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Abstract

This paper studies mechanism design when agents are maxmin expected utility

maximizers. A first result gives a general necessary condition for a social choice rule

to be implementable. The condition combines an inequality version of the standard

envelope characterization of payoffs in quasilinear environments with an approach for

relating agents’maxmin expected utilities to their objective expected utilities under any

common prior. The condition is then applied to give an exact characterization of when

effi cient trade is possible in the bilateral trading problem of Myerson and Satterthwaite

(1983), under the assumption that agents know little beyond each other’s expected

valuation of the good (which is the information structure that emerges when agents

are uncertainty about each other’s ability to acquire information). Whenever effi cient

trade is possible, it may be implemented by a relatively simple double auction format.

Sometimes, an extremely simple reference price rule can also implement effi cient trade.
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1 Introduction

“Robustness” has been a central concern in game theory and mechanism design since at

least the celebrated argument of Wilson (1987). The Wilson doctrine is usually interpreted

as calling for mechanisms that perform well in a wide range of environments. However, there

is also growing and complementary interest in robustness concerns on the part of economic

agents instead of (or in addition to) on the part of the mechanism designer; that is, in

asking what mechanisms are desirable when agents use “robustly optimal”strategies. This

paper pursues this question in the case where agents are maxmin expected utility (MMEU)

maximizers (Gilboa and Schmeidler, 1989), which is perhaps the best-established model of

robust decision-making under uncertainty, as well as the model most commonly adopted

in prior studies of mechanism design with robustness concerns on the part of agents. In

particular, the paper develops a general necessary condition for a social choice rule to be

implementable, and applies this condition to give an exact characterization of when effi cient

trade is possible in the classical bilateral trade setting of Myerson and Satterthwaite (1983).

The necessary condition for implementation generalizes a well-known necessary condition

in the Bayesian independent private values setting, namely that the expected social surplus

must exceed the expected sum of information rents left to the agents, as given by an envelope

theorem. That this condition has any analogue with maxmin agents is rather surprising,

for two reasons. First, the usual envelope characterization of payoffs need not hold with

maxmin agents. Second, and more importantly, a maxmin agent’s subjective belief about

the distribution of opposing types depends on her own type. This is also the situation with

Bayesian agents and correlated types, where results are quite different from those in the

classical independent types case (Crémer and McLean, 1985, 1988; McAfee and Reny, 1992).

The derivation of the necessary condition (Theorem 1) address both of these issues. For

the first, I rely on an inequality version of the standard envelope condition that does hold

with maxmin agents. For the second, I note that, by definition, an agent’s maxmin expected

utility is lower than her expected utility under any belief she finds possible. This implies

that the sum of agents’maxmin expected utilities is lower than the sum of their “objective”

expected utilities under any possible common prior, which in turn equals the expected social
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surplus under that prior (for a budget-balanced mechanism). Hence, a necessary condition

for a social choice rule to be implementable is that the resulting expected social surplus

exceeds the expected sum of information rents for any possible common prior; that is, for

any prior with marginals that the agents find possible.

The second part of the paper applies this necessary condition to give an exact charac-

terization of when effi cient bilateral trade is implementable, under the assumption that the

agents know each other’s expected valuation of the good (as well as bounds on the valua-

tions), but little else. As explained below, this information structure is the one that emerges

when agents have a (unique) common prior on values at an ex ante stage and are maxmin

about how the other might acquire information before participating in the mechanism. In

this setting, the assumption of maxmin behavior may be an appealing alternative to the

Bayesian approach of specifying a prior over the set of experiments that the other agent may

have access to, especially when this set is large (e.g., consists of all possible experiments)

or the agents’interaction is one-shot. Furthermore, the great elegance of Myerson and Sat-

terthwaite’s theorem and proof suggests that their setting may be one where relaxing the

assumption of a unique common prior is particularly appealing.1

The second main result (Theorem 2) shows that the Myerson-Satterthwaite theorem

sometimes continues to hold when agents are maxmin about each other’s information ac-

quisition technology– but sometimes not. In the simplest bilateral trade setting, where the

range of possible seller costs and buyer values is [0, 1], the average seller cost is c∗, and the

average buyer value is v∗, Figure 1 indicates the combination of parameters (c∗, v∗) for which

an effi cient, maxmin incentive compatible, interim individually rational, and weakly budget

balanced mechanism exists. Above the curve– the formula for which is

c∗

1− c∗ log

(
1 +

1− c∗
c∗

)
+

1− v∗
v∗

log

(
1 +

v∗

1− v∗

)
= 1

– the Myerson-Satterthwaite theorem persists, despite the lack of a unique common prior or

1This is in line with Gilboa’s exhortation in his monograph on decision making under uncertainty to
“[consider] the MMEU model when a Bayesian result seems to crucially depend on the existence of a unique,
additive prior, which is common to all agents. When you see that, in the course of some proof, things cancel
out too neatly, this is the time to wonder whether introducing a little bit of uncertainty may provide more
realistic results,”(Gilboa, 2009, p.169).
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Figure 1: In the bilateral trade setting, effi cient trade is possible in the region below the
curve and impossible in the region above it.

independent types. Below the curve, the Myerson-Satterthwaite theorem fails.

I call the mechanism that implements effi cient trade for all parameters below the curve

in Figure 1 the αi (θi) double auction. It is so called because when a type θi agent and a

type θj agent trade, the type θi agent receives a share αi (θi) of the gains from trade that

depends only on her own type and not on her opponent’s. The αi (θi) double auction has

the property that an agent’s worst-case belief is the belief that minimizes the probability

that strict gains from trade exist; this may be seen to be the belief that her opponent’s type

always takes on either the most favorable value for which there are no gains from trade or

the most favorable value possible. If an agent misreports her type to try to get a better price,

the requirement that her opponent’s average value is fixed forces the deviator’s worst-case

belief to put more weight on the less favorable of these values, which reduces her expected

probability of trade. The share αi (θi) is set so that this first-order cost in terms of the

probability of trade exactly offsets the first-order benefit in terms of price, which makes the

αi (θi) double auction incentive compatible for maxmin agents.2 Finally, the αi (θi) double

auction is weakly budget balanced if and only if α1 (θ1) + α2 (θ2) ≤ 1 for all θ1, θ2; that is,

2In contrast, the cost of shading one’s report in terms of foregone gains from trade would be second-
order for a Bayesian, as both the probability that shading results in a missed opportunity to trade and the
forgegone gains from trade conditional on missing a trading opportunity would be small.
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if and only if the shares that must be left to the two agents sum to less than one. This

inequality holds in precisely the region below the curve in Figure 1.

I also derive some additional results in the bilateral trade setting. Most notably, I show

that if the average types of the two agents do not have gains from trade with each other

(e.g., if the pair (c∗, v∗) lies below the 45◦ line in Figure 1), then effi cient trade can be

implemented with an extremely simple mechanism, which I call a reference rule. A reference

rule works by setting a “reference price”p∗ and specifying that trade occurs at price p∗ if

this is acceptable to both agents, and that otherwise trade occurs (when effi cient) at the

reservation price of the agent who refuses to trade at p∗. This result thus illustrates a case

where introducing robustness concerns on the part of agents leads simple mechanisms to

satisfy desirable mechanism design criteria.

This paper joins a growing literature on games and mechanisms with maxmin agents, or

with agents who follow “robust”decision rules more generally. In contrast to much of this

literature, the current paper shares the following important features of classical Bayesian

mechanism design: (i) the implementation concept is (partial) Nash implementation; (ii) the

only source of uncertainty in the model concerns exogenous random variables, namely other

agents’types; and (iii) for Theorem 1, the model admits the possibility of a unique common

prior as a special case. Several recent papers derive permissive implementability results

with maxmin agents by relaxing these assumptions, in contrast to the relatively restrictive

necessary condition of Theorem 1.

Bose and Daripa (2009), Bose and Mutuswami (2012), and Bose and Renou (2014) relax

(i) by considering dynamic mechanisms that exploit the fact that maxmin agents may be

time-inconsistent. A central feature of their approach is that agents cannot commit to

strategies, so they do not obtain implementation in Nash equilibrium. Their approach also

relies on taking a particular position on how maxmin agents update their beliefs, an issue

which does not arise here. Di Tillio, Kos, and Messner (2012) and Bose and Renou (2014)

relax (ii) by assuming that agents are maxmin over uncertain aspects of the mechanism itself.

This lets the designer extract the agents’information by introducing “bait”provisions into

the mechanism. The mechanisms considered in these four papers are undoubtedly interesting

and may be appealing in particular applications. However, they arguably rely on a more
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thoroughgoing commitment to maxmin behavior than does the current paper (agents must

be time-inconsistent, or must be maxmin over endogenous random variables). Even if one

accepts this commitment, it still seems natural to ask what is possible in the more “standard”

case where (i) and (ii) are satisfied.

De Castro and Yannelis (2010) relax (iii) by assuming that agents’beliefs are completely

unrestricted, and find that effi cient social choice rules are then always implementable. This

is consistent with Theorem 1, as with completely unrestricted beliefs agents can always

expect the worst possible allocation, which implies that the necessary condition of Theorem

1 is vacuously satisfied. For example, in the bilateral trade setting, effi cient trade is always

implementable, as agents are always certain that they will not trade and are therefore willing

to reveal their types. Thus, De Castro and Yannelis show that ambiguity aversion can soften

the Myerson-Satterthwaite impossible result– consistent with Theorem 2– but they do so

only under the rather extreme assumption of completely unrestricted beliefs.

Finally, Bose, Ozdenoren, and Pape (2006) and Bodoh-Creed (2012) satisfy (i), (ii), and

(iii).3 Their results are discussed below, but the main differences are that neither of these

papers derive a general necessary condition for implementability like Theorem 1, and their

treatment of applications focuses not on effi ciency but on revenue maximization. Impor-

tantly, this revenue maximization is conducted with respect to the mechanism designer’s

“true” prior, whereas in my model there is no notion of a true prior, and the designer is

simply a stand-in for all the various games the agents could play among themselves. For ex-

ample, Bodoh-Creed does consider an application to bilateral trade, but he investigates the

minimum expected budget deficit required to implement effi cient trade (from the designer’s

perspective), rather than whether effi cient trade is possible with ex post budget balance.4

3Lopomo, Rigotti, and Shannon (2009) also satisfy (i), (ii), and (iii), but consider agents with incomplete
preferences as in Bewley (1986) rather than maxmin preferences. There are two natural versions of incentive
compatibility in their model, which bracket maxmin incentive compatibility (and Bayesian incentive compat-
ibility) in terms of strength. They show that the stronger of their notions of incentive compatibility is often
equivalent to ex post incentive compatibility (whereas maxmin incentive compatibility is not), and that full
extraction of information rents is generically possible under the weaker of their notions, and is sometimes
possible under the stronger one.

4The literature on mechanism design with risk-averse agents is more tangentially related to the current
paper. Chatterjee and Samuelson (1983) and Garratt and Pycia (2014) propose mechanisms for effi cient
bilateral trade with risk-averse agents. In contrast, I maintain the assumption that utility is quasilinear. The
mechanisms I propose bear little resemblance to those proposed for risk-averse agents.
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The paper proceeds as follows. Section 2 presents the model. Section 3 gives the general

necessary condition for implementation. Section 4 applies this condition to characterize

when effi cient bilateral trade is implementable. Section 5 contains additional results in the

bilateral trade setting, including the results on implementation with reference rules. Section

6 concludes. The appendix contains omitted proofs and auxiliary results.

2 Model

Agents and Preferences: A groupN of n agents must make a social choice from a bounded

set of alternatives Y ⊆ Rn. Each agent i has a one-dimensional type θi ∈
[
θi, θ̄i

]
= Θi ⊆ R.

Agents have quasilinear utility. In particular, if alternative y = (y1, . . . , yn) is selected and

a type θi agent receives transfer ti, her payoff is θiyi + ti.5

Agent i’s type is her private information. In addition, each agent i has a set of possible

beliefs Φ−i about her opponents’types, whereΦ−i is an arbitrary nonempty subset of∆ (Θ−i),

the set of Borel measures φ−i on Θ−i (throughout, probability measures are denoted by φ,

and the corresponding cumulative distribution functions are denoted by F ). Each agent i

evaluates her expected utility with respect to the worst possible distribution of her opponents’

types among those distributions in Φ−i; that is, the agents are maxmin optimizers.

Mechanisms: A direct mechanism (y, t) consists of a measurable allocation rule y : Θ→

Y and a measurable and bounded transfer rule t : Θ→ Rn. Given a mechanism (y, t), let

Ui

(
θ̂i, θ−i; θi

)
= θiyi

(
θ̂i, θ−i

)
+ ti

(
θ̂i, θ−i

)
,

Ui

(
θ̂i, φ−i; θi

)
= Eφ−i

[
Ui

(
θ̂i, θ−i; θi

)]
,

Ui (θi) = inf
φ−i∈Φ−i

Ui
(
θi, φ−i; θi

)
.

Thus, Ui
(
θ̂i, θ−i; θi

)
is agent i’s utility from reporting type θ̂i against opposing type profile

θ−i given true type θi, Ui
(
θ̂i, φ−i; θi

)
is agent i’s expected utility from reporting type θ̂i

against belief φ−i given true type θi, and Ui (θi) is agent i’s worst-case expected utility from

5The assumption that utility is multiplicative in θi and yi is for simplicity. One could instead assume
that utility equals vi (y, θi) + ti for some absolutely continuous and equidifferentiable family of functions
{vi (y, ·)}, as in Milgrom and Segal (2002) or Bodoh-Creed (2012).
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reporting her true type θi.6

A distinguishing feature of this paper is the notion of incentive compatibility employed,

which I call maxmin incentive compatibility. A mechanism is maxmin incentive compatible

(MMIC) if

θi ∈ arg max
θ̂i∈Θi

inf
φ−i∈Φ−i

Ui

(
θ̂i, φ−i; θi

)
for all θi ∈ Θi, i ∈ N. (1)

I restrict attention to MMIC direct mechanisms throughout the paper. This is without loss of

generality under the assumption that agents cannot hedge against ambiguity by randomizing,

in that an agent’s utility from playing a mixed strategy µi ∈ ∆ (Θi) isEµi infφ−i∈Φ−i Ui

(
θ̂i, φ−i; θi

)
rather than infφ−i∈Φi E

µiUi

(
θ̂i, φ−i; θi

)
. Under this “no-hedging”assumption, the proof of

the revelation principle is completely standard.7

A brief aside on the no-hedging assumption: While the alternative is also reasonable, the

no-hedging assumption is the standard one in decision theory. In particular, the uncertainty

aversion axiom of Schmeidler (1989) and Gilboa and Schmeidler (1989) says that the agent

likes mixing ex post (i.e., state by state); mixing over acts ex ante does not affect her

utility. In addition, as noted by Raiffa (1961), if agents could hedge with randomization

then one would not observe the Ellsberg paradox or other well-documented, ambiguity-

averse behavior. The no-hedging assumption is also standard in the literature on mechanism

design with maxmin agents (e.g., Bose, Ozdenoren, and Pape, 2006; de Castro and Yannelis,

2010; Bodoh-Creed, 2012; Di Tillio, Kos, and Messner, 2012).8

In addition to MMIC, I consider the following standard mechanism design criteria.

• Ex Post Effi ciency (EF): y (θ) ∈ arg maxy∈Y
∑

i θiyi for all θ ∈ Θ.

• Interim Individual Rationality (IR): Ui (θi) ≥ 0 for all θi ∈ Θi.

6The term “worst-case” is only used heuristically in this paper, but the meaning is generally that if

minφ−i∈Φ−i Ui

(
θ̂i, φ−i; θi

)
exists, then a minimizer is a worst-case belief; while if the minimum does not

exist (which is possible, as Ui
(
θ̂i, φ−i; θi

)
may not be continuous in φ−i and Φ−i may not be compact),

then a limit point of a sequence
{
φ−i
}
that attains the infimum is a worst-case belief.

7Under the solution concept of Nash equilibrium. In particular, there is no strategic uncertainty or “higher
order ambiguity”(as in Ahn, 2007). See the working paper version of this paper for further details.

8On the other hand, Agranov and Ortoleva (2015) present experimental evidence that sometimes agents
do display a strict preference for randomization. Models of such preferences include Machina (1985), Cerreia-
Vioglio et al. (2014), and Fudenberg, Ijima, and Strzalecki (2015). Saito (2014) axiomatizes a utility function
that identifies an agent’s belief that randomization hedges ambiguity.
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• Ex Post Weak Budget Balance (WBB):
∑

i ti (θ) ≤ 0 for all θ ∈ Θ.

• Ex Post Strong Budget Balance (SBB):
∑

i ti (θ) = 0 for all θ ∈ Θ.

Effi ciency is self-explanatory. Interim individual rationality is imposed with respect to

agents’own worst-case beliefs; it also happens that all results in the paper continue to hold

with ex post individual rationality (i.e., Ui (θi, θ−i; θi) ≥ 0 for all θi ∈ Θi, θ−i ∈ Θ−i). The ex

post version of budget balance seems appropriate in the absence of a “true”prior distribution;

as indicated above, this focus on ex post budget balance is an important point of contrast with

the otherwise closely related papers of Bose, Ozdenoren, and Pape (2006) and Bodoh-Creed

(2012). The difference between weak and strong budget balance is that with weak budget

balance the mechanism is allowed to run a surplus. For purposes of comparison with the

results of Section 4, recall that the standard Myerson-Satterthwaite theorem requires only (ex

ante) weak budget balance. Also note that, since MMIC is a weaker condition than dominant

strategy incentive compatibility, an effi cient allocation rule can always be implemented with

a Vickrey-Clarke-Groves (VCG) mechanism if budget balance is not required.

An allocation rule y is maxmin implementable if there exists a transfer rule t such that

the mechanism (y, t) satisfies MMIC, IR, and WBB.

3 Necessary Conditions for Implementation

I begin with a general necessary condition for maxmin implementation, which generalizes a

standard necessary condition for Bayesian implementation with independent private values.

In an independent private values environment with common prior distribution F , it is well-

known that an allocation rule y is Bayesian implementable only if the expected social surplus

under y exceeds the expected information rents that must be left for the agents in order to

satisfy incentive compatibility. It follows from standard arguments (e.g., Myerson, 1981)

that this condition may be written as

∑
i

(∫
θ∈Θ

θiyi (θ) dφ

)
≥
∑
i

(∫
θi∈Θi

(1− Fi (θi)) yi
(
θi, φ−i

)
dθi

)
, (2)
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where

yi
(
θi, φ−i

)
= Eφ−i [yi (θi, θ−i)]

(recall that φ is the measure corresponding to cdf F ). I will show that a similar condition

is necessary for maxmin implementation, despite the lack of independent types (in that an

agent’s worst-case belief over her opponent’s types depends on her own type) or a unique

common prior. Intuitively, the required condition will be that (2) holds for all distributions

F with marginals that the agents find possible, with the modification that, on the right-hand

side of (2), the expected information rents under F are replaced by the expectation under

F of type θi’s “minimum possible”information rent.

To formalize this, given a measure φ ∈ ∆ (Θ), let φS denote its marginal with respect to

ΘS, for S ⊆ N . Let Φ∗ be the set of product measures φ ∈
∏

i∈N ∆ (Θi) such that φ−i ∈ Φ−i

for all i ∈ N .

Some examples may clarify this definition.

• If n = 2, then Φ∗ = Φ1 × Φ2 (where Φi ≡ Φ−j).

• Suppose the set of each agent i’s possible beliefs takes the form of a product Φ−i =∏
j 6=i Φ

i
j for some sets of measures Φi

j ⊆ ∆ (Θj). Then Φ∗ =
∏

j∈N

(⋂
i 6=j Φi

j

)
.

• If n > 2, it is possible that Φ∗ is empty. For instance, take the previous example with⋂
i 6=j Φi

j = ∅ for some j.

Finally, let

ỹi (θi) = inf
φ−i∈Φ−i

yi
(
θi, φ−i

)
.

Thus, ỹi (θi) is the smallest allocation that type θi may expect to receive.

The following result gives the desired necessary condition.

Theorem 1 If allocation rule y is maxmin implementable, then, for every measure φ ∈ Φ∗,

∑
i

(∫
θ∈Θ

θiyi (θ) dφ

)
≥
∑
i

(∫
θi∈Θi

(1− Fi (θi)) ỹi (θi) dθi
)
. (3)
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Comparing (2) and (3), (2) says that the expected social surplus under F must exceed the

expected information rents, whereas (3) says that the expected social surplus must exceed

the expectation of the agents’minimum possible information rents, reflecting the fact that

agents’subjective expected allocations are not derived from F . In addition, (2) must hold

only for the “true” distribution F (i.e., the common prior distribution), while (3) must

hold for any “candidate”distribution F (i.e., any distribution in Φ∗). Furthermore, (3) is

a generalization of (2), since in the case of a unique independent common prior φ it follows

that Φ−i =
{
φ−i
}
for all i, Φ∗ = {φ}, and ỹi (θi) = yi

(
θi, φ−i

)
, so (3) reduces to (2). Finally,

if y is continuous then (3) also shows that (2) changes continuously as a slight degree of

ambiguity aversion is introduced into a Bayesian model.

The differences between (2) and (3) suggest that maxmin implementation is neither easier

nor harder than Bayesian implementation in general, and more generally that expanding the

sets of possible beliefs Φ−i can make implementation either easier or harder. In particular,

expanding the sets Φ−i expands Φ∗, which implies that (3) must hold for a larger set of

measures φ. On the other hand, expanding Φ−i also reduces ỹi (θi), and thus reduces the

right-hand side of (3), making (3) easier to satisfy. Indeed, Section 4 shows that effi cient bi-

lateral trade is sometimes maxmin implementable in cases where the Myerson-Satterthwaite

theorem implies that it is not Bayesian implementable, which demonstrates that maxmin

implementation can be easier than Bayesian implementation. But it is also easy to find

examples where expanding the set of agents’possible beliefs makes implementation more

diffi cult. For instance, take a Bayesian bilateral trade setting where all types are certain

that gains from trade exist– so that effi cient trade is implementable– and expand the set of

possible beliefs by adding a less-favorable prior for which the Myerson-Satterthwaite theorem

applies. Condition (3) will then imply that effi cient trade is not implementable, by exactly

the same argument as in Myerson-Satterthwaite.

An important tool for proving Theorem 1 is an inequality version of usual envelope char-

acterization of payoffs, Lemma 1. Lemma 1 was previously derived by Bose, Ozdenoren, and

Pape (2006; equation (8) on p. 420) in the special case where Φi is a set of “ε contaminated”

beliefs, but the proof is the same in the general case and is thus omitted.9

9Lemma 1 can also be derived as a corollary of Theorem 1 of Carbajal and Ely (2013). See also Segal and
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Lemma 1 In any maxmin incentive compatible mechanism,

Ui (θi) ≥ Ui (θi) +

∫ θi

θi

ỹi (s) ds for all θi ∈ Θi. (4)

Lemma 1 is also related to Theorem 1 of Bodoh-Creed (2012), which gives an exact

characterization of payoffs using Milgrom and Segal’s (2002) envelope theorem for saddle

point problems. The difference comes because the maxmin problem (1) admits a saddle

point in Bodoh-Creed but not in the present paper; one reason why is that Bodoh-Creed

assumes that yi
(
θi, φ−i

)
is continuous in θi and φ−i (his assumption A8), which may not be

the case here.10 For example, effi cient allocation rules are not continuous, so Bodoh-Creed’s

characterization need not apply for effi cient mechanisms. I discuss below how Theorem 1

may be strengthened if (1) is assumed to admit a saddle point.

With Lemma 1 in hand, the proof of Theorem 1 relates the bound on agents’subjective

expected utilities in (4) to the objective social surplus on the left-hand side of (3). The key

reason why this is possible is that a maxmin agent’s subjective expected utility is a lower

bound on her expected utility under any probability distribution she finds possible. Hence,

the sum of agents’subjective expected utilities is a lower bound on the sum of their objective

expected utilities under any measure φ ∈ Φ∗, which in turn is a lower bound on the objective

expected social surplus under φ (if weak budget balance is satisfied). Note that this step

relies crucially on the assumption that agents are maxmin optimizers; for example, it would

not apply for Bayesian agents with arbitrary heterogeneous priors.

Proof of Theorem 1. Suppose mechanism (y, t) satisfies MMIC, IR, and WBB. For any

measure φi ∈ ∆ (Θi), integrating (4) by parts yields∫
Θi

Ui (θi) dφi ≥ Ui (θi) +

∫
Θi

(1− Fi (θi)) ỹi (θi) dθi.

Whinston (2002) and Kos and Messner (2013) for related approaches.
10A careful reading of Bodoh-Creed (2012) reveals that some additional assumptions are also required

for the existence of a saddle point, such as quasiconcavity assumptions. Bodoh-Creed (2014) provides an
alternative derivation of his payoff characterization result under additional continuity assumptions. Neither
set of assumptions is satisfied in the current setting.
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Recall that

Ui (θi) ≤
∫

Θ−i

(θiyi (θ) + ti (θ)) dφ−i for all φ−i ∈ Φ−i.

Combining these inequalities implies that, for every measure φ = φi × φ−i ∈ ∆ (Θi)× Φ−i,∫
Θi

∫
Θ−i

(θiyi (θ) + ti (θ)) dφ−idφi ≥ Ui (θi) +

∫
Θi

(1− Fi (θi)) ỹi (θi) dθi,

or ∫
Θ

(θiyi (θ) + ti (θ)) dφ ≥ Ui (θi) +

∫
Θi

(1− Fi (θi)) ỹi (θi) dθi. (5)

Note that every measure φ ∈ Φ∗ is of the form φi× φ−i ∈ ∆ (Θi)×Φ−i for each i. Thus, for

every φ ∈ Φ∗, summing (5) over i yields

∑
i

(∫
Θ

(θiyi (θ) + ti (θ)) dφ

)
≥
∑
i

Ui (θi) +
∑
i

(∫
Θi

(1− Fi (θi)) ỹi (θi) dθi
)
.

Finally,
∑

i Ui (θi) ≥ 0 by IR and
∑

i

∫
Θ
ti (θ) dφ ≤ 0 by WBB, so this inequality implies (3).

If truthtelling in the maxmin problem (1) corresponds to a saddle point
(
θ̂
∗
i (θi) , φ

∗
−i (θi)

)
(where the agent uses the pure strategy θ̂

∗
i (θi) = θi), then, letting y∗i (θi) = yi

(
θi, φ

∗
−i (θi)

)
be type θi’s expected allocation under her worst-case belief φ

∗
−i (θi), Theorem 4 of Milgrom

and Segal (2002) or Theorem 1 of Bodoh-Creed (2012) implies that (4) may be strengthened

to

Ui (θi) = Ui (θi) +

∫ θi

θi

y∗i (s) ds for all θi ∈ Θi. (6)

The same argument as in the proof of Theorem 1 then implies that the necessary condition

(3) can be strengthened to

∑
i

(∫
θ∈Θ

θiyi (θ) dφ

)
≥
∑
i

(∫
θi∈Θi

(1− Fi (θi)) y∗i (θi) dθi

)
.

Thus, if truthtelling in the maxmin problem corresponds to a saddle point, then a necessary

condition for maxmin implementation is that, for every measure φ ∈ Φ∗, the expected so-

cial surplus under φ exceeds the expectation under φ of the sum of the agents’subjective
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information rents (i.e., the information rents under the worst-case beliefs φ∗−i (θi)). Unfortu-

nately, I am not aware of suffi cient conditions on the allocation rule y alone that ensure the

existence of such a saddle point.11 Applying the Debreu-Fan-Glicksberg fixed point theorem

to (1), a suffi cient condition on the mechanism (y, t) is that y and t are continuous in θ and

Ui

(
θ̂i, θ−i; θi

)
is quasiconcave in θ̂i and quasiconvex in θ−i.12

When the type spaces Θi are smoothly path-connected, a well-known necessary condition

for an effi cient allocation rule to be Bayesian implementable is that an individually rational

VCG mechanism runs an expected surplus (Makowski and Mezzetti, 1994; Williams, 1999;

Krishna and Perry, 2000). This follows because the standard envelope characterization of

payoffs implies that the interim expected utility of each type in any effi cient and Bayesian

incentive compatible mechanism is the same as her interim expected utility in a VCG mech-

anism. However, this result does not go through with maxmin incentive compatibility, even

if (1) admits a saddle point. This is because the envelope characterization of payoffs with

MMIC, (6), depends on types’expected allocations under their worst-case beliefs φ∗−i (θi),

and these beliefs in turn depend on transfers as well as the allocation rule. In particular,

distinct effi cient and MMIC mechanisms that give the same interim subjective expected

utility to the lowest type of each agent need not give the same interim subjective expected

utilities to all types, in contrast to the usual payoff equivalence under Bayesian incentive

compatibility.13 Indeed, I show in Section 4 that, in the context of bilateral trade, the ef-

ficient allocation rule may be maxmin implementable even if all individually rational VCG

mechanisms run expected deficits for some measure φ ∈ Φ∗.

Conversely, the condition that an individually rational VCG mechanism runs an ex-

pected surplus is also suffi cient for an effi cient allocation rule to be Bayesian implementable,

because, following Arrow (1979) and d’Aspremont and Gérard-Varet (1979), “lump-sum”

transfers that in expectation are constant in θi may be used to balance the budget ex post

without affecting incentives. This result also does not carry over with maxmin incentive

11To clarify, it is easy to provide conditions under which a saddle point in mixed strategies is guaranteed
to exist (e.g., finiteness of the mechanism). The question here is rather whether there exists a saddle point
in which the agent plays a pure strategy, namely the strategy of always reporting her type truthfully.
12It should also be noted that if (1) admits a saddle point then the maximizing and minimizing operators

in (1) commute, so that maxmin IC coincides with “minmax”IC. In this case, agents may equivalently be
viewed as pessimistic Bayesians rather than worst-case optimizers.
13This point was already noted by Bodoh-Creed (2012).
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compatibility, as these transfers can affect agents’worst-case beliefs and thereby affect in-

centives. This issue makes constructing satisfactory MMIC mechanisms challenging, and this

paper does not contain positive results on maxmin implementation outside of the bilateral

trade context– where, however, a full characterization is provided.

4 Application to Bilateral Trade

In this section, I show how Theorem 1 can be applied to obtain a full characterization of when

effi cient bilateral trade is implementable when agents know each other’s expected valuation

of the good, but know little beyond this.

Formally, a seller s can provide a good at cost c ∈ [0, 1], and a buyer b values the good

at v ∈ [0, 1].14 Given a realized cost c and value v, let y (c, v) ∈ {0, 1} and (ts (c, v) , tb (v, c))

denote the resulting allocation (no trade or trade) and transfers. Thus, effi ciency requires

that y (c, v) = 0 if c > v and y (c, v) = 1 if c < v.

Note that, in the notation of the previous section, θb = v while θs = −c. In what follows,

I therefore use the notation θi to stand for either v (if i = b) or −c (if i = s).

A key assumption is that the agents’average valuations are known, in that every measure

φi ∈ Φi satisfies Eφi [θi] = θ∗i for some θ
∗
i ∈

(
θi, θ̄i

)
.15 The results in this section actually

require only the weaker assumption that Eφi [θi] ≥ θ∗i for all φi ∈ Φi; the intuition is

that, with maxmin agents, only bounds on how bad an agent’s belief can be are binding.16

However, Section 5.2 shows that the equality assumption is appropriate if agents have a

unique common prior with mean (c∗, v∗) at an ex ante stage and may acquire additional

information prior to entering the mechanism. I therefore adopt the equality assumption for

consistency with this interpretation.

Two special kinds of distributions φi will play an important role in the analysis. Let δc∗

14The sets of possible valuations for the seller and buyer are allowed to differ in the appendix. This
extension is somewhat more significant than in standard Bayesian models, as the set of possible valuations
affects the set of feasible worst-cast beliefs.
15The assumption that θ∗i lies in the interior of Θi is without loss of generality: if θ

∗
i ∈

{
θi, θ̄i

}
, then there

would be no uncertainty about agent i’s value, and effi cient trade could always be implemented with a VCG
mechanism.
16Without a bound on how bad beliefs can be, de Castro and Yannelis’s (2010) theorem shows that effi cient

trade is always implementable.
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be the Dirac measure on c∗, so that δc∗ ∈ Φs corresponds to the possibility that the seller’s

cost is c∗ for sure.17 Let δscl,ch be the 2-point measure on c
l and ch satisfying Eδs

cl,ch [c] = c∗;

that is, δscl,ch is given by c = cl with probability ch−c∗
ch−cl and c = ch with probability c∗−cl

ch−cl .
18

Thus, δscl,ch ∈ Φs corresponds to the possibility that the seller’s cost may take on only value

cl or ch.19 The results to follow require δc∗ ∈ Φs and δ
s
cl,ch ∈ Φs for certain values of cl, ch

(and similarly for the buyer, with the symmetric notation). This richness assumption on the

set of the agents’possible beliefs imposes a kind of lower bound on their degree of ambiguity

aversion.

It may appear that allowing these Dirac measures introduces an asymmetry with the

classical Myerson-Satterthwaite setting, where types are traditionally assumed to be distrib-

uted with positive density over intervals. However, all that is required for the Myerson-

Satterthwaite theorem to hold is that (1) all types in an interval are “possible,” in that

incentive compatibility is imposed for an interval of types, and (2) gains from trade exist

with probability strictly between 0 and 1. As per (1), I assume that the set of possible types

of each agent is the unit interval. In contrast, it is not clear how to formulate an appropriate

analogue of (2) in the absence of a unique common prior. However, it will turn out that

in the αi (θi) double auction defined below, every type’s worst-case belief assigns positive

probability to the event that strict gains from trade fail to exist, and effi cient trade may be

implementable even if the intervals of types that assign positive probability to the event that

strict gains from trade do exist overlap.

The characterization result is the following.

Theorem 2 Assume that δ0,c ∈ Φs for all c ∈ [c∗, 1] and δv,1 ∈ Φb for all v ∈ [0, v∗].20 Then

effi cient trade is implementable if and only if

c∗

1− c∗ log

(
1 +

1− c∗
c∗

)
+

1− v∗
v∗

log

(
1 +

v∗

1− v∗

)
≥ 1. (*)

17In the information acquisition interpretation of Section 5.2, δc∗ ∈ Φs corresponds to the possibility that
the seller may acquire no new information about her cost before entering the mechanism.
18I omit the superscript on δscl,ch when it is unambiguous.
19In the information acquisition interpretation of Section 5.2, δscl,ch ∈ Φs corresponds to the possibility

that the seller may observe a binary signal of her cost before entering the mechanism, where the “good”
signal lowers her expected cost to cl and the “bad”signal raises her expected cost to ch.
20Note that δ0,c∗ = δc∗ , so we have δc∗ ∈ Φs, and similarly for the buyer.
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Theorem 2 shows that, under mild restrictions, effi cient bilateral trade between maxmin

agents is possible if and only if Condition (*) holds. In other words, the Myerson-Satterthwaite

impossibility result holds with maxmin agents if and only if Condition (*) fails.

As will become clear, Condition (*) says precisely that, in the αi (θi) double auction

defined below, αs (c) + αb (v) ≤ 1 for all c, v ∈ [0, 1]. To understand the economic content

of Condition (*), I discuss three aspects of the condition. First, what does Condition (*)

imply for comparative statics and other economic results? Second, where does Condition

(*) come from? And, third, why is Condition (*) necessary and suffi cient condition for

implementation, while Theorem 1 only gives a necessary condition?

To see the implications of Condition (*), first note that each term in the sum takes the

form 1
x

log (1 + x), which is decreasing in x. In particular, decreasing c∗ or increasing v∗

makes Condition (*) harder to satisfy. A rough intuition for this comparative static is that

improving agent i’s average value makes agent j more confident that he will trade, which

makes shading his report to get a better transfer more tempting. For example, as c∗ → 1

or v∗ → 0, the bound on how bad agents’beliefs can be vanishes, and effi cient trade is

always implementable as in de Castro and Yannelis (2010); on the other hand, as c∗ → 0

or v∗ → 1, agents become certain that they will trade, and the temptation to shade their

reports becomes irresistible.

Another observation is that Condition (*) always holds when c∗ ≥ v∗; that is, when

the average types of each agent do not have strict gains from trade with each other (e.g.,

this is why the curve in Figure 1 lies above the 45◦ line). This follows because, using the

inequality log 1 + x ≥ x
1+x
, the left-hand side of Condition (*) is at least 1 + c∗ − v∗. This

is consistent with Proposition 1 below, which shows that effi cient trade is implementable

with reference rules when c∗ ≥ v∗. In particular, the parameters for which effi cient trade is

implementable with general mechanisms but not with reference rules are precisely those that

satisfy Condition (*) but would violate Condition (*) if the log 1+x terms were approximated

by x
1+x
. This gives one measure of how restrictive reference rules are.

To see (heuristically) where Condition (*) comes from, suppose that the worst-case belief

of a type v buyer who reports type v̂ ≥ c∗ is δs0,v̂, which is easily seen to be the belief that

minimizes the probability that strict gains from trade exist (i.e., that c < v̂) among beliefs
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φs with E
φs [c] = c∗. Suppose also that the mechanism is ex post individually rational. Then

Ub
(
v̂, δs0,v̂; θi

)
=
v̂ − c∗
v̂

(v + tb (v̂, 0)) +
c∗

v̂
(0) ,

where v̂−c∗
v̂

is the probability of trade (i.e., the probability that c = 0 under δs0,v̂), and

v+tb (0, v̂) is type v’s payoff in the event that trade occurs. Assuming that tb is differentiable,

the first-order condition for truthtelling to be optimal is

∂

∂v
tb (v, 0) = − c∗

v (v − c∗) (v + tb (v, 0)) .

This first-order condition captures the tradeoff discussed in the introduction: shading one’s

report down yields a first-order loss in the probability of trade (i.e., in the probability that

c = 0), which must be offset by a first-order improvement in the transfer (i.e., in tb (v, 0)).21

Solving this differential equation for tb (v, 0) yields

tb (v, 0) =
v

v − c∗ (k − c∗ log v) ,

where k is a constant of integration. The constant that keeps transfers bounded as v → c∗

is k = c∗ log c∗, which gives

tb (v, 0) =
vc∗

v − c∗ log
c∗

v
.

This may be rewritten as

tb (v, 0) = αb (v) (v − 0)− v,

where

αb (v) = 1− c∗

v − c∗ log
v

c∗
.

On the other hand, the symmetric argument for the seller gives

ts (c, 1) = αs (c) (1− c) + c,

21In contrast, for Bayesian agents, shading one’s report in a double auction leads to only a second-order
loss in foregone gains from trade. This is why double auctions are not incentive compatible for Bayesians.
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where

αs (c) = 1− 1− v∗
v∗ − c log

1− c
1− v∗ .

Now, letting

tb (v, c) = αb (v) (v − c)− v,

ts (c, v) = αs (c) (v − c) + c

for all c < v, so that the resulting mechanism is an αi (θi) double auction as described in

the introduction, it may be verified that weak budget balance holds for all (c, v) if and only

if it holds for (c = 0, v = 1) (and it also may be verified that δs0,v̂ is indeed a worst-case

belief). Therefore, effi cient trade is implementable if and only if tb (1, 0) + ts (0, 1) ≤ 0, or

equivalently αb (1) + αs (0) ≤ 1. This is precisely Condition (*). In other words, Condition

(*) says that the shares of the social surplus that must be left to the highest types in the

αi (θi) double auction sum to less than one.

Finally, why does the suffi cient condition for implementability that αb (1) + αs (0) ≤ 1.

match the necessary condition from Theorem 1? Recall that the necessary condition is

that expected social surplus exceeds (a lower bound on) expected information rents (i.e.,

(3) holds) for any distribution φs × φb ∈ Φs × Φb. A first observation is that it suffi ces to

compare the social surplus and information rents under the critical distribution δs0,1×δb0,1, as

this distribution may be shown to minimize the difference between the left- and right-hand

sides of (3). Note that the expected social surplus under δs0,1 × δb0,1 equals (1− c∗) v∗ (1),

as under δs0,1 × δb0,1 there are strict gains from trade only if c = 0 and v = 1, which occurs

with probability (1− c∗) v∗. On the other hand, the expectation of (the lower bound on) the

buyer’s information rent under δb0,1 equals

v∗
∫ 1

0

ỹb (v) dv + (1− v∗)
∫ 0

0

ỹb (v) dv︸ ︷︷ ︸
=0

,

which may be shown to equal (1− c∗) v∗αb (1). The explanation for the appearance of the

αb (1) term here is that this is the fraction of the social surplus that must be left to type
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v = 1 buyer in an MMIC mechanism when a type v buyer’s subjective expected allocation

is ỹb (v) (in particular, the bound on and agent’s subjective information rent given by inte-

grating ỹi (θi) is tight in the current setting). Symmetrically, the expectation of the seller’s

information rent under δs0,1 equals (1− c∗) v∗αs (0), and therefore the necessary condition

from Theorem 1 reduces to

(1− c∗) v∗ ≥ (1− c∗) v∗ (αb (1) + αs (0)) ,

or αb (1) + αs (0) ≤ 1.

The approach taken to constructing the αi (θi) double auction is quite different from

standard approaches in Bayesian mechanism design. In particular, the approach here is to

posit a type v buyer’s worst-case belief to be δs0,v (the belief the minimizes the probability

that strict gains from trade exist); solve a differential equation coming from incentive com-

patibility for tb (v, 0), which gives the formula for αb (v); and then verify that δs0,v is indeed a

type v buyer’s worst-case belief in the resulting double auction. In contrast, a standard ap-

proach might be to use an “off-the-shelf”mechanism, like an AGV mechanism (Arrow, 1979;

d’Aspremont and Gérard-Varet, 1979). However, as argued above, standard arguments for

why using such mechanisms is without loss of generality do not apply with maxmin agents,

and moreover it is not even clear how to define AGV mechanisms in such environments.

A related point is that effi cient trade may be implementable even though every individu-

ally rational VCG mechanism runs an expected deficit for some measure φ ∈ Φ∗, in contrast

to the results of Makowski and Mezzetti (1994), Williams (1999), and Krishna and Perry

(2000) for Bayesian mechanism design with smoothly path-connected type spaces. For ex-

ample, this is the case whenever c∗ < v∗ and Condition (*) and the assumptions of Theorem

2 hold. To see this, recall that a VCG mechanism is a mechanism where, for all c, v ∈ [0, 1],

tb (v, c) = −cy (c, v) + hb (c) ,

for some expected transfer function hb that depends only on c (and symmetrically for the

seller). Note that effi ciency and individual rationality of type v = 0 imply that hb (c∗) ≥ 0
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(and symmetrically hs (v∗) ≥ 0), as otherwise one would have

Ub (0) ≤ Ub (0, δc∗ ; 0) = 0 + hb (c∗) < 0.

Hence, the expected deficit of such a mechanism under the measure δc∗ × δv∗ ∈ Φ∗ equals

tb (v∗, c∗) + ts (c∗, v∗) = (v∗ − c∗) (1) + hb (c∗) + hs (v∗) > 0.

5 Further Results on Bilateral Trade

This sections presents additional results on bilateral trading with maxmin agents. Section 5.1

characterizes when effi cient trade is possible with reference rules, a particularly simple class

of mechanisms. Section 5.2 describes how the assumption that agents know each other’s

expected valuation may be interpreted in terms of information acquisition. Section 5.3

discusses the role of Dirac measures in these results, and proposes slight modifications to the

definition of the αi (θi) double auction and reference rule that ensure that these mechanisms

are robust to eliminating weakly dominated strategies.

5.1 Effi cient Trade with Reference Rules

A common justification for introducing concerns about robustness into mechanism design

is that these considerations may argue for the use of simpler or otherwise more intuitively

appealing mechanisms. The αi (θi) double auction introduced in the previous section is

simple in some ways, but it does involve a carefully chosen transfer rule. In this section,

I point out that effi cient trade can also be implemented in an extremely simple class of

mechanisms– which I call reference rules– in the case where the average types of the two

agents do not have gains from trade with each other (i.e., when c∗ ≥ v∗). Reference rules

also have the advantage of satisfying strong rather than weak budget balance.22

22Another advantage of reference rules is that, when c∗ ≥ v∗, they are maxmin incentive compatible in a
stronger sense than that of Section 2. First, they remain incentive compatible if agents can hedge ambiguity
by randomizing. In addition, they also remain incentive compatibility if the order of the maximizing and
minimizing operators in (1) are reversed, so that agents are pessimistic Bayesians rather than worst-case
optimizers.
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I define a reference rule as follows.

Definition 1 In the bilateral trade setting, a mechanism (y, t) is a reference rule if

y (c, v) =

 1 if c ≤ v

0 if c > v


and there exists a price p∗ ∈ [0, 1] such that

ts (c, v) = −tb (v, c) =



p∗ if c ≤ p∗ ≤ v

c if p∗ < c ≤ v

v if c ≤ v < p∗

0 if c > v


.

With a reference rule, the agents trade at a reference price p∗ if they are both willing

to do so, and otherwise they trade at the reservation price of the agent who is unwilling to

trade at the reference price.23

Reference rules clearly satisfy EF, (ex post) IR, and SBB, so an MMIC reference rule

implements effi cient trade. The following result characterizes when MMIC reference rules

exist; that is, when effi cient trade is implementable with reference rules.

Proposition 1 Assume that δθ∗i ∈ Φi for i = 1, 2. Then effi cient trade is implementable

with reference rules if and only if c∗ ≥ v∗.

The intuition for why reference rules are incentive compatible when c∗ ≥ v∗ and p∗ ∈

[v∗, c∗] is captured in Figure 2. Observe that every buyer with value v ≤ c∗ may be certain

that no gains from trade exist, as he may believe that the distribution of seller values is the

Dirac distribution on c∗. Hence, certainty of no-trade is a worst-case belief for these buyers,

and they are therefore willing to reveal their information. In contrast, buyers with value

23The term “reference rule” is taken from Erdil and Klemperer (2010), who recommend the use of such
mechanisms in multi-unit auctions. They highlight that reference rules perform well in terms of agents’
“local incentives to deviate,”a different criterion from what I consider here. Reference rules also bear some
resemblance to the “downward flexible price mechanism” of Börgers and Smith (2012). Their mechanism
starts with a fixed price p∗ which the seller may then lower to any p′ < p∗, whereupon the parties decide
whether to trade at price p′.
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v* p* c*

buyers certain of no­trade price independent
of buyer’s report

price independent
of seller’s report sellers certain of no­trade

Figure 2: Reference rules with p∗ ∈ [v∗, c∗] are incentive compatible.

v > c∗ do believe that gains from trade exist with positive probability. But it is optimal

for these buyers to reveal their values truthfully as well: misreporting some v̂ > c∗ does not

affect the price regardless of the seller’s cost (as the price equals c if c > p∗ and equals p∗ if

c ≤ p∗), and misreporting some v̂ ≤ c∗ again gives payoff 0 in the worst case (as certainty

that the seller’s value equals c∗ would again be a worst-case belief). Therefore, truthtelling

is optimal for every buyer type. The argument for sellers is symmetric.

On the other hand, Figure 3 indicates why reference rules are not incentive compatible

when c∗ < v∗. Suppose the reference price p∗ is greater than c∗. Consider a buyer with

value v ∈ (c∗, p∗). If he reports his value truthfully, then whenever he trades under the

reference rule he does so at price v, which gives him payoff 0. Suppose he instead shades

his report down to some v̂ ∈ (c∗, v). Then whenever he trades the price is v̂– which gives

him a positive payoff– and in addition he expects to trade with positive probability (since

v̂ > c∗). Hence, he will shade down. The same argument shows that in any reference rule

a seller with c ∈ (p∗, v∗) shades up. Figure 3 shows that a consequence of this argument is

that a reference rule cannot be MMIC for both agents at once when c∗ < v∗, regardless of

where the reference price p∗ is set.

5.2 Information Acquisition Interpretation

The assumption that agents know the mean and bounds on the support of the distribution

of each other’s value emerges naturally when agents share a unique common prior at an ex

ante stage but are uncertain about the information acquisition technology that the other can

access prior to entering the mechanism. This section provides the details of this argument.
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sellers deviatebuyers deviate

c* p* v*

buyers deviate

c* p*v*

sellers deviate

c*p* v*

Figure 3: When c∗ < v∗, no reference rule is incentive compatible.

Consider the following extension of the model. Each agent i’s ex post utility is θ̃iy + ti,

where θ̃i ∈ R is her realized ex post value. (In the bilateral trade application, the buyer’s ex

post value is ṽ = θ̃b and the seller’s ex post cost is c̃ = −θ̃s.) There is an ex ante stage at

which the agents’beliefs about the ex post values
(
θ̃1, θ̃2

)
are given by a (unique) common

product measure φ̃ on
[
θ1, θ̄1

]
×
[
θ2, θ̄2

]
with mean (θ∗1, θ

∗
2) (the common prior). For each

agent i, there is a set of possible signaling functions (“experiments”) Si, where a signaling

function Σi ∈ Si is a map from Θi to an arbitrary message set Mi, and is thus informative

of agent i’s own ex post value only. Each agent i knows her own signaling function Σi, but

is completely uncertain about her opponent’s, knowing only that it lies in the set Sj. Agent

i’s interim value, θi– which corresponds to her type in the main model– is her posterior

expectation of θ̃i after observing the outcome of her experiment. That is, after observing

outcome mi, agent i’s valuation for the good is given by

θi ≡ Eφ̃i

[
θ̃i|Σi

(
θ̃i

)
= mi

]
. (7)

Note that the issue of updating “ambiguous beliefs” does not arise in this model. In

particular, the updating in (7) is completely standard. However, the following observation

shows that the main model can be interpreted as resulting from each agent’s being maxmin

about the identity of her opponent’s signaling function Σj ∈ Sj at the interim stage (i.e.,

after she observes her own signal).

Remark 1 If a measure φi is the distribution of θi = Eφ̃i

[
θ̃i|Σi

(
θ̃i

)
= mi

]
under φ̃i for
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some experiment Σi, then Eφi [θi] = θ∗i and suppφi ⊆ Θi (where suppφi denotes the support

of φi).

The fact that Eφi [θi] = θ∗i is the law of iterated expectation. The fact that suppφi ⊆ Θi

follows because θ̃i ∈
[
θi, θ̄i

]
with probability 1 under φ̃i. Thus, assuming that agent j finds

possible a particular set of measures φi satisfying E
φi [θi] = θ∗i and suppφi ⊆ Θi amounts

to assuming that Si is a particular subset of the set of all functions Θi → Mi.24 With this

interpretation, the assumption that δθ∗i ∈ Φi means that agent j finds it possible that agent i

acquires no information about her value before entering the mechanism (beyond the common

prior), while the assumption that δi
θli,θ

h
i
∈ Φi means that agent j finds it possible that agent

i observes a binary signal of her value, where the bad realization lowers her expectation of

θ̃i to θ
l
i and the good realization raises her expectation of θ̃i to θ

h
i .

5.3 The Role of Dirac Measures

In both the αi (θi) double auction and the reference rule, an agent’s worst-case belief is

a Dirac (or “two-point”) measure. Thus, in these mechanisms, a maxmin agent effectively

ignores the outcome that results when her opponent’s type takes on all but one or two values.

This section argues that this feature is not essential for the results.

A first observation is that excluding Dirac measures per se has no effect on the results if

the agents’sets of possible beliefs are suffi ciently rich. In particular, if the Dirac measures

referenced in the statements of Theorem 2 and Proposition 1 are not contained in Φi itself

but are contained in its closure, then these results go through as written. For instance, this

would be the case if Φi consists of all measures on Θi with mean θ
∗
i that are absolutely

continuous with respect to Lebesgue measure. The proof is simply that, with the max inf

formulation of (1), excluding accumulation points of Φi does not affect agents’utility from

any report under any mechanism where Uj
(
θ̂j, θi; θj

)
is everywhere left or right continuous

in θi, and both the αi (θi) double auction and the reference rule satisfy this property.

24More precisely, the set of possible interim measures φi is jointly determined by Si and the prior φ̃. For
example, every measure φi such that E

φi [θi] = θ∗i and suppφi ⊆ Θi is the distribution of θi for some
experiment if and only if the prior puts probability 1 on agent i’s ex post value being either θi or θ̄i (see, for
example, Theorem 1 of Shmaya and Yariv (2009) or Proposition 1 of Kamenica and Gentzkow (2011)).
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Nonetheless, one might object that if Dirac measures are viewed as a limiting case in

this way, an agent should still not completely discount the possibility that her opponent’s

type could take on other values. A natural way to formalize this concern is to strengthen

the definition of (1) to require that truthtelling is not only maxmin optimal, but also not

weakly dominated. I now show that Theorem 2 and Proposition 1 are both robust to this

modification, although the mechanisms involved need to be changed slightly.

In the construction in the proof of Theorem 2, αb (v) = 0 if v < c∗, so a buyer with

value v < c∗ gets payoff 0 against every seller type from truthtelling, but get a positive

payoff against some types (and payoff 0 against the others) from shading her report down

(and similarly for sellers with c > v∗). However, the specification of αb (v) for types v < c∗

can be altered without affecting the desirable properties of the αi (θi) double auction, as the

following result shows. The intuition is that the αi (θi) double auction runs a strict ex post

surplus whenever v < c∗ (recall that the surplus is smallest when v = 1 and c = 0), so some

of this surplus can be returned to the buyer without violating budget balance.

Proposition 2 Theorem 2 continues to hold when the definition of MMIC is strengthened

to require that truthtelling is not weakly dominated for any type.

A similar modification of the reference rule ensures the truthtelling is not weakly domi-

nated: when v < c∗, change tb (v, c) from −v to − ((1− ε) v + εc). However, since reference

rules are strongly budget balanced, this modification violates budget balance unless ts (c, v)

is also changed from v to (1− ε) v+εc. This change can in turn lead to a violation of MMIC

for the seller. Nonetheless, it turns out that MMIC is preserved if ε is not too large and Φ

satisfies the assumptions of Theorem 2.

Proposition 3 Assume that c∗ > v∗ and that δ0,c ∈ Φs for all c ∈ [c∗, 1] and δv,1 ∈ Φb for

all v ∈ [0, v∗]. Then, for every p∗ ∈ (v∗, c∗), the ε-modified reference rule given by

ts (c, v) = −tb (v, c) =



p∗ if c ≤ p∗ ≤ v

(1− ε) c+ εv if p∗ < c ≤ v

(1− ε) v + εc if c ≤ v < p∗

0 if c > v


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satisfies EF, IR, and SBB, and satisfies MMIC for all ε ∈ (0, p∗). In addition, under such a

mechanism truthtelling is not weakly dominated for any type.

6 Conclusion

This paper contributes to the study of mechanism design where agents follow “robust”de-

cision rules, in particular where agents are maxmin expected utility maximizers. I establish

two main results. First, I give a general necessary condition for a social choice rule to be im-

plementable, which generalizes the well-known condition from Bayesian mechanism design

that expected social surplus must exceed expected information rents. This condition in-

volves both a modification of the usual envelope characterization of payoffs and a connection

between agents’maxmin expected utilities and the “objective”expected social surplus un-

der a common prior. Second, I apply this result to give a complete characterization of when

effi cient bilateral trade is possible, when agents know little beyond each other’s expected val-

uation of the good (which is the information structure that results when agents are maxmin

about how one’s opponent may acquire information before participating in the mechanism).

Somewhat surprisingly, the Myerson-Satterthwaite impossible result sometimes continue to

hold with maxmin agents, despite the lack of a unique common prior or independent types.

When instead effi cient trade is possible, it is implementable with a relatively simple dou-

ble auction format, the αi (θi) double auction. Sometimes, it is also implementable with

extremely simple reference rules.

A clear direction for future work is investigating positive implementation results beyond

the bilateral trade context of two agents and two social alternatives. I have argued that

standard mechanisms may fail to have desirable properties with maxmin agents, and in

general it is not immediately clear how to generalize the mechanisms I construct in this

paper (the αi (θi) double auction and the reference rule) beyond the bilateral trade case.

However, one important setting where a relatively straightforward generalization does exist

is the multilateral public good provision problem, where n agents must decide whether or

not to provide a public good at cost C (Mailath and Postlewaite, 1989). In this case,

the (correlated) belief of a type θi agent that minimizes the probability that the good is
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provided is a two-point distribution, under which either all of her opponents’valuations take

on their highest possible values or these valuations sum to C − θi (so strict gains from trade

barely fail to exist). This characterization of worst-case beliefs can then be exploited to

develop a maxmin incentive compatible trading mechanism, generalizing the αi (θi) double

auction. However, note that these worst-case beliefs involve correlation, while my necessary

condition for implementation involves independent beliefs. This suggests that developing an

exact characterization of when effi cient public good provision is possible with more than two

agents would require a significant extension of the analysis of the bilateral case.

More broadly, it also seems important to consider models of robust agent behavior beyond

the maxmin expected utility model. Mechanism design with ambiguity-averse but non-

MMEU agents is left for future research, as is mechanism design under other models of

robust agent behavior such as minmax regret (Linhart and Radner, 1989; Bergemann and

Schlag 2008, 2011). The integration of models of robust agent behavior in mechanisms

and models of robustness concerns on the part of the mechanism designer (Bergemann and

Morris, 2005; Chung and Ely, 2007) must also await future research.
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Appendix: Omitted Proofs

Proof of Theorem 2

For the proof of Theorem 2, it is convenient to return to the notation of Section 2, which

treats the buyer and seller symmetrically. We also allow for arbitrary type spaces Θ1 and

Θ2, assuming only that the most favorable type of each agent has gains from trade with the

average type of the other agent, while the least favorable type of each agent does not: that

is, θ̄i + θ∗j > 0 ≥ θi + θ∗j for i = 1, 2.25 This assumption is clearly satisfied in the case in the

text, where θ̄b + θs = θb + θ̄s = 0. Noting that Condition (**) below generalizes Condition

(*), the following result generalizes Theorem 2.

Theorem 3 Assume that θ̄i + θ∗j > 0 ≥ θi + θ∗j and that δθi,θ̄i ∈ Φi for all θi ∈ [θi, θ
∗
i ], for

i = 1, 2. Then effi cient trade is implementable if and only if

(
θ̄1 + min

{
θ̄2,−θ1

}
θ̄1 + θ̄2

)(
θ̄1 − θ∗1

θ∗1 + min
{
θ̄2,−θ1

}) log

(
1 +

θ∗1 + min
{
θ̄2,−θ1

}
θ̄1 − θ∗1

)

+

(
θ̄2 + min

{
θ̄1,−θ2

}
θ̄1 + θ̄2

)(
θ̄2 − θ∗2

θ∗2 + min
{
θ̄1,−θ2

}) log

(
1 +

θ∗2 + min
{
θ̄1,−θ2

}
θ̄2 − θ∗2

)
≥ 1. (**)

Proof of Theorem 3: Necessity

By Theorem 1, effi cient trade is implementable only if, for all φ ∈ Φ1 × Φ2,

∑
i

(∫
θ∈Θ

θiyi (θ) dφ

)
−
∑
i

(∫
θi∈Θi

(1− Fi (θi)) ỹi (θi) dθi
)
≥ 0 (8)

for some allocation rule yi satisfying

yi (θ) =

 1 if θi + θj > 0

0 if θi + θj < 0

 .

25An earlier version of the paper shows that if θ̄i + θ∗j ≤ 0 and δθ∗j ∈ Φj for some i ∈ {1, 2}, then effi cient
trade is always implementable (with strong budget balance).
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Note that, for any such allocation rule yi,

ỹi (θi) =


0 if θi ≤ −θ∗j
θ∗j+θi

θ̄j+θi
if θi ∈

(
−θ∗j ,−θj

)
1 if θi > −θj

 .

This is immediate for the θi ≤ −θ∗j and θi > −θj cases, and follows by Chebyshev’s inequality

in the θi ∈
(
−θ∗j ,−θj

)
case.26 ,27

Let φi = δmax{θi,−θ̄j},θ̄i (which is assumed to be an element of Φi, as −θ̄j < θ∗i ) for i = 1, 2,

and let φ = φ1 × φ2. Let βi =
θ∗i+min{θ̄j ,−θi}
θ̄i+min{θ̄j ,−θi} , which is the probability that θi = θ̄i under

δmax{θi,−θ̄j},θ̄i . Observe that

∑
i

(∫
θ∈Θ

θiyi (θ) dφ

)
=

(
θ̄i + θ̄j

)
βiβj + max

{
θ̄i + θj, 0

}
βi
(
1− βj

)
+ max

{
θ̄j + θi, 0

}
βj (1− βi) ,

and, using the assumption that θi + θ∗j ≤ 0,

∫
θi∈Θi

(1− Fi (θ)) ỹi (θi) dθi =

∫ min{θ̄i,−θj}

max{θi,−θ∗j}
βi

(
θ∗j + θi

θ̄j + θi

)
dθi +

∫ θ̄i

min{θ̄i,−θj}
βidθi

=
(
θ̄i + θ∗j

)
βi

−
(
θ̄j − θ∗j

)
βi log

(
1 +

θ∗j + min
{
θ̄i,−θj

}
θ̄j − θ∗j

)
.

Combining these observations and collecting terms, the left-hand side of (8) equals

ζ

 −1 +

(
θ̄1+min{θ̄2,−θ1}

θ̄1+θ̄2

)(
θ̄1−θ∗1

θ∗1+min{θ̄2,−θ1}

)
log

(
1 +

θ∗1+min{θ̄2,−θ1}
θ̄1−θ∗1

)
+

(
θ̄2+min{θ̄1,−θ2}

θ̄1+θ̄2

)(
θ̄2−θ∗2

θ∗2+min{θ̄1,−θ2}

)
log

(
1 +

θ∗2+min{θ̄1,−θ2}
θ̄2−θ∗2

)
 , (9)

where ζ = β1β2

(
θ̄1 + θ̄2

)
> 0. The bracketed term in (9) non-negative if and only if

26The form of Chebyshev’s inequality I use throughout the paper is, for random variable X with mean x∗

and upper bound x̄, Pr (X ≥ x) ≥ x∗−x
x̄−x . This follows because x

∗ ≤ Pr (X ≥ x) x̄ + Pr (X < x)x. See, for
example, p. 319 of Grimmett and Stirzaker (2001).
27As will become clear, the value of ỹi

(
−θj

)
does not matter for the proof.
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Condition (**) holds. Hence, Condition (**) is necessary.

Proof of Theorem 3: Suffi ciency

The αi (θi) double auction is defined by

y (θi, θj) =

 1 if θi + θj > 0

0 if θi + θj ≤ 0

 ,

ti (θi, θj) =

 αi (θi) θj − (1− αi (θi)) min
{
θi,−θj

}
if θi + θj > 0

0 if θi + θj ≤ 0

 ,

for i = 1, 2, where

αi (θi) =

 1− θ̄j−θ∗j
θ∗j+min{θi,−θj} log

(
1 +

θ∗j+min{θi,−θj}
θ̄j−θ∗j

)
if θi > −θ∗j

0 if θi ≤ −θ∗j

 .

This mechanism is clearly effi cient. I show that it satisfies IR and MMIC, and that it

satisfies WBB if and only if Condition (**) holds.

Claim 1: The αi (θi) double auction satisfies (ex post) IR.

Proof: If θi + θj ≤ 0, then Ui (θi, θj; θi) = 0. If θi + θj > 0, then

Ui (θi, θj; θi) = θi + αi (θi) θj − (1− αi (θi)) min
{
θi,−θj

}
≥ αi (θi) (θi + θj) .

Now αi (θi) is of the form 1− 1
x

log (1 + x) for x > 0, and 1
x

log (1 + x) ∈ (0, 1) for x > 0, so

αi (θi) ∈ (0, 1) for all θi. This yields (ex post) IR.

Claim 2: The αi (θi) double auction satisfies WBB if and only if Condition (**) holds.

Proof: WBB is trivially satisfied when θ1 + θ2 ≤ 0, so suppose that θ1 + θ2 > 0.

If θ1 < −θ2 and θ2 < −θ1,

t1 (θ1, θ2) + t2 (θ1, θ2) = (θ1 + θ2) (α1 (θ1) + α2 (θ2)− 1) .
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Since αi (θi) is non-decreasing in θi (as 1
x

log (1 + x) is decreasing in x), this expression is

non-positive for all θ1, θ2 with θ1 +θ2 > 0 if and only if α1

(
θ̄1

)
+α2

(
θ̄2

)
≤ 1. Condition (**)

implies α1

(
θ̄1

)
+ α2

(
θ̄2

)
≤ 1 and is equivalent to this inequality when θ̄i ≤ −θj for i = 1, 2.

If θ1 ≥ −θ2 and θ2 ≥ −θ1,

t1 (θ1, θ2) + t2 (θ1, θ2) = α1 (θ1) θ2 + α2 (θ2) θ1 + (1− α1 (θ1)) θ2 + (1− α2 (θ2)) θ1

= θ1 + θ2 − (1− α1 (θ1)) (θ2 − θ2)− (1− α2 (θ2)) (θ1 − θ1) .

This expression is non-decreasing in θ1 and θ2 (as αi (θi) ∈ (0, 1) is non-decreasing and

θi ≥ θi), so it is non-positive for all θ1, θ2 with θ1 + θ2 > 0 if and only if

θ̄1 + θ̄2 −
(
1− α1

(
θ̄1

)) (
θ̄2 − θ2

)
−
(
1− α2

(
θ̄2

)) (
θ̄1 − θ1

)
≤ 0.

Moving the product terms to the right-hand side and dividing by θ̄1 + θ̄2 (which is positive)

shows that this inequality is equivalent to Condition (**) when θ̄i ≥ −θj for i = 1, 2 (which

is the case under consideration).

Finally, if θ1 < −θ2 and θ2 ≥ −θ1 (which is the hardest case),

t1 (θ1, θ2) + t2 (θ1, θ2) = (α1 (θ1) + α2 (θ2)− 1) θ1 + α1 (θ1) θ2 + (1− α2 (θ2)) θ1

= (θ1 + θ2)

[
α1 (θ1)− θ1 − θ1

θ1 + θ2

(1− α2 (θ2))

]
.

This expression is non-positive for all θ1, θ2 with θ1 + θ2 > 0 if and only if the bracketed

term is non-positive for all such θ1, θ2. This term is increasing in θ2, so it is non-positive for

all θ1, θ2 with θ1 + θ2 > 0 if and only if

α1 (θ1)− θ1 − θ1

θ1 + θ̄2

(
1− α2

(
θ̄2

))
≤ 0 (10)

for all θ1.28 If θ1 ≤ −θ∗2, then α1 (θ1) = 0 so (10) holds. Suppose toward a contradiction

that (10) fails for some θ1 ∈
[
−θ∗2,min

{
θ̄1,−θ2

}]
. Observe first that (10) holds at θ1 =

28The “only if”part of this statement follows because the hypothesis that θ2 ≥ −θ1 implies that θ̄2 ≥ −θ1,
which in turn implies that θ1 + θ̄2 ≥ 0 for all θ1.
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min
{
θ̄1,−θ2

}
: this has already been shown if θ̄1 ≥ −θ2, and if θ̄1 < −θ2 it follows by noting

that at θ1 = θ̄1 (10) is equivalent to Condition (**) when θ̄1 < −θ2 and θ̄2 ≥ −θ1. Since the

left-hand side of (10) is continuous in θ1 and (10) holds for θ1 = θ̄1 and for all θ1 ≥ −θ2, (10)

fails somewhere on the interval
[
−θ∗2,min

{
θ̄1,−θ2

}]
if and only if it fails at a local minimum

in (−θ∗2,−θ2). Hence, the argument may be completed by showing that no local minimum

in (−θ∗2,−θ2) exists. To see this, note that for θ1 ∈ (−θ∗2,−θ2),

α′1 (θ1) =
1

θ∗2 + θ1

(
θ∗2 + θ1

θ̄2 + θ1

− α1 (θ1)

)
,

and therefore the first-order condition for an extremum is

1

θ∗2 + θ1

(
θ∗2 + θ1

θ̄2 + θ1

− α1 (θ1)

)
=

θ̄2 + θ1(
θ̄2 + θ1

)2

(
1− α2

(
θ̄2

))
.

In addition, the second derivative of the left-hand side of (10) equals

−
(
θ̄2 − θ∗2

) (
2
(
θ̄2 + θ1

)
+ θ∗2 + θ1

)
(θ∗2 + θ1)2 (θ̄2 + θ1

)2 + 2
1− α1 (θ1)

(θ∗2 + θ1)2 − 2
θ̄2 + θ1(
θ̄2 + θ1

)3

(
1− α2

(
θ̄2

))
.

At an extremum, using the first-order condition implies that this equals

−
(
θ̄2 − θ∗2

) (
2
(
θ̄2 + θ1

)
+ θ∗2 + θ1

)
(θ∗2 + θ1)2 (θ̄2 + θ1

)2 + 2
1− α1 (θ1)

(θ∗2 + θ1)2 − 2
1(

θ̄2 + θ1

)
(θ∗2 + θ1)

(
θ∗2 + θ1

θ̄2 + θ1

− α1 (θ1)

)
=

θ̄2 − θ∗2
(θ∗2 + θ1)2 (θ̄2 + θ1

) [−α1 (θ1) +

(
θ∗2 + θ1

θ̄2 + θ1

− α1 (θ1)

)]
=

θ̄2 − θ∗2
(θ∗2 + θ1)2 (θ̄2 + θ1

) [−α1 (θ1) +
(θ∗2 + θ1)

(
θ̄2 + θ1

)(
θ̄2 + θ1

)2

(
1− α2

(
θ̄2

))]
.

Next, observe that
θ1 − θ1

θ1 + θ̄2

≥
(θ∗2 + θ1)

(
θ̄2 + θ1

)(
θ̄2 + θ1

)2 ,

which may be seen by cross-multiplying by
(
θ̄2 + θ1

)2
and noting that θ1 − θ1 ≥ θ∗2 + θ1 (as
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θ1 + θ∗2 ≤ 0) and θ̄2 + θ1 ≥ θ̄2 + θ1. Therefore,

−α1 (θ1) +
θ1 − θ1

θ1 + θ̄2

(
1− α2

(
θ̄2

))
≥ −α1 (θ1) +

(
θ̄2 + θ1

)
(θ∗2 + θ1)(

θ1 + θ̄2

)2

(
1− α2

(
θ̄2

))
,

so if (10) fails then the second derivative is non-positive at any local extremum. That is, any

local extremum in (−θ∗2,−θ2) must be a local maximum, so no local minimum in (−θ∗2,−θ2)

exists, completing the proof. The argument for θ1 ≥ −θ2 and θ2 < −θ1 is symmetric.

Claim 3: The αi (θi) double auction satisfies MMIC.

Proof: Suppose θi ≤ −θ∗j . By IR, Ui (θi) ≥ 0. By ex post IR and WBB, ti
(
θ̂i, θj

)
≤ θj

for all θ̂i, θj, and therefore Ui
(
θ̂i, θ

∗
j ; θi

)
≤ max

{
θi + θ∗j , 0

}
≤ 0 for all θ̂i. Hence, δθ∗j ∈ Φj

implies that Ui (θi) ≥ Ui

(
θ̂i, θ

∗
j ; θi

)
≥ infφj∈Φj Ui

(
θ̂i, φj; θi

)
, which yields MMIC.

For the remainder of the proof, suppose θi > −θ∗j . I show that no misreport θ̂i can be

profitable in each of the following four cases: (i) θ̂i > θi, (ii) θ̂i ≤ −θ∗j , (iii) θ̂i ∈
[
−θj, θi

)
(this case is vacuous if θi ≤ −θj), (iv) θ̂i ∈

(
−θ∗j ,min

{
θi,−θj

})
. These cases cover all

possible misreports, so the αi (θi) double auction satisfies MMIC.

Case (i): θ̂i > θi.

In this case, I claim that Ui (θi, θj; θi) ≥ Ui

(
θ̂i, θj; θi

)
for all θj. The key step is the

following observation.

Lemma 2 In the αi (θi) double auction, ti (θi, θj) is non-increasing in θi in the region where

θi + θj > 0.

Proof. See below.

Now, if θi + θj ≤ 0, then Ui (θi, θj; θi) = 0, while ex post IR and WBB imply that

Ui

(
θ̂i, θj; θi

)
≤ max {θi + θj, 0} ≤ 0. If instead θi+θj > 0, then EF and Lemma 2 imply that

Ui (θi, θj; θi) ≥ Ui

(
θ̂i, θj; θi

)
. The claim follows, and therefore Ui (θi) ≥ infφj∈Φj Ui

(
θ̂i, φj; θi

)
.

Case (ii): θ̂i ≤ −θ∗j .

Here, Ui
(
θ̂i, θ

∗
j ; θi

)
= 0. Hence, δθ∗j ∈ Φj and IR imply that Ui (θi) ≥ infφj∈Φj Ui

(
θ̂i, φj; θi

)
.

Case (iii): θ̂i ∈
[
−θj, θi

)
.

Note that αi
(
θ̂i

)
= αi

(
−θj

)
, so Ui

(
θ̂i, θj; θi

)
= θi+αi

(
−θj

)
θj−

(
1− αi

(
−θj

))
θj for all

θj. Therefore, Ui
(
θ̂i, φj; θi

)
= θi +αi

(
−θj

)
θ∗j −

(
1− αi

(
−θj

))
θj for all φj ∈ Φj. Similarly,
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Ui
(
θi, φj; θi

)
= θi + αi

(
−θj

)
θ∗j −

(
1− αi

(
−θj

))
θj, so Ui (θi) = infφj∈Φj Ui

(
θ̂i, φj; θi

)
.

Case (iv): θ̂i ∈
(
−θ∗j ,min

{
θi,−θj

})
.

In this case, I claim that

inf
φj∈Φj

Ui

(
θ̂i, φj; θi

)
=
θ∗j + θ̂i

θ̄j + θ̂i

(
θi + ti

(
θ̂i, θ̄j

))
. (11)

(Intuitively, the claim is that δmax{−θ̂i,θj},θ̄j is a worst-case belief for an agent of type θi who

misreports as type θ̂i ∈
(
−θ∗j , θi

]
.)

To see that (11) is an upper bound on infφj∈Φj Ui

(
θ̂i, φj; θi

)
, observe that δ−θ̂i,θ̄j ∈ Φj and

that Ui
(
θ̂i, δ−θ̂i,θ̄j ; θi

)
equals (11). To see that (11) is a lower bound on infφj∈Φj Ui

(
θ̂i, φj; θi

)
,

first note that

Ui

(
θ̂i, φj; θi

)
= Prφj

(
θj > −θ̂i

)
Eφj

[
θi + ti

(
θ̂i, θj

)
|θj > −θ̂i

]
+ Prφj

(
θj ≤ −θ̂i

)
(0)

= Prφj
(
θj > −θ̂i

)
Eφj

[
θi + αi

(
θ̂i

)
θj −

(
1− αi

(
θ̂i

))
θ̂i|θj > −θ̂i

]
= Prφj

(
θj > −θ̂i

)(
θi − θ̂i

)
+ Prφj

(
θj > −θ̂i

)
αi

(
θ̂i

)(
Eφj

[
θj|θj > −θ̂i

]
+ θ̂i

)
. (12)

I show that (11) is a lower bound on (12) for all φj with expectation θ
∗
j , and hence for all

φj ∈ Φj. To see this, consider the problem of minimizing (12) over φj with expectation θ
∗
j in

two steps: first minimize over φj with a given value of Prφj
(
θj > −θ̂i

)
, and then minimize

over Prφj
(
θj > −θ̂i

)
. For a given value of Prφj

(
θj > −θ̂i

)
, (12) is minimized by minimizing

Eφj

[
θj|θj > −θ̂i

]
over φj with expectation θ

∗
j . Observe that

(
1− Prφj

(
θj > −θ̂i

))
Eφj

[
θj|θj ≤ −θ̂i

]
+ Prφj

(
θj > −θ̂i

)
Eφj

[
θj|θj > −θ̂i

]
= θ∗j

for all φj with expectation θ
∗
j . Noting that E

φj

[
θj|θj ≤ −θ̂i

]
≤ −θ̂i and rearranging yields

Eφj

[
θj|θj > −θ̂i

]
≥ 1

Prφj
(
θj > −θ̂i

) (θ∗j +
(

1− Prφj
(
θj > −θ̂i

))
θ̂i

)
.
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Hence, the minimum of (12) over φj with expectation θ
∗
j and a given value of Prφj

(
θj > −θ̂i

)
equals

Prφj
(
θj > −θ̂i

)(
θi − θ̂i

)
+ Prφj

(
θj > −θ̂i

)
αi

(
θ̂i

) 1

Prφj
(
θj > −θ̂i

) (θ∗j +
(

1− Prφj
(
θj > −θ̂i

))
θ̂i

)
+ θ̂i


= Prφj

(
θj > −θ̂i

)(
θi − θ̂i

)
+ αi

(
θ̂i

)(
θ∗j + θ̂i

)
.

As θ̂i ≤ θi, (12) is minimized over φj with expectation θ
∗
j by minimizing Prφj

(
θj > −θ̂i

)
,

which by Chebyshev’s inequality yields

θ∗j + θ̂i

θ̄j + θ̂i

(
θi − θ̂i

)
+ αi

(
θ̂i

)(
θ∗j + θ̂i

)
=

θ∗j + θ̂i

θ̄j + θ̂i

(
θi − θ̂i + αi

(
θ̂i

)(
θ̄j + θ̂i

))
=

θ∗j + θ̂i

θ̄j + θ̂i

(
θi + ti

(
θ̂i, θ̄j

))
.

This gives (11), proving the claim.

Therefore,

sup
θ̂i∈(−θ∗j ,min{θi,−θj})

inf
φj∈Φj

Ui

(
θ̂i, φj; θi

)
= sup

θ̂i∈(−θ∗j ,min{θi,−θj})

θ∗j + θ̂i

θ̄j + θ̂i

(
θi + ti

(
θ̂i, θ̄j

))
.

To complete the proof, it suffi ces to show that
θ∗j+θ̂i

θ̄j+θ̂i

(
θi + ti

(
θ̂i, θ̄j

))
is non-decreasing in

θ̂i over
(
−θ∗j ,min

{
θi,−θj

})
, as Ui

(
θ̂i, θj; θi

)
is left-continuous in θ̂i and the possibility

that −θj could be a profitable misreport has already been ruled out. This follows as a

straightforward calculation yields

∂

∂θ̂i

[
θ∗j + θ̂i

θ̄j + θ̂i

(
θi + ti

(
θ̂i, θ̄j

))]
=

(
θ̄j − θ∗j

) (
θi − θ̂i

)
(
θ̄j + θ̂i

)2 ,

and this expression is non-negative because θi ≥ θ̂i ≥ −θ∗j ≥ −θ̄j.
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Proof of Lemma 2

The result is immediate when θi ≤ −θ∗j or θi ≥ −θj, as in both cases α′i (θi) = 0, which

immediately implies that ti (θi, θj) is non-increasing in θi.

If θi ∈
(
−θ∗j ,−θj

)
then ti (θi, θj) = αi (θi) θj − (1− αi (θi)) θi, and therefore

∂

∂θi
ti (θi, θj) = − (1− αi (θi)) + α′i (θi) (θj + θi) .

In addition,

α′i (θi) =
1

θ̄j + θi
− 1

θ∗j + θi
αi (θi) ,

and therefore

∂

∂θi
ti (θi, θj) =

θj − θ∗j
θ∗j + θi

(1− αi (θi))−
θ̄j − θ∗j
θ∗j + θi

θj + θi
θ̄j + θi

=
θ̄j − θ∗j
θ∗j + θi

[
θj − θ∗j
θ∗j + θi

log

(
1 +

θ∗j + θi

θ̄j − θ∗j

)
− θj + θi
θ̄j + θi

]
.

Since θi > −θ∗j , the sign of ∂
∂θi
ti (θi, θj) equals the sign of the term in brackets. Using the

fact that 1
x

log (1 + x) < 1 for all x > 0, this term is less than

θj − θ∗j
θ̄j − θ∗j

− θj + θi
θ̄j + θi

= −
(
θ̄j − θj

) (
θ∗j + θi

)(
θ̄j − θ∗j

) (
θ̄j + θi

) ≤ 0,

where the last inequality again uses θi > −θ∗j . Hence, ti (θi, θj) is non-increasing in θi.

Proof of Proposition 1

Suffi ciency:

When c∗ ≥ v∗, I show that any reference rule with p∗ ∈ [v∗, c∗] satisfies MMIC. I establish

MMIC for the buyer; the argument for the seller is symmetric.

First, suppose that v < c∗. Observe that Ub (v̂, c∗; v) ≤ 0 for all v̂: this follows because if

v̂ < c∗ then Ub (v̂, c∗; v) = 0, while if v̂ ≥ c∗ then Ub (v̂, c∗; v) = v − c∗ < 0. Hence, for all v̂,

IR and δc∗ ∈ Φs imply that Ub (v) ≥ 0 ≥ infφs∈Φs Ub (v̂, φs; v), which yields MMIC.

Next, suppose that v ≥ c∗. First, note that misreports of v̂ ≤ c∗ cannot be profitable,
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because Ub (v) ≥ 0 = Ub (v̂, c∗; v) and δc∗ ∈ Φs. Next, consider misreports of v̂ > c∗.

If y (c, v) = y (c, v̂), then tb (v, c) = tb (v̂, c) (as v, v̂ ≥ c∗ ≥ p∗), and hence Ub (v, c; v) =

Ub (v̂, c; v). In addition, if y (c, v) = 1 and y (c, v̂) = 0, then Ub (v, c; v) ≥ 0 = U (v̂, c; v).

Finally, if y (c, v) = 0 and y (c, v̂) = 1, then Ub (v, c; v) = 0 > v − c ≥ Ub (v̂, c; v). Hence,

Ub (v, c; v) ≥ Ub (v̂, c; v) for all v̂, so misreports of v̂ > c∗ cannot be profitable, either. This

yields MMIC.

Necessity:

When c∗ < v∗, every reference rule satisfies either p∗ > c∗ or p∗ < v∗. Suppose p∗ > c∗;

the argument for the alternative case is symmetric. Fix a value v ∈ [c∗, p∗] ∩ [0, 1]. Then

tb (v, c) = −v whenever c ≤ v. Hence, a buyer with value v gets payoff 0 from truthtelling,

and gets a strictly positive payoff from reporting any v ∈ (c∗, v) (as every belief in Φs puts

positive probability on seller types with c ≤ c∗), so MMIC fails.

Proof of Proposition 2

We show that the slightly more general Theorem 3 goes through with this more restrictive

definition of MMIC. The notation in what follows is as in the proof of Theorem 3.

The proof of necessity is unchanged. For suffi ciency, modify the αi (θi) double auction

constructed in the proof of Theorem 3 by letting αi (θi) = min
{

1
2
,
θi−θi
θ̄j−θ∗j

}(
1− αj

(
θ̄j
))
for all

θi ≤ −θ∗j , i = 1, 2 (rather than αi (θi) = 0 for θi ≤ −θ∗j). The modified mechanism satisfies

EF and (ex post) IR as in the proof of Theorem 3. In addition, ti (θi, θj) is unchanged for

all θi > −θ∗j , and reporting θ̂i ≤ −θ∗j continues to give payoff 0 in the worst case, so MMIC

also follows as in the proof of Theorem 3.

Next, as αi (θi) > 0 for all θi > θi in the modified mechanism, truthtelling is not weakly

dominated for any type. In particular, truthtelling was weakly dominated only for types

θi ≤ −θ∗j in the unmodified αi (θi) double auction, and in the modified mechanism such a

type does strictly better from truthtelling than from misreporting as type θ̂i < θi against any

opposing type θj ∈
(
−θi,−θ̂i

)
(and ti (θi, θj) is unchanged for all θi > −θ∗j , so truthtelling

does not become weakly dominated for any of these types).

Finally, the argument forWBB is also similar to the proof of Theorem 3. More specifically,

as in that proof, consider three cases:
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If θ1 < −θ2 and θ2 < −θ1, then as in the proof of Theorem 3 WBB holds if and only

if α1 (θ1) + α2 (θ2) ≤ 1. If θi > −θ∗j for i = 1, 2, this holds because α1

(
θ̄1

)
+ α2

(
θ̄2

)
≤ 1

(recalling that αi (θi) is non-decreasing in the unmodified αi (θi) double auction). If θ1 > −θ∗2
and θ2 ≤ −θ∗1, it holds because

α1 (θ1) + α2 (θ2) ≤ 1

2

(
1− α2

(
θ̄2

))
+ α2 (θ2) ≤ 1

2
+

1

2
α2

(
θ̄2

)
< 1.

And if θi ≤ −θ∗j for i = 1, 2, it holds because

α1 (θ1) + α2 (θ2) ≤ 1

2

(
1− α2

(
θ̄2

))
+

1

2

(
1− α1

(
θ̄1

))
< 1.

If θ1 ≥ −θ2 and θ2 > −θ1, then a fortiori θ1 > −θ∗2 and θ2 > −θ∗1, so the argument is

exactly as in the proof of Theorem 3.

Lastly, if θ1 < −θ2 and θ2 ≥ −θ1, then, as in the proof of Theorem 3, WBB reduces to

(10). If θ1 > −θ∗2 then the argument is exactly as in the proof of Theorem 3. If instead

θ1 ≤ −θ∗2 then (10) becomes[
min

{
1

2
,
θ1 − θ1

θ̄2 − θ∗2

}
− θ1 − θ1

θ̄2 + θ1

] (
1− α2

(
θ̄2

))
≤ 0,

which holds as the term in brackets is non-positive.

Proof of Proposition 3

It is clear that the mechanism satisfies EF, (ex post) IR, and SBB. I now verify MMIC for

an arbitrary buyer type v. (The argument for the seller is symmetric.)

If v̂ ≤ c∗, then Ub (v̂, c∗; v) = 0, so IR and δc∗ ∈ Φs yield Ub (v) ≥ 0 ≥ infφs∈Φs Ub (v̂, φs; v).

If v̂ > v, then the observation that tb (v, c) is non-increasing in v in the region where

v ≥ c implies that Ub (v, c; v) ≥ Ub (v̂, c; v) for all c, by the same argument as in the proof

of Theorem 3 (Claim 3, Case (i)). Hence, Ub (v) ≥ infφs∈Φs Ub (v̂, φs; v). This completes the

proof for MMIC for v ≤ c∗, so assume henceforth that v > c∗.

If v̂ ∈ (c∗, v), then v̂ > p∗. Hence, Ub (v̂, c; v) ≤ Ũb (v̂, c; v) for all c, where Ũb denotes util-

ity under a standard reference rule (with ε = 0). Recalling that Ũb (v) ≥ infφs∈Φs Ũb (v̂, φs; v)
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by Proposition 1, I complete the proof of MMIC by showing that Ub (v) = Ũb (v).

I claim that

inf
φs∈Φs

Ub (v̂, φs; v) =
v − c∗
v

(v − p∗)

for all v > c∗, whenever ε < p∗. In particular, I show that the infimum of Ub (v̂, φs; v) over

all φs with expectation c
∗ (and hence over Φs) is attained at φs = δs0,v (which is indeed an

element of Φs).

To see this, first note that any φs with expectation c
∗ must put positive mass on the

interval [0, v). Now a type v buyer gets positive payoff against all seller types c < v and gets

payoff zero against all types c ≥ v, so if φs puts positive mass on types c > v then there

exists another distribution φ′s with the same mean that shifts this mass to −θi and reduces

the mass on [0, v), thus reducing buyer type v’s payoff. Next, if φs puts positive mass on

(0, p∗] then shifting this mass to c = 0 and correspondingly increasing the mass on (p∗, 1]

weakly decreases the probability of trade and strictly decreases θi’s expected transfer when

trade occurs, so this modification also strictly reduces buyer type v’s payoff.

Finally, if φs puts positive mass on (p∗, v), with Eφs [c|θ ∈ (p∗, v)] = c, then it is worse for

buyer type v to split this mass between 0 and v in the proportions that preserve the mean. To

see this, note that buyer type v’s payoff against c ∈ (p∗, v) is (1− ε) (v − c), while the type’s

payoff from facing a cost 0 seller with probability v−c
v
is v−c

v
(v − p∗). Now v−c

v
(v − p∗) is less

than (1− ε) (v − c) if and only ε < 1−v+p∗

v
, and a suffi cient condition for this inequality to

hold is ε < p∗. Thus, any measure φs that puts positive mass on the intervals (0, p∗], (p∗, v),

or (v, 1] can be improved upon, so it follows that the infimum of Ub (v̂, φs; v) over measures

φs with expectation c
∗ is attained at the measure that puts mass only on {0, v}, namely δ0,v.

The above claim gives Ub (v) = v−c∗
v

(v − p∗). Since a standard reference rule corresponds

to ε = 0, the same argument gives Ũb (v) = v−c∗
v

(v − p∗). Hence, Ub (v) = Ũb (v), completing

the proof of MMIC.

Finally, to see that truthtelling is not weakly dominated for any type when ε > 0, note

that reporting v̂ < v cannot dominate truthtelling because Ub
(
v, v+v̂

2
; v
)
> 0 = Ub

(
v̂, v+v̂

2
; v
)
.

Moreover, reporting v̂ > v cannot dominate truthtelling because in this case Ub (v̂, c; v) ≤

Ub (v, c; v) for all c, as noted above.
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