[f 2
i ]. By the Law of Large

Numbers
1

|I2|
∑
i∈I2

f̂ifi →p E[f̂ifi] ≥ cE[f 2
i ].

Thus 1
µ2

∑
i∈I2 f̂ifi is asymptotically separated from zero by a constant. Calculating the

second moments gives that
∑

i∈I2 fivi = Op(
√

µ2) and
∑

i∈I2 fiei = Op(
√

µ2). Denote
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Z2 = {Zj}j∈I2

E

(∑
i∈I2

(f̂i − fi)ei

)2
 = EE

(∑
i∈I2

(f̂(A1, Zi)− fi)ei

)2

|A1,Z2

 =

= E

[∑
i∈I2

(f̂(A1, Zi)− fi)
2E
[
e2i |Zi

]]
≤ CnE

[
(f̂i − fi)

2
]
≤ Crn.

Here we used that conditional on A1,Z2 the errors ei are uncorrelated and mean zero,

since they are independent from A2 and the instruments Z1 are exogenous. Thus,∑
i∈I2(f̂i−fi)ei = Op(

√
rn). We treat

∑
i∈I2(f̂i−fi)vi in the same way. Finally, Assump-

tion µ2
√
rn

→ ∞ guarantees that f̂ifi asymptotically dominates all other terms, and thus

β̂SS − β →p 0.

Proof of Theorem 2

β̂SS − β =

∑
i∈I2 f̂iei∑

i∈I2 f̂ifi +
∑

i∈I2 f̂ivi
. (17)

First, we prove that the assumptions of Theorem 2 guarantee that

Γ−1/2
n

∑
i∈I2

f̂iεi ⇒ N(0, I2), A1 − stably, (18)

with Γn =
∑

i∈I2 E
[
εiε

′
if̂

2
i |A1

]
. Define Fi to be the sigma-algebra of all random variables

with indexes not exceeding i. Then A1 is the sigma-algebra in intersection of Fi, i ∈ I2.

Define ξi =
1√

E[f̂2
i |A1]

f̂iεi = wiεi, where wi is measurable with respect to sigma algebra

generated by A1 and Zi. Then {(ξi,Fi), i ∈ I2} is a martingale difference sequence.

Indeed,

E[ξi|Fi−1] = E[wiεi|Fi−1] = E[wiεi|A1] = E[wiE[εi|A1, Zi]|A1] = 0.

Here we used that due to i.i.d. nature ξi is independent from observations with index

j ∈ I2 such that j ̸= i. Moment assumptions guarantee that E[ξiξ′i|A1] =
Γn

|I2|E[f̂2
i |A1]

has

bounded eigenvalues. The Law of Large numbers shows that 1
|I2|
∑

i∈I2 ξiξ
′
i →p E[ξiξ′i|A1].

Assumption (i) is Lyapunov condition. Martingale Central Limit Theorem (see, Hausler

and Luschgy (2015), Theorem 6.1 and condition (CLYp)) gives

1√
|I2|

(E[ξiξ′i|A1])
−1/2

∑
i∈I2

ξi ⇒ N(0, I2), A1 − stably.
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The last implies (18). Since the eigenvalues of Γn is bounded by |I2|E
[
f̂ 2
i |A1

]
, we have

that 1√
|I2|E[f̂2

i |A1]

∑
i∈I2 f̂ivi = Op(1). Thus, Assumptions (ii) and (iii) guarantee that the

denominator of (17) is dominated by the first sum only and the second sum can be

neglected.

Denote γn =
∑

i∈I2 E
[
e2i f̂

2
i |A1

]
to be the upper-left element of Γn. Then√

a2n
γn

(
β̂SS − β

)
=

1√
γn

∑
i∈I2 f̂iei

1
an

∑
i∈I2 f̂ifi

(1 + op(1)) ⇒ N(0, 1) A1 − stably.

We already proved above that 1
an

∑
i∈I2 f̂iXi →p 1, thus for the last statement of Theorem

2 we are left to prove that 1
γn

∑
i∈I2 f̂

2
i ê

2
i →p 1.

Let us first show that 1
a2n

∑
i∈I2 f̂

2
i X

2
i →p 0. Indeed,

1

a2n

∑
i∈I2

E[f̂ 2
i X

2
i |A1] ≤

1

a2n

∑
i∈I2

√
E[f̂ 4

i |A1]
√
E[X4

i ] ≤
C

a2n

∑
i∈I2

E[f̂ 2
i |A1] →p 0.

Here we used Cauchy-Schwarz inequality, moment conditions and assumptions (i) and

(iii). Similarly,

1

an
√
γn

∑
i∈I2

E[f̂ 2
i |eiXi||A1] ≤

1
√
γn

√∑
i∈I2

E[f̂ 2
i e

2
i |A1]

√
1

a2n

∑
i∈I2

E[f̂ 2
i X

2
i |A1] →p 0.

Now, we have∑
i∈I2

f̂ 2
i ê

2
i =

∑
i∈I2

f̂ 2
i e

2
i + 2(β̂SS − β)

∑
i∈I2

f̂ 2
i eiXi + (β̂SS − β)2

∑
i∈I2

f̂ 2
i X

2
i .

Thus,

1

γn

∑
i∈I2

f̂ 2
i ê

2
i = 1 + 2

√
a2n
γn

(β̂SS − β)
1

an
√
γn

∑
i∈I2

f̂ 2
i eiXi +

a2n
γn

(β̂SS − β)2
1

a2n

∑
i∈I2

f̂ 2
i X

2
i .

Putting all proven statements together we get that 1
γn

∑
i∈I2 f̂

2
i ê

2
i →p 1.
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