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Mismeasured Variables in Econometric Analysis:
Problems from the Right and Problems from the Left

Jerry Hausman1

The effect of mismeasured variables in statistical and econometric analysis is one

of the oldest known problems, dating from the 1880’s in Adcock (1887).  In the most

straightforward regression analysis with a single regressor variable under classical

mismeasurement assumptions the least squares estimate is downward biased in

magnitude towards zero.2  At MIT I have called this the “Iron law of econometrics”—the

magnitude of the estimate is usually smaller than expected.  While a mismeasured right

hand side variable creates this problem, a mismeasured left hand side variable under

classical assumptions does not lead to bias.  The only result is less precision in the

estimated coefficient and a lower t-statistic.

In this paper I consider three recent developments for mismeasurement

econometric models that may be less familiar to readers.  The typical solution to the right

hand side mismeasurement problem is to use instrumental variables to achieve a

consistent estimate.3  However, in the last decade a literature has arisen regarding the use

of “weak instruments” that can result in significant finite sample bias.4 Thus, reliance on

an instrumental variable estimator to solve themismeasurement problem may be

misplaced in a particular application.  Here, I discuss a specification test of Hahn and

Hausman (1999) that permits a test of the weak instrument hypothesis.

Next, for non-linear models with mismeasured variables, application of

instrumental variables leads to inconsistent results.  At MIT I call this the “forbidden

regression” where improper use of instrumental variables leads to inconsistency.  A paper

                                                
1 Department of Economics, MIT, jhausman@mit.edu.  This paper is given in memory of Zvi Griliches.
Jason Abrevaya provided helpful comments.
2 Surveys of these classical results are found in Aigner, Hsiao, Kapteyn  and Wansbeek, T. (1984), Fuller
(1987), and Hausman, Newey, and Powell (1995).   Henceforth, I will assume that the “true” parameter is
positive so that I will not repeat the “in magnitude” qualifier.
3 Of course, a solution may not exist if suitable instruments cannot be found.
4 See e.g. Bound, Jaeger, and Baker (1997).
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by Hausman, Ichimura, Newey and Powell (HINP) (1991) proposes a consistent

estimator for the polynomial regression specification in the presence of mismeasurement.

I discuss that estimator here and a recent extension of the approach to general non-linear

specifications by Schennach (2000).  Thus, consistent estimators now are known for

mismeasured non-linear regression models.

Lastly, I return to mismeasured left hand side variables.  Many limited dependent

variable models in econometrics are inconsistently estimated if the left hand side

variables have measurement error.5  I discuss probit/logit type models of binary outcomes

or discrete choice and demonstrate that inconsistency occurs.  I also discuss consistent

estimators of these models with measurement errors and also specification tests.

Interestingly, these models do not require instrumental variables for consistent estimation

so long as a monotonicity condition is satisfied.  I next consider duration models and

demonstrate that under measurement errors on the left hand side variables, inconsistency

will again result for general models.  But so long as a stochastic dominance condition is

satisfied, these models can again be estimated consistently without the use of an

instrument.  The last model I consider with a mismeasured left hand side variable is the

quantile regression (QR) model.  Again inconsistent estimates result, but I do not

currently have a solution to this problem.

I.  Linear Models With Mismeasured Variables

I begin with the classic linear regression mismeasurement model.  I assume a

linear specification after means of the variables have been removed with the right hand

side variable mismeasured with uncorrelated measurement error where iz is the true

unobserved regressor and ix  is the observed variable that contains measurement error:
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5 All the models discussed here will also be inconsistently estimated if the right hand side variable is
mismeasured.  However, I do not discuss that topic specifically in the paper since the specifications can be
considered as nonlinear specifications.
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I will assume that the sample is independent and identically distributed (i.i.d.) and that zi

is the unobserved true variable and that the error in observation iη is mean zero and is

uncorrelated with zi and with iε .6  Other right hand side variables, assumed to be

measured without error, have been “partialled out” of the model.  I will assume that

.0>β

The classic result is that usually the least squares (OLS) estimator .β<b 7 This

result causes the “iron law of econometrics” that I suggested above, and it is also called

“attenuation” in the statistics literature.  In terms of a large sample result,

βαβ <=bp lim  where 1)/(/ 22222 <+== ησσσσσα zzxz .  Thus, the amount of

large sample bias depends on the ratio of the variance of the “signal” (true variable) to the

sum of the variance of the signal and the variance of the “noise” (error in measurement).8

Another well-known classic result arises if the left hand side and right hand side

variables are interchanged in the regression specification. The inverse of the OLS

estimator of the coefficient in the reverse regression, g, gives an upward biased estimate

of the true coefficient β .  In large samples we have the bounds, .limlim gpbp << β  A

less well known result tells the width of the bounds since 2/ Rgb = where the R2 arises

from the regression equation.  Thus, for cross section econometrics where R2 is often

about 0.3 the bounds can be quite wide while in a times series application if the R2 is

quite high, mismeasurement will not have a large effect on the least squares estimate.9

As a last result, note that if the left hand side variable is measured with error but

not the right hand side variable, the OLS estimator b would be unbiased under the usual

Gauss-Markov assumptions.10  Indeed, the new measurement error term, iω , assumed to

                                                
6 The i.i.d. assumption will be maintained throughout the paper.
7 This result does not hold in general if the measurement error is correlated with z or with ε , although the
downward bias still often occurs.  A straightforward calculation demonstrates the effect of correlated
measurement error on the estimator b.
8 For the effect on the estimated coefficients of the other variables in the regression specification that have
been “partialled out” see Meijer and Wansbeek (2000).
9 In times series, the appropriate R2 is after partialling out other right hand side variables, which can reduce
the original R2 by quite a lot.  Also, note that this result demonstrates that the times series version of the
“permanent income hypothesis”, in its most simple form of equation (1) with z and x permanent and
measured income, does not lead to a significantly greater measured MPC because the R2 in time series data
is quite high.
10 By Gauss-Markov assumptions I mean the assumptions that lead to OLS being the best linear unbiased
estimator.
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be uncorrelated with iε would not be separately identified because the measured variable

iii yq ω+= would be equivalent to replacing yi by qi in the original regression

specification and denoting the residual as iii ωεν += .  The only result would be reduced

precision in the estimate b, a lower t-statistic, and a reduced R2 .  However, if both left

and right hand side variables are mismeasured with errors of measurement uncorrelated

with each other and with iε , the b remains the same as above but g increases because the

R2 has decreased since iν  has replaced iε  and ωεν σσσ 222 += .  Thus, the bounds for

the true coefficient increase when measurement error occurs in both the left and right

hand side variables.

Most solutions to the mismeasurement problem for the linear specification in

econometrics depend on the use of instrumental variables.11  Instrumental variables are

assumed to be correlated with the true zi but uncorrelated with either iε  and iη .  Let the

vector of instrumental variables be wi and the instrumental variable (IV) estimator will

use a linear combination of the wi to achieve a consistent estimator bIV of the true

coefficient β .  In the usual case under Gauss-Markov assumptions 2SLS will give the

efficient instrumental variable estimator, while in more general situations of conditional

heteroscedasticity the White (1984) efficient IV estimator should be used.12

However, a significant understanding has emerged over the past few years

that IV estimation of the errors-in-variables model can lead to problems of inference in

the situation of “weak instruments,” which can arise when the instruments do not have a

high degree of explanatory power for the mismeasured variable(s) or when the number of

instruments becomes large.  The situation of “weak instruments” causes  conventional

(first order) asymptotictheory to provide a poor guide to finite sample inference. These

problems of inference in the weak instrument situation can arise when conventional (first

order) asymptotic inference techniques are used.  In particular, conventional first order

                                                
11 Of course, it has long been known that consistent estimators exist in the non-normal case, which do not
require instrumental variables; see e.g. Aigner et. al.  (1984).  However, these estimators have not been
used very much in econometrics.
12 Henceforth, I will confine the choice of estimators and tests to the Gauss-Markov setup of no
heteroscedasticity or serial correlation.
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asymptotics can lead to a lack of indication of a problem even though significant (large

sample) bias is present because estimated standard errors are not very accurate.

Hahn-Hausman (HH 1999) take a new approach to identifying the potential

problem and use higher order asymptotic distribution theory to determine if the

conventional first order IV asymptotics are reliable in a particular situation. HH

demonstrate that the finite sample bias depends on 3 factors: (1) bias is a monotonically

increasing function of ησβ 22  the variance of the measurement error multiplied by the

true coefficient; (2) bias is a monotonically increasing function of K  the number of

instrumental variables; and (3) bias is a monotonically decreasing function of the R2 of

the ‘reduced form” specification of xi regressed on the instrumental variables wi.  The

new specification test takes the general approach of Hausman (1978) and estimates the

same parameter(s) in two different ways.  In particular, we compare the difference of the

forward (conventional) 2SLS estimator of the coefficient of the right hand side

mismeasured variable with the reverse regression 2SLS estimator of the same unknown

parameter when the normalization is changed.13  Under the null hypothesis that

conventional first order asymptotics provides a reliable guide, the two estimates should

be very similar.  Indeed, they have unitary correlation according to first order asymptotic

distribution theory. If the IV estimator is working well, the forward and reverse

estimators take the form under conventional (first order) asymptotics,

( ) ,0lim =−⋅ IVIV gbnp  so that the forward and reverse estimators for β  should be

quite close.  However, if they are not close where the measure of closeness is determined

by second order asymptotics in HH, then problems of inferences are likely to be present.

When second order asymptotic distribution theory is used, the two estimators will

differ due to second order bias terms.  The HH test subtracts off these bias terms and then

sees whether the resulting difference in the two estimates satisfies the results of second

order asymptotic theory.  If it does and the second order bias term is small, the HH test

does not reject the use of first order asymptotic theory. If the new specification test

rejects HH then consider estimation of the equation by second-order unbiased estimators

of the type first proposed by Nagar (1959).  A second specification test is then used to see

                                                
13 Thus, 2SLS is applied to the forward and reverse regression, which was discussed above.
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if these second-order unbiased estimator provides a suitable basis for inference.  The HH

specification test may be quite useful in cross section situations with a mismeasured right

had side variable because of the significant finite sample bias that often exists along with

instruments that do not have high explanatory power for the mismeasured variable.

II.  Non-Linear Models With Mismeasured Variables

The linear model with measurement error is equivalent to a linear simultaneous

equation model, so that two stage least squares or a closely related estimator is used.

However, this relationship no longer holds in the nonlinear regression framework as

noted by Y. Amemiya (1985).  The reason that 2SLS no longer leads to a consistent

estimator in the nonlinear errors in variables problem is because the error of measurement

is no longer additively separable from the true variable in the nonlinear regression model.

Application of an IV estimator such as 2SLS or nonlinear 2SLS (N2SLS) leads to

inconsistent estimates. A straightforward way in which to see why 2SLS or N2SLS does

not yield consistent estimators in the nonlinear errors in variable model is to consider the

linear in parameters and nonlinear in variables specification for equation (1) where iz  is

replaced by the nonlinear function )( izg , which is assumed to be a sufficiently smooth

function to do Taylor approximations. Replacing the unobservable iz  with the observed

variable ix  leads to higher order terms of the Taylor expansion which enter the regression

error term but contain the true variable zi. Thus, as demonstrated by Hausman-Newey-

Powell (HNP, 1995), IV estimation will be inconsistent because the instruments will

necessarily be correlated with both the mismeasured right hand side and the error term in

the econometric specification.

Hausman-Ichimura-Newey-Powell (HINP, 1991) demonstrate how to solve the

problem and achieve consistent estimates in the case of a polynomial specification:

n1,..., = i        + )z(   = y i
j

ij

K

j=0
i εβ∑ (2)
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where the unobserved variable iz  is replaced by ix , which is observed with measurement

error iη as in equation (1).  HINP develop a consistent estimator under either of two sets of

assumptions.  The first is a “repeated measurement” specification where iii vzw +=  and

iv  is independent of iz , where the stronger (than no correlation) assumption is required

because of the nonlinear specification.  The second specification is the instrumental

variables specification iii vwz += δ  where iv  is independent of iq  so that

iiii vwx ηδ ++= .  The unknown parameter vector δ  is estimated using OLS.

The HINP (1991) approach uses estimates of higher order moments to derive

consistent estimators.  The usual IV approach multiplies through equation (1) by dwi ,

where d is the estimate of δ .  Then taking probability limits allows a solution of the

normal equations for b.  In the polynomial specification HINP use higher order moments of

the indicator variable i
pw  or the instrument variable p

idw )( to multiply both sides of the

equation.  HINP(1991) derive recursive relationships, which permit calculation of the

estimates of the elements of the unknown parameter vector and solution for the vector b

which is a consistent estimate of the unknown parameters jβ in equation (2).  HINP also

derive asymptotic variance estimators for the b vector.

HNP(1995) use this approach to estimate Engel curves for family expenditure in the

U.S.  Estimation of Engel curves has long been an area of interest among econometricians

where the "Leser (1963)-Working" form of Engel curve in which budget shares are

regressed on the log of income or expenditure has been widely adopted in recent

research. However, in a notable paper Gorman (1981) considered Engel curves in which

either expenditure or budget shares are specified as polynomials in functions of

expenditure, e.g. log of expenditure. Given an "exactly aggregable function", Gorman

demonstrates that the rank of the matrix of coefficients for the polynomial terms in

income is at most three. HNP investigate Engel curve specifications of the Gorman form

and provide tests of his rank three restriction.

Few studies of Engel curves have used estimators other than least squares or

nonlinear least squares. HNP investigate two alternative sets of instruments: expenditure

in other periods which follows from a life cycle model approach to consumption or
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determinants of income and expenditure such as education and age.  HNP use the 1982

U.S. Consumer Expenditure Survey (CES).  The CES collects data from families over

four quarters so that HNP can apply the repeated measurement technique.  HNP use

budget share and total expenditure for each family from 1982:1 and for the repeated

measurement total expenditure from 1982:2. They estimate Engel curves on five

commodity groups: food, clothing, recreation, health care, and transportation. HNP find

that the usual assumption of constant budget share elasticities, which the Leser-Working

specification imposes, appears inconsistent with the 1982 CES data. HNP also find that a

Hausman (1978) type specification test of the IV estimates versus the OLS estimates

strongly rejects the OLS estimates, indicating the importance of the measurement error

specification. Thus, HNP find strong evidence that use of current expenditure in

estimation of Engel curves on micro data leads to errors in variables problems.  Lastly,

HNP explore the Gorman results. For the polynomial specification of equation (2), the

rank restriction takes the form that the ratio of coefficients of the cubic terms to the

coefficients of the quadratic terms will be constant across budget share equations.  HNP

estimate the "Gorman statistic" to see whether the coefficients in the cubic specific of

equation (2) have rank three.  HNP find a rather remarkable result. HNP find the ratios of

the coefficients to be extremely close in actual values and estimated precisely.   The

ratios of the coefficients  for the different budget share equations are –25.0, -25.2, -25.1, -

23.3, and –25.6.14  The near equality of the ratios provides strong support for the Gorman

hypothesis.  Thus, use of consistent estimates of a mismeasurement model for Engel

curve analysis provides an interesting result that a restriction from economic theory

applies to the data.

In a recent doctoral thesis at MIT, Schennach (2000) has extended the HINP

(1991) results from the polynomial specification of equation (2) to the consistent

estimation of nonlinear models with measurement errors in the explanatory variables

when one repeated observation exists.  Thus, regression models with nonlinear functions

such as )( izg , where iz  is an unobserved variable can be estimated consistently.

Schennach uses the Fourier transform to convert the integral equations that relate the

                                                
14 The HINP consistent estimates provide stronger support for the Gorman hypothesis than do the OLS
estimates.
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distribution of the unobserved true variables to the mismeasured observed variables into

algebraic equations.  She then solves these equations to identify moments of the true

unobserved variables.  These moments are used to construct a traditional nonlinear least

squares estimator.  While HINP restricted their estimator to polynomial moments of the

unobserved variables and its product with the left hand side variable, Schennach allows

for arbitrary functions of the mismeasured right hand side variable ix .15  Thus, the

approach is considerably more flexible than the HINP approach, although it does involve

calculation of the empirical Fourier transforms. Schennach estimates nonlinear Engel

curves using CES data from 1984:1 using the next quarter expenditure as the repeated

measurement.  For both of her nonlinear specification she finds that for 4 out or the 5

budget categories that she estimates, a Hausman (1978) test rejects the traditional NLS

estimator in favor of her estimator that allows for mismeasured right hand side variables.

Thus, both HNP (1995) and Schennach (2000) find that in estimation of Engel curves, a

least squares approach which uses current expenditure instead of a permanent income

approach leads to inconsistent estimates where the usual downward bias (attenuation) is

present in the least squares estimates.

III.  Measurement Error in the Left Hand Side Variables: Probit and Logit

I now consider the consequences of mismeasurement in the left hand side variable

in binary outcome models where the observed left hand side variable is a function of an

unobserved (latent) dependent variable.  This specification often arises in limited

dependent variable models.  The outcome is different from the usual regression

specification where a mismeasured left hand side variable does not lead to problems, as

discussed above.  In the limited dependent variable specification, misclassification of the

left hand side variable leads to biased and inconsistent estimators.

The usual latent variable specification has an observed latent variable iy*  and an

observed variable 1=iy  if 0* ≥iy  and 0=iy  if 0* <iy .  The regression specification

that allows for misclassification is:

                                                
15 In particular, consistent estimation for probit and logit models with mismeasured right hand side
(explanatory) variables follows.
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iii zFq εβααα +−−+= )()1( 100 (3)

where 0α  is the probability that 1=iq  although the true 0=iy , 1α  is the probability that

0=iq  although the true 1=iy , and F is the cumulative distribution for the probit model

or logit model.  With no mismeasurement 010 == αα  and nonlinear least squares (NLS)

or maximum likelihood estimation (MLE) of equation (3), imposing the no

misclassification assumption, leads to consistent estimates.  However, if misclassification

is present, both NLS and MLE lead to biased and inconsistent estimation.   However, if

equation (3) is estimate by NLS allowing for misclassification, Hausman, Abrevaya, and

Scott-Morton (HAS 1998) demonstrate that consistent estimation results.  Thus, the

estimated coefficients of α0 and α1 provide a specification test for mismeasurement.

Similarly, HAS demonstrate that MLE, which permits for misclassification, is

straightforward and consistent estimates result so long as a monotonicity condition holds:

.110 <+αα   This monotonicity condition is relatively weak since it says that the

combined probability of misclassification is not so high that on average you cannot tell

which result actually occurred.  Thus, two results arise in the binary limited dependent

variable cases which are different from the classical regression specification with

measurement error in the left hand side variable: (1) inconsistent estimation results from

the mismeasurement and (2) consistent estimation does not require instrumental

variables.  The analysis extends to discrete response models with more than two

categories, and MLE estimation is consistent. HAS find that relatively small amounts of

misclassification, as little as 2%, can lead to significant amounts of large sample bias in

Monte Carlo experiments.

The assumption of normally distributed disturbances required by the probit

specification or extreme value disturbances for the logit specification, used in the

specification of F in equation (3), is not necessary for consistent estimation.  Thus, HAS

also demonstrate that the monotonicity condition allows for semiparametric estimation

where no cumulative distribution needs to be assumed.  HAS demonstrate that the

maximum rank correlation (MRC) estimator of Han (1987) provides a consistent
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estimator for β .  A further advantage of the MRC estimator is that a more flexible model

of misclassification is sufficient for consistent estimation as the exact form of

misclassification need not be specified or estimated.

HAS then demonstrate how to non-parametrically estimate the response function

F as a function of bzi , the consistent estimate, using an isotonic regression (IR) method.

The IR method works in the current situation since F is monotonic in βiz  since it is a

distribution function.  The IR technique imposes a monotonicity condition on the left-

hand side variable in a regression specification. The IR estimator is pointwise consistent,

and HAS develop asymptotic standard errors and confidence intervals for the consistent

estimator of F.

As an empirical example HAS specify and estimate a model of job change using

both the CPS (Current Population Survey) and PSID (Panel Study of Income Dynamics)

data sets.  The results from the CPS data set, discussed here, demonstrate strong evidence

of misclassification.  Using the MLE of a probit specification which allows for

misclassification, HAS find that 0α , the probability of misclassification for non-job

changers is estimated to be 6% and is very precisely estimated, and 1α , the probability of

misclassification for job changers is estimated to be 31% and is also very precisely

estimated.  The MLE estimates of many of the right hand side variables change by large

amounts when misclassification is permitted.  HAS then use the MRC and IR estimators

that do not impose functional form restrictions.  They find that 0α , the probability of

misclassification for non-job changers is estimated to be 4% and is very precisely

estimated, and 1α , the probability of misclassification for job changers is estimated to be

40% and is also very precisely estimated.  Thus, HAS find that the semiparametric

estimates are quite similar to the MLEestimates that allow for misclassification.  Also,

the MRC estimates of most of the right hand side variables change by only relatively

small amounts compared to the parametric MLE estimates that allow for

misclassification.  Thus, misclassification appears to be a potentially serious problem in

micro data where inconsistent results may arise.  While the combination MRC/IR

approach is quite flexible, the limited empirical experience of HAS appears to
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demonstrate that the MLE approach to probit or logit allowing for misclassification may

give reasonable results in many actual empirical situations.

IV.  Measurement Error in the Left Hand Side Variables: More General Models

The model in the last section is a particular example of a class of models that take

the form:

iii zfy εβ += )(* (4)

where f is strictly increasing and iy*  is an unobserved (latent) variable.  To allow for

mismeasurement in this more general situation Abrevaya-Hausman (AH 1999) model the

observed left hand side variable iq as a stochastic function of the underlying iy* .  AH

demonstration that this model allows for binary choice with misclassification as in HAS

(1998), mismeasured discrete dependent variables, and mismeasured continuous

dependent variables.  In this latter situation the observed left hand side variable is

continuous and is a function of the unobserved (latent) variable and a random disturbance

so that ),( *
iii yhq ω= .  This last model specification includes the increasingly used

duration and hazard models.

AH consider semi-parametric estimation of these models using either the MRC

estimators or the more general monotone rank estimator (MRE) developed by Cavanagh

and Sherman (1998).  To achieve identification and allow consistent estimation using the

MRC and MRE estimators AH develop a sufficient condition on the mismeasurement

process.  The sufficient condition is that the distribution for the observed variable iq  for a

higher latent iy*  stochastically dominates the distribution of jq  for a lower latent jy* .

Thus, the effect of the mismeasurement cannot on average permute the ordering of the

observed left hand side variables with respect to the ordering of the unobserved latent

variables.  So the effect of the mismeasurement cannot be “too large” on average.  The

use of the notion of first order stochastic dominance is familiar from microeconomics
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where it is used to order portfolios or risky distributions.16  In terms of an actual problem

with mismeasurement in the left hand side variable the appropriate question to ask to

satisfy the sufficient condition is:  “Are observational units with larger “true” values for

their left hand side variable more likely to report larger values than observations units

with smaller “true” values?”  If the answer is “yes”, the AH techniques can be used.

Again instrumental variables are not required for consistent estimation.

AH consider their approach for the duration models such as the well-known Cox

(1972) partial likelihood model, the Han-Hausman (1990) and Meyer (1990)

specifications, and more generally the proportional hazard model.  A hazard model, in the

context of the return to employment for an unemployed person, answers the question of

what is the probability of becoming employed in the next time period conditional on

being unemployed up to the previous time period.  Thus, the hazard model has a

similarity to discrete response models, but it allows for the effect of past outcomes on the

probability of the  return to employment to affect the outcome in the current period.

AH demonstrate that conventional MLE estimation of commonly used duration

models and hazard models is inconsistent when the left hand side variable is

mismeasured, with the single exception of the highly restrictive Weibull duration

model.17  So if the person were actually unemployed for say 24 weeks and answered 26

weeks in the survey, mismeasurement willexist and would, in general, lead to

inconsistent estimation.  AH find in Monte Carlo experiments that both the Cox model

and the Han-Hausman-Meyer (HHM) models have coefficient estimates that are

attenuated, e.g. biased towards zero.  Thus, duration model specification that do not allow

for mismeasurement in the left hand side variable have results similar to the classical

regression model with mismeasurement in the right hand side variable.  AH demonstrate

that MRC and MRE estimators do well in the Monte Carlo experiments in taking account

of the mismeasurement and estimating the unknown parameters.

AH discuss the finding of mismeasured duration data in survey or unemployment

duration data.  Mismeasured durations are common to all data sets that have survey

                                                
16 See e.g. Mas-Colell, Whinston, and Green (1995), p. 195.
17 The Weibull specification requires a monotonic (baseline) hazard, which makes it too restrictive for most
problems.  Also, the particular application cannot allow for censoring (check) which is typically present  in
applications of duration models.
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responses, and AH concentrate on the Survey of Income and Program participation

(SIPP) data set.  Some common findings are that a significant number of reporting error

are found—in the CPS about 37% of unemployed workers overstated unemployment

durations; longer spells have a higher proportion of reporting errors, and responses tend

to be “focal responses” for instance at a number of weeks that corresponds to an integer

month amount, e.g. 4 or 8 weeks.  AH conduct an empirical analysis on unemployment

duration in the SIPP data and use the Cox and HHM models, which do not allow for

mismeasurement as well as a semi-parametric MRE model that does permit

mismeasurement.  While many of the MRE parameter estimates for the demographic

variables are similar to the Cox and HHM parameter estimates, one potentially important

difference is found.  Allowing for mismeasurement finds a much smaller and statistically

insignificant effect on the UI benefit levels on unemployment duration.  The previous

wage interacted with receiving UI continues to be significant, but the actual size of the UI

benefit ceases to be significant.  In particular the commonly used “replacement-rate”

specification is rejected when mismeasurement is permitted in the unemployment

durations.  AH conclude that mismeasurement in the left hand side variable can have an

important effect in duration models.

V.  An Unsolved Problem: Measurement Error in the Left Hand Side Variable of

Quantile Regression Models

Koenker and Bassett (KB 1978) introduced the quantile regression (QR) estimator

into econometrics. The QR estimator gives a view of the entire conditional distribution

rather than just, say, the conditional mean.  The advantage of the QR estimator is that it is

a “robust” estimator of the regression specification so that it is not as sensitive to

“outliers”, i.e. extreme observations.18  Alternatively, the QR estimator performs well on

efficiency grounds when the stochastic disturbance has “thick tails” that depart from the

normal (Gaussian) assumption. Lastly, the QR estimator does well in the heteroscedastic

situation.  The QR estimator estimates a regression specification at a number of θ  th

regression quantiles for 10 << θ  in the regression model specification

)()( θβθε iii zy −= .  The QR estimator thus generalizes the regression median estimator
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for the regression quantile of 2/1=θ .  Interesting applications of the QR estimator are

increasingly common.  Buchinsky (1994) used the QR technique to explore changes in

the wage distribution in the CPS over a 25 year period.  Buchinsky focuses on changes in

the returns to education and experience at different points of the wage distribution, given

that he believes that heteroscedasticity is likely to be an important factor.  He finds that

the returns to education and experience are different at the different quantiles, =θ {0.1,

0.25, 0.5, 0.75, 0.9}.

To the best of my knowledge, no one has explored the effect of mismeasured left

hand side variables for the QR approach.  As before, assume that the measured left hand

side variable iii yq ω+= .  Mismeasurement in the left hand side variable might be

expected in some applications.  For instance, in the Buchnisky paper the main left hand

side variable is the weekly wage, defined in the CPS as the “total income from wages and

salaries last year” divided by the “number of weeks worked last year.” Both numerator

and denominator  arise from survey responses in the CPS (check).  However, it is not

difficult to demonstrate that a mismeasured left hand side variable will lead to

inconsistent QR estimation because the stochastic disturbance is now ii ωε + .  The

presence of the error in measurement “attenuates” the quantiles coefficient estimates,

leading to estimates that are linear combination of the actual quantile coefficients )(θβ

for different θ ’s.

As an empirical example I took a QR specification with a constant and one right

hand variable in the presence of heteroscedasticity and then added a (standard) normal

measurement error to the left hand side variable.  The results for estimates of the slope

coefficient are in Table 1:

                                                                                                                                                
18 See the paper by Professor Koenker in this issue.
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Table 1: Estimated QR Slope Coefficients with and without Measurement Error (ME)19

Quantile No ME Normal ME

0.10 .010 .278

0.25 .064 .234

0.50 .254 .303

0.75 .549 .329

0.90 .795 .368

As expected, the QR slope estimates with normal measurement error are attenuated

towards the median coefficient because of the mixture of the regression error iε  and the

measurement error iω .  While the QR estimator is robust to certain data features that

create problems for the classical linear regression model, it is not robust to a

mismeasured left hand side variable, which does not create problems for the classical

linear regression model.  I have not yet found a solution to this problem, similar to the

solution for the limited dependent variable problems and duration model problems.

Finding a solution seems a good topic for future research.

                                                
19 I used 10,000 observations in the Monte Carlo runs.  The right hand side variable is drawn from a
uniform distribution.  The specification contains significant conditional heteroscedasticity.
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