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Abstract

This Handbook chapter seeks to introduce students and researchers of industrial
organization (IO) to the field of market design. We emphasize two important points
of connection between the IO and market design fields: a focus on market failures—
both understanding sources of market failure and analyzing how to fix them—and an
appreciation of institutional detail.

Section II reviews theory, focusing on introducing the theory of matching and as-
signment mechanisms to a broad audience. It introduces a novel “taxonomy” of market
design problems, covers the key mechanisms and their properties, and emphasizes sev-
eral points of connection to traditional economic theory involving prices and competitive
equilibrium.

Section III reviews structural empirical methods that build on this theory. We
describe how to estimate a workhorse random utility model under various data envi-
ronments, ranging from data on reported preference data such as rank-order lists to
data only on observed matches. These methods enable a quantification of trade-offs in
designing markets and the effects of new market designs.

Section IV discusses a wide variety of applications. We organize this discussion
into three broad aims of market design research: (i) diagnosing market failures; (ii)
evaluating and comparing various market designs; (iii) proposing new, improved de-
signs. A point of emphasis is that theoretical and empirical analysis have been highly
complementary in this research.

1 Introduction

Textbook models envision markets as abstract institutions that clear supply and demand.
Real markets have specific designs and market clearing rules. These features affect market
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participants and their allocations in various ways – they determine the actions an agent can
take, the incentives for taking those actions, the information environment, the interactions
between agents’ actions, and, ultimately, the final allocation. Well-designed markets have
rules that coordinate and incentivize behavior in ways that lead to desirable outcomes. But
it is not a given that all markets have good design. The Market Design field studies these
rules in order to understand their implications, to identify potential market failures, and to
remedy them by designing better institutions.

This focus, on identifying and remedying market failures – with careful attention to specific
market institutions – is closely shared with Industrial Organization (IO). Like market de-
signers, IO economists are also interested in analyzing the structure and behavior of agents
in a market, and their impact on market performance. Researchers in both fields are directly
interested in shaping regulation and policy. Moreover, both fields combine theoretical and
empirical approaches in their analysis. In fact, there has been recent convergence in the
empirical approaches, with market design drawing from methods used in empirical IO.

Rather than a difference in objectives or methods, the fields mostly differ in their relative
emphasis on sources of market failures and the reforms that are recommended. Whereas
imperfect competition is the most common cause of market failure that is studied in IO, a
market designer more commonly focuses on the market mechanism itself. A poorly designed
market mechanism can directly result in inefficient allocations or provide incentives that un-
dermine efficiency, irrespective of the presence of market power. The remedies recommended
by the two fields correspondingly address either the source of market power or the rules of
the market that are the cause of failure.

A simple but obvious point is that a holistic approach to studying markets would consider
both types of problems. Diagnosing the cause of a market failure requires investigating both
the design and the nature of competition. Remedying the market failure may also require
considering the two and their interaction. Moreover, as we will see below, a market’s design
can influence the exercise of market power and vice-versa. Thus, studying only the rules of
the market or only market power issues may miss the complete picture.

The first of at least three reasons for considering both types of problems is to correctly trace
the cause of a potentially undesirable outcome. Consider the well-known example of the
medical residency match, which assigns newly minted medical school graduates to hospital
training positions. This centralized labor market uses rank-ordered preference lists submitted
by both sides as inputs into an algorithm that determines final matches (Roth and Peranson,
1999). A lawsuit argued that the coordination afforded by this market clearing mechanism
allowed residency programs to collude and suppress salaries to about $40,000 a year (Jung et
al. versus Association of American Medical Colleges et al., 2002), much lower than salaries
of other medical professionals performing similar work. The lawsuit was dismissed after
Congress enacted an exception to anti-trust law for the medical match, but did not resolve
the cause of low salaries.
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While the rules of the medical residency market are one potential reason for wage supres-
sion, so are other traditional sources of market power. Bulow and Levin (2006) indicted the
market’s rules – specifically an implicit prohibition on personalized wage bargaining because
salaries are set before the match – as the cause of low salaries. The market design solution to
this problem, suggested in Crawford (2008), is to modify the algorithm and to allow residents
to submit salary contingent preferences. The alternative explanation for low salaries is that
residency programs are exercising monopsony power. Agarwal (2015) argues that accredi-
tation requirements limit the number and size of residency programs and, combined with
heterogeneity in program quality, can depress salaries. Estimates of residents’ willingness to
pay for training at high-quality programs indicate substantial wage markdowns in compet-
itive equilibrium with restricted entry, suggesting that the market’s design may not be the
problem.

The second reason to carefully analyze both market design and market power is that they
interact. In fact, the exercise of market power is mediated through the market’s design. A
salient example is supply reduction in the context of the most recently concluded FCC spec-
trum auctions. The purpose of the auction was to repurpose spectrum allocated for television
broadcasting to broadband internet. This auction required the FCC to simultaneously buy
and sell spectrum while respecting a complex set of engineering constraints on the feasible
transactions. As is now well documented, small private equity firms purchased multiple small,
low-value television stations and withheld some from the auction (Doraszelski et al., 2019;
Ausubel et al., 2017). It has been argued that the motivation and effect of this strategy is to
increase the selling prices for the other stations. That is, private equity firms acquired and
exploited market power in a manner that was sensitive to the details of the market’s design.

Finally, market power itself can affect a market’s design because influential market partic-
ipants may not have the incentive to adopt a good design. An example is the design of
financial markets. Budish et al. (2015) showed that the predominant market design used by
financial exchanges around the world has a design flaw that gives rise to an arms race for
trading speed and harms market liquidity. The effects are quantitatively important: in one
setting, over 20% of trading volume takes place in trading races, and trading in races consti-
tutes 33% of the literature’s standard measure of the market’s cost of liquidity (Aquilina et
al., 2021). Yet, to date, the market design reform suggested in Budish et al. (2015) remains
essentially unadopted. Budish et al. (2020) suggest that the reason why may be that ex-
changes profit from the source of inefficiency: exchanges earn significant revenue from selling
speed (e.g., fast connections to their venues), and this source of revenue would dry up under
a reform that addressed the arms race. Since it may not be in the interest of influential
market participants (the exchanges) to adopt an efficient design, the adoption of a better
design may require intervention from a government regulator.

Another point of similarity between market design and IO is that research in both fields is
often motivated not only by understanding the sources of market failures, but by understand-
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ing how to fix them. Within IO, this objective is central in the study of competition policy
(Whinston, 2006) and the regulation of natural monopolies (Laffont and Tirole, 1993), to give
two prominent examples. These areas consider the circumstances in which particular policy
tools should be deployed in order to mitigate the harms caused by market power. Similarly,
research in market design often seeks to understand when and how a market’s design fails,
and the solutions to those design flaws.

One common type of failure that needs fixing occurs when markets simply fail to aggregate
information about preferences when matching demand and supply. For example, Abdulka-
diroglu et al. (2005) describe a 2003 reform of New York City’s high school match, which
moved from a decentralized waitlist-offer process that left many students unmatched to an
economist-advised design. The reform resulted in many more students being placed to more
preferred schools, thereby reducing exits from the school system and increase enrollment (Ab-
dulkadiroglu et al., 2017b). Thus, a well-designed system can improve outcomes by improving
co-ordination. Many additional examples along these lines – where simply coordinating de-
mand and supply on a centralized platform creates substantial value – come from internet
marketplaces (see Levin, 2013; Einav et al., 2016).

Markets can also fail for a variety of more subtle reasons. Poorly designed markets may have
rules that result in suboptimal participation incentives; rent-seeking behavior; exploitable
frictions that distort allocations; or incentives for strategic preference reporting that results
in avoidable inefficiency. These four failures have been documented in the contexts of, respec-
tively, kidney exchange markets (Agarwal et al., 2019); high-frequency trading of financial
assets (Budish et al., 2015); the market for clinical psychologists (Roth and Xing, 1997); and
course allocation problems (Budish and Cantillon, 2012). Each of these papers also suggest
market design solutions.

The goal of this chapter is to introduce ideas from the market design field to a graduate
student of IO. One challenge in a comprehensive survey of the field is that markets vary in
a number of ways. They differ in the types of agents that participate in the market, the
types of transactions facilitated by the market (buying/selling or forming partnerships), the
constraints on these transactions (e.g. timing, transfers), and the relevant frictions. In the
interest of maintaining a well-defined focus, our methodological discussion will emphasize
models of matching and assignment (hereafter, matching for short): students to schools,
workers to firms, kidney patients to organs, courses to students, food to food banks.

This chapter begins by reviewing the core tools in the analysis of matching markets before
describing various ways and domains in which the principles of market design have been
applied. Parts II and III review the economic theory and empirical methods respectively.
The theory underlying the study of matching market institutions is based on the language
of mechanism design. In these models, agents in the market are endowed with preferences
over their match partners. The rules of the market determine how these preferences can be
expressed through messages and how these messages translate to allocations. Our approach to
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this body of theory introduces a novel “taxonomy” of market design problems, and emphasizes
several points of connection to traditional economic theory involving prices and competitive
equilibrium. The hope is that this approach can make this body of theory easily accessible
to researchers in IO.

Since preferences are a core primitive in this theory, the empirical methods draw on a large
literature estimating random utility models of consumer preferences (Block and Marshak,
1960; Berry et al., 1995). The tools in this literature use revealed preference arguments and
data from a matching market on the realized matches or reported preferences. Much like
modern empirical IO, they rely on a market’s specific features and an appropriately chosen
theoretical framework to formulate an empirical approach. The typical goal is to use these
estimates to analyze the design of alternative market institutions or the incentives to exercise
market power and strategically distort decisions. One of our pedagogical aims in this methods
section is to emphasize how tools familiar to IO economists have been adapted and applied
in market design settings, and to give a sense of some uncharted terrain.

Although our methodological discussion is purposefully narrow, many market design princi-
ples are more general. In fact, some of the most important market design applications involve
auctions, such as the FCC spectrum auctions, double auctions for financial assets, and pro-
curement auctions. These institutions also constitute a specific set of rules for allocating
goods and services to market participants. We refer the interested reader to Chapter [insert
chapter number] in this handbook, which includes a deeper discussion of auction markets.

Part IV discusses applications of the market design toolkit. Here, we expand our focus
from narrowly discussing matching markets to other examples highlighting the main types
of challenges that market design research confronts. We classify the goals of research in
market design into three types: diagnosing market failures, evaluating and comparing various
market designs, and proposing new, improved designs. These goals are interrelated and can
be achieved via either theoretical or empirical analysis. Indeed, theory and empirical analysis
are often complementary in this research. While these goals are probably not exhaustive,
our hope is that the classification is useful for understanding the contributions of papers in
the area.

2 Theoretical Framework

The goal of this section is to introduce the reader to the theoretical ideas they are most
likely to encounter in the literature at the intersection of market design and IO. As noted, it
focuses on the part of the market design literature that studies matching markets, as auction
markets and platform markets are covered elsewhere in this Handbook.1

1We encourage readers to consult [Hortacsu auctions chapter] and [platforms/two-sided markets chapter
if there is one].
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We organize the section along three dimensions. In Section 2.1, we provide some notation
and a taxonomy of types of market design environments. In Section 2.2, we then formally
describe many of the canonical market design environments. In Section 2.3, we provide an
overview of some of the canonical market design mechanisms. This section also defines some
of the key design objectives and constraints along the way, some of which are meaningful
across many different kinds of problems and some of which are tailored to specific problem
environments.

Throughout, our goal is to provide a kind of theoretical “orientation” to the reader at a level
appropriate for a graduate student in IO.2 When encountering a specific paper on a specific
market design problem — and in market design, the specificity of the environment is often
what necessitates exciting new research — it can sometimes be difficult to have a sense of
the general economics principles involved. For example, we guess that many readers who
first encounter the school choice literature will not understand that “no justified envy” —
which is a property specific to school-choice models — is conceptually just a special case of
Gale-Shapley stability, which in turn is closely related to Pareto efficiency. Nor that Pareto
efficiency, which is, justifiably, a central design objective in many allocation environments,
can in fact be quite a poor proxy for social welfare in multi-unit allocation environments
without transfers.

In addition to providing such an orientation, we try to emphasize two methodological points
throughout this section. First, while matching theory often looks quite different from mech-
anism design theory in the Myerson-ian tradition, at a high level the goals are very similar
— produce desirable allocations given the constraints of the environment, including both
technological constraints and incentive constraints. One reason for the difference in appear-
ance is that market design problems often involve multiple goals that cannot obviously be
collapsed into a single objective function, such as considerations of both efficiency and fair-
ness. A second reason is that the tractability of the Myerson-ian approach often relies on a
numeraire good, and many matching problems lack one. Thus, rather than collapse multiple
distinct objectives into a single objective function, which is intractable to maximize anyways,
the researcher instead tries to identify a mechanism which performs well along each of the
dimensions of interest, e.g., by satisfying attractive properties of both efficiency and fair-
ness.3 Again, this might look different from mechanism design, but it is ultimately an effort
in maximizing objectives subject to constraints.

Second, and relatedly, while much of matching theory at first glance appears to have little
to do with the traditional microeconomic theory that involves prices, many matching mech-
anisms in fact have a price-like structure. That is, there are prices or price-like statistics,

2Roth and Sotomayor (1990) is the classic textbook treatment of matching theory and remains an essential
reference, even though it predates and hence does not discuss many of the subsequent applications of this
theory.

3See Budish (2012), from which this section draws, for discussion of the relationship between the matching
theory approach and Myerson-ian mechanism design.
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that can be used to understand participants’ choice sets, and ultimately their allocations.
Often, the prices or price-like statistics are personalized — for example, in the matching of
students to colleges, the “price” of a particular college for a particular student might depend
on how highly the college ranks the student (e.g., based on test scores) (Azevedo and Leshno,
2016). In some mechanisms, the prices or price-like statistics are explicit in the design, even
though there is not money per se in the allocation environment (Hylland and Zeckhauser,
1979; Budish, 2011; Prendergast, 2017). More recently, empirical researchers have started to
utilize the price-like structure underlying some matching markets to import tools from other
parts of economics that study discrete choice from choice sets (see Section 3).

We will try to bring out these connections to mechanism design and prices throughout this
section, as we suspect it will increase the accessibility of this exciting area of theory for IO
readers.

2.1 Taxonomy of Market Design Problems

Throughout this section we will work with the following unified notational conventions:

• Sets of Agents or Objects. There are two sets, I and J , with generic elements i and
j. The set I is always a set of agents (workers, students, consumers, etc.), whereas the
set J will sometimes be another set of agents and will sometimes be a set of objects.

• Quantities. We will let qi denote the quantity of agents of type i, and similarly qj
denote the quantity of agents/objects of type j. If an agent/object has multiple units,
all units are identical.

• Numeraire Good. In most of the problems we will discuss in this section there are no
monetary transfers. When there are monetary transfers, we will use the notation ti to
denote the transfer to agent i (with negative transfers ti < 0 denoting payments made
by the agent).

• Preferences. Agents have preferences over outcomes, which could include who or what
they are matched with on the other side of the market, and/or monetary transfers.
We will mostly use the notation ui to describe agent i’s cardinal utility from a given
outcome, with &i the associated ordinal preference relation. We will try to be clear
throughout whether a particular mechanism relies on cardinal preference information
(and if so of what form) or just ordinal preference information.

We find it helpful to categorize market design settings into an informal taxonomy. The
dimensions of the taxonomy are as follows:
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2.1.1 Matching or Allocation?

In a matching problem, I and J are two distinct sets of agents: firms and workers, customers
and suppliers, etc. Agents have preferences that depend on who they match with on the other
side of the market.

In an allocation problem I is a set of agents but now J is a set of objects. Agents have
preferences over what objects they receive, but objects do not have preferences over who they
are assigned to.

2.1.2 Transferable Utility or Non-Transferable Utility?

Transferable utility settings have a numeraire good, whereas non-transferable utility settings
do not.

We emphasize that “non-transferable utility” includes but is not limited to environments
“without money”. For example, in the National Residency Matching Program, the match
of doctors and hospitals is at fixed wages, i.e., wages that are exogenous to the matching
process. This means that the market design does not allow for transfers of utility between
the agents using a numeraire good, but there is of course “money” paid by hospitals to the
doctors they match with.

We will adopt the terminology that an allocation problem with non-transferable utility is
an “assignment problem”,4 whereas an allocation problem with transferable utility is an
“auction”.

2.1.3 Single-unit vs. Multi-unit Demand?

The next dimension in the problem taxonomy is whether agents demand just a single unit
or demand multiple units.

Cases in which at least some of the agents have single-unit demand include: school choice
(students can only attend a single school); workers in labor markets (doctors match to a single
residency); kidney exchange (patients require a single kidney); public housing allocation
(households require a single apartment).

In matching settings, it is common for one side of the market to have single-unit demand while
the other side requires multiple units. For example, while students require a single school,
schools admit many students; workers seek a single job, but firms hire multiple workers. This
is known as the “many-to-one” matching problem.

4This usage of the term “assignment” to mean allocation without monetary transfers is common but by
no means universal. Shapley and Shubik (1971) describe versions of what they refer to as the “assignment
problem” both with and without monetary transfers. Demange et al. (1986) use the term “assignment
problem” to describe what most would now call a multi-object auction.
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Single unit demand occupies a special place in the literature because many of the canonical
mechanisms, described below in Section 2.2, are developed for either (i) single-unit demand,
or (ii) multi-unit demands that can be treated as, in effect, multiple separable single-unit
demands. For example, the many-to-one matching model of Gale and Shapley (1962) treats
each “position” at a residency program or school as, in effect, its own unit-demand entity.
This approach works under the assumption that the residency program or school’s preferences
are, roughly, additive separable (Roth, 1984 calls these “responsive” preferences, in that
preferences over bundles “respond” to preferences over individual objects). The insight is
that each position at a firm can be treated as its own party to the match, with all positions
at the firm having the same preferences over workers, allowing the machinery of one-to-one
matching to carry through.

Analysis of market design problems in which agents have multi-unit demands that cannot
be treated as multiple single-unit demands is much more common in the auctions part of
market design, where combinatorial auctions have been a central focus over the past several
decades, than in the matching or assignment parts of market design. Exceptions include
Budish (2011) and related works on course allocation and combinatorial assignment, and
Prendergast (2017)’s work on the allocation of food to food banks. Not coincidentally, these
papers develop mechanisms in which prices play a central role; once agents are making
tradeoffs across multiple types of heterogeneous objects, prices are helpful for setting marginal
rates of substitution and determining choice sets.

2.1.4 Endowments?

A last dimension to include in the taxonomy is whether or not agents have any endowed
property rights. Many of the canonical market design problems start from a blank slate, but
in some models and some applications, agents begin with endowments of various sorts. In
the house allocation model of Shapley and Scarf (1974), the model begins with each agent
owning their current house. In kidney exchange, each patient-donor pair begins endowed
with its own kidney to donate (i.e., the donor’s).

Additionally, in some allocation problems, agents’ outside options can vary in important ways
that affect market design.

2.1.5 Clarification: Are Schools in School-Choice Agents or Objects?

In the school-choice literature, schools are sometimes modeled as agents with preferences
over the other side of the market, but are sometimes modeled as a sort of hybrid between
objects and agents. In this latter case, schools have what looks like a preference-ordering
over students, but this ordering is interpreted as an administrative “priority” that does not
count towards evaluation of economic efficiency or incentive compatibility (Abdulkadiroglu
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and Sonmez, 2003). The interpretation is that students’ priorities at different schools are
somewhat like property rights to attend them — for instance, a student who lives near to
a particular school or whose sibling attends the school may have high priority to attend
it — and the school administrator views it as desirable for a mechanism to respect those
property rights, while not having preferences per se about what student goes to what school.
Put differently, the mechanism design objective is student welfare, while school priorities
place additional constraints on the problem beyond traditional technology and incentive
constraints.

We will come back to this issue below, and discuss what are really three distinct versions of the
school-choice problem, depending on the interpretation of schools’ orderings over students.

2.2 Canonical Market Design Problems

One-to-One Matching without Transfers In the one-to-one matching problem without
transfers, introduced by Gale and Shapley (1962): I and J are two distinct sets of agents;
each agent has unit demand for a match on the other side of the market; and utility is
non-transferable.

Formally, each agent i ∈ I has complete, transitive preferences over all potential matching
partners in J and the possibility of being unmatched, while each agent j ∈ J has complete,
transitive preferences over all potential matching partners in I and the possibility of being
unmatched. That is, the domain of agent i’s utility function, ui(·), is the set J ∪ ∅, while
for j’s the domain is I ∪ ∅. In the Gale and Shapley algorithm (described below) agents
report only their ordinal preferences over match partners. It is common in this literature to
denote these ordinal preferences by a rank-ordered list (“ROL”). For example, the notation
&i: j1, j2, j3, ∅, . . . would denote that agent i’s first choice match is j1, second choice is j2,
third choice is j3, and then that they prefer going unmatched to all other potential matching
partners.

A matching is a function µ : I ∪J → I ∪J with the following properties. First, each agent
is either matched to an agent on the other side or is unmatched: µ(i) ∈ J ∪ ∅ for all i ∈ I,
µ(j) ∈ I ∪∅ for all j ∈ J . Second, no agent is matched to multiple partners: µ−1(i) ∈ J ∪∅
for all i ∈ I, µ−1(j) ∈ I ∪ ∅ for all j ∈ J .

Many-to-One Matching without Transfers In the many-to-one matching problem
without transfers, also introduced by Gale and Shapley, agents in I are just like in the
one-to-one case but the agents in J now have capacity for, and demand for, multiple match
partners. Formally, each j ∈ J has qj ∈ Z+ positions and j’s preferences are defined over
sets of up to j match partners.
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In general, this could be captured with a utility function uj(·) defined on subsets of I with
cardinality of up to qj. However, the literature mostly works with preferences that are
essentially additive-separable over the agents in I. Formally, ordinal preferences over sets
of match partners are said to be responsive to ordinal preferences over individual match
partners if: for any set S ⊆ I with |S| < qj, and any pair of agents i′, i′′ that are each not in
set S, if i′ &j i

′′, then {i′} ∪ S &j {i′′} ∪ S (Roth, 1985). In words, responsiveness imposes
that the agent’s preferences over bundles are consistent with preferences over individuals.
Responsiveness is not quite as restrictive as assuming additive-separable utility (the latter
implies the former), but it rules out many forms of substitutes and complements.

Matching with Transfers Becker (1974) introduced the problem of matching with trans-
ferable utility. We focus on describing the one-to-one version of the model for simplicity.

As in Gale and Shapley, I and J are two distinct sets of agents, and each has capacity for at
most one match partner on the other side of the market. Utility can be perfectly transfered
among partners to a match. For example, in worker-firm matching, utility can be transfered
with money. Thus, worker i’s utility from matching with firm j and being paid a transfer tij
is uij + tij, and if firm j values the worker’s services at vji, then the firm’s payoff is vji − tij.

Once utility is perfectly transferable within a match, the economically central description
of utilities is the matching surplus created by a particular match. We will denote this by
φij = uij+vji. This surplus φij, which describes the total utility created if i and j match, can
then be divided up between the two match partners in any arbitrary fashion. We will denote
by ui the utility i creates if unmatched, and similarly vj the utility j creates if unmatched.
These match utilities, φij, ui and vj, each defined over the relevant sets, are primitives of the
problem.

A matching is now a function µ like above that describes who matches with whom, and a
transfer function t : I ∪ J → R that describes how the surplus in the match gets split.

Single-Unit Assignment In the single-unit assignment problem, I is a set of agents, J
is a set of objects, and agents have unit demand preferences over the objects. Typically, each
object is modeled as being available in unit supply, and the number of objects is either equal
to or greater than the number of agents, i.e., |J | ≥ |I|.

Depending on the nature of the exercise, agents’ preferences are sometimes modeled as ordinal
and sometimes as cardinal. With unit demand, ordinal preferences are a rank-ordered list
over the objects and possibly the empty allocation. Cardinal preferences can be represented
by a utility function ui : J → R+; since there are no transfers, it usually is appropriate to
use a utility function that takes the von Neumann Morgenstern form.
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House Allocation The house allocation problem, introduced by Shapley and Scarf (1974),
is like single-unit assignment except that each individual is initially endowed with one of the
objects. Our notational preference is to number the elements of the object set J based on
the corresponding agent who owns the house — agent i1 initially is endowed with object j1,
agent i2 with object j2, etc. This then allows preferences to be defined over the objects, just
as in single-unit assignment.
Another notational convention sometimes used in the literature, which is mathematically
equivalent but potentially confusing, is to work with just a single set, I, and understand that
each element in the set describes both an agent and his endowed object. So, agent i1 might
have ordinal preferences &i1 : i2, i1, i3, . . . which means that i1’s first choice object is the one
that is endowed to i2, his second choice object is his current endowment, his third choice
object is that endowed to i3, etc.

Kidney exchange Kidney exchange is an important application of the house-allocation
model. In this case, the agent-object pair corresponds to a patient and their associated donor.
The patient, who is in need of a kidney, has preferences over potential donor kidneys (his
own donor and other pairs’ donors). The key theory references for kidney exchange are Roth
et al. (2004), Roth et al. (2005), and Roth et al. (2007). We will return to kidney exchange
as an application throughout Section 4.

School Choice In the school choice problem, introduced by Abdulkadiroglu and Sonmez
(2003), I is a set of students and J is a set of schools. Students have ordinal preferences over
schools and schools have ordinal rankings over students. As discussed above in Section 2.1.5,
the schools’ ordinal rankings over students are sometimes interpreted as preferences and are
sometimes interpreted as administrative priorities that are not welfare relevant. Sometimes
this ranking is strict (e.g., based on test scores), but often it is coarse, such as ranking all
students who live in the immediate vicinity of the school above students who do not, or
ranking all students with a sibling at the school above students without.
If school priorities are indeed student property rights, this raises the further question of
whether or not these property rights are tradable. Thus, depending on the interpretation
of schools’ rankings over students, there are really three distinct versions of the school-
choice problem. First, in which agents are matching to agents, as in Gale and Shapley
(1962). Second, in which agents are matching to objects, as in single-unit assignment, and
school priorities place additional constraints on the allocation as non-tradable property rights.
As discussed below, this case also leads to Gale and Shapley (1962)’s deferred acceptance
algorithm being an attractive solution. Last, in which agents are matching to objects, and
school priorities give agents tradable property rights — in this case, school choice is more
closely related to house allocation (Shapley and Scarf, 1974), in that priorities function as
tradable endowments.
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Multi-Unit and Combinatorial Assignment The multi-unit and combinatorial assign-
ment problems, studied in Budish and Cantillon (2012) and Budish (2011), are generalizations
of the single-unit assignment problem in which agents have preferences over bundles of objects
and objects are in multi-unit supply. The terminology “multi-unit assignment” is typically
used to describe cases where agents’ preferences over objects are additive separable or re-
sponsive, as in many-to-one matching as described above. The terminology “combinatorial”
is typically used to describe cases where agents’ preferences over objects are more general.
Formally, there is a capacity vector q1, . . . , q|J | that describes each objects’ supply, each
agent i has a set of feasible consumption bundles, denoted Xi, and each agents’ preferences
are represented by a utility function ui : Xi → R+. For example, in the course allocation
setting, the set of feasible consumption bundles can encode constraints such as (i) each stu-
dent takes at most one seat in each class; (ii) each student takes at most a certain number
of classes overall; (iii) students cannot take courses that meet at the same time (scheduling
constraints) or that violate curricular requirements (curricular constraints). In the problem
COVAX faces for global allocation of Covid-19 vaccines across countries, the set of feasible
consumption bundles might encode which vaccines have regulatory approval in which coun-
tries, or a countries’ capacity to distribute a given quantity of vaccines before expiry (Castillo
et al., 2021).
In the multi-unit assignment problem, each ui is assumed to be additive-separable: for each
agent i there exist item values αi1, . . . , αi|J | such that ui(xi) = ∑

j∈xi
αij for all xi ∈ Xi.

In the combinatorial assignment problem, no such assumption is imposed, though additive-
separability can be a useful starting point for describing preferences (Budish and Kessler,
2021).
An allocation is feasible if (i) each agent obtains a consumption bundle xi = (xi1, . . . , xi|J |),
that is feasible for them, denoted xi ∈ Xi, and (ii) the allocation satisfies the capacity
constraints for each object, which we can write as ∑i xij ≤ qj for all j ∈ J .

2.3 Canonical Market-Design Mechanisms

2.3.1 Gale-Shapley Deferred Acceptance

We define the Gale-Shapley Deferred Acceptance algorithm for the case of one-to-one match-
ing. We will let the set I describe a set of workers, the set J firms, and describe the
worker-proposing version of the algorithm.
What Preference Data are Reported to the Algorithm: Each worker i reports a rank-ordered
list of firms. Leaving a firm off the list denotes preferring to go unmatched to being matched
with that firm.
Similarly, each firm j reports a rank-ordered list of workers. Leaving a worker off the list
denotes preferring to go unmatched to being matched with that worker.
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Round 1: In the first round of the algorithm, each worker i “proposes to” the highest-ranked
firm on their preference list. If a firm receives one or more proposals in this round, the
firm says “maybe” to the single proposal they prefer the most (assuming at least one is
acceptable) and “reject” all others. Note that when we say “proposes to”, “maybe”, and
“reject” we are trying to give anthropomorphic description to computer code. We trust the
formal mathematical meaning is sufficiently clear.

Round k: In each subsequent round of the algorithm, any worker i who has been rejected
in the previous round proposes to the highest-ranked firm on their preference list that they
have not yet proposed to. If the worker has no more firms to propose to, the worker will go
unmatched.

Firms that have one or more active proposals after this (including if there is a proposal held
over from prior rounds) say maybe to the single proposal they prefer the most and reject all
others. Note that a maybe from a previous round can become a rejection if the firm receives
a proposal they like better.

Ending Condition: The algorithm ends when either (i) there is a round with no rejections,
or (ii) there is a round with no new proposals. If either of these conditions is satisfied, then
all “maybes” become matches.

Key Property: Stability A matching µ is said to be stable if no pair of agents who are
not matched to each other in µ prefer to be matched to each other over their match in µ.
Moreover, stability requires that no individual prefers to be unmatched to their match in µ.
In either event, the pair or individual is said to “block” the matching µ.

Gale and Shapley’s (1962) paper both introduced the concept of stable matching, and proved
that their deferred acceptance algorithm produces a stable match (with respect to the re-
ported preferences, incentives for which we turn to next).

Key Property: Strategy-proof or Approximately Strategy-proof A mechanism is
said to be strategy-proof (SP) if reporting truthfully is a dominant strategy.

The deferred acceptance algorithm is SP for the side of the market that makes proposals
(Roth, 1982b; Dubins and Freedman, 1981). The rough intuition is seen by considering an
agent who is on the proposing side who reports truthfully and is matched with her third most-
preferred firm. Could she have done better, perhaps matched to her second-most preferred
alternative, by misreporting this second choice as her first choice? No. The reason why is
that, to have even reached the part of the algorithm where she proposed to her third choice,
she must have earlier been rejected by her second choice firm. For her second choice firm
to have rejected her, that firm in turn must have had a proposal from some other worker
it preferred to her. If our protagonist ranked this firm higher, it’s possible she would have
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initially been told maybe when otherwise she would have initially been told no, but either
way, once the more-preferred worker comes along and proposes, our protagonist will get told
no.
The deferred acceptance algorithm is in fact not strategy-proof on the receiving side of
the market. There is a specific type of potentially profitable manipulation, known in the
literature as a “truncation strategy” (Roth and Rothblum, 1999) in which a participant on
the receiving side of the market reports their preferences in the honest order, but truncates
the list, i.e., reporting some match partners as unacceptable who in fact are acceptable, just
less preferered. This truncation can set off a chain reaction, whereby in rejecting one potential
match partner strategically reported as unacceptable, say Alice, that match partner applies
to another firm, who in turn likes Alice better than their current match Bob. This then
causes Bob to be rejected (by the firm who prefers Alice), which in turn leads Bob to apply
to the firm that did the manipulation in the first place, who like Bob very much. Whereas,
before the manipulation, this firm never would have gotten an application from Bob in the
first place, and instead would match to Alice.
There is a rough analogy between a trunctation strategy in matching and demand reduction
in uniform-price auctions—by saying the marginal units are unacceptable, one gets better
pricing on the inframarginal units. Roth and Peranson (1999) showed in computational
simulations that opportunities to successfully manipulate the market are rare in realistic
size markets. Immorlica and Mahdian (2015) and Kojima and Pathak (2009) then showed
theoretically that such manipulations become rare in a theory model as the market grows
large. Azevedo and Budish (2019) define a notion of approximate strategy-proofness called
strategy-proof in the large (SP-L), and show that deferred acceptance is SP-L for the receiving
side of the market.

Key Property: No Justified Envy As described above in Section 2.1.5, in school choice
the schools are sometimes treated as agents with preferences for match partners on the other
side, and sometimes are treated as objects to be allocated to agents on the other side, but
with “priority rankings” over the agents they match with. In this latter case, the phrase
“stability” is inappropriate, because a student and a school are not both agents, so cannot
form a blocking pair in the traditional sense. Abdulkadiroglu and Sonmez (2003) therefore
introduce the term no justified envy — the idea being that if student a likes school s better
than his assigned school, and school s also ranks student a higher than one of their assigned
students, say student b, then student a is said to have justified envy of student b. The
terminology captures that a likes b’s outcome better than their own (known as “envy”), and
is more deserving of the slot at school s than is this student, because of the priority ranking.
We emphasize that justified envy is just a different term from blocking pair for describing
the same mathematical property: if a prefers s to her current match, s is matched to b, and
s ranks a higher than b. Therefore, just as the Gale-Shapley algorithm yields an allocation
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that is stable in the case of agent-to-agent matching, the Gale-Shapley algorithm yields an
allocation with no justified envy under this interpretation of schools in the school-choice
problem.

In the case where schools’ preferences over students are strict, the Gale-Shapley algorithm
yields an allocation that maximizes student welfare (in the sense of Pareto efficiency) subject
to no justified envy as a constraint. In fact, Gale and Shapley (1962) themselves noted that
their algorithm can be interpreted as the solution to a constrained optimization problem (see
Budish, 2012). In the case where schools’ preferences over students have indifferences, it is
possible to improve student welfare relative to the Gale-Shapley allocation, while preserving
no justified envy, but at the cost of strategy-proofness. See Erdil and Ergin (2008) and
Abdulkadiroglu et al. (2009).

Many-to-One Variant The many-to-one variant of the Gale-Shapley algorithm is nearly
identical to the one-to-one version. Firm j still submits a single rank-order list over individual
workers. The difference is that if the firm has qj positions, it can hold as “maybe” up to qj
workers, only issuing rejections if it has more than qj proposals in a given round.

Under the assumption that firms’ preferences are responsive and the workers are the side
of the market doing the proposing, the many-to-one Gale-Shapley algorithm inherits the
stability and incentives properties from the one-to-one case. The insight that allows the
results to translate is that each “position” at a firm can be treated as its own party to
the match—with, under responsiveness, all positions at the firm having the same rank-order
preference list over workers—allowing the machinery of one-to-one matching to carry through.
If the firms are the ones doing the proposing, there are some important differences, and in
particular the algorithm is no longer strategy-proof for the proposing side (Roth, 1985).

Roth and Peranson (1999) describe a modification to the algorithm that allows for pairs of
workers to identify as couples who seek two positions in the same city. The couple submits
a rank-ordered list over pairs of positions, while firms rank workers individually as before.
The modification is highly non-trivial, and in particular has to deal with the possibility, first
noted in Roth (1984), that no stable matching exists.

Azevedo-Leshno Price-theoretic Interpretation of Gale-Shapley (“Cutoff Struc-
ture”) Azevedo and Leshno (2016) provide a price-theoretic interpretation of the Gale-
Shapley algorithm. Consider a many-to-one matching market in which students are matching
to colleges. Each student i has a utility for each college j, denoted by uij, and each college
j assigns a score to each student i, denoted vji. The score represents the college’s preference
for the student. Azevedo and Leshno (2016) show that the Gale-Shapley algorithm produces
a set of price-like statistics, called “cutoffs”, where pj denotes the minimum score threshold
necessary to be admitted to college j. Each student i, in turn, matches to their most pre-
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ferred college out of the set of colleges for which the student’s score is above the threshold.
That is, student i matches to their most preferred element in the set

S (vi; p) = {j : vji ≥ pj} .

The vector of cutoffs p is such that the total number of students i with school j as their
most-preferred option within the set S (vi; p) is equal to the capacity of school j if pj > 0, or
weakly less than the capacity of school j if pj = 0 — analogously to competitive equilibrium
prices in general equilibrium theory. Figure 1 illustrates the cutoff idea visually in an example
with two colleges. The horizontal axis represents scores at college 1, the vertical axis scores
at college 2. The lines represent the cutoffs for each school — roughly 0.6 for school 1 and
0.4 for school 2. The top-right quadrant contains students whose scores are sufficiently high
at both colleges that they can choose either one (the green ones choose school 1, the blue
ones choose school 2). The top-left quadrant contains students whose scores are high enough
to get into college 2 but not college 1; the bottom-right quadrant the students whose scores
are high enough to get into college 1 but not college 2; and the bottom-left quadrant the
students whose scores are too low at both colleges.

Intuitively, it is helpful to normalize scores to live on [0,1], in which case the cutoff for a school
represents the percentile of the school’s preferences that one must be above, in order to gain
admission. These cutoffs are sort of like the price of a given school, the difference versus
traditional prices being that each student has a different “budget” at each school, depending
on the school’s evaluation of them vji. But, as with traditional prices, a low-dimensional set
of statistics, the pj’s, determines agents’ choice sets, i.e., the sets {j : vji ≥ pj}.

This insight about the underlying price-theoretic structure of Gale-Shapley has already
proved useful in some empirical work, as described in Section 3. We suspect other researchers
at the intersection of IO and market design will find additional applications in the future.

Hatfield-Milgrom Connection between Gale-Shapley and Simultaneous Ascend-
ing Auctions Azevedo and Leshno (2016)’s insight about Gale-Shapley in turn builds on
foundational work of Hatfield and Milgrom (2005), who show that that there is a deep con-
nection between the Gale-Shapley algorithm and monotonic combinatorial auction designs
such as the simultaneous ascending auction. In particular, the Gale-Shapley algorithm can
be understood as a monotonic process in which, in the student-college example, students’
choice sets start as the set of all colleges and then monotonically shrink (as they accumulate
rejections in the deferred acceptance algorithm), whereas colleges’ choice sets start as empty
and then monotonically grow (as they accumulate applications in the deferred acceptance
algorithm).
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Figure 1: Price-Theoretic Interpretation of Gale-Shapley, Following Azevedo and Leshno
(2016)
Notes: This figure follows Azevedo and Leshno (2016), Figure 3. See the text for description. Students’
scores are uniformly distributed on the unit square. Students are equally likely to prefer School 1 to School
2 as vice versa. School 1 has fewer seats and therefore a higher cutoff. The blue circles represent students
who match to School 1, the green squares students who match to School 2, and the red crosses students who
do not match to either.
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2.3.2 Immediate Acceptance (“Boston Mechanism”)

A common mechanism used for school choice is called either the “Immediate Acceptance”
algorithm, based on its conceptual relationship to deferred acceptance, or the “Boston Mech-
anism”, after the school district where its usage was first noted in the academic literature
(by Abdulkadiroglu and Sonmez, 2003).

What Preference Data is Reported to the Algorithm: We will refer to I as students and J
as schools. As in deferred acceptance, the students in I report preferences over schools in J
in the form of a rank-order list. The schools in J either report their rank-order preferences
over the students in I in the form of a rank-order list, or these preferences are randomly
generated using some kind of lottery (see Pathak and Sethuraman, 2011). We will describe
the many-to-one version of the algorithm, in which school j has qj slots.

Round 1: In the first round of the algorithm, each student i proposes to the highest-ranked
school on their preference list. If a school receives proposals in this round, the school says
“yes” (not “maybe”) to the up-to qj proposals they prefer the most, and reject all others.

Round k: In each subsequent round of the algorithm, any student i who was rejected in the
previous round proposes to the highest-rank school on their preference list that they have
not yet proposed to. If a student has no more schools to propose to, they go unmatched.

If school j has already said yes to qj students in previous rounds, the school rejects all
applications in this round. If the school has said yes to fewer than qj students, and has say
q′j slots remaining, the school says “yes” to the up to q′j proposals they prefer the most in
this round, rejecting the rest.

Ending Condition: The algorithm ends when either (i) there is a round with no rejections,
or (ii) there is a round with no new proposals. All of the “yes’s” along the way become the
matches.

Key Difference Versus Deferred Acceptance The key difference versus the deferred
acceptance algorithm is that the most-preferred proposals in a given round, for a school that
still has remaining capacity, are responded to with “yes” rather than “maybe”. This means
that if a student proposes to a school in round k > 1 the school might reject the student
even if it previously said yes to a student the school likes less.

The Cutoff Structure of Immediate Acceptance Building off of Azevedo and Leshno
(2016), Agarwal and Somaini (2018) show that the Immediate Acceptance algorithm also has
a price-like cutoff structure, which they then use in estimation. This structure is based on a
re-interpretation of immediate acceptance as a mechanism that gives students priority based
on the position where the school is ranked. Specifically, students that rank a school first
receive the highest priority, followed by students that rank a school second, and so on. Other
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school priorities and tie-breakers can be used to order students within each group. A cutoff
can then be constructed analogously as the Deferred Acceptance case. In fact Agarwal and
Somaini (2018) show that most school choice mechanisms used in practice can be represented
in a similar manner.

Discussion: Strategic Manipulability and Efficiency Immediate Acceptance is not
strategy-proof. This is easy to see: a student whose favorite school, say a, is very highly
demanded, and whose second-favorite school, say b, is less so, might prefer to rank b first,
getting it with high probability, than to take a gamble on getting the highly-popular a. The
reason is that, if the student reports a first, and does not get it, then by the time they ask
for b in the second round, it might already be full — and because the algorithm is one of
immediate as opposed to deferred acceptance, the student will be locked out of b, even if they
have relatively high priority there.

This concern about the manipulability of the mechanism, in conjunction with anecdotal
evidence that less-sophisticated families had difficulty with strategizing, and the availability
of the Gale-Shapley mechanism as a celebrated and sensible alternative, led market design
researchers to initially conclude that the Boston mechanism is a flawed mechanism, and Gale-
Shapley should be used instead (Abdulkadiroglu and Sonmez, 2003; Pathak and Sonmez,
2008).

That said, it may be possible to salvage a case for Immediate Acceptance by studying its
Bayes-Nash equilibria. As noted by Miralles (2008) and Abdulkadiroglu et al. (2011), Imme-
diate Acceptance has Bayes-Nash equilibria, under stylized circumstances, in which students
strategically misreport their preferences, optimally, and these equilibria are actually more
efficient than the dominant-strategy equilibria of the deferred acceptance algorithm. The
rough intuition is that these equilibria get some information about cardinal preference inten-
sity into the allocation (by how much does the student like a better than b), whereas deferred
acceptance only gets ordinal preference information into the allocation. Probabilities of get-
ting into a particular school in a particular round then play a price-like role in equilibrium;
see Section 2.3.5 for further discussion. In principle, methods developed in Azevedo and
Budish (2019) could implement these Bayes-Nash equilibria of Immediate Acceptance in a
manner that is SP-L.

However, the empirical evidence to date (discussed in Section 4) suggests that the potential
welfare gains, even if students play the Bayes-Nash equilibria perfectly, are relatively small,
whereas various other evidence suggests that strategic mistakes are likely to be a prominent
concern in this setting.
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2.3.3 Random Serial Dictatorship

Random serial dictatorship is a commonly-studied mechanism in single-unit assignment prob-
lems.
What Preference Data is Reported to the Algorithm: We will refer to I as agents and J
as objects. Assume each object is in unit supply. Agents in I report their preferences over
objects in J in the form of a rank-order list.
Random Serial Ordering: The algorithm begins by choosing a random ordering over the
agents. With |I| agents there are |I|! possible random orders.
Round 1: Whichever agent is 1st in the serial order chooses their most-preferred object.
Round k: The agent who is kth in the serial order chooses their most-preferred object, from
whatever is still remaining.

Connection to Deferred Acceptance Random serial dictatorship is equivalent to the
following version of deferred acceptance: generate a random serial order over the agents,
and then run deferred acceptance using this serial order as the preference ordering for every
object in the set J . Either way, the 1st agent gets their most preferred object, the 2nd agent
gets their most preferred object other than the one taken by agent 1, the 3rd agents gets
their most preferred object other than the ones taken by agents 1 and 2, etc.

Key Properties: Strategy-proof and Ex-Post Pareto Efficient The random serial
dictatorship mechanism is strategy-proof and ex-post Pareto efficient. In this context, ex-
post Pareto efficiency means that, for any realization of the random serial order over agents,
the resulting allocation is such that there is no other allocation that all agents weakly prefer,
with at least some strict.

2.3.4 Top Trading Cycles

Top trading cyles was invented by David Gale as a solution to the house-allocation problem
(as reported in Shapley and Scarf, 1974). The algorithm works as follows:
What Preference Data is Reported to the Algorithm: We will refer to I = i1, . . . in as
agents, J = j1, . . . , jn as objects, and assume i1 is endowed with j1, i2 is endowed with j2,
etc. Assume each object is in unit supply. Each agent reports a rank-ordered list over all
objects they prefer to their own endowment; any object not included in the rank-order list is
understood to be less preferred to the agent’s own endowment.
Round 1: Create a directed graph in which each node is an agent-object pair, and out of
each node is exactly one directed edge to the remaining object the agent likes best. If the
agent likes their own object best, they point to themselves.
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Observe that this graph has at least one cycle: there are n nodes and each node has a
directed edge emanating from it. (This potentially includes a cycle in which an agent points
to themselves).

For every cycle: execute the trades described by that cycle. For example, if there is a cycle
{i1, j1} → {i2, j2} → {i3, j3} → {i1, j1}, then i1 gets object j2, i2 gets object j3, and i3 gets
object j1. Then remove these nodes from the graph.

Round k: Create a directed graph in which each node is an agent-object pair that has not
yet traded, and out of each node is exactly one directed edge to the remaining object the
agent likes best.

Again, this graph has at least one cycle. Execute the trades described by that cycle. Remove
these nodes from the graph.

Ending Condition: The algorithm ends when there are no remaining nodes in the graph.
This means that every agent has either traded or reached a stage in the algorithm where
their most-preferred alternative was to keep their endowment.

Connection to Competitive Equilibrium While Shapley and Scarf (1974) did joke
that their model bore little resemblance to real-world housing markets, they noted that the
solution did have a connection to competitive equilibrium. Formally, assign price p1 to all
objects that trade in round 1, price p2 < p1 to all objects that trade in round 2, etc. At
these prices, (i) each agent sells and buys a house at the same price (i.e., the trade is in their
budget set), and (ii) more subtly, each agent gets the most-preferred house in their budget
set. This can be seen by noting that an agent who trades in round k got a house that they
like better than any other house that traded in round k or later; that is, they got the best
house they can afford, given their budget pk.

Leshno and Lo (2021) provide a characterization of top trading cycles in terms of cutoffs. The
TTC cutoffs are higher-dimensional than the cutoffs for deferred acceptance found in Azevedo
and Leshno (2016), reflecting that an agent’s threshold for obtaining a given object depends
not only on how much that object likes the agent, but how much the agent’s endowment is
liked by those who can facilitate a trade for the object.

Key Properties: Strategy-proof and Ex-Post Pareto Efficient The key properties
of TTC are that it is strategy-proof and ex-post Pareto efficient (Roth, 1982a). These are the
same properties as random serial dictatorship, and in fact these two mechanisms are in some
environments two different ways of implementing the exact same distribution over allocations
(Abdulkadiroglu and Sonmez, 1998).
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2.3.5 Hylland and Zeckhauser Pseudomarket

Hylland and Zeckhauser (1979) proposed a competitive equilibrium approach to the single-
unit assignment problem.

What Preference Data is Reported to the Algorithm: Agents in I report their preferences
over objects in J in the form of a von-Neumann Morgenstern utility function. Formally, each
agent i reports a vector ui1, . . . , ui|J | where element uij indicates the agent’s vNM utility for
object j.

The Pseudomarket Equilibrium Conceptualize each object j as perfectly divisible into
probability shares. Each agent i will be allocated a vector of probability allocations xi1, . . . , xi|J |
with the properties that: (i) each xij ∈ [0, 1], and (ii) ∑j xij ≤ 1. Summed over all agents,
an allocation is feasible if, in addition, (iii) ∑i xij ≤ 1 for all j. This notion of feasibility
relies on the idea of “implementing” a probabilistic allocation, via appeal to the Birkhoff-von
Neumann theorem: that is, finding a convex combination of sure allocations that correspond
to the intended probabilistic allocation.

With these concepts in hand, the Hylland Zeckhauser pseudomarket mechanism is simple to
describe. First, agents report their vNM preferences. Then, the mechanism finds a vector of
competitive equilibrium prices p∗1, . . . , p∗|J |: prices such that, when each agent i is allocated
their most-preferred affordable bundle at these prices given a common budget b (wlog, b can
be normalized to 1), the market clears. Formally, agent i is assigned the bundle x∗i1, . . . x∗i|J |
that maximizes their utility ui · xi subject to the budget constraint p∗ · xi ≤ b and the
unit-demand constraint ∑j xij ≤ 1; and market clearing means that ∑i x

∗
ij ≤ 1 for all j.

One of the key theoretical contributions of Hylland and Zeckhauser (1979) is an existence
theorem for such prices. Computing pseudomarket equilibrium prices remains non-trivial.
For recent progress, please see Eraslan et al. (2021).

Connection to the Immediate Acceptance Algorithm Miralles (2008) discovered that
there exists a Bayes-Nash equilibrium of the immediate acceptance algorithm (i.e., Boston
mechanism) that coincides with the outcome from truthful play of the Hylland-Zeckhauser
mechanism. A rough intuition for how this is possible is that even though the immediate
acceptance algorithm mechanism asks agents to report ordinal preference information, while
the Hylland-Zeckhauser mechanism requires vNM utilities, how agents strategically choose to
report their ordinal preferences depends on their underlying vNM utilities, in just the right
way.

Essentially, the probability of obtaining a good in equilibrium of the Boston mechanism, serves
an analogous role to the prices in the HZ mechanism.
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Properties: Ex-Ante Efficient, SP-L As noted above in the discussion of RSD, an
allocation is ex-post Pareto efficient if there is no other allocation that all agents weakly
prefer, with at least some strict. A probability distribution over allocations is ex-ante Pareto
efficient if there is no other probability distribution over allocations that all agents weakly
prefer, with at least some strict. Ex-ante Pareto efficiency implies ex-post Pareto efficiency,
in the sense that for a random allocation to be ex-ante Pareto efficient, it must be the case
that any sure allocation that occurs with positive probability is ex-post Pareto efficient. The
reverse need not be true, as shown in Bogomolnaia and Moulin (2001).
The Hylland-Zeckhauser pseudomarket mechanism is ex-ante Pareto efficient. It is not
strategy-proof, but it is SP-L.

2.3.6 Draft Approaches to Multi-Unit Assignment

Draft mechanisms, in which agents take turns choosing objects one-at-a-time over a series of
rounds, are a common approach to multi-unit assignment problems in practice. A prominent
example is sports teams choosing players, and Harvard Business School has long used a draft
for course allocation.
Draft mechanisms are not strategy-proof. Intuitively, if an agent’s most-preferred object is
not widely liked by others, but their second most-preferred object is widely liked by others,
they might do better by trying to choose their second most-preferred earlier than their most-
preferred, which they anticipate being able to obtain later. In equilibrium, drafts are not
Pareto efficient, a point first made by Brams and Straffin (1979). See also Brams and Taylor
(1996) for many variations on the draft idea.
The multi-object version of random serial dictatorship — which is like a draft except that
there is one round in which agents choose complete bundles, instead of many rounds where
agents choose one-at-a-time — is both strategy-proof and Pareto efficient. Nevertheless,
Budish and Cantillon (2012) show that the draft performs better on both welfare and fair-
ness grounds than does the dictatorship. This example serves as a reminder that the fact
that a mechanism satisfies attractive properties is not always a reliable guide to mechanism
performance (Budish, 2012).

2.3.7 Competitive Equilibrium Approaches to Multi-Unit Assignment

A series of recent papers has developed competitive equilibrium approaches to assignment
problems in which agents have multi-unit demands. In this subsection we describe the varia-
tions on this idea. For formal properties of each variation, please see the underlying papers.

Approximate Competitive Equilibrium from Equal Incomes (A-CEEI) Budish
(2011) considers an environment in which agents have unrestricted preferences over bundles
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of objects, like in a combinatorial auction, but there are exogenous restrictions against the
use of monetary transfers. A motivating problem at the time was course scheduling at
universities. More recently, an instance of this problem is vaccine allocation across countries
from vaccine doses jointly purchased by the COVAX consortium (Castillo et al., 2021).

The mechanism works as follows.

Step 1: Agents report ordinal preferences over bundles of objects.

Step 2: Agents are assigned approximately equal budgets of an artificial currency; formally,
for some β > 0 but arbitrarily small, all budgets are drawn from the interval [1, 1 + β].

Step 3: The mechanism finds prices that approximately clear the market. Formally, this is
a set of prices where, when each agent is allocated their most-preferred affordable bundle
at these prices (based on the ordinal preferences reported in Step 1 and the random budget
drawn in Step 2), market clearing error is smaller than a small bound.

Step 4: These allocations are implemented.

Notice that agents are allocated a sure bundle rather than a probabilistic allocation as in
Hylland and Zeckhauser.

The reason for the approximations is that exact competitive equilibrium from equal incomes
might not exist. The main theorem in Budish (2011) shows that small amounts of budget
inequality and market-clearing error are sufficient to restore existence. See Reny (2017) for
a generalization of the existence theorem.

Multi-Unit Generalization of Hylland-Zeckhauser Probability Shares Market Bud-
ish et al. (2013) provide a generalization of the Hylland and Zeckhauser pseudomarket mech-
anism to accommodate certain kinds of multi-unit demands and certain kinds of additional
constraints on demand and supply. Relative to Budish (2011), the key advantage is that
market clearing is exact rather than approximate, whereas the key disadvantage is that pref-
erences are required to be additive-separable over objects.

Feeding America Artificial-Currency Market Prendergast (2017) reports on an artifi-
cial currency market the author and colleagues implemented for the Feeding America system
of food banks across the United States. Whereas the competitive equilibrium mechanisms
described above are static (or one-shot, i.e., run just a single time) the Feeding America
market mechanism is infinitely repeated.

In each allocation round, food banks submit bids, in an artificial currency, for the available
truckloads of food (e.g., a truckload of chicken coming from Nebraska next week). The
highest bidder wins and pays their bid amount (i.e., it is a first-price auction). The key idea
is that the currency paid in the bid is then distributed to all of the other food banks, in



26

proportion to their populations. In this way, the overall amount of currency in the system
stays fixed over time, so there is some consistency of prices over time (e.g., the price of a
truckload of chicken).

From a mechanism design perspective, the key thing to point out about the Prendergast
(2017) artificial-currency market is that, since the market is infinitely repeated, fake money
becomes like real money that enters the utility function — the fake money always has a
future use. Theoretically, this is important because it makes it reasonable to model market
participants as having quasi-linear preferences over the objects and the fake money, and to
then utilize the auction theory enabled by quasi-linear utility. Whereas, in artificial-currency
markets that are one-shot, the fake money has no future use so it is not appropriate to put
money into the utility function. Instead, prices just encode choice sets, given agents’ budgets,
more like in general equilibrium theory than in auction theory.

3 Empirical Frameworks and Applications

We now turn our attention to empirical models of matching and assignment markets. A
primary goal of these models is to estimate agents’ preferences or payoffs. These quantities
are the primitives in the theoretical models described above. Their estimates will allow us to
compare and evaluate alternative market designs, understand their welfare and distributional
properties, and engage in counterfactual analysis.

Specific to market design, there are certain instances in which centralized matching mecha-
nisms directly yield data on ordinal preferences. In particular, if a mechanism is strategy-
proof and agents understand this property, then data on the preferences agents report to
the mechanism can be used directly to analyze certain questions of interest, without esti-
mating a parametric model of utility. For example, such data enable comparison with other
strategy-proof alternatives that also use ordinal preferences.

Although these cases represent an ideal case for empirical work, they are comparatively rare.
It is much more common for the analyst to confront data limitations or mechanisms that
are not strategy-proof. Additionally, even when reliable ordinal preference information is
available, it is sometimes useful to estimate a cardinal representation of the distribution of
preferences.

The methods described in this section fill this important gap. We begin by discussing empir-
ical models with non-transferable utility (section 3.1) before turning to models with transfer-
able utility (section 3.2). Section 4 briefly discusses empirical results based on these models,
but expands to include other market design applications as well.
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3.1 Non-Transferable Utility Models

Recall that non-transferable utility models assume that transfers between agents are either
prohibited or are exogeneously determined. The empirical leading examples include matching
students to schools or colleges (Abdulkadiroglu et al., 2017b; Agarwal and Somaini, 2018),
entry-level jobs without salary negotiations (Agarwal, 2015), oil drilling (Vissing, 2018), and
marriage markets.

Empirical approaches in these settings build from random utility models, which are commonly
used in IO to represent consumer preferences in discrete choice settings (McFadden, 1973;
Manski, 1977; Berry et al., 1995). In the matching context, these models parametrize utility
of an agent from matching with potential partners as a function of characteristics observed
in the data. The key difference from the consumer demand context lies in how the data are
used to learn about preferences. Whereas a consumer can pick their most preferred product
at the posted prices, in the matching context the assignment that results from a choice is
determined by the market’s design.

The empirical approach depends both on the rules of the market being analyzed and the type
of data that is available. Rules matter because they specify how agents express their pref-
erences, may give agents incentives to manipulate their reported preferences, and determine
the final allocation. Therefore, the mechanism’s properties shape the assumptions that will
be used during estimation. And, given a set of rules, the approach will depend on whether
we observe data on rank-order lists submitted to a mechanism or only the final matches.

We begin by describing the random utility model (section 3.1.1) before proceeding to estima-
tion methods. The methods are separated into two cases, based on whether we have access
to data on reported rank-order lists from an assignment mechanism (section 3.1.2) or data
only from observed matches (section 3.1.3). In both cases, we assume that the researcher has
access to rich micro-data on individual characteristics.5

3.1.1 Random Utility Model

Denote i’s utility if matched to j with uij and j’s utility from being matched to i with vji. Let
ui0 and vj0 denote the utilities of remaining unmatched. This formulation implicitly assumes
that an agent’s utility from a match does not depend on the other matches in the economy.
A typical empirical exercise involves identifying and estimating the joint distributions of the

5This data requirement differs from methods for demand estimation that use aggregate data on market
shares (e.g. Berry et al., 1995). There are two reasons for this difference. First, our goal is to understand
partnerships between the two sides of the market. Thus, we require micro-data (Berry et al., 2004; Petrin,
2002). Second, the shares are driven primarily by the number of matches that are feasible for each side of
the market.
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vectors of random utilities ui = (ui1, . . . , uiJ) and vi = (v1i, . . . , vJi) conditional on observable
characteristics.6

We start by representing the preferences of agents on one side of the market. The most
general form for the utility of i being matched with j that we will employ is given by

uij = u (xj, zi, ξj, εi)− dij, (1)

where zi and xj are vectors of observed characteristics for i and j, respectively, and dij is a
scalar observable that potentially varies with both i and j. The term εi captures unobserved
determinants of agent i’s preferences. It may be multi-dimensional and include j-specific taste
shocks. The term ξj includes unobserved characteristics of j. The term dij is an observable,
match-specific characteristic (e.g. distance between i and j) that will be used as the metric
for utility in some applications.

A random utility model requires scale and location normalizations because choices (under
uncertainty) are invariant to a positive, affine transformation of utilities. Accordingly, we
will normalize the value of the outside option to zero, i.e. ui0 = 0. Observe that the unit
coefficient on dij represents a scale normalization.7

While the analysis of identification will often allow for general functional forms, the empirical
methods below typically use additional parametric assumptions to ease the computational
burden and to achieve statistically precise estimates with finite sample sizes. The most
convenient functional forms depend on available data and the mechanism or setting being
analyzed. For example, a commonly used parametric form encompassed by the model above
assumes that

uij = x′jβ + x′j γ̄zi + ξj + x′jγi + εij − dij, (2)

where γi and εij are mean-zero, normally distributed random variables with variances to
be estimated, and γ̄ is a matrix conformable with x′j and zi. The vector θ denotes the
model’s unknown parameters, namely (β, γ̄, ξ1, . . . , ξJ) and the parameters governing the
distribution of εij and γi. This formulation is both tractable and flexible. Such specifications
are commonly used in empirical models of consumer demand because they capture many
preference determinants such as a vertical index of quality that is valued equally by every
agent and heterogeneous preferences based on observables as well as unobservables.

In some applications, the preferences on the other side of the market vji may be known from
administrative data or institutional knowledge. For example, many schools and colleges use
exam scores to rank students (e.g. Fack et al., 2019; Akyol and Krishna, 2017), while other
school districts use different but still well-defined priorities. In these cases, vji does not need

6We refer the reader to Matzkin (2007) for the formal definition of identification that we employ in this
chapter.

7The specification above also assumes that all agents dislike increases in dij . This restriction is not
essential in many cases discussed below, and the sign of this coefficient can be estimated.
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to be estimated.

When vji is unknown, one can specify an analogous model for the preferences of agents on
the other side of the market. Specifically, the utility of agent j ∈ J for matching with agent
i ∈ I is given by

vji = v (xj, zi, ηi)− wji, (3)

where ηi is unobserved and wji has an interpretation analogous to dij. In this case, we would
also normalize vi0 to zero.

The preference model includes two noteworthy assumptions. First, the baseline model has
no externalities. An agent’s utility depends on only their own matches.8 This rules out pref-
erences for attending school with specific peers or working with specific colleagues. In other
applications involving matching between firms, the lack of externalities rules out preferences
that depend on a competitor’s matches. We will discuss extensions that incorporate some
of these features in Section 3.3. Second, the model abstracts away from costs of acquiring
information about the other side of the market by assuming that preferences are well formed.
An exception is Narita (2018), which considers the possibility that preferences evolve after
agents receive an initial assignment.

3.1.2 Analysis with Data from Assignment Mechanisms

Two common sources of data relevant for preference analysis are rank-order lists (e.g. Hast-
ings et al., 2009; Abdulkadiroglu et al., 2017b) and participant surveys (Budish and Cantillon,
2012). Correspondingly, a well-developed literature has taken advantage of the rich infor-
mation contained in these reports and used them to derive methods to estimate agents’
preferences. These methods employ revealed preference implications of assumed participant
behavior.

We will use school choice mechanisms as our central example because these mechanisms are
widely used around the world. In this section, we refer to agents on side I as students and
agents on side J as schools. Our goal will be to estimate students’ preferences for schools.
An analogous exercise analyzes schools’ preferences for students when rank-ordered data are
available. The discussion below is brief as we point the reader to Agarwal and Somaini (2020)
for a more thorough review of methods for estimating preferences in school choice settings.9

8This assumption is sometimes referred to as “responsive preferences” (see Roth and Sotomayor, 1990,
Chapter 5).

9The methods discussed below are generally applicable to other settings where a researcher can obtain
data on preferences. For example, Hitsch et al. (2010) estimate preferences in an online dating context by
analyzing the decision to contact a potential date. They interpret the decision to contact a potential date as
indicative of high utility. Their approach allows them to estimate flexible preferences for men and women.
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We will typically assume the following conditional independence condition of the form:

εi ⊥ di| zi,x, (ξj)Jj=1 , (4)

where di = (di1, . . . , diJ) and x = (x1, . . . , xJ). The independence condition (4) assumes that
agent i’s unobserved taste shocks are conditionally independent of the vector of numeraire
match-specific characteristics di given the other observed characteristics of i, zi, and the
observed vector of observed characteristics for agents on the other side of the market charac-
teristics of market configuration x. The assumption must be evaluated within each empirical
application, and it is typically reasonable if x is a sufficiently rich control.10

In the school choice example, if dij is the distance from i’s residence to j’s location (as in
Abdulkadiroglu et al., 2017b, for example), then students’ preferences can be summarized
in terms of their “willingness to travel.” The conditional independence assumption above
requires that distance to school is independent of other unobserved determinants of prefer-
ences for schools. This assumption may be a good approximation if zi includes sufficiently
rich data about a student’s achievements, demographics and socio-economic characteristics.
Relaxing this assumption would be likely to require a model of residential choice and sorting
based on unobserved factors that influence preferences for schools.

The main challenge in analyzing rank-order lists submitted to mechanisms is that student re-
ports may not reflect their true preferences. For example, students may avoid ranking schools
to which they are unlikely to be admitted. In other cases, students may have an incentive to
manipulate their rankings in order to gain priority at certain schools. Below, we discuss two
cases, one in which students report truthfully and the other in which students manipulate
their preferences.11 We discuss parametric assumptions most convenient for estimation after
laying out the core empirical strategy in these two cases.

Truthful Reports: Reports made to a strategy-proof school choice mechanism enable a
straightforward empirical strategy if agents understand it and follow this recommendation.12

In some cases it is possible to answer the relevant questions of interests directly using these
reported rank-order lists. For example, Abdulkadiroglu et al. (2009) use data from New York
City’s implementation of the Deferred Acceptance Algorithm to simulate and compare with
alternative ordinal school choice mechanisms while assuming truthful reporting.

10Relaxing this assumption is a fruitful avenue for future research. Such work will likely require augment-
ing the model to incorporate other sources of exogenous variation and specify alternative data-generating
processes.

11We focus on estimating preferences on one side of the market. The approaches discussed below can be
applied to both sides of the market (see He and Magnac, 2020; Aue et al., 2020, for example).

12Evidence from both experiments and the field suggests that students are more likely to report their
preferences truthfully when interacting with a strategy-proof mechanism (Chen and Sonmez, 2006; de Haan
et al., 2018). Nonetheless, comprehending that a mechanism is strategy-proof may be complicated (Li, 2017)
and some students are liable to mistakenly submit rankings that are not truthful (Rees-Jones, 2018; Shorrer
and Sovago, 2019; Hassidim et al., 2020; Artemov et al., 2021; Budish and Kessler, 2021).
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Figure 2: Revealed Preferences – Truthful Reports

In many cases, for either welfare or counterfactual analysis, it becomes necessary to estimate
a cardinal representation of preferences from the ordinal information. Specifically, if agent i
ranks j above j′, then we can infer that

uij > uij′ .

This inequality is similar to the standard discrete choice case in which we infer that uij > uij′

for all j′ if a consumer picks j. But, in the case of a truthfully reported rank-order list, we
learn more fine-tuned information about more than just the most-preferred option.

It is less clear how to treat schools that are not ranked on the list. One common approach
is to assume that students rank all schools that are acceptable, i.e. preferable to the outside
option. Thus, if j is the lowest-ranked school, then uij > ui0 > uij′ if j′ is not ranked. In
this model, the various rank-order lists partition the space of utilities, as shown in figure
2 for when J = 2. The five regions in the figure correspond to the various ways in which
two schools can be ranked, including the possibility that only one school or an empty list is
submitted.

An alternative reason why a student may not rank a school is that she is ineligible at that
school. In this case, a researcher may want to limit the revealed preference inequalities above
to the set of schools where a student is eligible. A related, but conceptually distinct model,
is when a student omits a school because she believes that her chances of admission at that
school are low but ranks the remaining schools truthfully. This model is a special case of
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models that consider reports from a manipulable mechanism.
Observe that truthfully reported rank-order lists are similar to, but provide richer informa-
tion about preferences than, standard discrete choice models in which a consumer picks only
their favorite product. Specifically, if a consumer picks option 1 in a standard discrete choice
setting, then we can only deduce that the consumer’s utilities are in either the region labeled
“Rank 1” or “Rank 1>2” in figure 2, but we cannot distinguish between these two regions.
The richer information in ordered lists can help identify heterogeneity in preferences (Beggs
et al., 1981; Berry et al., 2004). In the school choice context, students often rank many more
schools, allowing for very rich specifications for the distribution of utilities (see Abdulka-
diroglu et al., 2017b, for example). Accurately estimating this heterogeneity is important for
analyzing the value of improving assignments because swapping the allocations of any two
agents leaves welfare unchanged in models with homogenous preferences.
Our goal is to identify the cdf FU∗ , the joint cdf of the random vector u∗i with the j-th element
equal to u (xj, zi, ξj, εi). We drop the explicit conditioning on zi, {xj, ξj}Jj=1 for notational
simplicity and assume the condition in equation (4) holds. Under this assumption, the
probability that i submits the rank-order list R = (j1, j2, . . . , jJ) can be written as

P (R|di = d;FU∗) =
∫

1
{
u∗jk − djk ≥ u∗jk+1

− djk+1 for all k ∈ {1, . . . , J − 1}
}

dFU∗ .

Convenient functional forms for estimating this model via maximum likelihood are further
discussed below.
Manipulable Mechanisms: Although strategy-proof mechanisms are desirable on theo-
retical grounds, many school districts use manipulable mechanisms. The widely criticized
but still commonly used Immediate Acceptance mechanism, for example, prioritizes students
who rank a school higher, generating strategic incentives. Lab studies (Chen and Sonmez,
2006), survey data (de Haan et al., 2018), and signs of strategic reporting in administrative
data (Calsamiglia and Güell, 2018; Agarwal and Somaini, 2018) suggest that students do
respond to these incentives.
To empirically analyze reports in manipulable mechanisms, it is useful to think about reports
as actions in a game. Each action is associated with an expected payoff. If agents maximize
expected utility, the observed report must yield the highest expected payoff. This approach
assumes a considerable degree of sophistication as it requires agents to perform two cognitively
demanding tasks. First, they must be able to calculate the expected payoff for each possible
report. Second, they must maximize over all possible reports. We focus on the case where
agents have rational expectations and can optimize before discussing extensions.
Let LR ∈ ∆J be a probability vector representing an agent’s beliefs about the probabilities
with which she will be assigned to each of the J schools if she submits the report R ∈ RI .
The expected utility of this report is ui ·LR. If we observe the report Ri from student i, then
optimality implies that ui · LRi

≥ ui · LR for all R ∈ RI . Let CRi
be the set of utilities ui
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Figure 3: Manipulable Mechanisms

such that the report Ri maximizes expected utility. This set is a convex cone in the space of
utilities that contains the origin. Moreover, the collection of sets CR for R ∈ RI partitions
the space.13 Figure 3 illustrates these sets for our simplified case with two schools. In this
example, uR,R′ represents utilities for which the student is indifferent between submitting R
and R′. Similarly, a student with utilities given by uR,R′′ is indifferent between R and R′′.
The students with utility vectors in the set CR (weakly) prefer R to the other reports.

Notice that this representation is general and does not directly assume that the mechanism
is manipulable. In fact, in the special case of a strategy-proof mechanism, the assignment
probabilities LR are such that reporting preferences truthfully is optimal. This is because
an implication of the strategy-proof assumption is that ui · LRi

≥ ui · LR if Ri corresponds
to the truthful report. In addition, this framework can also be used to analyze the case in
which students rank schools in order of preference, but omit some schools where admission
probabilities are low because only a limited number of schools can be ranked.

The discussion above implicitly assumes that the vectors LR for R ∈ RI are known to
the analyst. In practice, these have to be estimated. Under rational expectations, these
beliefs are objective assignment probabilities. Towards constructing an estimator for these
probabilities, Agarwal and Somaini (2018) noticed that almost all the mechanisms used in
practice can be described using a cutoff structure analogous to one that applies to stable

13More precisely, every u ∈ RJ belongs to the interior of at most one of the sets in the collection and
belongs to at least one set CR. There is one exception. If two reports Ri and R′i result in the same vector of
probabilities, then the sets CRi

and CR′
i
will be identical to each other.
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allocations discovered in Azevedo and Leshno (2016). The distribution of these cutoffs in
equilibrium determines the objective assignment probabilities. Thus, instead of estimating
LR, one can instead estimate the cutoff distribution, which is a lower dimensional object.
The cutoff structure is also useful for estimating beliefs under alternative assumptions on the
belief formation process.

In this model, the probability that i submits the rank-order list Ri can be written as

P (Ri|di = d;FU∗) =
∫

1 {(u∗ − d) ·LRi
≥ (u∗ − d) ·LR for all R ∈ RI} dFU∗ .

This expression follows because (u∗−d) ·LRi
is the expected utility from reporting Ri, which

must be larger than the expected utility from any alternative report R. This expression also
forms the basis of estimation via maximum likelihood. We provide further details below.14

Several extensions that vary behavioral assumptions have been based on this approach. Kapor
et al. (2020a) propose estimating LR by surveying agents. The survey focused on families
participating in the school choice mechanism in New Haven and found significant differences
between elicited and objective assignment probabilities. He (2017) and Hwang (2014) do
not impose all the conditions imposed by optimality. Instead, they derive a few intuitive
necessary conditions that reports have to satisfy and use the implied revealed preference
relations to estimate preferences. One benefit of this approach is that it relies less heavily on
optimal play. A cost is computational and statistical complexity because incomplete models
of behavior do not admit maximum likelihood methods. Agarwal and Somaini (2018) and
Calsamiglia et al. (2020) estimate mixture models in which some agents behave optimally
while others behave naively; i.e., agents report their true ordinal preferences even if it is in
their interest to report something else. For a more detailed survey of methods for incomplete
and mixture models, see Agarwal and Somaini (2020).

Parametric Assumptions and Estimation: A common feature of the models described
above is that they result in linear restrictions on the vector of utilities ui for each agent
i. This simple structure allows for likelihood-based estimation methods. These methods
typically employ specific functional form and distributional assumptions on equation (1) in
order to limit the dimension of parameters to be estimated. The two most commonly used
functional forms are based on logit and probit errors.

Logit Models

Consider the special case of equation (2) in which

uij = δj + xj γ̄zi − dij + εij (5)
14Agarwal and Somaini (2018) show conditions under which variation in d can be used to identify the

distribution of utilities FU∗ . An alternative approach, developed in Carvalho et al., 2019 for the two-school
case and generalized in Agarwal and Somaini (2018), is to use variation in assignment probabilities LR that
is orthogonal to preferences to identify FU∗ .
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and ui0 = εi0, where εij follows an extreme-value type I distribution with location parameter 0
and scale parameter σ. In addition to the distributional assumption on εij, this specification
excludes the terms γi and folds xjβ + ξj into the fixed effect δj. Fack et al. (2019) used
this parametric form to estimate high school preferences in Paris under both stability and
truth-telling. For notational convenience, collect the parameters of the model in the vector
θ = (δ, γ̄, σ).

This functional form is useful when rank-order lists are assumed to be truthful since the
probability that student i submits the rank-order list Ri = (j1, j2, . . . , jJ) can be written in
closed form. It is given by

P (Ri|xj, zi; θ) =
J∏
k=1

exp
(

1
σ

(δjk + xjk γ̄zi − dijk)
)

1 +∑
j 1 {j 6= jk′ for k′ < k} exp

(
1
σ

(δj + xj γ̄zi − dij)
) . (6)

The term corresponding to k = 1 is the probability that the school ranked first, j1, has the
highest utility. This term is identical to the standard discrete choice case since j1 is the most-
preferred school. The term corresponding to the general k is the probability that the school
ranked in position k has the highest utility amongst the schools not ranked any higher. This
multiplicative form is specific to the logit model and its independence of irrelevant alternatives
property (Beggs et al., 1981). A benefit of this assumption is that the parameters θ can be
estimated by Maximum Likelihood. Equation (6) reveals that each rank-order list contains
strictly more information than the observed assignment. Using data on reports will typically
yield more precise estimates and allow for more flexible parameterizations than only using
data on allocations will allow.15

In many contexts, we expect a student who ranks a school with, say, good math outcomes
at the highest position will also rank other schools with good math outcomes near the top of
their list. Such patterns motivate introducing the random coefficients γi in equation (5). In
these models, students with a high coefficient on a particular school characteristic will tend to
rank many schools with high values of that characteristic. To incorporate this heterogeneity,
the likelihood functions need to be modified. For example, suppose that γi is assumed to
be distributed γi ∼ N (0,Σγ) with density φ (·; Σγ), as is common practice (see Berry et al.,
1995, for example). In the case of truthful preferences, the likelihood is now

P (Ri|xj, zi; θ,Σγ) =
∫
P (Ri|xj, zi, γ; θ)φ (γ; Σγ) dγ. (7)

An analogous change is required when the analysis is conducted assuming that only final
matches are observed and are stable.

15Relying on rank-ordered data requires a specific model of student behavior. Artemov et al. (2021) argue
that relying on allocation stability yields results that are robust to mis-specifications of the model of behavior
that could bias approaches that rely on reports.
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A challenge with specifications that include random coefficients is that closed-form expres-
sions for the probabilities are not typically available. Estimation techniques for these models
typically require simulation, even in the simpler discrete choice context. Provided that the
number of random coefficients is small, this expression can be approximated by numerical in-
tegration or simulation methods. However, approximation error in this integral can result in
bias in the final estimates if the objective function is non-linear in the approximation error.
We refer the reader to Train (2009) for recommendations and results on simulation-based
estimators.

While the logit model has closed-form expressions when reports are truthful, it is not tractable
for manipulable mechanisms. Next, we discuss an alternative parametrization, based on the
probit model, that is useful in this case.

Probit Models

Another popular approach is based on the probit model with random coefficients. In this
model, we specify

uij = δj + xj γ̄zi + xjγi − dij + εij, (8)

where
γi ∼ N (0,Σγ) and εij ∼ N

(
0, σ2

ε

)
.

The model parameters can be estimated using a Markov Chain Monte Carlo (MCMC) tech-
nique called a Gibbs sampler with an appropriate conjugate prior distribution for the pa-
rameters θ. This method generates a Markov chain by iterating between drawing the model
parameters (including the random coefficients) conditional on simulated utilities uij and
drawing the utilities uij conditional on the parameters θ and the observed assignments or
reports.16 That is, the sampler iterates through the following three steps:

uij|ui,−j, γi, θ; data for each j
γi|ui, θ; data
θ| {ui, γi}Ni=1 ; data,

where ui,−j = (ui1, . . . , uij−1, uij+1, . . . , uiJ) . The procedure can begin from an arbitrary value
of the parameters and an initial value of ui that is consistent with the reported preferences.
Iterating through this procedure results in a long sequence of simulated draws known as a
Markov chain. A portion from the beginning of the chain is discarded and the distribution of
the remainder can be used to compute both the point estimates and credible sets (Bayesian
variants of confidence intervals) simultaneously. This Bayesian technique yields estimates
that are asymptotically equivalent to the maximum likelihood estimator (see the Bernstein-

16Drawing the utilities in this second step is known as data augmentation.
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von Mises Theorem. van der Vaart, 2000, Theorem 10.1).17 These features have made the
probit model popular for discrete choice models in the marketing literature.

The second and third steps are standard and identical across the models discussed above.
Specifically, assuming a normal prior on θ, γi is also normally distributed given the conditional
distributions above. Within θ, the coefficients γ̄ and δj are normally distributed if their prior
distributions are normal, and the covariances Σ and Σγ follow inverse-Wishart distributions.

The first step draws the utility of each school conditional on the current draws of the utilities
of the other schools and the observed rank-order list or outcome. The model assumptions
imply that uij|ui,−j, γi, θ; data has a truncated normal distribution with truncation points
determined by the observed report. The truncation points are determined based on whether
preferences are truthfully reported or whether the mechanism is manipulable. We refer the
reader to Abdulkadiroglu et al. (2017b) for further details on estimating models with truthful
reporting and to Agarwal and Somaini (2018) for the case of manipulable mechanisms.

3.1.3 Analysis with Data on Final Outcomes

This section reviews approaches when we only observe data on the realized matches from a
single large matching market. Throughout, we will assume that these matches are stable.
The main difficulty in learning about preferences is that the final assignments depend on the
preferences of agents on both sides of the market. Accordingly, we must disentagle two sets
of preferences from only observing one set of matches.

In this more limited data environment, we will need to strengthen the independence assump-
tion in equation (4) to

(ηi, εi) ⊥ (di,wi)| zi,x, (ξj)Jj=1 , (9)

where wi = (w1i, . . . , wJi). Therefore, the unobservable on both sides of the market are
independent of the preference shifters.

We will distinguish between two types of markets. The first type is a continuum many-to-one
matching model with a large number of agents on one side a few agents on the other. In this
type of market, each agent in J can match with many agents in I. We assume that I is large
but J is small. The most common example of this type is student assignment to schools or
colleges. The second type of market has a large number of agents on each side.

Continuum Many-to-One Matching

Consider settings in which agents on side J can match with a large number of agents on
the side I, while the number of agents on J is small. Because there are many agents on

17We refer the reader to Gelman and Rubin (1992) for a textbook treatment of Gibbs sampling and to
McCulloch and Rossi (1994) for a discussion more specific to discrete choice models.
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side I, each individual agent on this side is strategically and outcome irrelevant for others.
However, their aggregate preferences and strategies may influence outcomes. School and
college admissions are key examples of this setting type. We will therefore refer to agents on
side I as students and agents on side J as schools.

There are two relevant types of data in these settings. The first is known preferences or
priorities used by schools to admit students, so that the researcher can directly ascertain
how two students will be ranked, possibly up to a random tie-breaker. For example, many
school districts prioritize students in their walk-zone and students who have siblings already
enrolled, and many college systems prioritize students with high school grades or entrance
exam scores. When this type of data is available, the researcher need only estimate the
students’ preferences for the schools. When such data are inaccessible, the researcher must
estimate preferences on both sides of the market, which is more challenging. This case is
relevant to college admissions systems and entry-level job settings in which the rules used by
agents on side J are unknown.

In both cases, we consider the problem when only data on final matches are available, as-
suming that pairwise stability is satisfied. As before, this assumption requires justifications
based on theory and institutional background on the process used in the market to assign
students to schools. The main implication of the assumption is that the stable matches can
be characterized by a cutoff rule. Recall the result from Azevedo and Leshno (2016) that, in
a stable match, each student i is assigned to her most preferred school in the set

S (vi; p) = {j : vji ≥ pj} ,

where vi = (v1i, . . . , vJi) and p = (p1, . . . , pJ) is the vector of cutoffs. We will now use this
formulation to learn about student preferences in two cases. The first is when vji and p are
data and the second is when these quantities need to be estimated.

Known Priorities (School Choice): Suppose the researcher knows each student’s eligibility
score for each school, denoted vji, up to a tie-breaker, and the final assignment is stable.
That is, vji = vj (zi) where the function vj (·) is known and zi is observed. The cutoff scores
pj can be computed as the lowest eligibility score vji of a student who was matched to school
j if the school does not have available capacity. Otherwise, the cutoff pj is equal to 0. The
goal is then to estimate and identify the specification of preferences defined in equation (1).

This model is used by Fack et al. (2019) to study Parisian high school admissions, which
are determined by a deferred acceptance mechanism, and by Akyol and Krishna (2017) to
study Turkish high schools that use an entrance exam to make admissions decisions. This
assumption can also be used to study higher education settings that use an entrance exam.
For example, Bordon and Fu (2015) and Bucarey (2018) uses stability to estimate preferences
for colleges in Chile.

To see what can be learned with this information and the final assignments, consider the
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Figure 4: Stability – Both schools are feasible

case with only two schools, 1 and 2, and an outside option, 0. Figure 4 shows five regions
of utilities denoted by Roman numerals. Each region implies different ordinal preferences
except for region V, which pools the cases when ui0 > ui1 > ui2 and ui0 > ui2 > ui1. A
student who is eligible for both schools will be assigned to school 1 if her utilities belong
to either region I or II. Therefore, the share of students assigned to school 1 amongst those
eligible for both schools is an estimate of the total probability mass of the distribution of
utilities in regions I and II. Similarly, the share assigned to school 2 is an estimate of the
total probability mass in regions III and IV.

A student eligible only for school 1 can either be assigned to that school or remain unassigned.
In the former case, we can infer that ui0 < ui1 which is the darkly-shaded region in figure 5.
In the latter case, we infer ui1 < ui0 which is shaded lightly. The share of students assigned
to school 1 amongst these students is an estimate of the total probability in regions I, II, and
III of figure 4.

These arguments are similar to those for standard consumer choice models but differ crucially
in that not all students are assigned to their first-choice school. In this context, a student’s
choice set is constrained by her eligibility. Thus, observed assignments provide no information
about preferences for schools that are not in a student’s choice set. Learning about the full
distribution of ordinal preferences for students with a vector of eligibility score vi will require
extrapolation using data from students with larger choice sets. Fack et al. (2019) perform
this extrapolation by assuming that the unobserved determinants of preferences in equation
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Figure 5: Stability – Only one school is feasible

(1) are conditionally independent of eligibility given the observables included in the model.
Formally, they require that

εi ⊥ vi| zi,di, {xj, ξj}Jj=1 . (10)

This assumption may be a reasonable approximation if zi contains a rich set of student
characteristics but can be violated, for example if eligibility scores are correlated with both
unobserved student ability and unobserved preference parameters.

Under this assumption, the probability of each observed assignment can be used to construct
a likelihood function given a parametrization of utilities. Specifically, let FU∗ denote the joint
cdf of the random vector u∗i with the j-th element equal to u (xj, zi, ξj, εi). We will drop the
conditioning on zi, {xj, ξj}Jj=1 for notational simplicity. The independence assumptions in
equations (4) and (10) obviate the need to condition on di and vi. Under this assumption,
the probability that i is assigned to j given the parameter FU∗ can be written as

P (µ (i) = j|vi = v,p,di = d;FU∗) =
∫

1
{
u∗j − dj ≥ u∗j′ − dj′ for all j′ ∈ S (v; p)

}
dFU∗ .

This expression enables estimation via maximum likelihood or other likelihood-based meth-
ods. Both the logit and the probit models are amenable for estimation. Further details are
discussed in Agarwal and Somaini (2020).

Additionally, this expression shows that the preference shifter d plays a crucial role in iden-
tification. Under our assumptions, d changes the desirability of each school exogenously
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and consequently alters the schools to which students are assigned. This source of variation
provides a wealth of information about agents’ preferences. Consider the probability that
µ (i) = 0, which is equal to the probability that u∗i −di belongs to region V in figure 4. This
probability is identified in the two-school case if both schools are in the choice set or if the
assumption (10) above holds. It is equal to:

P (µ (i) = 0|di = d) = P (u∗i − d ≤ 0) = FU∗ (d) .

Thus, we identify FU∗ (d) by the share of students in region V for di = d. Variation in d

allows us to identify FU∗ evaluated at different values. Finally, equations (1) and (4) imply
that the joint cdf of ui = (ui1, . . . , uiJ) conditional on d is given by FU |d (u) = FU∗ (u + d),
implying that the former is nonparametrically identified.18

Unknown Priorities (College Admissions): We now consider the implications of stability in
many-to-one matching environments where preferences on both sides of the market have to
be estimated. We will use college admissions as an example. The empirical challenge is
not limited to estimating preferences for colleges. The revealed preference arguments for
students that we derived in the school choice context above are not possible here, because
college preferences are unknown.

Nonetheless, a considerable amount of information is available in the matches. Consider the
simple case of J = 2. If student i is observed attending college j = 1, then we can deduce
the following:

• Student i prefers college 1 to remaining unassigned: ui1 ≥ 0.

• Student i clears the threshold for college 1: v1i ≥ p1.

• Either student i prefers college 1 to college 2, or student i does not clear the threshold
for college 2: ui1 ≥ ui2 or v2i < p2.

These restrictions define a set in a four-dimensional space that rationalizes the allocation of
student i to college 1.

Agarwal and Somaini (2021a) show how to learn about preferences on both sides of the market
simultaneously for the model described by equations (1) and (3). In the model discussed in
section 3.1.2, variation in di is used to identify the joint distribution of the J-dimensional
vector of students’ preferences (ui1, ..., uiJ). Similarly, exogenous variation in di and wi can
be used to nonparametrically identify the joint distribution of the 2J dimensional vector
(ui1, ..., uiJ , v1i, ..., vJi) conditional on all observables, up to appropriate scale and location

18It is also possible to develop the same identification argument using any other region in figure 4. We
choose region V because it is the negative orthant, which results in simpler expressions. Therefore, this model
is over-identified.
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normalizations. A closely related prior argument in He et al. (2021) shows a similar result
under more stringent restrictions on equation (1).19

This joint distribution allows for a host of economic phenomena based on unobservable fac-
tors. For example, correlation between uij and uij′ implies that colleges j and j′ are closer
substitutes., i.e. students who like one tend to also like the other; correlation between vji and
vj′i suggests that colleges j and j′ tend to prefer the same set of students; and correlation
between uij and vji suggests that students tend to like colleges that also like them.
A detail about the location normalization in this model is worth noting. As before, it is
possible to normalize ui0 to zero for all i and vj0 to zero for all j. Moreover, if the researcher
has information on the capacity of each college, then it is possible in principle to learn the
distribution of vji for a college that does not fill its seats. This inference is based on students
who have characteristics di that indicate strong preferences for college j, but did not attend
the college and therefore must have been unacceptable to the college. Unfortunately, it is not
possible to use a similar reasoning for colleges that do not have spare capacity. For students
who strongly prefer college j but were not admitted, we can only deduce that vji < pj, and
we cannot determine the location of vji because pj is not observed. One alternative is to set
pj = 0 and to treat these colleges in the same way as those with spare capacity, in order to
obtain the distribution of vji. However, the data are also consistent with any pj > 0 and
a distribution of vji that is shifted by pj. This ambiguity prevents us from identifying the
location parameter of vji when capacity is not known or when we know that capacity limits
are binding. Either case identifies the distribution of the difference vji − pj.
Methods for estimating this model are a subject of ongoing research. He et al. (2021) and
Agarwal and Somaini (2021a) propose a method based on Gibbs sampling and a probit model.
In principle, a simulated minimum distance estimator similar to the one used in Agarwal
(2015) offers another approach. The interested reader should consult these references for
further details.

One-to-one or Few-to-one Matching

We now consider a model in which the number of agents on both sides is large. Agents on
side J may match with more than one agent in some models, but the number that match
with the other side is finite. Thus, as opposed to the continuum model, each agent is now
strategically relevant for others in the market. This feature of the model complicates the
analysis because cutoffs that do not depend on unobservables cannot be used to simplify the
problem.20 This version of the model emphasizes the issues that arise from such strategic

19Specifically, He et al. (2021) assumes that uij = u (xj , zi, ξj)−dij + εij and vji = v (xj , zi, ξj)−wji +ηij ,
whereas Agarwal and Somaini (2021a) can work with the general case in which uij = u (xj , zi, ξj , εi)−g (dij)
and vji = v (xj , zi, ξj , ηi)− wji for a general function g (·).

20Although we did not explicitly write it as such, in the continuum model, equilibrium cutoffs are only a
function of the population distribution of preferences and the mass of agents.
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interactions and was the initial approach taken by the literature.

This model can be analyzed in two ways. The first is based on the canonical single index
model (e.g. Becker, 1973) in which each side of the market is differentiated only by a vertical
quality index. The second is when preferences are heterogeneous so that two agents may have
differing preferences over agents on the other side of the market. We discuss both approaches
below.

Double-Vertical Preferences: In this model, all agents on one side of the market share the
same preferences over all agents on the other side. In our notation, the utility of agent i from
matching with j is

uij = uj = u (xj) + ξj,

where we replace the assumption in equation (4) with ξj ⊥ xj. This model omits both
observed and unobserved sources of quality heterogeneity, resulting in a desirability index
for each agent j denoted by uj. The term u (xj) is the component explained by observables
xj, and ξj the unobserved component. The preferences on the other side of the market are
analogous:

vji = vi =v (zi) + ηi,

where ηi ⊥ zi. The location for utilities is normalized by either setting the value of the
outside option to 0 or picking an arbitrary value x̄j and setting u (·) to zero at that value.
Because the model does not have a quasilinear term dij for normalizing the scale, we also set
the slope of u (x̄j) with respect to one of its components to one. The normalization on the
other side of the market is analogous.

Chiappori et al. (2012) analyze a one-to-one matching model with these preferences. They
assume that the researcher has access to data on the agents’ observable characteristics in a
matching market. This approach therefore observes the joint distribution FX,Z of matched
agents’ observable characteristics. Here we follow their convention in referring to side I as
men and to side J as women.

In this model, a match is stable if and only if it exhibits perfect assortative matching on uj
and vi. In such a set of matches, the t−th most desirable man matches with the t−th most
desirable woman. Therefore, if FU and FV are the cumulative distribution functions of uj
and vi, respectively, then an agent with characteristics (xj, ξj) is matched with an agent with
characteristics (zi, ηi) only if:

u (xj) = F−1
U (FV (v (zi) + ηi))− ξj. (11)

Now, consider two men i and i′ with identical values of the observed index, v (zi) = v (zi′).
These two men could have different values of η, and therefore their mates may differ. How-
ever, if we consider two populations of men, one with observed characteristics zi and the
other with observed characteristics zi′ , then the distribution of their desirability to women
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including the η terms will be identical. Thus, the two populations of men will have the
same marriage prospects and the women they match with will have the same distribution of
observed characteristics.

In the terminology employed by Chiappori et al. (2012), this reasoning allows us to identify
“iso-attractiveness profiles” for men by looking at which vertical types end up matching
with women with the same distributions of observable characteristics. The same reasoning
allows us to identify iso-attractiveness profiles for women. Chiappori et al. (2012) posits vi
as depending on observable characteristics. Formally, they show that for any function φx of
observables xj there exists a function φv of the index v so that E (φx (xj)| zi) = φv (v (zi)),
where E [·] is the expectation operator. The left-hand side is observable, and the right-hand
side is a composition of two unknown functions. Differentiating both sides with respect to
two components of zi, we can measure the following marginal rate of substitution

∂v (zi) /∂zi,k
∂v (zi) /∂zi,l

= ∂E (φx (xj)| zi) /∂zi,k
∂E (φx (xj)| zi) /∂zi,l

because the right-hand side is observed.

A natural question to ask is whether it is also possible to sort the level curves according to
their desirability level. Since the argument above only provides the ratio of derivatives, there
is no a priori way to know if desirability is increasing in any specific component. It is therefore
necessary to assume there is a characteristic that is known to be valued monotonically and
is desirable.

A limitation of the argument described above is that we are only able to assess the relative
importance of two different components of the observables. In other words, the marginal
rate of substitution between xj,k and xj,k′ can be determined for any k and k′, but we
cannot determine the marginal rate of substitution between xj,k and ξj. More broadly, it is
not possible to determine the contribution of the observables on either side to the overall
variation in preferences.21

One conjecture is that it is not possible to identify preferences on both sides of the market
in a one-to-one matching market. Diamond and Agarwal (2017) prove this conjecture for
double-vertical preferences. As argued above, it is possible to learn the functions u (·) and
v (·) under mild restrictions. However, if there are unobserved determinants of preferences on
either side of the market, then the matching will not be perfectly assortative in these indices.
This is because the match is assortative on uj = u (xj) + ξj and vi = v (zi) + ηi, not only
on the components u(xj) and v(zi) that can be predicted by observables. However, the data
can be rationalized by either setting ξj ≡ 0 for all j or ηi ≡ 0 for all i. This result follows

21Observe, however, that the polar cases when ηi and ξj are both identically equal to zero for all i and
j can be ruled out. This is because equation (11) above reduces to u (xj) = F−1

U (FV (v (zi))). In this
case, men with a given set of.characteristics zi match with women whose observables lie exactly on the same
iso-attractiveness curve.
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because the double-vertical model only places a single restriction expressed in equation (11),
but there are two unobservables in the model, ξj and ηi. In other words, the matches are
governed by unobserved determinants of preferences on both sides of the market, making
them hard to disentangle.

Diamond and Agarwal (2017) go on to show that this problem can be solved in many-to-one
matching markets, since a setting in which each agent j can match with multiple agents i on
the other side has significantly more information than a market with one-to-one matching.
An iconic example is the National Residency Matching Program, which uses a variant of the
deferred acceptance algorithm (Roth and Peranson, 1999). While each resident is assigned
to at most one program, each program can match with several residents. The number of
residents to which each program j is matched can be as low as two. For this reason, we term
such markets few-to-one matching markets.

As before, if preferences on both sides are vertical, matches are stable if and only if they
exhibit perfect assortative matching. In other words, in any stable match, the most preferred
residents are allocated to the most preferred hospital until its vacancies are filled. The second
most preferred hospital takes the most preferred remaining residents and so on.

More formally, in such a market, consider a pair of residents i and i′ matched to the same
hospital j. Equation (11) generalizes to:

u (zi) = F−1
U (FV (v (xj) + ξj))− ηi

u (zi′) = F−1
U (FV (v (xj) + ξj))− ηi′ (12)

Similarly to the marriage market problem, the lack of perfect sorting based on observables
indicates the presence of the errors ηi and ξj. However, the composition of the incoming cohort
in each program provides additional information about each error term’s contribution. The
expressions in equation (12) suggest that dispersion in the η terms, the unobserved shocks
affecting residents’ desirabilities, will cause a program to admit residents with heterogeneous
observable determinants of human capital. Thus, the unobservables ηi contribute to the
variance in the observable characteristics of residents within each program.

This model can be estimated using a simulated minimum distance estimator (Agarwal, 2015;
Diamond and Agarwal, 2017), which consists of the following steps. First, define a set of
moments in the data m to be matched with our model. Second, fix a vector of parameters
θ = {β, γ, ση, σξ} for the model and use them to simulate stable matches and obtain a
simulated set of moments m(θ) as a function of the parameters. Third, compute the distance
between the simulated moments and the moments observed in the data, e.g. ‖m−m (θ)‖W =√

(m−m (θ))′W (m−m (θ)). Fourth, search over θ to minimize the distance.22

22Train (2009) provides an overview of best practices.
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Agarwal (2015) uses three sets of moments for estimation. The first set of moments sum-
marizes the general sorting patterns of residents across programs. Recall that xj and zi are
column vectors; thus, xjz

′
i is a matrix. Averaging this matrix over all matches yields:

1
I

∑
i∈I

∑
j∈J

1 {µ (i) = j}xjz
′
i.

The second set of moments computes the within-program variances of resident observables
for each component zi,` of zi:

1
I

∑
i∈I

(zi,` − z̄i,`)2 ,

where z̄i is the vector of average characteristic values of i’s peers, that is, of residents matched
with the same program. The third set of moments computes the correlation between resi-
dents’ characteristics and the average characteristics of the residents’ peers for each set of
components zi,` and zi,k for k 6= `:

1
I

∑
i∈I

zi,`ẑi,k,

where ẑi is the average characteristics of i’s peers excluding i.

The first set of moments summarizes the same type of information about the allocation as
regressions of an individual’s characteristic on those of her match partner (see Chiappori et
al., 2012, for example).23 Both summarize the aggregate sorting patterns based on observable
characteristics. The second and third sets of moments include additional information that is
required to identify each error term’s contribution.

An open question is whether it is possible to relax the assumptions of the double verti-
cal model. Agarwal (2015) assumes that programs have vertical preferences over doctors,
but doctors’ preferences over programs include some horizontal components. For example,
doctors are more likely to be allocated to programs in their birth state or medical school
state. This feature cannot be rationalized by a double-vertical model. Instead, it indicates a
resident’s geographical preference for training close to home.

Heterogeneous Preferences: To make progress on allowing for heterogeneity in preferences,
Menzel (2015) considers a model in which the utilities are parametrized as follows:

uij = u (xj, zi) + εij

vji = v (xj, zi) + ηji,

ui0 = 0 + maxk=1,...,J {εi0,k}, and vj0 = 0 + maxk=1,...,J {ηj0,k}. The error terms εij, εi0,k, ηji
23Sorting patterns and simulation-based estimation methods have also been used in Boyd et al. (2013) to

estimate teachers’ preferences for working at various schools. Although Boyd et al. (2013) have access to data
from many-to-one matches, they do not use this information to construct the latter two sets of moments. As
a result, their approach may be susceptible to the non-identification issues discussed above.
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and ηj0,k are independent and identically distributed with an upper tail that is of type I. The
paper considers the limit of a sequence of economies indexed by J with an equal number
of agents on each side and J growing large. Notice that the outside option also becomes
more attractive as J increases. This choice is made in order to make sure that the remaining
unmatched stays attractive even in a large market with many draws of εij and ηji.

Under these assumptions, Menzel (2015) shows that the limiting probability density function
of the agent types matched with each other, denoted f (x, z), has a very tractable functional
form. Specifically,

log f (x, z)
f(∗, z)f(x, ∗) = exp (u (x, z) + v (x, z)) ,

where f(x, ∗) is the density of agents on side I remaining unmatched, and analogously,
f(∗, z) is the density of agents on side J remaining unmatched. This convenient functional
form is derived from the core insight that if some set Ji is willing to match with agent i,
then the probability i gets matched with j is the probability that j is i′s most preferred
option in the set Ji. Similarly, i must be j′s most preferred option. These probabilities are
given by a logit-like formula in a large market and are therefore proportional to exp (u (x, z))
and exp (v (x, z)) for sides I and J , respectively. Hence, f (x, z) is proportional to the
product exp (u (x, z) + v (x, z)). The probability of remaining unmatched provides the right
normalizing constant.

Another approach, from Sorensen (2007), is to assume that matches depend only on the
joint surplus S (xj, zi, εij, ηji) = u (xj, zi) + v (xj, zi) + εij + ηji, but the partners split this
surplus via Nash bargaining after the match is formed. That is, side I receives a fraction
λS (xj, zi, εij, ηji) from a realized match and side J receives (1− λ)S (xj, zi, εij, ηji) for some
λ ∈ [0, 1]. Using the terminology of Niederle and Yariv (2009), this model exhibits aligned
preferences, resulting in a unique pairwise stable match. Sorensen (2007) uses a Bayesian
approach to estimate the joint surplus in the market for venture capital, targeting the joint
surplus function S (xj, zi, εij, ηji) directly.

These results suggest a different limitation of data from one-to-one matches, this time in a
model with heterogeneous preferences. Namely, only the sum of the surplus on the two sides
of the market is identified.24 The difficulty lies in trying to determine whether the preferences
on side I or on side J are driving the observed matches.

3.2 Transferable Utility Models

We now turn to models of (perfectly) transferable utility. As a reminder, the equilibrium in
these models govern the match between agents as well as the transfer. Such models have

24In early work, Logan et al. (2008) used a Bayesian approach to estimate both men and women’s hetero-
geneous preferences regarding their partners. However, we are not aware of results that show identification
of this model.
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been used to analyze the marriage market, partnerships between car manufacturers and their
suppliers (Fox, 2018), and spectrum auctions (Fox and Bajari, 2013). Empirical analysis in
these settings is typically conducted only with data on final matches, usually with transfers
that are not observed. The data include information on agents and their match partners.
The goal is typically to estimate the joint surplus as a function of these characteristics. This
surplus can be flexibly split between the match partners.

There are two canonical approaches for analyzing models of transferable utility.25 The first
approach is based on Choo and Siow (2006) and its generalizations (e.g. Galichon and Salanie,
2020). These models assume parametric forms of unobserved heterogeneity in payoffs that
are additively separable. The second approach, based on Fox (2018), is semi-parametric.
It considers deviations from the observed match to construct an estimator. The discussion
below explores these two approaches.

3.2.1 Models with separable unobserved heterogeneity

Each agent is characterized by one of many discrete types. For simplicity, we will refer to
these sides as workers and firms and assume that each firm can hire only one worker. Let
xi ∈ X denote the observed type of worker i. The set X is finite so that each worker belongs
to one of many discrete types. Similarly, let yj ∈ Y be the observed type of firm j, with Y
finite. We assume there are infinitely many workers and firms of each type participating in a
single market. We observe the match frequencies between various types of firms and workers,
either in the population or through a large enough random sample.

The payoff to worker i from matching with firm j is given by

uij = αxiyi
+ txiyj

+ εiyj
,

where αxy is the systematic surplus a worker of type x receives from matching with a firm
of type y, txy is the equilibrium transfer between a worker of type x and a firm of type y,
and εiy is an idiosyncratic unobserved payoff to worker i from matching with a firm of type
y. The value of remaining unmatched is given by

ui0 = αxi0 + εi0.

Similarly, the payoff of firm i from matching with worker i is given by

vji = γxjyi
− txjyi

+ ηjxi
,

where γxy is the systematic surplus a firm of type y attains from matching with a worker of
25We refer the reader to Chiappori and Salanié (2016) and Galichon and Salanie (2021) for surveys of this

literature, which discusses related approaches and issues specific to these models in greater detail.
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type x, and ηjxi
is an idiosyncratic unobserved payoff to firm j from matching with a worker

of type x. The value of remaining unmatched is given by vj0 = γ0yj
+ ηj0. Throughout, we

assume that εiy and ηjx are independent and identically distributed. Since we are interested
in estimating payoffs relative to remaining unmatched, we normalize αx0 and γy0 to zero.
Since each worker is indifferent between matching with any two firms of the same type, given
a vector of transfers t = (txy)x∈X ,y∈Y , worker i would choose to match with a firm of type y
only if

y ∈ arg max
y′

(αxiy′ + txiy′ + εiy′) .

Analogously, each firm would choose to match with a worker of the type that maximizes its
payoff. The vector of transfer t is an equilibrium if the total number of workers of type x
that demand a match with firms of type y is equal to the total number of firms of type y
that demand a match with workers of type x. The restriction that the transfers depend only
on the types of the workers and firms can be supported in equilibrium.
Choo and Siow (2006) studied the special case of this model when the unobserved payoffs εiy
and ηjx each follow a type I extreme value distribution. Under this assumption, the demand
for x− y jobs from the worker side is given by

lnµdxy = lnµdx0 + αxy + txy,

where µdxy is the share of x−y jobs demanded in the economy, and µdx0 is the share of workers
that demand unemployment at the transfer vector t. The resulting equation can be derived
from the familiar logit model. Likewise, the supply of x− y jobs from the firm side is given
by

lnµsxy = lnµs0y + γxy − txy,

where µsxy is the share of x−y jobs supplied and µs0y is the share of unfilled jobs at firm types
y. The market clears if µxy = µdxy = µsxy. Summing the two equations, we get

2 lnµxy − (lnµx0 + lnµy0) = αxy + γxy ≡ Φxy.

Thus, the systematic part of total surplus Φxy can be identified from observing the shares of
matches between each pair of types (x, y) ∈ X ×Y . In addition, the systematic gain a worker
of type x acquires from matching with a firm of type y, given by αxy + txy, can be identified
from the demand equation. Likewise, the gain a firm of type y receives from matching with
a worker of type x can be identified from the supply equation.26

Galichon and Salanie (2020) generalize this argument by accommodating other parametric
assumptions on εiy and ηjx. The arguments are based on recognizing that a pairwise stable
equilibrium of a transferable utility model maximizes the social surplus and then working

26These quantities can be estimated either via maximum likelihood or by simply inverting for the quantities
of interest using the equations above.



50

with the dual version of the problem. The framework maintains the additive separability
and independence of εiy and ηjx from the systematic component payoffs. This assumption
allows the total social surplus function Φxy and the distributions of εiy and ηjx to be flexibly
parametrized. We refer the reader to Galichon and Salanie (2021) for a more detailed review
of related approaches.

This baseline model assumes that utility is perfectly transferable between match partners
via txy. Galichon et al. (2019) extend this framework to include cases in which transfers
are imperfect. This approach considers a feasible set of utilities for each match partner as
a function of the underlying match values, αxy and γxy. Indeed, this model incorporates
important examples such as taxes or frictions that may result in loss when transfers are
necessary.

3.2.2 Semi-parametric approaches

A line of research initiated in Fox (2010; 2018) develops a semi-parametric approach for esti-
mating matching models with transferable utility that relaxes the distributional assumptions
discussed above. We start with a one-to-one matching market for simplicity, say between
upstream and downstream firms. Consider the problem faced by an analyst who observes
the matches but not the transfers or underlying contract terms. The goal is to estimate the
underlying surplus generated by the matches as a function of a set of observed characteristics.

Assume the payoff that downstream firm i receives from matching with firm j is given by
πdij − tij, where tij is the transfer from the downstream firm to the upstream firm. Similarly,
let πuij + tij be the profits the upstream firm j accrues from matching with the downstream
firm i and receiving the transfer tij. Thus, the total surplus from a match between firms i
and j is equal to fij = πuij + πdij. Normalize the profits of remaining unmatched to zero on
both sides of the market for each firm.

As discussed in Part II, a pairwise stable match maximizes the total surplus in the economy
subject to feasibility constraints. Let µ be such a match, where µij = 1 if i is matched with
j, and zero otherwise. Feasibility requires that ∑i µij ≤ 1 and ∑j µij ≤ 1 since each agent
can match with at most one agent on the other side of the market. Since µ maximizes the
total surplus, under any alternative feasible match µ′, it must be that ∑ij µ

′
ijfij ≤

∑
ij µijfij.

Suppose we observe that i is matched with j and i′ is matched with j′. Because swapping
the partners of i and i′ cannot increase the total surplus, it must be that

fij + fi′j′ ≥ fij′ + fi′j.

Another way to derive this inequality is to note that if i matches with j, then it must be that
πdij − tij ≥ πdij′ − tij′ and πuij + tij ≥ πui′j + ti′j. An analogous pair of inequalities holds because
i′ matches with j′. Summing these four inequalities yields the version of interest since the
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transfers cancel.

It is worth noting that the inequality above depends only on the joint surplus, not the
underlying transfers. This suggests we may be able to circumvent the data limitation of
unobserved transfers. Fox (2018) uses this insight to make progress using a maximum score
inequality akin to those developed in Manski (1975) for binary choice models. Specifically,
let xijθ be an approximation for fij, where xij denotes a vector of observable characteristics
that vary across partnerships. If there are no unobservables, then we would get that

xijθ + xi′j′θ ≥ xij′θ + xi′jθ.

Based on this observation, Fox (2018) proposes maximizing the objective function

S (θ) =
N−1∑
i=1

N∑
i′>i

1 {xijθ + xi′j′θ ≥ xij′θ + xi′jθ}

in order to estimate θ. This objective function counts the total number of pairwise inequalities
correctly predicted by a value of θ, a measure of statistical fit. The maximizer yields the
least number of violations.27

One consideration in interpreting this approach is that no value of θ is likely to correctly
predict all the inequalities. A common reason is that there are unobserved characteristics
that influence payoffs. Thus, the question is whether a value of θ that maximizes S (θ) also
maximizes a version with unobservable terms in the payoff. Graham (2011; 2014) shows
that this property, known as the rank-order property, holds when payoffs are of the form
fij = xijθ+εij with independent and identically distributed εij. Fox et al. (2018) extends this
result to more general forms of unobserved heterogeneity, relaxing the additive separability
of error terms.

As is clear from the maximum score inequality, the approach allows us to estimate the effects
of interactions between the characteristics of a pair of agents. In particular, coefficients on
any component of xij that only varies across i or only across j cannot be identified.

This basic approach can allow for many-to-many matching that involves trading networks
in Fox (2018), which builds on equilibrium models in a continuum economy (Azevedo and
Hatfield, 2018). Variants of the approach have been analyzed to study the efficiency of FCC
spectrum auctions (Fox and Bajari, 2013) as well as mergers (Akkus et al., 2016).

27We refer the reader to Fox (2010) for a more detailed discussion of the asymptotic properties of this
estimator and an extension to multiple matching markets. The maximum score estimator has convergence
rates that are slower than root-N .
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3.3 Extensions

Dynamics The models described so far in this chapter are static, in that all agents arrive
to the market simultaneously and match once and for all. There are many cases in which
matching occurs over time. For example, in the markets for child care, public housing, and
organ transplants agents or units on one side of the market arrive over time, while agents on
the other side can wait. These allocation systems often use waitlists to prioritize agents on
the waiting side. Agents on the waiting side have to decide whether to match with a unit
that has just arrived. These decisions reveal agents’ preferences in the same way that reports
do for static allocation systems. Leveraging this insight, Agarwal et al. (2021) studied the
system that allocates deceased donor kidneys in the U.S.; Waldinger (2021) analyzed public
housing allocation; Verdier and Reeling (2021) analyzed bear-hunting licenses.

In other cases, both sides of the market have preferences and match over time. For example,
Gandhi (2020) studies the market for nursing homes in which patients who need long-term
care arrive over time and nursing homes decide whether to admit them or to hold a spot for
a more profitable patient in the future. Similar considerations are important in Liu et al.
(2021), who studies a peer-to-peer ride-sharing market in which drivers decide whether or
not to give a passenger a ride or wait for the next passenger.

Peer Effects A central assumption in the models described above is that each agent has
preferences only over who they match with. There is relatively little work on externalities,
whereby others’ matches also affect an agent’s payoffs. One salient example occurs when
agents have preferences over their peer group. For example, students may derive utility
from their classmates, and workers may have preferences over their co-workers. In this case,
i’s preference for j can depend on the set µ−1 (j). Some work on education markets has
addressed these issues (e.g. Epple et al., 2018; Allende, 2019). The typical approach here
is to assume preferences for aggregate statistics of the composition of the student body in
equilibrium.

Complex Preferences The methods described in this section mostly are developed for
environments where agents require a single unit (e.g., a school placement, a job, a marriage
partner) or agents’ preferences over multiple units are additive separable (e.g., a hospital
hiring multiple residents). In the context of auctions, there is now an active literature on
preference estimation in environments where bidders have more complex preferences over
bundles of objects, such as substitutes and complements (see Cantillon and Pesendorfer,
2006; Reguant, 2014, for example). A similar estimation problem presents itself in matching
and assignment markets with multi-unit demand. A particularly challenging version of this
problem presents itself in the combinatorial assignment context, where the choice set and



53

therefore the space of preference types is high-dimensional (Budish and Kessler, 2021). Em-
pirical approaches will need to consider both the problem of representing and estimating such
preferences. As discussed in Section 4.3, this issue is also related to eliciting such preferences
in practice.

Competition

One important reason why agents may care about matches other than their own is competitive
effects, which are particularly important in settings concerning IO. For example, Uetake and
Watanabe (2020) model an entry game in the banking industry using the tools of two-sided
matching games in which a bank can enter a market by merging with an incumbent. In
this entry game, payoffs are affected by the competitor banks that match in the market.
Similarly, Vissing (2018) models the market for oil drilling leases as a matching game between
oil companies and landlords who hold mineral rights. In this model, the terms that an oil
company can negotiate depend on their overall market presence. A challenge in these settings
is lies in finding an appropriate notion of stability that allows for externalities.28

A different approach to the formation of partnerships has been taken in IO and the study of
vertical relationships in particular. Like in models of matching with transferable utility, these
models analyze the relationships between upstream and downstream firms. Externalities,
due to competition, are typically modeled through product market competition. Examples
include the formation of networks between health insurance providers and hospitals (Ho,
2009), and relationships between content producers and cable-television service networks
(Crawford and Yurukoglu, 2012). Chapter [insert chapter on vertical relationships] provides
a more thorough review of this literature.

4 Designing Markets

This section discusses three primary goals in market design research. The first is to diagnose
potential market failures and identify their causes. The second, complementary goal, is to
evaluate markets and compare alternative designs in an effort to understand the qualitative
and quantitative effects of various designs. The third goal is to propose new, improved
designs, building on what we have learned from the first and second goals.29 The discussion
below is broader than the more specific focus on matching markets that was necessary to
keep parts II and III of this chapter self-contained.

28Conditions for the existence of stable matchings with externalities is an active area of theoretical research.
We refer the reader to Pycia and Bumin Yenmez (2021), Fisher and Hafalir (2016), and references within for
some recent results.

29Naturally, this classification is not exhaustive and several papers often have multiple objectives. Our
hope is to organize what we see as the primary goals in market design research.
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4.1 Diagnosing Market Failures

Market design researchers often emphasize that seemingly small details about market rules
can have a large impact on the ultimate performance of a market (see, for example, surveys
by Roth (2002) and Klemperer (2002)). Put another way, flawed market rules can lead to
market failures. In this sub-section, we give readers a brief tour of the kinds of market
failures that have been documented. For each type of market failure, we give one or two
leading examples, and then additional literature pointers. Some types of market failures that
emerge in market design contexts will often be familiar to IO researchers.

Market Power. Exercise of market power, leading to inefficiency, has been documented in
a variety of market design settings in which some participants are “large,” suitably defined
for the setting.
A recent example is the exertion of market power in the US Spectrum Incentive Auction
(Milgrom and Segal, 2017, 2020) The auction design had the feature that it was strategy-
proof for “small” sellers — defined as owners of at most a single television license per region
— to reveal their true reservation value truthfully. However, as is commonly the case in multi-
object auctions, sellers with multiple licenses could exert market power by withholding some
of their supply. This is known as “supply reduction” (or, analogously, “demand reduction”)
in the literature (Ausubel et al., 2005, 2014).
Many broadcast television licenses were indeed owned by relatively small firms, e.g., the
local NBC affiliate, making this feature that the auction was strategy-proof for small sellers
desirable. However, after the auction was announced but prior to its taking place, some
private equity firms aggregated broadcast television licenses from multiple sellers in a given
region. This allowed them to then exert market power, by holding back some of the licenses
from the auction. Doraszelski et al. (2019) estimate that payouts to station owners were
higher by between 7-20% as a result of this exercise of market power.
This episode illustrates the importance of considering the “larger game” in which a particular
market design takes place (Roth, 2018). It also echoes the guidance of Klemperer (2002) that
in auction design, traditional IO issues such as market power, collusion, and entry can be
as important as market design per se. Milgrom (2020) emphasizes that the inefficiency
and increase in costs caused by this outside-the-game move, while worse than nothing and
arguably preventable, should be considered relative to the magnitudes of the efficiency gains
from the reallocation of spectrum and the revenue realized by the federal government.

Collusion. Centralized assignment mechanisms have sometimes been viewed with suspi-
cion as a tool for facilitating collusion. In 2003, a group of former medical residents sued
several medical associations and the National Residency Matching Program (NRMP) for fix-
ing residency salaries at below competitive levels (Jung et al. versus Association of American
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Medical Colleges et al., 2002). The NRMP uses the Roth and Peranson (1999) algorithm,
which is a variant of the Gale-Shapley Deferred Acceptance Algorithm, to place newly minted
medical school students at residency programs. The plaintiffs argued that the match serves
as a coordination device that is used to prohibit bargaining and to keep salaries low. In a
brief submitted on behalf of the plaintiffs, Orley Ashenfelter argued the work done by med-
ical residents is similar to that of nurse practioners, suggesting that a perfectly competitive
market would result in salaries for residents that are approximately $40,000 higher.

A subtlety in this market, relative to other labor markets, is that hospitals set salaries
uniformly across all of their residency positions, and do so before knowing which particular
residents they will be matched with. Bulow and Levin (2006) analogize the restriction on
salaries with having to offer the same salary for Barry Bonds (one of the greatest baseball
players of all time, modulo subsequent concerns about performance-enhancing drug use) as
for Mario Mendoza (a player who somehow became famous for mediocrity). They showed
that this feature can depress and compress salaries relative to a competitive equilibrium.30

The suit was dismissed following an exception to antitrust law enacted by Congress in 2004,
but left open the question of whether the design of the match is responsible for low salaries.
Empirical studies, however, suggest that the match may not be directly responsible for low
salaries. Niederle and Roth (2003a) show that salaries at medical fellowship markets that
operate with and without the match are similar. Agarwal (2015) provides a rationale for
this result, arguing that much of the salary gap arises due to market power issues that are
unrelated to centralization. Medical residency programs have a limited number of accredited
positions. Residents value training at these programs and are willing to take a salary cut. In
particular, prestigious programs can reduce their salaries without substantially affecting the
quality of residents they attract. Using estimates of residents’ willingness to pay for training
at various programs, Agarwal (2015) estimates that more than half of the salary gap can be
explained by an implicit tuition for training at desirable programs. This gap would remain
even in the absence of a match.

There have also been numerous studies of collusive behavior in auction settings. To name a
few, Friedman (1991) famously alleged collusion in the market for US treasury bonds, which
ultimately led to a market-design change from pay-as-bid to uniform-price; Porter and Zona
(1993) demonstrate bid rigging in highway procurement auctions; and Klemperer (2002)
describes some famous examples in the 1990s spectrum auctions.

Rent Seeking. Budish et al. (2015) study rent seeking in the context of high-frequency
trading and modern financial markets. They show that the design of modern financial ex-

30It is worth emphasizing that the restriction on the salaries is not due to centralization per se. Crawford
(2008) proposes a design reform that would allow both sides of the market to submit ranks that depend on
various salary levels. Such a design could approximate competitive outcomes, although it may be burdensome
to implement.
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changes, in which time is continuous and orders are processed serially (i.e., one-at-a-time)
creates arbitrage opportunities that are a pure contest in speed. For example, if the S&P 500
futures contract goes up in price, this will lead to an arbitrage opportunity to buy S&P 500
exchange traded funds. These arbitrage opportunities in turn induce a socially-wasteful rent
seeking competition. In equilibrium, the marginal firm’s expenditure on speed leaves them
with zero economic profit, just as in a standard rent-seeking tournament.
Leslie and Sorensen (2014) study rent seeking in the context of the market for concert tickets.
In that market, ticket brokers often race to purchase underpriced tickets, with the intent of
reselling in the secondary market. Leslie and Sorenson build a structural model in which
they can quantify both the rent-seeking aspects of ticket resale and the potential for effi-
ciency gains from reallocation. Bhave and Budish (2018) study the mid-2000’s introduction
of primary-market auctions to the event ticket market by Ticketmaster, and, by matching
primary-market auction data to secondary-market resale values from eBay, find that the auc-
tions eliminated the scope for broker rents (as auctions should). Interestingly, however, the
primary-market auctions were abandoned by Ticketmaster, who around the same time made
a big push to enter the secondary-market — and hence get a piece of the resale rents them-
selves (Budish, 2019). Other useful references on this market, which has long captured the
attention of economists, include Courty (2003, 2019); Sweeting (2012); and Krueger (2019).
Other recent studies that relate to rent seeking and market design include: Hakimov et al.
(2019) on black markets for appointment slots, and and Budish (2018) on the rent-seeking
tournament by bitcoin miners.

Participation and Entry. An important requirement for successful design is that agents
have incentives to participate in the market. Otherwise, potentially valuable transactions
will not be realized. In fact, Bulow and Klemperer (1996) show that securing an additional
bidder’s participation in a standard auction without a reserve price increases revenue more
than using the optimal auction. The message is that participation is more important than
optimal design.
The need to encourage participation has guided design in other contexts as well. Central-
ized matching mechanism design implicitly acknowledges this goal via emphasis on stable
matching mechanisms. A mechanism that satisfies this property reduces the incentives for
agents in the market to match outside the mechanism or to disobey proposed assignments.
But satisfying this property is not always without costs as relaxing this requirement can
often enable more efficient matches if other aspects of agent behavior can be held fixed.31

Nonetheless, stability is considered an important property in part because empirical obser-
vation suggests that markets that do not produce stable outcomes often collapse because
agents start transacting outside the system (Roth, 1991, 2002, 2008).

31For example, in a school choice model, Kesten (2010) shows there are no strategy-proof mechanisms that
are both stable and efficient.
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Market Fragmentation. Non-participation or partial participation can have particularly
stark consequences because a fragmented marketplace can make it hard to find all potential
transactions. Ashlagi and Roth (2014) and Agarwal et al. (2019) analyze this problem’s
causes and consequences in the living donor kidney exchange market. This market enables
transplants for patients with kidney failure who have willing but incompatible living donors.
Kidney exchanges are facilitated by individual hospitals or one of three large multi-hospital
platforms. Thus, it is more efficient to co-ordinate exchanges via the large multi-hospital
platforms because they can explore a greater set of potential transactions.
Unfortunately, a design flaw in the mechanism used by the platforms is partially responsible
for the fragmented market structure. Specifically, the design gives incentives to the hospitals
to retain some of their easiest-to-match patient-donor pairs and match them with hard-to-
match pairs. This internal matching is instead of registering both pairs with a platform,
causing fragmentation. The flaw in the design can be remedied by instituting incentives
via priorities for patients at hospitals that participate to a greater extent. In addition to
this problem, fragmentation may also result from unreimbursed fixed and variable costs of
participating in a platform. Agarwal et al. (2019) estimate that proper co-ordination can
result in more than a 30% increase in the total number of kidney exchange transplants.
Realizing these gains would require addressing fragmentation by using either a mandate or
both reimbursement reform and a redesign of the platform’s algorithm. Both approaches
bring up important and subtle issues that are left for future research.
Similar market fragmentation has also been documented and analyzed in the context of
Chilean higher education (Kapor et al., 2020b). A centralized admissions system is used by a
large number of prestigious colleges in Chile but a significant portion of the higher education
sector does not participate on the platform. Frictions in the market result in inefficient
clearing because admissions across the two paths to colleges are not well coordinated. Using
estimates of a model that combines preferences and student achievement effects, they show
the benefits of eliminating this market fragmentation.

Investment and Innovation. Chapter [insert chapter on innovation by Williams] pro-
vides a survey of the literature on incentives for innovation. One recent study that relates
specifically to innovation in the context of market design is Budish et al. (2020). It uses
theory and data to study the industrial organization of modern electronic stock exchanges,
and uses the model to understand the incentives of exchanges to innovate on their market
designs in ways that reduce some of the harms associated with high-frequency trading. One
conclusion is that private innovation incentives diverge from social incentives, because ex-
changes earn economic profits in the status quo from selling inputs into the arms race for
trading speed. Innovating to address the negative aspects of high-frequency trading would
undermine this source of economic rent.
As Budish et al. (2020) point out, in many of the market design implementations that are



58

well known to the literature — spectrum auctions, the medical match, school choice, kidney
exchange, course allocation — the entities making adoption decisions are governments or non-
profit organizations. In this context, where the key players are for-profit financial exchanges,
private innovation incentives will play a role in whether socially optimal market designs
are implemented. This intersection of IO, market design and innovation incentives seems a
fruitful space for future research.
A different question concerns the incentives of participants in a designed marketplace to
undertake costly investments, e.g., in increasing their values or reducing their costs. There
is a classic result in the context of Vickrey auctions that, under some conditions, private
investment incentives are socially efficient (Rogerson, 1992). The reason is that the Vickrey
auction implements the socially efficient allocation in an incentive-compatible manner by
giving each agent their marginal contribution to social welfare as private surplus (e.g., in a
single-object private-values auction, the highest bidder gets as surplus the difference between
their value and the second highest-value, which exactly aligns private and social incentives
to increase one’s private value). A recent paper of Hatfield et al. (2021) extends this idea
to a more general mechanism design environment that includes many auction and matching
problems as special cases.
Search Costs.
The baseline theoretical and empirical models assume away costs of participating in central-
ized marketplaces. However, real-world markets are characterized by frictions that are costly
to overcome. For example, students and their parents spend time and effort learning about
schools in their district. And, schools and employers exert effort in evaluating applicants.
These frictions can result in suboptimal outcomes that can be important to manage. He and
Magnac (2020) argue that increases in evaluation costs associated with making it easier for
students to submit a large number of applications may outweigh the improvements in match
quality. One way to mitigate this externality is to levy appropriately calibrated application
fees.
In other cases, applicants may be applying to too few options because of costly search. This is
especially true if evaluating and processing applications imposes negligible costs, as is the case
in many centralized school choice systems. Using detailed data from the application process
and a survey conducted right after applications are submitted, Arteaga et al. (2021) show
that over-optimism about admission chances results in sub-optimally low search and too few
school options being ranked. As a remedy to the resulting market failures, they demonstrate
the value of matching platforms with personalized warnings for applicants whose tentative
rank-order list leaves substantial estimated risk of non-placement.

Strategic Misreporting. Most market designs encountered in the literature have the
property that, if participants report their preferences truthfully, the market will produce an
efficient allocation, suitably defined given the context.
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However, many market designs used in the world induce participants to strategically mis-
report their preferences, sometimes signficantly, and this can lead the market to produce
allocations that are efficient with respect to the reported preferences, but inefficient with
respect to the underlying truthful preferences.

An early suggestive example in the matching literature is Roth (1991), which shows that
medical specialties that used a matching algorithm called the priority match, as opposed to
deferred acceptance, often abandoned their match, suggesting inefficiency. Also suggestive
was early evidence on the Boston mechanism for school choice, for example Pathak and
Sonmez (2008), which provided various forms of anecdotal evidence about some parents
strategically misreporting their preferences while other parents participated more naively. In
the next subsection, we discuss empirical work that has documented how agents behave when
confronted with a manipulable school choice system. This work also quantifies the effects of
this manipulation by comparing this mechanism to strategy-proof alternatives.

Concrete quantification of the harms from strategic preference misreporting is provided in
Budish and Cantillon (2012). The context of that study is course allocation at Harvard Busi-
ness School (HBS). HBS uses a mechanism colloquially known as a “snake draft”, in which
students take turns choosing courses one at a time, with the order reversing in each round
(thereby “snaking” up and down the list of students, see Section 2.3.6). That mechanism
provides incentive to strategically misreport, so as not to waste early round draft choices
on courses that could be safely obtained in later rounds. The authors have both the actual
(potentially strategic) reported preferences, as well as data on students’ underlying truthful
preferences from an administrative survey. These data are used to directly document that
students strategically misreport their preferences in the direction suggested by the theory,
and to calculate the effects of strategic misreporting.

4.2 Evaluating and Comparing Designs

In order to understand how market design may affect outcomes, it is important to compare
existing designs to each other and to alternatives. The theoretical literature has found that
it is often hard to simultaneously satisfy all the properties a designer might like to (see
Vulkan et al., eds, 2013 and Roth, 2018). For cases where comparing two mechanisms may
be theoretically ambiguous, it is valuable to quantify these mechanisms’ effects on various
dimensions, for example, in terms of participant welfare.

The body of work discussed below highlights that detailed market rules interact with em-
pirical research in three different ways. First, formally adopted mechanisms often yield data
that enable empirical approaches. Second, the appropriate empirical approach depends on
the rules adopted in the market. Third, this work can shed light on the quantitative effects
of various rules and identify potential reforms.
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School Choice.

Perhaps the most widely studied empirical problem is school choice design (see Pathak, 2017
and Agarwal and Somaini, 2020 for more complete surveys). This emphasis is partly because
administrative data from school districts has been more readily available, but also because
methods for school choice settings are comparatively better developed. The methodological
advances in this area have been enabled by a relatively straightforward link between the type
of preference data available (rank-order lists) and single-unit discrete choice demand models.
Moreover, a detailed understanding of student priorities and the assignment process is helpful
in developing approaches that are well-tailored to the empirical setting.

School choice reforms have aimed to coordinate admissions via formal matching mechanisms
in order to increase allocative efficiency. But understanding the quantitative effects of cen-
tralizing admissions requires data from a system without a formal choice process, and such
data are hard to come by. Abdulkadiroglu et al. (2017b) use the implementation of the New
York City High School assignment system to quantify the welfare effects of centralized school
assignment. They find that, following the reform that centralized the assignment process,
students were more likely to enroll in their assigned school and exits from the public school
system fell. Their analysis also compared the new DA-based system to the old system and al-
ternatives motivated by matching theory. On a scale ranging from a no-choice neighborhood
assignment to the utilitarian optimal, the new system realized 80% of the potential gains,
whereas the old system achieved one-third at most. Other ordinal mechanisms studied in the
theoretical literature were within a few percentage points, suggesting that the primary gains
arise from coordinating assignments. Thus, centralization and coordination are of first-order
importance relative to the differences between well-designed alternatives.

A related issue in designing school choice mechanisms is comparing manipulable and non-
manipulable systems. Although the theoretical literature advocates strongly for the strategy-
proof Deferred Acceptance mechanism, commonly used manipulable alternatives such as the
Immediate Acceptance mechanism cannot be ruled out based on theory alone (Abdulka-
diroglu et al., 2011). The empirical literature has shed light on the comparison between
these two mechanisms. Student welfare has been compared using various agent behavior
models, ranging from equilibrium play (Agarwal and Somaini, 2018) and models that allow
for mistaken reports (Calsamiglia et al., 2020; Agarwal and Somaini, 2018; He, 2017; Hwang,
2014) to models of heterogeneous beliefs estimated using survey data (Kapor et al., 2020a).
These papers largely find that the average student welfare is higher under IA if students’
behavior is described by equilibrium play, but the difference is small at best (Agarwal and
Somaini, 2018; Kapor et al., 2020a). Survey evidence also suggests that many students are
mistaken about their admission chances or the mechanism used, which can further weigh
against IA (He, 2017; Kapor et al., 2020a). Thus, mistakes and agent behavior are important
factors in a design’s effects.

Practical experience with implementing school choice mechanisms and the data that have
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been generated has also revealed new design issues that need evaluation. For example,
districts have implemented school choice menus to manage transportation costs (Shi, 2015).
Districts have also used multi-stage clearing processes with a restricted the number of choices
in order to simplify the process and to provide information about school competition (Ajayi
and Sidibe, 2021; Luflade, 2019). Understanding these designs’ effects requires careful empri-
cal work. More broadly, a mechanism and priorities should be designed keeping the objective
function of the school district and any constraints on the allocation in mind. Indeed, Shi
(2021) develops an approach for this objective that uses estimates of preferences as an input
into the design problem.
Another issue uncovered via practical experience is that students in large districts find it
daunting to evaluate and rank many schools (Arteaga et al., 2021). This can result in
numerous students remaining unmatched and some appealing their initial assignments after
learning more about their assigned school (Narita, 2018). Managing such mismatch requires
careful thinking about after-market design and the process through which students acquire
information. Appropriately designing a mechanism with such issues in mind requires a deeper
understanding of how the implementation of a mechanism affects incentives for acquiring
information and engaging in search (Immorlica et al., 2020).
Dynamic Assignment Mechanisms.
An important class of markets are ones in which agents and objects that need to be allocated
arrive over time, rather than simultaneously as in school choice. Such markets include public
housing (Waldinger, 2021), deceased donor organs (Agarwal et al., 2021), hunting licenses
(Verdier and Reeling, 2021), and foster care (Robinson-Cortés, 2019). In most of these cases,
objects must be assigned to agents without full knowledge of which agents or objects will be
available for assignment in the future either because waiting is costly or storage is not possible.
For the designer and the empirical researcher, this adds another challenge in addition to the
considerations in static settings discussed above.
Recent methodological research has made some progress on these issues. A challenge with
designing practical mechanisms is that it is rarely feasible to elicit agents’ preferences over
all potential objects and their assignment time. This curse of dimensionality results in much
coarser information that a mechanism can use to allocate objects. For example, on the
organ waitlist, patients can either accept or decline an organ offer. In the latter case, they
are exercising the option of waiting for another offer. Consequently, unlike school choice,
administrative data from these systems also do not allow for a direct comparison between any
two objects. The empirical approaches mentioned above adapt models of dynamic discrete
choice (Pakes, 1986; Rust, 1987; Hotz and Miller, 1993) and dynamic games (Bajari et al.,
2007) in order to infer the comparison between two objects. Like school choice, these methods
also leverage the detailed understanding of the assignment process that a formal mechanism
affords.
Commonly studied designs often involve waitlists with agents who are offered objects in a
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priority order as they arrive. Each agent can be assigned at most one object, and they may
either accept or decline an offer in the hope that a preferable object will be offered in the
future. A number of papers have studied how to prioritize agents on this list. For example,
one could organize the waitlist according to a first-come first-served principle or a last-come
first-served protocol. Theoretical results suggest that the comparison between these two
simple mechanisms is sensitive to the nature of preferences in the market. Consider that
if preferences are largely idiosyncratic, then a first-come first-served protocol is preferable
(Bloch and Cantala, 2017). This mechanism induces agents at the top of the list to be
selective and only accept objects that are a good match for them. However, if objects are
vertically differentiated, then a last-come first-served system is preferable because it reduces
selectivity and minimizes waste (Su and Zenios, 2004). This conclusion is special to the model
with vertically differentiated preferences because who is assigned the object is inconsequential.
In other cases, mechanisms other than these two polar extremes can be preferable (Leshno,
2019).

These findings suggest the need to understand the distribution of preferences when rec-
ommending a design. The detailed administrative data collected during formal assignment
processes provide a path to achieving these ends. This recent body of empirical work has
used such data to build an empirical approach to addressing the design problem. For exam-
ple, Agarwal et al. (2021) study the assignment of deceased donor kidneys to patients with
kidney failure. They use data on the decisions made by agents in this market to estimate
preferences as a function of patient-donor characteristics. The results are then used to design
priority rules for the waitlist to maximize patient welfare. In a related study of the assign-
ment system for public housing, Waldinger (2021) explores how leaning on choices versus on
priorities affects the trade-off between allocative and targeting efficiency.

While patients waiting for a kidney and public housing applicants are typically assigned to
only one object from the list, in certain contexts agents demand assignments of multiple
goods over time. A theoretical literature studies how optimal mechanisms in these contexts
significantly differ from waitlists and usually involve explicit incentives to decline an object
(see Guo and Horner, 2018, and references therein). A real-world example of such a design is
the allocation of bear hunting licenses. Many states use a lottery system in which an agent
who is not assigned a license during a particular season gains priority in the next season
(Verdier and Reeling, 2021).

Alternative Approaches to Evaluating Mechanisms.

The discussion above focuses on studies that are based on methods described in Part III
of this chapter. These studies involve using data generated by one mechanism to project
counterfactual outcomes in another using a structural model of preferences and behavior.
Yet in some instances, empirical analysis is possible by either directly describing mechanism-
generated data or using surveys. These studies often compare outcomes from two different
designs observed in the same market or cases when a counterfactual mechanism is straight-
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forward to simulate. Examples of these studies include Niederle and Roth (2003b), which
measures mobility in the gastroenterology fellowship market that abandoned a centralized
matching procedure between 1997 and 1999; Budish and Cantillon (2012), which studies
a course allocation program by surveying participants to obtain truthful preference data
and simulate counterfactuals; and Prendergast (2021), which describes how trade patterns
changed after food banks adopted a new market design. The next subsection describes some
of these applications in greater detail.

Policy Evaluation using Data from Centralized Marketplaces.

Centralized marketplaces are also an ideal laboratory for studying questions beyond the
immediate purview of market design. They are unique repositories of detailed and adminis-
trative data on market participants and their outcomes. Moreover, the rules governing these
markets are well-understood.

A small empirical literature has taken advantage of this confluence of data and a grasp of
institutional detail to address questions central to health and education economics. To name
a few examples, Hastings et al. (2009) investigates the importance of socio-economic hetero-
geneity in preferences in explaining inequality in enrollment at good schools; Abdulkadiroglu
et al. (2017a) uses randomization inherent in a school choice mechanism to evaluate school
quality in Denver; and Agarwal (2017) compares policies (financial incentives and quantity
regulations) for increasing the supply of medical residents in underserved rural areas. Need-
less to say, it is important to pay careful attention to the market’s design when formulating
an empirical strategy for policy evaluation. Just as the effects of market power are interme-
diated through the design of the market, so is the effect of policy reforms such as incentives.
Therefore, understanding how a market’s design shapes the effect of a policy can enable novel
empirical strategies.

Evaluating Non-Utilitarian Objectives.

Most of the aforementioned work evaluates mechanisms based on traditional (utilitarian)
notions of agent welfare. However, the need for market designers to devise mechanisms that
can be deployed in the real world has also motivated research that directly evaluates other
objectives (not necessarily utilitarian) that are important to policymakers. For example,
public housing authorities value targeting allocations to the neediest, which may be at odds
with allocative efficiency (Waldinger, 2021). Similarly, organ allocation authorities value
survival outcomes or transplanting the urgently sick (Agarwal et al., 2020). In addition,
distributional issues across demographics are often central to the types of problems considered
(Dworczak et al., 2021). On the empirical side, Tanaka et al. (2020) studies the effects of
centralized assignment on meritocratic admissions and long-term student outcomes. An open
area of future research is designing mechanisms that directly incorporate these considerations.

An empirical analysis that evaluates market performance using non-utilitarian outcomes re-
quires methods for measuring the effects of changing assignments on these outcomes. For
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example, we need to estimate how alternative school assignments affect student achievement,
or how alternative organ waitlist designs will affect patient survival. The empirical challenge
is that agent choices may be correlated with outcomes (Roy, 1951). As is well-known, the
resulting selection problems can bias observational estimates. Agarwal et al. (2020) combine
a model of choices and outcomes in an assignment mechanism to estimate treatment effects
as a function of observed and unobserved agent and object heterogeneity. The approach tai-
lors methods from a large literature on estimating treatment effects using quasi-experimental
variation (Imbens and Angrist, 1994; Heckman and Vytlacil, 2005; Heckman and Navarro,
2007) to the context of an assignment mechanism. Using this approach, Agarwal et al.
(2020) estimate that improved assignments can increase patient survival on the deceased
donor waiting list by several years. Insights from these methods have also been used by
Kapor et al. (2020b) to show that improving the coordination of college admissions in Chile
lead to increased on-time graduation rates.

4.3 Proposing New Market Designs

A third objective of market design research, as the term suggests, is to propose new market
designs. Often, diagnosing failures of an existing market (per Section 4.1), and evaluation
of the performance of existing market designs (per Section 4.2), are key inputs into this
step. This section briefly describes some economist-proposed market designs for real-world
settings.

Medical Match. Each year, the National Residency Matching Program (NRMP) matches
approximately 25,000 newly minted graduates of medical schools to training positions at
hospitals called residencies. Both residents and residency programs are unique, differing in
quality and idiosyncratic fit, much like many other labor markets or educational markets.
But, unlike the vast majority of labor markets, the institution is centralized. Each side of
the market – residents and programs – submits a rank-ordered preference list of agents on
the other side to a centralized clearinghouse that uses an algorithm to determine the final
matches.

Amazingly, the NRMP first implemented the Gale-Shapley matching algorithm in the 1950s
— well before Gale and Shapley did their research (by all accounts, Gale and Shapley were
not aware of this usage of the algorithm in practice). This independent discovery of the
algorithm, by practitioners as opposed to game theorists, is remarkable, and perhaps speaks
to the algorithm’s intrinsic beauty and appeal.

Roth and Xing (1994) report on the nature of the medical job market in the 1940s, prior
to the adoption of a centralized matching algorithm. The market was decentralized and
residency programs vied for the best medical students by offering some positions earlier than
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their competitors in order to gain an edge. This process unravelled to the point that some
students were offered positions several years in advance of their graduation. Such early
matching can be inefficient for a variety of reasons. As just one example, medical students’
preferences over the various fields of medicine may not be fully formed before students are
able to do rotations across specialties, which is part of medical school training.32

Roth (1984) first reported on the connection between Gale and Shapley (1962) and the
NRMP, and, moreover, noted some potential problems that were starting to emerge with the
algorithm. As women were admitted to medical schools in greater numbers, starting in the
1960s and especially the 1970s, it became more and more common for medical residents to be
married couples, seeking a pair of positions. But, the Gale-Shapley algorithm treated each
worker as their own individual. Roth and Peranson (1999) proposed a modification of the
Gale-Shapley algorithm which allowed for married couples to participate in the match in a
way that, with high probability, would yield a stable match (see Ashlagi et al., 2014; Kojima
et al., 2013).

Notably, for IO readers, direct empirical evidence on the welfare gains of the match has been
somewhat elusive. Some indirect evidence comes from the fact that the algorithm has been
maintained in the market for so long, and that specialties that adopted different, non-stable
algorithms, have tended to abandon those non-stable algorithms in favor of Gale-Shapley or
Roth-Peranson (Roth, 2002). There is also indirect evidence from an interesting case study
in gastroenterology, which, for idiosyncratic reasons, went back and forth between utilizing
a centralized match and a decentralized market (Niederle and Roth, 2003b), and from the
context of matching college football teams to bowl games (Fréchette et al., 2007). But, there
is no direct evidence that speaks to the overall social welfare effects of the centralized match
as researchers have not yet found a way to get enough grip on the counterfactual.

School Choice. In an influential paper, Abdulkadiroglu and Sonmez (2003) introduced
matching students to schools as a market design problem; documented that some school
districts were using the “Boston mechanism” (aka Immediate Acceptance algorithm) which,
as discussed above in Section 2.3.2, is strategically manipulable; and proposed variations on
the deferred acceptance algorithm and top-trading cycles algorithm as a theoretically superior
alternative. Since that paper, the theoretical literature on school choice has been very active,
and many school districts have adopted deferred acceptance (the adoption of top trading
cycles has been more mixed, as discussed shortly). A useful survey is Pathak (2011).

Here we emphasize a few observations about this literature, and the role it is played in
market design reform. As discused above in Section 4.2, several papers have used modern
structural IO methods to compare mechanisms. One design takeaway from these papers is

32This would be like having to decide whether or not to be an IO economist before taking the second-year
field courses in IO.
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that the equilibrium efficiency differences between well-designed candidate mechanisms are
rather small. This in turn then suggests that factors aside from equilibrium efficiency per se
are likely to be central in design decisions.
Two factors in particular seem to be central. First, the complexity of equilibrium behavior in
the Immediate Acceptance mechanism, and the associated fairness costs of strategic mistakes,
appear to have been the decisive factor in economist recommendations to move away from
that mechanism. Recall that survey evidence from Kapor et al. (2020a) directly documents
the difficulty some families had with figuring out how to play equilibrium. Yet, the Immediate
Acceptance mechanism remains widely used across the world.
Second, the key difference between deferred acceptance (which has been widely adopted)
and top trading cycles (which has not been widely adopted) is the interpretation of priority
awarded to students based on whether they live nearby to the school (“walk zone priority”)
or have a sibling who has attended the school (“sibling priority”). The top trading cycles
algorithm treats such priorities as property rights that can be traded to secure a school the
student likes better. The deferred acceptance algorithm treats schools’ rank-orderings as
either a non-tradable property right of students, or as a preference of the school (or both,
they are different English descriptions of the same underlying mathematics). The fact that
most school districts, when presented with deferred acceptance and top trading cycles as
economist-blessed market design alternatives, have opted for deferred acceptance over top
trading cycles, strikes us as evidence that most public school districts do not interpret such
priorities as tradable property rights. Additionally, it may be that a subset of schools have
preferences over which students enroll, and respecting these preferences is important to secure
their participation in the school choice mechanism.
A last point we emphasize, consistent with the previous, is that the evidence in Abdulka-
diroglu et al. (2017b) suggests that it is far more important for welfare to move from an
uncoordinated system to a sensibly-designed mechanism, than it is to move from a sensibly-
designed mechanism to the optimal mechanism. This result echoes the argument of Klem-
perer (2002) in the context of spectrum auctions.

Course Allocation. Universities often place limits on the number of students who can
enroll in a particular class. This gives rise to a challenging allocation problem: how can
a university ensure that students receive schedules of courses that efficiently reflect their
preferences, in a manner that is perceived as fair, and under a procedure that is incentive
compatible? The series of papers that led to Wharton and other universities adopting Bud-
ish’s A-CEEI mechanism for course allocation usefully illustrates how market design reforms
often take multiple papers using multiple different methodological approaches, in this case
involving theory, data, experiments, and computation (Roth, 2002).
First, Budish and Cantillon (2012) used theory and data to study the draft mechanism
for course allocation used at Harvard Business School. Draft mechanisms are common in
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practice (e.g., for professional sports leagues) but their theoretical and empirical properties
are not well understood. Budish and Cantillon (2012) obtained administrative data from
HBS that contained both the preferences students actually reported to the draft (potentially
strategically misreported) as well as their underlying truthful preferences, from a survey.
This data showed that students strategically misreported their preferences, as suggested they
would by theory (not wasting earlier draft picks on courses that a student prefers but knows to
be unpopular). By simulating student outcomes under hypothetical truthful play of the draft,
and comparing it to student outcomes under actual strategic play of the draft, the authors
could show that strategic misreporting harmed overall student welfare — underscoring the
value of strategy-proofness. Yet, the comparison of the manipulable and manipulated draft
mechanism, to the theoretical counterfactual random serial dictatorship mechanism — which
is both strategy-proof and ex-post Pareto efficient — showed the draft to be much better
for student welfare. Budish and Cantillon (2012) thus indicated that the theory literature
would have to find some way to move beyond dictatorships, which in turn would involve
some compromise away from either strategy-proofness or ex-post Pareto efficiency, given the
relevant impossibility theorems.

Next, Budish (2011) proposed the A-CEEI mechanism, based in part off of the empirical
lessons from Budish and Cantillon.33 A-CEEI is approximately but not exactly ex-post
Pareto efficient, approximately strategy-proof, and satifies criteria of outcome fairness called
envy bounded by a single good and maximin share (now referred to as EF1 and MMS in
the fair division literature). Using the HBS data from Budish and Cantillon (2012), and
a computational algorithm for A-CEEI developed by Othman et al. (2010), Budish (2011)
shows that the A-CEEI mechanism outperforms the draft and the dictatorship on measures
of both efficiency and fairness. We note that whereas in the school choice literature discussed
above, efficiency differences between mechanisms are fairly small, in course allocation they
are large. The intuition is that in multi-unit allocation there is a lot more scope for realizing
efficiency gains from trade than in allocation problems in which each agent consumes just a
single unit.

Budish and Kessler (2021) then ran an experimental test of A-CEEI at the Wharton School
at the University of Pennsylvania. The main goal of the experiment was to assess whether
market participants could report their preferences to the A-CEEI mechanism “accurately
enough” for the mechanism’s efficiency and fairness advantages to manifest in practice. This
question necessitated a novel style of laboratory experiment, in which subjects participated
based on their real preferences for real schedules in a simulated (i.e., unincentivized) environ-
ment, as opposed to an environment in which subjects are endowed with artificial preferences.
The evidence in Budish and Kessler (2021) suggested that students at Wharton could report
their preferences with sufficient accuracy, but that preference-reporting mistakes did have a

33This section reports on papers in the order they were first completed, not the order in which they were
ultimately published.
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measurable effect on the market design’s performance in the lab.
Last, Budish et al. (2017) report on the actual implementation of the A-CEEI mechanism at
Wharton. This involved finalizing the preference-reporting language based on the evidence
from Budish and Kessler (2021), improving the algorithm for discovering A-CEEI prices
relative to the initial version in Othman et al. (2010), and various other kinds of work
involved in bringing a market design from theoretical idea to practical implementation.

Food Banks. Prendergast (2017; 2021) reports on the implementation of a pseudomarket
mechanism for Feeding America, the national umbrella organization responsible for food
banks across the United States. The context for this market design research is that Feeding
America frequently receives donations of food (e.g., a truckload of cereal) that it has to
allocate to one of the many food banks across the United States. Previously, Feeding America
made allocation decisions using human judgment —making phone calls to various food banks,
to ascertain who had an especially high need for the donation (e.g., based on other food on
hand at that food bank at the moment, from other sources), while also keeping track of
fairness considerations (e.g., spreading donations fairly across the country).
Together with many colleagues, Prendergast implemented a market based on an internal
currency to replace the prior process based on human judgments. This market allocated
a new internal currency to food banks across the country in proportion to estimated local
need. Then, when donations came in to Feeding America, the food banks could bid for the
donation. The highest bidder for a given donation would then receive this donation (the food
bank would be responsible for all transportation costs), and the artificial currency that was
bid would then be electronically distributed to all of the other food banks, in proportion to
their needy population. In this way, the overall level of the currency in the system stayed
constant over time, and food banks could learn, over time, the approximate costs of certain
kinds of donations. For a variety of fascinating reasons, proteins like chicken and shelf-stable
foods like pasta and cereal were richly priced in the market, whereas produce and dairy,
which perish quickly, and junk food with poor nutritional value, were very cheap.
Prendergast (2021) documents that the pseudomarket mechanism, dubbed the Choice Sys-
tem, lead to a more equitable allocation of food, more efficient sorting of donations to nearby
recipients (thereby economizing on transport costs), and, perhaps most surprisingly, vertical
sorting of food banks across the country, whereby food banks with lots of other sources of
donation (e.g., in wealthy cities) used the Choice System to get a small amount of highly-
priced items (e.g., chicken) whereas food banks with fewer other sources of donation used the
Choice System to get a much larger amount of food overall, in essence “trading” their shares
of chicken for large amounts of other foods.

Financial Exchanges. Budish et al. (2015) propose a new market design for financial ex-
changes, frequent batch auctions (FBA), to replace the continuous limit order book (CLOB)
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that is widely used for the trading of stocks, futures, and other financial assets around the
world. Budish et al. (2015) use both theory and data to critique the CLOB design and make
a case for the FBA design. Empirically, they show that market correlations break down at
fine-enough time intervals (e.g., fractions of a second), leading to frequent, fairly obvious ar-
bitrage opportunities. These arbitrage opportunities in turn induce an arms race for trading
speed. The theory model shows that the arms race for trading speed in a sense is never
ending, since it is relative, not absolute, trading speed that is essential for capturing fleeting
arbitrage opportunities. More subtly, the model shows that the rents from these arbitrage
opportunities come at the expense of market participants who are providing liquidity to the
rest of the market (i.e., who stand willing to either buy or sell, at a spread). In equilibrium,
liquidity providers pass on this cost to end investors. Thus, there is an equivalence in the
model between the rents in the arms race for speed, the investments in speed, and the cost
to end investors.

The paper then uses theory to propose an alterntive market design, frequent batch auctions,
that eliminates the rents from fleeting arbitrages, and in so doing ends the arms race for
trading speed and improves market liquidity. Intuitively, in a continuous market, even a one-
microsecond speed advantage (i.e., 0.000001 seconds) is enough to win the race. Whereas in
a batch auction market, even if the batch auctions occur as often as every tenth or even thou-
sandth of a second, a one-microsecond speed advantage is basically meaningless. Competition
is on price, rather than the last epsilon of trading speed.

Aquilina et al. (2021) use a novel form of financial market data, obtained using a specific
regulatory authority of the UK Financial Conduct Authority (where Aquilina and O’Neill
are based), to measure the extent of the speed-based arbitrage opportunities suggested by
the theoretical model of Budish et al. (2015). Specifically, the novel data is called “message
data”, which, crucially, contains messages sent by market participants who lose, not just win,
a race for a particular trade. Aquilina et al. (2021) show that, for stocks in the UK FTSE
100 index (roughly analogous to the S&P 500 index in the United States), there is about
one race per minute (537 per symbol per day), and that races constitute over 20% of all
trading volume. In the modal race, the difference in time between the winner and the loser
is between 0 and 15 millionths of a second (i.e., less than 0.000015 seconds). Races are for
small amounts per race, but, because of the volumes, they add up to significant sums. The
authors compute that speed-based arbitrage constitutes about 33% of the literature’s main
measure of the cost of liquidity, called price impact, that implementing FBAs would reduce
the market’s cost of liquidity by 17%, and that speed-based arbitrages are worth about $5
billion per year in equities markets alone.

Budish et al. (2020) study the incentives for exchanges to innovate on their market design,
e.g., by adopting FBAs. If FBAs reduce the cost of liquidity by 17%, not to mention make the
market computationally simpler (avoiding much of the complexity of managing systems that
can manage and adjudicate microsecond-level speed races), how come exchanges have not
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rushed to adopt? The answer, Budish et al. (2020) suggest, is a divergence between private
and social incentives for innovation (see chapter [insert innovation chapter by Heidi Williams]
in this volume). Specifically, incumbent exchanges earn significant economic profits from
selling speed into the speed race — e.g., selling the right to co-locate one’s own computers
next to the exchange’s computers — and would cut off this source of revenue if they adopted
a market design that stopped the arms race for speed.

Thus, market design reform in this setting may require a regulatory intervention, as opposed
to coming about purely from private sector incentives. Notably, in many of the other mar-
ket design reforms noted above — school choice, NRMP, course allocation, Food Banks —
private and social incentives to adopt a new, better market design were aligned as opposed
to divergent. A broader lesson for the market design literature, especially in its intersection
with IO, is to pay attention not just to the ideal design of market institutions, but to the
incentives of those with power to implement such market institutions.

5 Conclusion

An exciting aspect of market design research is that it involves close interaction with the real
world. Marketplaces and the rules that govern them come in all shapes and sizes. Market
designers seek to understand which rules matter. Given the myriad of rules, it is often unclear
which ones are important, a point that has been emphasized before (see Roth 2002; Klemperer
2004). This analysis requires understanding the context in which the rules operate, how they
interact with the behavior of market participants, and what works and what does not.

Not only does this engagement with real-world marketplaces improve our knowledge of mar-
kets, but it also allows us to improve markets themselves. While the starting point is often
existing market institutions, it can also begin with recognizing a gap – a problem that clearly
needs new market institutions. Design proposals can be based on mechanisms with well-
understood theoretical properties, designs imported from other other settings, or novel rules.
Both past experience and theoretical analysis play an important role in this process.

The experience acquired through the practice of market design itself creates knowledge.
Moreover, as markets mature, new issues are often uncovered that need to be addressed,
making the endeavour of market design an iterative process.34 Achieving this goal may
require a researcher to step outside the traditional bounds of the academic process. But
when the opportunity presents itself, a body of research that has fleshed out practically
relevant issues is essential to bringing the knowledge of market designers to bear on reforms.

34Roth (2008) describes the evolution of kidney exchange markets from their inception. The challenges
faced by the market changed with its development, and a number issues required new solutions. Even at
a relatively advanced stage, there are new opportunities for expanding kidney exchange that require novel
market design solutions (Roth, 2018; Ashlagi and Roth, 2021).
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In this way, theory, data, and practice play complementary roles in market design. Theory
allows us to identify the qualitative effects of different designs, isolate key tradeoffs, hypoth-
esize the effects of different designs, and identify open issues. Empirical work helps generate
empirical regularities that need explanation, quantify economic effects, test hypotheses, and
address theoretically ambiguous issues. Practical work with designing markets and domain
expertise sheds light on new issues, helps bring data to bear on open questions, and reveals
new designs that need further analysis. Throughout, market designers pay specific atten-
tion to institutional details in order to guide research towards understanding and improving
real-world markets.

This focus on real-world design and the synthesis of approaches echoes Roth (2002), which
famously described the “economist as engineer.” Roth argued that game theory would need
to be complemented with other methodological tools such as computational simulations and
experimental evidence for effective market design. Just as an engineer relies on theory and
simulations when designing a bridge, the ultimate goal of a market designer is to take what
we have learned and institute new designs that remedy market failure.

We argue that insights from IO add to this engineering approach to design economics in at
least two ways. First, our chapter illustrates that another central tool in the market design
toolbox is econometric models of market primitives. These models can be estimated using
data in order to simulate counterfactuals, a core method in empirical IO. These tools are
closely synced with both the theory and practice of market design. Second, we argue that a
holistic study of markets requires analyzing both market design and market power. With the
notable exception of auction markets and a handful of examples discussed in this chapter,
these two issues have largely been studied independently. We expect that there is much to
learn from the synthesis of ideas across these fields.
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