Models of Money With Spatially Separated Agents

Robert M. Townsend*

1. Introduction
This paper presents three models which explain the observation that money is
used in payment for commodities and barter is not prevalent. In each of these
models money is intrinsically useless, inasmuch as it does not enter directly into
either utility functions or production functions, and inconvertible, inasmuch as
no one stands ready to convert money into anything else! Moreover, money
does not enter any of the models by way of legal restrictions? or by way of a
requirement that commodities cannot be acquired without it, & la Clower 196732
Rather, money is explained in the sense that the following procedure is adopted.
First, the environment is specified carefully and completely —the agents of the
model, their preferences and endowments, and most important, who can com-
municate with whom. It is then established that there exists a monetary equilib-
rium, that is, a competitive equilibrium in which a fixed-supply money has value.

It is widely accepted that money cannot be explained in this sense in a
standard general equilibrium model. (See, forexample, Hahn 1965.) In a Walras-
ian model, at least, money cannot facilitate exchange; the nonmonetary com-
petitive equilibria are Pareto optimal. (Note again that a distinction is main-
tained here between money—fiat money, that is—and private credit.) Thus, to
get money into a model something must inhibit the operation of markets?
Moreover, if terminal conditions are to be avoided, time must be infinite.

In the model of Samuelson 1958, some markets are precluded in an obvious

*This paper would not have been written without the benefit of many stimulating conversations
on money and debt with Neil Wallace, whom I would also like to thank for innumerable contribu-
tions to the present draft. I am also much indebted to John Bryant for several very useful conversa-
tions and for an example which played a crucial role in the development of this paper, to Robert E.
Lucas, Jr., for several conversations on the Cass-Yaari model, and to Thomas J. Sargent for helpful
comments. [ assume full responsibility for any errors. Support for this research from the Federal
Reserve Bank of Minneapolis is gratefully acknowledged.

'The terminology here is Wallace’s (see his paper in this volume).
2But see the concluding section for a qualification to this statement.

3The implications of such Clower constraints, over and above the constraints implied by the technol-
ogy of exchange, are examined, however. (Author names and years refer to the works listed at the end of
this book.)

‘See Wallace’s paper in this volume and the discussion in Hahn 1973a on inessential money.
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way: there can be no transactions between the current young and the young of
the next generation; unborn individuals cannot trade. And in versions of this
overlapping generations model, there does exist a monetary equilibrium, one
which improves upon the nonmonetary equilibrium. In fact, in some versions,
the monetary equilibrium is itself optimal and is associated with nonbinding
nonnegativity constraints on the holding of money balances. Yet one wonders
whether the properties of the overlapping generations model carry over to alter-
native models which explain money in the above sense.

In the models of this paper, markets are precluded in another way, by spa-
tially separating agents. Infinitely lived agents who discount future over present
consumption are allocated over time into distinct markets orislands. The crucial
idea here is that markets must clear on each island in every time period. There
can be no communication across islands; that is, there is no central market or
exchange system. Certainly this way of decentralizing an economy is not new.
Lucas (1972) uses such islands to explain the movement of economic aggregates?
More to the point, the explicit pairing of agents is a scheme used in various
recent microeconomic approaches to money, including Starr 1972, Ostroy 1973,
Feldman 1973, Ostroy and Starr 1974, and Harris (forthcoming). Yet, for the
most part, these approaches are not really dynamic equilibrium theories. An
important exception is Harris, but he is concerned with commodity money, not
outside indebtedness.

In two of the models of this paper, the turnpike model of exchange (section 2)
and Lucas’ version of the Cass-Yaari (1966a) model (section 4}, there exists a
monetary equilibrium, that is, a competitive equilibrium with valued money. So,
as claimed, these models explain money. And, as in the overlapping generations
construct, this monetary equilibrium improves upon the nonmonetary equilib-
rium (autarky). Unlike the overlapping generations model, however, the mone-
tary equilibria in these models with spatially separated agents are nonoptimal and
are associated with binding nonnegativity constraints on the holding of money
balances. Thus the decentralization of spatial separation is not completely over-
come with money $ ’

The argument as to why no optimal allocation can be supported as a monetary
equilibrium in these models is fairly intuitive. Suppose all agents are of the same
age and all discount the future at the same rate, as in the turnpike model and
Lucas’ version of the Cass-Yaari model. Then if an optimal allocation is to be
supported, there must be a rate of deflation equal to the common discount rate.
But in the absence of taxes, such a deflation is inconsistent with individual
maximization, as real wealth (real money balances) would be unbounded. That
no stationary monetary equilibrium can be optimal is an immediate corollary.

As Grandmont and Younes (1972, 1973) point out, this latter conclusion -
appears frequently in the literature (see, for example, Clower 1970, Friedman
1969, Johnson 1970, and Samuelson 1968, 1969) where the argument turns on a
divergence between the positive marginal utility of real money balances and the
zero marginal cost of creating them. Grandmont and Younes are critical of this
literature, and they are not alone; Clower (1970), for example, argues quite

5A case can be made that models of money with spatially separated agents are of interest in their
ownright, quite apart from providing an alternative to overlapping generations.

50n an a priori basis this should not be a surprise; indeed, versions of the overlapping generations

model have been criticized for producing optimal monetary equilibria. See Wallace’s paper in this
volume.
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forcefully that these welfare questions must be addressed in a model which
makes explicit the monetary exchange process. Grandmont and Younes do es-
tablish the aforementioned conclusion rigorously in a general equilibrium, mone-
tary economy. Yet, as the authors note (in Grandmont and Younes 1972, p. 357),
even in their model money is introduced ‘“‘in a very crude way by imposing
constraints on transactions.’” That is, in contrast to the models of this paper,
theirs is not a model which explains money. In this respect, at least, this paper
may be viewed as an important extension of Grandmont and Younes and of this
literature.

If lump-sum taxes on money balances are permitted, then the models with
spatially separated agents of this paper can also produce Friedman’s (1969)
conclusions on the optimal quantity of money. That is, with lump-sum taxes,
optimal allocations can be supported in an interventionist monetary equilibrium
in which the rate of interest on money equals the common discount rate and in
which agents are satiated with money balances, that is, the nonnegativity con-
straints on money balances are nonbinding. (Also see Grandmont and Younes
1972 and Bewley’s paper in this volume.)

Speaking rather loosely, the overlapping generations model overturns these
welfare results by pairing agents of different ages and therefore different rates of
discount? This is argued more fully in section 3, where the turnpike model is
modified to incorporate finitely lived agents and hence becomes an overlapping
generations model. It is hoped that an essential feature of the overlapping gener-
ations model is revealed.

As noted above, monetary economics necessarily involves the economics of
infinity. In the overlapping generations model there is an infinite number of
generations, though a finite number of agents alive at any one date. In the
turnpike model and in the Cass-Yaari model presented here, there is an infinite
number of agents alive at any one date. This specification ensures that no private
debt is traded, so that its exclusion is endogenous, that is, not imposed by the
modeler. Section 5 offers some preliminary comments on private debt (inside
money) in the context of a modified turnpike model, one without the contem-
poraneous infinity.

Finally, a caveat is in order. The intent in what follows is to understand the
implications of various exchange structures for monetary equilibria. Thus, again
speaking rather loosely, preferences and endowments are held fixed across
models as the exchange structure is varied. To this end, maximum generality is
not pursued within the context of each model. Agents are assumed throughout to
have preferences and endowments of a very special form. Moreover, certain
strong symmetry conditions (on the class of allocations under consideration) are
imposed exogenously, without elaboration. Finally, it may be noted that the
models of this paper are successful in explaining money without the introduction
of uncertainty; it remains an open question as to whether these models can
approximate economies in which moral hazard and bankruptcy play a crucial
role®

2. A Turnpike Model of Exchange
In the turnpike model each of a countably infinite number of agents is allocated

"Cass, Okuno, and Zilcha argue (in their paper in this volume) that the inefficiency of monetary
equilibrium emerges in the overlapping generations model under alternative assumptions.

¥See Brunnerand Meltzer 1971.
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into one of a countably infinite number of spatially distinct markets or islands
in each period of her or his life. The exogenous allocation procedure is such
that any two agents are paired at most once during their lifetimes, and,
moreover, they share no common third agent as a trading partner. All agents
are born at time 0, so that at any time ¢ all agents are of the same age. Each lives
forever and faces a sequence of endowments of the single consumption good of
the model which alternates between 0 and 1 unit. At any time ¢ = 0 an agent
who has an endowment of 1 unit is paired with an agent who has an endowment
of 0. The consumption good cannot be stored.

An economy with these characteristics is depicted in Figure 1. Each agent
is imagined to be traveling on a turnpike, either east or west. The arrows
indicate the direction of travel, and the spikes indicate the markets. The
numbers 0 and 1 index the endowment of an agent located at the indicated
position. Initially, at £ = 0, there is one agent at each position. It should be
emphasized here that no agents have control over their lifetime itineraries.
Each agent moves forward one market in each period. Also, these markets are
isolated one from another; there can be no transactions or communication
among them at any time.

Figure 1
The Turnpike Model
W — e«
> > L > E

Each agent has preferences over her or his (infinite) lifetime consumption
sequence {¢; 5o as described by the utility function 3, ¢8:U(c;) where ¢, = 0,0
< B < 1, and U(") is strictly concave, strictly increasing, bounded, and
continuously differentiable with U/'(0) = «. Thus all agents have the same time
separable utility function of a rather special form, and in particular, all dis-
count future over present consumption at the same rate, 8.°

This model displays a well-known property, the absence of double coinci-
dence of wants. At each time ¢, considered in isolation, there can be no Pareto
improving bilateral trade; there is only one consumption good, and more is
preferred to less. One may ask, of course, whether borrowing and lending
might not improve matters. Section 5 below is devoted entirely to this question
in a slightly modified context, but it should be noted here that, in a sense which
will be made precise, there can be no private debt in the present model. For
consider an agent at time ¢ who has 0 units of the consumption good. Such an
agent might wish to issue an [QU, to be honored in better times, when the
agent has 1 unit of the consumption good. Similarly, the agent’s partner at time
t, who has 1 unit, might be inclined to accept such an [OU. Yet the model is

9Recall the caveat at the end of the introduction.
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constructed in such a way that the IOU can never be redeemed by the issuer;
the pair will never meet again, and the purchaser of such an IOQU can only pass
it along to an agent ‘‘behind’’ the issuer. Thus, if one takes as a defining
characteristic of private debt that it ultimately be redeemed by the issuer, there
can be no private debt in this model 1°

Having specified the environment for this model, the next step is to charac-
terize Pareto optimal allocations. For this purpose a strong symmetry condi-
tion is imposed, that in any allocation, agents cannot be distinguished by their
initial market position. That is, any agent who begins life with 0 units of the
consumption good must be treated the same way as any other agent who begins
with 0 units, independent of the initial location. All such agents are hereafter
referred to as agents of type 4. A similar restriction is placed on those who -
begin with | unit, agents of type B. It bears repeating here that when an
allocation is termed optimal below, it is only established to be optimal in the
class of symmetric allocations; there remains the possibility of a nonsymmet-
ric allocation which is Pareto superior.

Now let ¢f denote the number of units of consumption of an agent of type i at
time ¢. Then an allocation {cf Yi=g, {c? }i=o is said to be feasible if

() cf+cf<sl, ¢ =20, ¢F=0 allt+=0.

(An allocation is said to be interior if consumption is strictly positive for each
agent type in each time period.) It may be assumed without loss of generality in
what follows that resources are fully utilized. Then to determine an interior
Pareto optimal allocation, it is enough to maximize a weighted average of the
utilities of the two agent types, subject to the resource constraints, as is
established below. This yields

Problem 1:
max wA[E ,B‘U(c{‘)] + wB[ EB’U(C,B)]
{QA }T: 0y {CIB}T=(1 =0 =0
subject to (1) where w4 > 0, w? > 0, w4 + w? = 1. Necessary and sufficient
first-order conditions for Problem 1 are
2) wigtlU'(¢i) - 6,=0, i=A,B t=0

where the 6, are positive Lagrange multipliers. Trivial manipulation of (2)
yields

U'lcet) _ U'(c?)
Ultet) U'(cP)

“allt, 7= 0.

(3)

Conditions (1) and (3) are fully equivalent with

4) =N cf=1-1, 0<A<] all + = 0.

101f there are limitations on the issue of IOUs, there can exist equilibria in which IOUs have
value and are never redeemed. Such equilibria are virtually indistinguishable from equilibria with
valued fiat money, as defined below.
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(See Figure 2.) Thus a necessary and sufficient condition for a feasible interior
allocation {cAY¥-q, {cP }i=o to be optimal is that each agent of type 4 receive A
units of the consumption good in each period t. That this condition is necessary
for optimality folows from the obvious fact that if condition (3) is not satisfied
for some periods ¢ and 7, then there is a Pareto superior feasible allocation.
That this condition is sufficient is also obvious. For suppose there exists a
feasible allocation which is Pareto superior. Then it would satisfy constraint
(1) and increase the value of the objective function in Problem 1, a contradic-
tion. Hereafter, then, reference will be made to an interior optimum \, in
which both agents receive constant consumption.

Figure 2
Optimal Allocations in the Turnpike Model
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The question may now be raised as to whether optimal allocations can be
supported in competitive equilibria with valued fiat money. To do so one
must discuss carefully what are meant by fiat money and competitive markets
in the context of this model. A unit of fiat money is imagined to be a physical
commodity, say, a piece of paper, which may be carried costlessly and used
in exchange by the agents as they travel among islands. As a commodity, the
stock of fiat money in the possession of any trader at any time cannot be
negative. On each island and at each time period there is assumed to be a
competitive market in which fiat money can be exchanged for the consump-
tion good at a specified rate. That is, agents take the price of the consumption
good as given and maximize utility by choice of the amount to consume and
the amount of money balances to carry over into the next period. No attempt
is made here to justify the price-taking assumption or defend the competitive
equilibrium notion; to the extent that the mechanism which underlies the
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equilibrium notion requires a large (perhaps infinite) number of agents, each
agent discussed above may be taken as representative of agents in identical
situations.

Consistent with the symmetry assumption, attention will be restricted to
monetary equilibria in which the price of the consumption good in terms of
money at any time 7 is the same in each market. This price is denoted p, and is
assumed to be finite and strictly positive. Also, let M} denote the number of
units of fiat money chosen at time t—1 by agent type i and carried over into
period ¢, zi denote the number of units of a lump-sum tax on money balances
(or subsidy, if negative) on agent type i at the beginning of period ¢, and ¥
denote the endowment of agent type { at time ¢. Then taking as given the
sequences {p, }r-q, {zi =0 and the initial money balances M{, each agent of
type i is confronted with

Problem 2:
max 3 B U(chH
{Ct‘}7=0a {Mli}:;l t=0
subject to
ct=0 allt=0
Mi=0 allr=0
)] pect + Ml s pyf+ M — 7 allr=0

given Mj = 0, 74, = 0. Here (5) is the budget constraint which prevails in
period f. With U’(0) = =, the nonnegativity constraint on consumption need
not be made explicit; in contrast, the nonnegativity constraint on money
balances may be binding. Assuming without loss of generality that the budget
constraint (5) holds as an equality, so that in effect only {M}}., need be
chosen, and making the obvious substitution for the ¢/, one obtains necessary
Euler conditions for a maximum

_BUNek) | BUED o
P Dt

(6) 0 allz= 1

where 6 is the Lagrange multiplier associated with the nonnegativity con-
straint on money balances, that is,

0i=0, Mi=0, 0;Mi=0.
Thus,

(At
%) Liletn) P alle= 1

BU'(c}) Pr

where (7) must hold as an equality if M} > 0 and as an inequality if and only if
6% > 0, that is, when the marginal utility of a unit of fiat money spent on
period —1 consumption exceeds the marginal utility of a unit of fiat money
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spent on period ¢ consumption and there is no more fiat money to spend in
period t—1.
A competitive equilibrium with valued fiat money may now be defined.

DEFINITION. A monetary equilibrium is a sequence of finite positive prices
{p¥Yizo and sequences of consumptions {ci* Y-y, money balances {M}*¥,-,,
and lump-sum taxes {zi* },-, for each agent type i = A, B such that

« Maximization: the sequences {ci*Yimg, {Mi*¥,_, solve Problem 2 relative
to {p} Yi=o, {2* Y=o, and M*.
» Market clearing: c¢f* + cf*=1,allt = 0.

One may now ask whether optimal allocations can be supported in a
monetary equilibria without intervention. The answer is summarized in

PROPOSITION 1. No interior optimum \ can be supported in a monetary
equilibrium without intervention, thatis, with z}* = 0 foralli = A, B.

Proof. The proof is by contradiction. Thus, suppose that the allocation ¢f =
N, cB=1—\,allt=0, can be supported in a monetary equilibrium without
intervention. With zi* = 0, with y# = 0 for ¢ even and yf = 0 for ¢ odd, and
with U’(0) = o, it is clear that the nonnegativity constraint on money bal-
ances cannot be binding for agent type A for choices made when ¢ is odd or
for agent type B for choices made when ¢ is even. Thus from (7), equilibrium
prices {pi}r-, must satisfy

! *
UM _pis t=2,teven
BU'(N)  p#
U'(1-\) _ pia
— = t=1,todd.
BU'(1-\)  p¥
It follows that
t] p# = Bpit, allt=1

that is, the rate of deflation must be 1 — 3. Now consider the evolution of
money balances of agent type B given the price sequence {p*};-, and the
specified consumption sequence ¢f = [ — A, all t = 0. Agent type B begins
life with M§* = 0 units of fiat money, acquires p§\ units in period 0, and
spends p¥(1 — A) units in period 1. Thus

) ME* — MB* = pEN — p¥(1-0).
Clearly the increment to money balances from ¢ = 0 to z = 2, the left-hand

side of (9), is nonnegative if the right-hand side is nonnegative. Substituting
from (8), the right-hand side is nonnegative if

(10) TZB.

In fact, one may readily verify that the increment to money balances is
nonnegative for agent type B from ¢ to ¢ + 2 for all ¢ even, if (10) holds.
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Similar calculations establish that the increment to money balances is non-
negative for agent type A from ¢ to ¢t + 2 forall ¢ odd, if

1-)

11
(11) X

=B.

The left-hand sides of inequalities (10) and (11) are graphed in Figure 3 as
functions of the parameter A. As Figure 3 makes clear, with the discount rate 8
fixed, 0 < 8 < 1, at least one of the relationships (10) and (11) must hold as a
strict inequality for any value of A between 0 and 1. That is, at least one agent
type will be accumulating money balances over time in the above sense. But
then this cannot be an equilibrium. For if (10) holds as a strict inequality, for
example, agent type B could spend these excess balances at ¢ = 1, ¢ odd, and
improve upon the consumption sequence cf* = 1 — A. This completes the
proof.

Figure 3
The Relationship Between A and 8

A

(B

gb

(10) holds
(11) holds
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Thus, if an optimal allocation is to be attained in a monetary equilibrium,
the rate of deflation must be 1 — 8, and, consequently, there must be some
intervention by way of taxes and/or subsidies. That at least some optimal
allocations can be supported in this way is established in

PROPOSITION 2. Any interior optimum A with B < [N(I—N)]and B < [(1-\)/\]
can be supported in a monetary equilibrium with rate of deflation 1 — B3; with
= pt IN-B(I—N)]1=0fort= 1, todd, and z8* = 0 otherwise; and with z#* =
P (I—=N)—AB1= 0 fort =2, t even, and z#* = 0 otherwise.

Proof. See the Appendix.

Given Propositions 1 and 2, one may well ask whether there exist any
monetary equilibria which do not require intervention. The search for such
equilibria is facilitated by the following proposition which suggests that the
search can be limited to equilibria in which the nonnegativity constraints on
money balances play an important role.

PROPOSITION 3. Any monetary equilibrium with nonbinding nonnegativity
constraints on money balances on each agent in each period supports an
optimal allocation and hence requires some intervention.

Proof. By hypothesis, 6j* = 0. Thus from (6) it follows that

BV _ phy

(12) i=A,B allt = 1.

BU'(cj*) pf

Manipulation of (12) yields
¢ ’ ik ok

(13) BUNGD) _Bf i 4B allr=0.
B'U'(ci*) p¥

As (13) holds for both i,

' * ' ~B%
(14) Ulel®) _ _U'(er™) allt, 7> 0.
U'(et*)  U'(e?)

Condition (14) and the market-clearing condition of an equilibrium are suffi-
cient for an optimum as discussed above. The conclusion of this proposition
follows from Proposition 1. This completes the proof.

The search for a noninterventionist monetary equilibrium is also facilitated
by the observation that, roughly speaking, a time trend to prices, say, a
constant rate of deflation 1 — 8 as in Proposition 2, would seem to necessitate
intervention in order to keep purchasing power constant. That is, one might
search for an equilibrium in which prices remain constant over time, at some
price p* > 0. Thus it may be guessed that in a noninterventionist monetary
equilibrium, each agent of type B will have 1 unit of purchasing power to be
allocated over consumption in each pair of periods (¢, ¢t + 1), t = 0, 1 even,
selling the consumption good for money in period 7 and spending all accumu-
lated money balances in period ¢ + 1, with a binding nonnegativity constraint
on money balances at r + 1. This will generate consumptions ¢* and c** as
depicted in Figure 4. Of course, each agent of type 4 will be doing the same
thing in each pair of periods (¢ + 1,7 + 2), t = 0, t even. This discussion is
summarized in
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Figure 4
The Turnpike’s Monetary Equilibrium
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PROPOSITION 4. There exists a noninterventionist monetary equilibrium with
constant prices, with binding nonnegativity constraints on money balances in
every other period, and with alternating consumption sequences. In particular
for taxes and prices,

Z#*=0, pf=p*>0;
foragent A, M§* = p*c** and
cf* =¥ MAF =0, 4% >0 t=0,teven
cf = c* Mi¥ = p*e** 64F =0 t=1,ro0dd;
foragent B, M§* = 0, and
cB =c* MPE =p*c** 6B =0 t=0,reven
cf=c* MB.,, =0, 6/,,>0 t=1,todd;
and where c* and ¢** satisfy

U'(c*)
BU'(c**)

=1, c*+ ¥k = 1.

The equilibrium allocation is nonoptimal but Pareto superior to autarky.
Proof. See the Appendix.
The proof of Proposition 4 utilizes the fact that for agent type 4

(15) Pect + praachi = prayii + MP — M, t=0,reven

(16) pect < M t=0,teven
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where (15) is the money balance accumulation equation and (16) follows from
the restriction that M4, = 0. Letting ¢f = ¢ ¢f1 = c3 py = pL peey = DL Y =
¥ M{ = M, M4, , = M, equations (15) and (16) may be written as

a7 ptct +pict=phy?+ M - M'
(18) plel=sM.

Here, then, (17) appears as a money balance accumulation equation in a
two-commodity model and (18) is a semi-Clower constraint, that the valuation
of consumption of commodity one not exceed initial money balance. This
formulation leads one to inquire as to the effect of a more standard Clower
constraint of the form

(19) plel +pict < M

that the total valuation of consumption be bounded by initial money balances.
Constraint (19) is not derived entirely from the technology of exchange.
Imposed in addition is the requirement that agents bid in competitive markets
for their own production. That is, agent type A at time z+1 as a producer is
required to place all production yf,; on the market and pay cash in advance for
any consumption cf ;.

Motivated by the above discussion, consider the following

DEFINITION. A Clower-type monetary equilibrium is a sequence of finite
positive prices {p¥}i—o and sequences of consumptions {c{*¥;—y and money
balances {M}*Y._o for each agent type i = A, B such that

» Maximization for type A: the sequences {ci*}i,, {M{*}¥;-; solve

Jmax. 3 BTU(eM+BU(cts)]
{c?}l=ﬂv {MtA}z=1 =0
teven
subject to
pict + pach = Dk + M — ME,, t=0,teven
pict + placti < Mf t=0,zeven
Mp, = M — p¥ct t=0,teven

given Mg* = 0.
* Maximization for type B: the sequences {cF* Yi=y, { MF*}i=; solve

max {w )+ 3 Bt [BU(c,B>+B2U<c?H)]}
{CtB}ln, {Mza}‘?;l =1

rodd
subject to
piEct + piacky = playla + MP — Mp, t=1,ro0dd
p¥cl + piach, < MP t=1,todd
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MB., = MF — p¥cB t=1,todd
picf = p¥yf + M§ — MP
picf = M§

given ME* = 0.
* Market clearing: cf* + cf*=1,1=0.
This leads to

PROPOSITION 5. If there exists a Clower-type monetary equilibrium with
constant prices, that is, with pF = p* > 0, and with a symmetric consumption
sequence, that is, with cf¥, = ¢f* for all t = 0, then cf¥; = cf* = c* and cf¥, =
cP* = c** fort = 0, t even, where ¢* and c** are defined in Proposition 4. This
allocation is nonoptimal but Pareto superior to autarky.

Proof. The necessary conditions for a maximum include
BU'(cf*) — 6fp* —yip* =0 t=0,teven
BBU'(ci¥,) — 04p* — yip* =0 t=0,teven

where 6 > 0 and v = 0 are Lagrange multipliers. Thus

U'(ct*)

20 -
@0 BU'(cf%)

t=0,teven.

Similarly for agent type B

U'(ePt)

@y BU'(cf

t=1,rodd.

Market clearing and the symmetry hypothesis imply
(22) cBt +cPr=1 all t = 0.

The unique solution to (21) and (22) is ¢f* = c* and cf¥, = c¢**fort = 1, t odd.
And by the symmetry hypothesis ¢f* = c* cf#, = ¢**fort =0, t even. Thus by
market clearing cf* = ¢** also. It is obvious that this allocation is nonoptimal.
Note also that for agent type A, for example, the consumption pair (c* c**)
dominates the endowment pair (0, 1) in periods (¢, t +1) fort = 0, t even. This
completes the proof.

To be noted here is that the imposition of the full Clower constraint (19)
reverses the consumption sequences from those of Proposition 4. Yet in this
model the intervention implicit in the Clower constraint is not enough to attain
optimal allocations.

In closing this section it may be noted that either as the discount rate goes to
zero or, equivalently, as the frequency of transactions (pairings) increases, the
turnpike model comes close to producing the welfare result of the overlapping
generations construct, that there exists an optimal noninterventionist mone-
tary equilibrium. To see this, note, for example, that the amount of taxation
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needed to support the optimal allocation A = 1/2 goes to zero as 8 — 1 (see
Proposition 2). Alternatively, note that the noninterventionist monetary equi-
librium consumption sequences approach the constant A = 1/2 as 8 — 1 (see
Proposition 4 and Figure 4). It may well be that this welfare result holds
exactly in the limit, at 8 = 1, if agents use the overtaking criterion to evaluate
consumption paths !

3. A Generalized Overlapping Generations Model

The turnpike model may be contrasted with the overlapping generations model
of Samuelson (1958), which, as is well known, yields (under specified assump-
tions) an optimal noninterventionist monetary equilibrium. It should prove
useful, then, to discover those elements which lead to the different implica-
tions of the two models. The intent of this section is to modify the turnpike
model to make it more comparable to the standard overlapping generations
construct. Putting this another way, the overlapping generations model is
generalized; in so doing, its essential features are revealed.

The obvious modification of the turnpike model produces the model de-
picted in Figure 5. In effect, the turnpike model has been truncated at both
ends. Here one agent is born in each period at the beginning of the eastern and
western routes, and each agent lives four periods. Note that agents aged 0 and
3 periods are paired, as are agents aged 1 and 2 periods.

Figure 5
A Truncated Turnpike
w 1 < 0 < 1 < 0
0 > 1 > 0 > I g

Preliminary work with this model indicated that an optimal allocation can
be supported as a noninterventionist monetary equilibrium, as with the stan-
dard overlapping generations model. In such an equilibrium, prices first fall
and then rise over each agent’s lifetime. Moreover, the (even-aged) lifetimes
of each agent can be made arbitrarily long by truncating the model further out,
without altering these conclusions. But it may be noted that the age pairings in
this class of models are extreme, the youngest trading with the oldest, the
next-to-youngest trading with the next-to-oldest, and so on, whereas in the
turnpike model one’s trading partners are of the same age. Thus a more natural
comparison would be to a modified model in which one’s trading partners are
more or less the same age. This produces the generalized overlapping genera-
tions model which is examined in the remainder of this section.

As in the turnpike model, each of a countably infinite number of agents

' This is left as an open question. 1t may be noted, however, that Grandmont and Younes (1972)
do establish certain results in the limit, at 8 = 1, using the overtaking criterion.
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faces an endowment sequence of the single nonstorable consumption good
over her or his infinite lifetime which alternates between 1 and 0. Yet here all
agents are not of the same age; one representative trader is born in each period
t, t = 0, and begins life with an endowment of 1 unit. Each agent is again
allocated into one of a countably infinite number of spatially distinct markets
in each period of life, but here the allocation procedure is such that each agent
is paired with an agent who is either one period older or one period younger.
Figure 6 illustrates the scheme: The arrows indicate the direction of travel,
and the numbers on the right of market spikes indicate the endowment of an
agent whose age is indicated on the left.

Figure 6
Generalized Overlapping Generations

= 0 O B g

market 0 market [ market (j/2)

For our purpose the economy will be conceived of as beginning at time ¢t = 0
but populated with agentsbornattimes¢= —h, h = 1. Thus attime ¢t = 0, island
k=j2,j=0,jeven, isinhabited with two (representative) agents, one born at
time —j with an endowment of 1 unit and one born at time —( j+ 1) with an
endowment of Q units. Attime ¢ = I, one new (representative) agentis bornand
enters market 0, while the other agents move forward as indicated, and so on.
Note that if agents were to live two periods only, attention could be restricted
to market 0 alone, an economy which is identical to the simplest two-period
overlapping generations model. As will be shown, the present generalization
retains the characteristics of that economy.

As in the turnpike model, there is a sense in which there can be no private
debt in this model. Here, unlike in the turnpike model, agents meet each other
infinitely often; an agent born at time 7 is paired with an agent born at time ¢+ 1
when the formeris of age 0, 2, 4, ..., and an agent born at time ¢ is paired with
an agent born at time r— 1 when the formeris ofage 1, 3, 5, .... Yet when they
meet, each of the pair has the same relative endowment position. An IQU
issued by an agent of an odd age who has 0 units of the consumption good can
never be redeemed by the issuer—she or he will have 0 units when the pair
meets again.

To describe preferences, feasible allocations, and Pareto optimal alloca-
tions, some additional notation is needed. Thus let {y;}7-o denote the endow-
ment sequence of a typical agent over her or his lifetime, where y; is the
endowment of an agent of age j. Here, then, y; = 1 forj= 0,jeven;andy; = 0
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forj= 1,jodd. Let ¢; (1) denote the consumption of an agent born at time  who
isofagej, j= 0, all «. Individual agents have the same preferences as they didin
the turnpike model. That is, the objective function of an agent born at time ¢ =
0 is 22087 Ufc; (9] where 0 < 8 < 1 and U(-) is strictly concave, strictly
increasing, bounded, and continuously differentiable with U’(0) = «. The
objective function of an agent born at time —A4 < 0 is 3%, 87Ul c¢;(—h)]. An
allocation is a consumption sequence {¢;(£)}7-, for each agent born at time ¢t =
0 and a consumption sequence {c;(—h)};=, for each agent born at time —4 < 0.
By construction there is only 1 unit of the consumption good among the two
traders of any market at any point in time. Thus an allocation is said to be
feasible if

(23) ci(f)y + (-1 =<1 t=0,j=0,jeven
ci(—h) + c(—h—-1) =<1 h=1,j=h,jeven.

It will be assumed in what follows, without loss of generality, that these
constraints must hold as equalities.

The next step is to define Pareto optimal allocations. For this purpose, a
strong symmetry condition is imposed, namely, that agents of identical ages be
treated identically, even though they can be distinguished by birthdate. That
is,

(24) c(y=ci(m=¢=0, j=0 all¢, 7.

Then an allocation {c;}j=¢ is said to be optimal if there does not exist another
allocation {&;};-, with the property that

25) 3 prU@E) = U, B0

with strict inequality for at least one such 4. Note thatfor # = 0 the terms in (25)
represent the utility of one agent bornat time ¢ = 0, and for 22 > 0 they represent
the utility of an agent bornat time ¢t = —A. Thus the preferences of all agents are
taken into account.

It is now claimed that the solution {c¢}}j=y of the following problem is
optimal in the above sense.

Problem 3:
max 2 BU(q)
{C}};()J:o
subject to
¢+ ¢ =1 ¢;=0,j=0, jeven.

To establish the claim, note that, due to the time separable nature of the
objective function and of the constraints, the unique solution to this problem s

ck=c* ct,=c** j=0,jeven
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where

!

LA Co I —
BU'(c**)
Now suppose there exists a feasible allocation {&};-, which Pareto dominates
{c#}=o. If an agent born at time ¢ = 0 is to be better off under {&; }j-o, then
consumption must be increased for at least one element &. Suppose i = 0 is
even. Then feasibility requires that &, be decreased. But ¢* and ¢** are
chosen in such a way that such changes can only make the agent born at time ¢
worse off, that is,

U(é) + BU(€:41) < U(ct) + BU(ci40)-

A similar argument applies for i = 0 and odd. Hence if {& }j= is to Pareto
dominate {cj*}j=o, it must make at least one agent born at time —4 < 0 better
off. By the above argument, an increase in utility is possible only for the
relatively old person of some market at time ¢ = 0, that is, only if there is an
increase in the element ¢,(—h), h = 1, hodd. But then the representative trader
born at time ¢ = 0 must be made worse off, and, by the above argument, there
can be no compensating changes elsewhere. This establishes the claim.

Unlike the procedure in the turnpike model, no attempt is made here to
characterize all possible Pareto optimal allocations in the restricted class. In
the simple two-period overlapping generations model, other optimal alloca-
tions in the above sense do exist. Moreover, under specified assumptions,
each of these can be supported in a monetary equilibrium with deflation and
lump-sum taxation. Further, there exist monetary equilibria with inflation and
lump-sum subsidization which are nonoptimal. Analogues of these results
could be sought here. Instead, attention will be limited to generalizing the
well-known proposition mentioned at the onset of this section, that, there
exists a noninterventionist monetary equilibrium which supports the above
described optimal allocation.

To define a monetary equilibrium, some additional notation is needed. Let
pF denote the price of the consumption good in market k at time £, k=0, = 0.
Let M;(t) denote the money balances held by the agent born at time ¢ at the
beginning of period j of that agent’s life, chosen at age j—1. As attention is
restricted to noninterventionist equilibria, no notation for lump-sum taxes is
needed. As before, each agent takes initial money balances and the sequence
of future prices as given and maximizes utility by choice of the sequences of
money balances and consumptions over her or his infinite lifetime. Thus, for
an agent born at time ¢ = 0, consider

Problem4:

max 2 B ULc(D]
{0 {M(D Y52, 9=0

subject to

(=0, Mi(n=0 j=0
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(26) PEesys + Mi(0) = pliei(0) + M (1) j=0
given
JE jeven,j=0
Myty=0, k=
0 ) (j—l) . )
T jodd,j=1.

Similarly for an agent born at time —h < 0, consider

Problem 5.
max 2 B Ulc(—h)]
L= ians AMy(= D) Yyops =R
subject to
C_,(_h)?o, MJ("'h)ZO j?h
27 Pi-nys + My(=h) = plpci(=h) + My (=h)  j=h
given
L jeven,j=nh
M (-h)=0, k=4 .
% ded, ji= h.

One may now write out formally the following

DEFINITION. A monetary equilibrium is a sequence of finite positive prices
{pk* Y=y for each market k = 0; sequences of consumptions {c¥(t) Yo and
money balunces {M; (1)Y=, for the agent born at each time t = 0; and
sequences of consumptions {c;*(—h)Y;—x and money balances {M;*(—h)¥;=y for
the agent born at each time —h < 0 such that

« Maximization for agent t: the sequences {cf(1)};=o and {M;*(1)};=; solve
Problem 4 given M, (t).

« Maximization for agent —h: the sequences {cf (—h)Yi—n and {M}
{(—h)¥i=p+1 SOIve Problem 5 given M, (—h).

« Market clearing:

cHO+ k(=1 =1 t=0,j=0,jeven

cF(—h)+cfi(—h—1)=1 n=1,j=h,jeven.

To characterize one of the monetary equilibria of this model, return for a
moment to Problem 4. Differentiating with respect to M;(f), familiar necessary
conditions for a maximum are obtained:
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_ B’._IU’[(;j:l(?)] + BJ’U‘[C)'J(})]

P K
Prri-1 Pty

(28) +0(H=0 j=1

where 0;(1) is the nonnegative Lagrange multiplier associated with the con-
straint M;(¢) = 0. Expression (28) yields

29) U'lc;—(D)] = Ple—t
BU'lci(D] Pk
where equality prevails if M;(#) > 0. As before with U’(0) = = and y; = 0 for
J =1, jodd,itis obvious that equality must prevailfor j = 1, jodd,and all > 0.
Now suppose the optimal allocation ¢ = ¢* ¢, = c*%j= 0, jeven, were to
be supported in a monetary equilibrium. Then withj = 1in (29) as an equality,

’ £ 3 ES
= Uey _ pi* allt =0

BU'(c**)  pih

where the equality on the left follows from the construction of ¢* and ¢** That
is, the price in market 0 must remain constant over time. A similar argument
yields the fact that the price of each market k = 0 must remain constant over
time. Moreover, suppose (29) were to hold as an equality in such an equilib-
rium for j even as well. (That is, suppose the nonnegativity constraints on
money balances were never binding.) Then with j = 2 in (29) as an equality,

0%
—_— = allt=0
B BU(c*) pik

where again the equality on the left follows from the construction of ¢* and ¢**
That is, pf# > plf: so that the price level would decrease as the agent born at
time ¢ moves across markets, from market 0 at time ¢+ 1 to market 1 at time
t+2. Again j even and ¢ = 0 were arbitrary, so this relationship would hold
across any two adjacent markets for any time period ¢.

Thus it may be guessed that the optimal allocation ¢* ¢** can be supported
in a monetary equilibrium with constant prices over time in each market, with
deflation cross-sectionally over markets, and with deflation in every other
period of each agent’s lifetime. Before establishing this conjecture formally, it
may be instructive to answer this question: How can it be that there exists a
noninterventionist monetary equilibrium in this model with deflation but with-
out taxation? The answer, of course, is that the price level stays constant in
each market. In equilibrium the relatively old person of each market passes
along all of her or his money holdings to the relatively young person, who then
does the same in the next period. That is, money itself never moves across
markets, and so real balances stay constant in each market. In equilibrium,
nominal money balances decline over markets with the price level; real bal-
ances stay constant over markets.

This discussion is now summarized in

PROPOSITION 6. The optimal allocation c* ¢** can be supported in a (nonin-
terventionist) monetary equilibrium with constant prices over time in each
market, with deflationrate (1—82) across adjacent markets, and with nonbind-
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ing nonnegativity constraints on money balances for each agent of any age. In
particular, for prices,

pEt=pk* >0 k=0
prr=ppr k=1,
for the agent born at each time t = 0,
cif(1) = ¢ M \(f) = pFre** j=0,jeven
cH(8) =¥ M, () =0 Jj=z1,jodd
where k is defined in Problem 4; and for the agent born at each time —h < 0,
cH(—h) = c* M (—h) = p¥*c**  j=h,jeven
cf(—h) = c** M} (~h)=0 Jj=h,jodd

where k is defined in Problem 5.
Proof. See the Appendix.

Thus, it has been established that there exists an optimal allocation in this
model which can be supported in a noninterventionist monetary equilibrium.
Yet Proposition 1 asserts that this is not possible in the turnpike model.
Wherein lies the difference?

To be noted is that the allocation ¢; = ¢* ¢4y = ¢** forj = 0, j even, is
optimal here, in this generalized overlapping generations model, but is not
optimal in the turnpike model. (More specifically, the allocation ¢? = ¢* ¢f,; =
c*% ¢ = 0, t even, is not optimal there, though it can be supported in a
noninterventionist monetary equilibrium.) This result turns on the fact that in
the overlapping generations model agents are paired at different ages. The
optimal allocation takes into account that the young in each market prefer
present over future consumption. Thus the age structure seems to be crucial.

4. The Lucas Version of the Cass-Yaari Model
Thus far, attention has been restricted to models which have the property that
money allows the economy to achieve a Pareto superior allocation of goods
over time, relative to autarky. For the individual, money plays a role in
equating, at least partially, intertemporal marginal rates of substitution. This
has led some to claim that money in such models serves as a store of value
rather than as a medium of exchange. This section presents a third model with
spatially separated agents in which money plays a role in achieving intratem-
poral efficiency (as well). In essence, the model is the well-known Cass-Yaari
(1966a) circle, but with trader pairs and a timing of transactions as suggested
by Lucasl?

The model consists of a countably infinite number of households and a

2For the most part | am reporting in this section on some results known to Lucas and his
students and suggested to me by Lucas in various conversations; the interested reader is urged to
consult Locay and Palmon 1978, on which this section draws heavily. The model is presented here
both because it does not seem to be known generally and because it offers a natural comparison with
the other two models.

284



Models of Money With Spatially Separated Agents

countably infinite number of perishable commodities. Each (representative)
household consists of a pair of agents and is imagined to be located on the real
line, say, one household per integer. See Figure 7. Each household i lives
forever and faces an endowment sequence of commodity { which is constant,
say, l unitin each period # = 0. In each period ¢, each member of household i is
capable of moving one-half the distance to one of the two adjacent integers,
(i+1)and (i—1). Thus, in each period ¢, each household i is physically capable
of carrying out transactions with households (i—1) and (i+1) in two spatially
separated markets. There is no storage.

Figure 7
Lucas’ Cass-Yaari Model

market (i — 1./} market (i,i+1)

Household i cares only about commodities i and (i + 1) and discounts future
over present consumption. Thus, letting ¢; (i) and ¢;+,,(i) denote the number
of units of consumption by household i/ at time ¢ of commodities i and (i+1),
respectively, the preferences of household i are represented by the utility
function Z;2 (B'VIci(),¢i41.D],0 <8< 1. Here also V[-,-]is strictly concave,
strictly increasing, bounded, and continuously differentiable with indifference
curves which are asymptotic to the axes. (A particular functional form will be
assumed for some purposes in what follows.)

As Cass and Yaari note, this model displays the absence of double coinci-
dence of wants. At each time ¢ each household i can trade with household
(i+1), but i has no commodity (i+1) wants. It also should be noted that this
model reverses the construction of Cass and Yaari, breaking their circle at
some point and spreading it back out over the real line, with infinite exten-
sions!?® As in the turnpike model, this serves to eliminate the possibility of
private debt. Household / may issue an IOU to household (i{+1) in exchange
for commodity (i+1), but this IOU can be returned to household i only by
household (i+1), and, as noted, i has no commodity (i+1) wants.

The next step in the analysis is to define feasible allocations and charac-
terize those allocations which are Pareto optimal. Without loss of generality
attention is restricted to those allocations in which each household receives at
most those commodities which enter its utility function. Thus an allocationisa
sequence of consumptions {c¢y(i),c;+1.(i) iz for each household i. An alloca-
tion is said to be feasible if

"Lucas’ version of the Cass-Yaari model retains the circle.
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(30) (D) +ep(i—1) =1 t=0,all integers i
ce(D) =0, cu(i-1)=0 t= 0, all integers i.

Also, without loss of generality, the resource constraint in (30) is assumed to
hold as an equality. Now in order to characterize Pareto optimal allocations, a
strong symmetry condition is imposed—that in any feasible allocation each
household i be treated identically with respect to its own consumption, of
commodity i, and other households’ consumption, of commodity (i+1). That
is, an allocation {c;{i),ci41.:(9) Yr=o for all i is said to be symmetric if

31) culD) = ¢k cipr (i) = ¢} t =0, all integers ;.

Within the class of such symmetric allocations, then, feasibility is equivalent
with

(32) ct+ct=1, ¢t=0, ¢;=0 =0.

It is now claimed that, subject to this symmetry restriction, the unique
Pareto optimal allocation may be found as the solution to

Problem 6:

max 3 B'VIchc?]
{chef¥i=o =0

subject to (32). Since the objective function and constraint sets are time
separable, it is obvious that the unique solution {c}* ¢?* };—, to this problem
satisfies

ci* = cl¥ cp = c2¥ allt=0

where

(33) Vl(cl*’c2*)

—- =1, ¢t* 4+ ¢ =1,
Vtz( Cl*,Cz*)
(See Figure 8.)

Any symmetric feasible allocation which is supposed to improve upon this
solution must satisfy (32) and increase utility in some period ¢. The choice of
c'* and ¢2* makes this impossible. Similarly, any symmetric feasible alloca-
tion which differs from this solution can be improved upon and hence is not an
optimum. Finally, note that the unique Pareto optimum is defined completely
by intratemporal considerations.

As before, one now seeks to discover the relationship between optimal
allocations and monetary equilibria. Thus, suppose at each time ¢ = 0 that
households i and (i+1) meet in a competitive market in which commodity
(i+1) can be exchanged for fiat money. Thus, let p;;,, denote the price of
commodity (i+1) in terms of fiat money at time r = 0. Also, let M,(i) denote the
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Figure 8
Equilibria in Lucas’ Cass-Yaari Model

ot

of

number of units of fiat money held by household i at the beginning of period ¢,
and let z,(i) denote the lump-sum tax. Finally, let y;,(/) denote the endowment
of commodity i of household / at time ¢, so that y;,({) = 1. At the beginning of
each period ¢, one member of household / travels to the market (7, i+ 1) with
some of the beginning-of-period money balances and purchases commodity
(i+1) at the price p;;,,. Similarly, the other member of household / travels to
the market (i —1, i) with some of the endowment of commodity i and sells it for
fiat money at the price p;,. At the end of each period ¢, both members of
household i return to their original location and consume. Thus, taking the
price sequence {py,pi+1. J1=o and the tax sequence {z(i) };=o as given, each
household i is confronted with

Problem 7:
max 2 BV ci(D),cie14()]

{culd) yCHu(i)}T=n, {Ml(i)}7=l =0
subject to

cu() =0, iy, () =0, M) =0 t=0
(34) Puyi(l) + Mi) — z(0)

= puci()) + Pis1,eCrare(d) + Me1y(D) t=0

(35) Pis14Cisr,e (D) < M(0) t=0

given My(i) = 0, zo(i) = 0.

Here (34) is the money balance accumulation equation, and (35) is the con-
straint that the valuation of consumption of commodity (i +1) by household i is
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bounded by beginning-of-period money balances. Thus (35) is very much in
the spirit of a Clower constraint. But here this constraint is generated by the
underlying exchange technology of the model }+

In what follows, attention will be restricted to equilibria which are sym-
metric across households in that {p; Y=o = {p.}i=a for all commodities i; and
{Zz(i)}‘:;o = {Zt}?=o, {Mz(l')}?;o = {M:}T=o, and {cu(i), Cip14( )}7=o = {Ctl,Ctz}T=o
for all households i. Under these symmetry restrictions the problem of each
household i is the same, namely, the problem of the representative household,

Problem 8:

max 3 BtV[ct ]

{0117012}7=0, {Mt}7=l =0

subject to

ct=0, ¢2=0, M;=0 t=0
(36) Py + My — 2o = pect + pec? + My
(37 pict < M,

given M, =0,z =0withy, = 1.

The above discussion leads to the following

DEFINITION. A symmetric monetary equilibrium is a sequence of finite posi-
tive prices {p}¥¥i—o and sequences of consumptions {c}*c?* Y=o, money bal-
ances {M Y-, and taxes {z¥ ¥i—o such that
» Maximization: the sequences {ct*ct* Yi—o and {M;* 1=, solve Problem 8
relative to {p}¥Yi=o, {2 Yi=o, and M.
* Market clearing: c/* +ct*=1,allt=0.

In order to discover the relationship between symmetric monetary equilib-
ria and optimal allocations it is useful to consider the necessary Euler condi-
tions for a maximum to Problem 8. Assuming nonbinding nonnegativity con-
straints on money balances (and consumption) and following Locay and Pal-
mon 1978, these are of the form

(3% —B'Vi(cl,cf) + BVa(ct,cP) ~ pF6, =0 t=0

(39) Vilcli,ctoi) = (pEaIp#)BVe(cl ,cf) t=1

where 6, is the nonnegative Lagrange multiplier associated with the constraint
(37). One implication is almost immediate,

PROPOSITION 7. The optimal allocation ¢** ¢** cannot be supported in a
noninterventionist symmetric monetary equilibrium, that is, with zi* = 0.

"1t is curious to note that (35) corresponds to the transaction constraint in Grandmont and
Younes 1972, 1973 for k = 0, a case which is not really analyzed there.
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Proof. Suppose the contrary. Then it follows from (39) and the construction of
the optimum (33) that in such an equilibrium the rate of deflation mustbe 1 — g8,
that is,

(40) p¥=gpt, t=1.

Also, from the money balance accumulation equation (36) and feasibility of the
optimum,

41y MY — ME = p¥(y—c*—c?*) =0 t=1.
Now consider constraint (37) at ¢ = 0,

(42) ple* < M¥.

Repeated substitution of (40) and (41) into (42) yields
(43) pie¥s < M allz= 1.

Then holding the consumption sequence {c}}i-, fixed identically at ¢'* the
representative household could increase consumption of ¢f over ¢** in every
period ¢t = 1 by spending the surplus money balances. This is the desired
contradiction, and it completes the proof. (For an alternative argument see
Locay and Palmon 1978.)

Proposition 7 of this model is the analogue of Proposition 1 in the turnpike
model. And it seems that Propositions 2 and 4 of the turnpike model have
analogues here as well; that is, the optimal allocation can be supported in an
interventionist monetary equilibrium, and there exists a noninterventionist
monetary equilibrium which is nonoptimal but Pareto superior to autarky.!®
For according to Locay and Palmon (1978), the necessary transversality
condition for the maximization problem confronting the representative house-
hold is

lim B’M,Vz(c},ctz)z
t>ow
Pt

Then for the interventionist monetary equilibrium which is to support the
optimal allocation ¢'* ¢2* consider the following specification. Let M§ = pic?*
so that the representative household spends all initial money balances on the
consumption good with which it is not endowed. Similarly, in each period ¢ let
the representative household spend all after-tax money holdings on this com-
modity, acquiring additional money from the sale of the endowment commod-
ity, (y.—c¢'*). Also, let the rate of deflation be 1—8. In summary, then, let

(44) 0.

(45) M = p¥(y.—c'*) t=0
(46) zF=(MF—pFc?*)>0 =1
(47) p¥ = Bpi, t=1.

3Grandmont and Younes (1972, 1973) establish all these results for the case 0 < & < 1 in their
transaction constraint.
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It is apparent that this specification satisfies the necessary and sufficient
conditions for a maximum, (38), (39), and (44), with the nonbinding constraint
(37), thatis, 6, = 0.

For the noninterventionist monetary equilibrium, consider the following
specification. First, let prices be constant; then, motivated by (39), let ¢/ = &,
c? = &, where &' and é2 are uniquely defined by

(48) Vi(eLe) o
v Sk erest

Again, suppose that all beginning-of-period money balances are spent on the
other households’ consumption good, these being replenished from the sale of
the households’ own consumption good. That is, let

49) M, = pif(y:—¢h)
(50) M = p§eé®
(51) pE=p*>0.

Again, the necessary and sufficient first-order conditions for a maximum are
satisfied, this time with the binding constraint (37), that is, 8, > 0. Itis clear that
this consumption sequence is nonoptimal but Pareto superior to autarky (see
Figure 8).

The reader may be struck by the similarity of the above results to those of
the turnpike model. To repeat, optimal allocations cannot be supported in a
noninterventionist monetary equilibrium, but there exists a monetary equilib-
rium with constant prices and binding constraints which is Pareto superior to
autarky !® Yet here, unlike the turnpike model, the imposition of a stronger
Clower-type constraint may be sufficient to generate a monetary equilibrium
without taxation which is optimal. In fact, the imposition of such a constraint
can convert the Cass-Yaari model into Lucas’ model of money with certainty
(in this volume). These results are now established.

The above scheme is modified in two ways. First, the utility function V[-,-]
is assumed to be of the form

VIchc?] = Ul(c" o) (cH )]
where a; >0, @; > 0, a; + o = 1, and where U(-) satisfies all the assumptions
of the previous two sections. Second, the constraint (37) in Problem 8 is
strengthened to
(52) pict + prct < M,.
As in section 2, the idea here is that the member of household ;{ who travels to
the market (i—1, i) with the endowment y; (i) = 1 must pay cash in advance for

any units of commodity { which she or he is to take home. And again, a
Clower-type symmetric monetary equilibrium may be defined in the obvious

15 Again one obtains asymptotic welfare results as 8 — | (compare to the discussion at the end of
section 2).
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way, with (52) replacing (37) in Problem 8, and z# = 0. This leads to

PROPOSITION 8. The optimal allocation ¢**, c** can be supportedin a Clower-
type symmetric monetary equilibrium with constant prices. In particular,
of* = ¢! cf* = ¢ p¥ = p* >0, and M = p*y, forall t > 0.

Proof. First let ¢; denote real consumption expenditures in period 7, that is,
(53) p*ct + p*c? = p*c,.

Substitution of (53) into the budget constraint (36) yields

(54) p¥ye + M, — M. = p*c.

Now fixing M, and M, ,, the intratemporal period ¢ decision problem of the
representative household is of the form

max  Ul(cYa )y (cH as)*]

=0,z

subject to

p¥ct + p*c? = p*c,.
The unique solution to this problem is

ol = a6, o = e,
so the indirect utility as a function of ¢, is just U(¢,). Hence, the problem of the
representative household is reduced to

max 2 BU(c)

My, 0
subject to

M =0, ¢,=0 t=0
p¥y + My — M., = p*c
pre < M,

given M = p*y wherey = 1. In his paperin this volume, Lucas establishes that
M, = p*y is the unique solution to this problem. Thus, p*c, = p*y forallt = 0,
and so the solution to the intratemporal problem must be ¢*! = ¢'* ¢¥% = ¢2* for
all t = 0, the optimum. This completes the proof.

That the imposition of a strong Clower-type constraint generates an opti-
mal allocation in this model and not in the turnpike model is somewhat
puzzling. This result seems to turn on the facts that there is only one represen-
tative agent in this model, whereas there are two representative agents in the
turnpike model, and that optimal allocations are defined accordingly.
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5. Circles and Private Debt

As noted in the introduction, there are an infinite number of agents alive at any
one date in both the turnpike model and in the version of the Cass-Yaari model
just presented. This specification ensured that the exclusion of private debt
was indeed endogenous. With the removal of this contemporaneous infinity,
the role of private debt can be analyzed. This section is intended to be
illustrative of the kind of analysis which may be undertaken.

The contemporaneous infinity is removed from the turnpike model by
converting it into a circle. This is done in Figure 9 for an economy with eight
agents. As before, arrows indicate the direction of travel, spikes indicate
islands or markets, and numbers index the endowment of the agent at the
indicated position.

Figure 9
The Turnpike Circle

Focusing on the pairings of agents in this model, it becomes clear that the
set of agents can be partitioned into two groups or subeconomies, where
agents ina subeconomy trade only with other agents of that subeconomy. Thus .
the essential features of the model depicted in Figure 9 can be captured by the
simpler model depicted in Figure 10. Here there are only two markets, labeled
L and R, and four agents, labeled a, a’, b, and b’ at their initial positions. To
understand the way agents are paired over time, consider the itinerary of one
of the agents. Agent a, of type A, begins in period 0 with 0 units of the
consumption good and is paired in market L with agent b, of type B, who has 1
unit. In period I, agent «a is allocated to market R and has 1 unit, being paired
with agent b’. Continuing, agent a stays in market R in period 2 and finally
moves back to market L in period 3. Period 4 is the same as period 0.
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Figure 10
The Debt Model

(4

market L market R

The fact that agents meet repeatedly in this version of the turnpike model
has no bearing on the determination of optimal allocations. Under the sym-
metry condition imposed in section 2, an (interior) optimum has the property
that each agent of type A receives A units of the consumption good in each
period. In fact, all the propositions of section 2 apply to this economy if one
accepts the exogenous exclusion of debt. Yet now there may be private debt
equilibria. That is, debt may be used as a means of payment.

For the purpose of discussing private debt in this economy, attention is
restricted first to the obvious four-period version of this model. (Again this has
no effect on the properties of optima.) A particular scheme is considered. In
the initial period, t = 0, each agent of type 4 is permitted to issue IOUs, where
one such IOU is a promise to pay to the holder (1+r) units of the consumption
good in period 3. Both the interest rate r and the price py > 0 of the consump-
tion good, in terms of such IOUs in period 0, are taken as given by agents g and
a’. Thus, the problem confronting each agent of type A in period 0 is

Problem 9:

max U(ct) + B2U(c)
B=0,c0>0,c420
subject to
(55) poct < B
(56) cf <y —(Bt+z8) (1+r)

where B{ is the number of IQUs issued by agent type 4 and —z4 is a lump-sum
forgiveness (subsidy) of debt in period 3. The above two budget constraints
may be assumed to hold as equalities. Here the nonnegativity constraints may
be ignored, yielding the necessary first-order condition

U'(ct)

Po

(57) =B2U"(c$) (1+7).

293



Townsend

In periods 1 and 2 the debt issued by agents a and ¢’ is traded in markets L and
R, respectively. In particular, agent a can purchase the debt (of @') in market R
inperiod 1 and sell the debt in market R in period 2. Letting p, and p, denote the
price of the consumption good in terms of IOUs in periods 1 and 2, respec-
tively, the problem confronting each agent type 4 in period 1is

Problem 10:

max BU(ct) + B2U(ch)
B{=0,0f20,c6=0
subject to
(58) et <pyt — B
59 p2cf < B — 73

where B4 is the number of IOUs acquired by agent type a in period 1 and z4 isa
lump-sum tax (confiscation) of IOUs in period 2. With z4 = 0 the nonnegativity
constraints may be ignored, yielding the necessary first-order condition
BU'(cf) _ BU'(cf)

P 123

(60)

It is now obvious that the problem confronting each agent type B in period 0 is

Problem 11:

max U(c) + BU(cP)
B}=0,c8=0,cf=0
(61) pocl < poy§ — B?
(62) picf < B} —z}

where B3 is the number of IOUs acquired by agent type Binperiod 0and zZ =0
is the lump-sum confiscation in period 1. The necessary first-order condition is

Ueh) _ BU(H)
Po D1

(63)

Similarly one obtains

Problem 12: _
max BEU(cE) + B2U(cH)
B=0,c8=0,c8=0
(64) p2cf < p,y§ — B
(65) cE=MBE-B)(1+n
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with necessary first-order condition

B2U'(c)
124

(66) =pU'(ch) (1+1).

These procedures lead to the following

DEFINITION. 4 private debt equilibrium is an interest rate v a sequence of
finite positive prices {p{Yi-o, and sequences of lump-sum taxes {z{*} -3,
{2P*}1=1,3; consumptions {ci*}i=o, {F*}Y-0o; and debt decisions {Bi*}i=p.2,
{BE*Y}, ., s such that

* Maximization for A: cg*, ci* B#* solve Problem 9 relative to r*, p§, z4*;
and cf* cs* B#* solve Problem 10 relative to p¥, p§, 75

* Maximization for B: cf* c8*, BP* solve Problem 11 relative to p§, p¥ z5*;
and cf*, cB* BE* solve Problem 12 relative to p¥, r* z5%

* Market clearing: cf* + cP*=1,t=0,1,2, 3.

A major point of this section is that the decentralization of the turnpike model
cannot be overcome with private debt alone. To see this, suppose for the
moment that all four agents of the above model were in the same market in each
of the four periods. Then there is a (centralized) Arrow-Debreu competitive
equilibrium with

r=—L =1 0123
1+8 1+8

Of course this allocation is optimal. Yet it turns out that neither this allocation
nor any other optimal allocation can be achieved in the decentralized economy
under a private debt equilibrium without taxation. More formally, consider

PROPOSITION 9. No interior optimum N\ can be supported in a private debt
equilibrium without taxation, that is, with z}* = 0 fori = A, B.

Proof. Suppose the contrary. Then from Problem 11 and (63), p¥ = Bp%.
Budget constraint (61) as an equality yields BP* = p§A. Substitution into (62)
yields 8 = A(1—\). From Problem 10 and (60), p§ = Bp¥. Budget constraint
(58) as an equality yields B§* = p%(1—A). Substitution into (59) yields 8 =
(1=A)/X. Figure 3 makes clear with 8 < 1 that these two specifications of 8 are
inconsistent. This completes the proof.

Proposition 9 and its analogue, Proposition 1, suggest that inside money in
the turnpike model acts very much like outside money. In fact, the analogue of
Proposition 2 may be obtained as well.

PROPOSITION 10. Any interior optimum A with B < [N/(1—-N\)]and B < [(1—\)/\]
can be supported in a private debt equilibrium with lump-sum taxation and
forgiveness of debt.

Proof. From Problem 9 and (57) let (1+r*)p3B® = 1. From (55) let p§A = Bg*
and from (56) let z4* = (1-\)B3p% —\p%. From Problem 10 and (60) let p% = Bp¥.
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From (58) let B§* = p{(1—\), and from (59) let 0 < z§* = p%¥[(1—-A\)—BA]. From
Problem 11 and (63) let p¥ = Bp%. From (61) let B¥* = A\p¥, and from (62) let 0 <
78 = p¥[A—(1—\)B]. Finally, from Problem 12 and (66) let Bps(1+r*) = 1.
From (64) let B§* = p%\, and from (65) let 0 < z8* = p§[A—(1—AN)B]. Now by
construction, all the first-order conditions for maxima are satisfied, with the
budget constraints as equalities in every period. This is sufficient for the
proposed solution to satisfy the maximizing conditions of an equilibrium. The
market-clearing condition is satisfied by construction also. Finally, it may be
noted as a check on the above procedure that the sum of the confiscations of
debt equals the lump-sum forgiveness in period 3. This completes the proof.

Thus Proposition 10 establishes that an optimal allocation can be achieved
with nontrivial intervention in private credit markets. At this point one may
well ask whether there exists a private debt equilibrium without such lump-
sum taxation and forgiveness of debt which is Pareto nonoptimal but Pareto
superior to autarky. In particular, can the allocations of the noninterventionist
monetary equilibrium of Proposition 4 be achieved? Perhaps it is now obvious
from section 2 and the above analysis that this question may be answered in the
affirmative if one is willing to impose an upper bound on the issue of IOUs.
That is, in Problem 9 impose the additional exogenous constraint that Bf < d
for some constant ¢ and define a constrained private debt equilibrium in the
obvious way. There follows

PROPOSITION 11. There exists a constrained private debt equilibrium with a
binding constraint on the issue of IOUs in period 0. In particular,

=0 pF=1,t=0,1,2; z*=0,i=A4,B
= % o = % Bt =¥ =d,1=0,2
cf* =c* ¢ty = c*% BEE = c*%1=0,2.

Proof. The relevant first-order conditions and budget constraints are satisfied
for Problems 10, 11, and 12 and modified Problem 9. This completes the proof.

Proposition 11 turns on the fact that the constraint on the issue of inside
money plays the role of a nonnegativity constraint on money balances in the
same economy with fiat money. This along with Proposition 3 may lead one to
the conjecture that there does not exist a private debt equilibrium without
taxation and without such exogenously imposed constraints. Yet it can be
established that for the simple four-period economy described above there
does exist at least one such equilibrium!? And clearly one may introduce
private debt into an infinite-period economy by duplication of the four-period
scheme every four periods. What is not yet clear is the extent to which such
equilibria rest on the rather special assumptions which have been loaded into
the four-period scheme: that only agents of type A can issue debt in every
fourth period, that this debt can only be redeemed four periods after it is
issued, and so on. It would seem that a completely unrestricted private debt
economy would be plagued by Ponzi schemes. An open and intriguing ques-
tion is whether relatively unrestricted debt and fiat money can coexist; this is
the subject of ongoing research.

"The example is due to Neil Wallace.

296



Models of Money With Spatially Scparated Agents

6. Concluding Remarks

The contention of this paper is obvious: models of money with spatially
separated agents should be taken seriously as models of money. Certainly
these communication-cost models explain money in a rigorous way, at least
subject to the implicit restrictions of the competitive paradigm. But more
research is needed. Remaining to be investigated, for example, are the issues
of asset dominance and capital over accumulation when storage is allowed. To
be looked at also is the problem of multiple monetary equilibria, especially
without all the exogenously imposed symmetry restrictions.

Ultimately, though, it is difficult to make judgements on the relative merits
of models in the abstract, without reference either to actual observations or to
policy questions. One would like to know, for example, whether models with
spatially separated agents can be modified to explain the existence of both
inside and outside money. In his paper in this volume, Wallace has established
that the overlapping generations construct is not subject to this criticism. As
for policy issues, the overlapping generations construct has been shown by
Bryant and Wallace (1979a, b) and by Kareken and Wallace (1977, 1978) to
have strong policy implications for both open market operations and interna-
tional financial arrangements, respectively. It remains to be seen whether
other models can do as well on this account and, if so, whether the implications
will be the same.

In closing, let us return to the claim that the three models of this paper
explain the use of money. This claim is equivalent with the statement that in
each of the models there exists a (noninterventionist) monetary equilibrium,
one in which money has value. Thus the approach of this paper relies heavily
on the competitive paradigm. Ideally, though, competitive equilibrium alloca-
tions should be viewed as the outcome of an explicit game or mechanism (for
example, see Shubik 1973, Prescott and Townsend forthcoming, or Townsend
1978b), but this raises an obvious question: why has the competitive mecha-
nism been imposed as opposed to some other?

In this regard, consider the welfare theorems of this paper. These theorems
are consistent with the view that the operation of competitive markets is
possible though direct redistribution of endowments is not, or at least that the
first scheme is less onerous than the second. Putting this in another way, if the
agents of the model could agree to direct redistribution of the endowments,
then Pareto optimal allocations could be achieved without the use of money.
The welfare theorems of this paper are also consistent with the view that the
operation of competitive markets along with lump-sum taxation of money is
more appealing than direct redistribution. Clearly this second view is even
more tenuous than the first. Finally, it may be noted that in Lucas’ version of
the Cass-Yaari model, optimal allocations can be achieved with either lump-
sum taxation or the imposition of a Clower constraint, requiring the use of
money to purchase commodities. Is there any sense in which one of these
schemes is preferable to the other?

The point of this discussion is that in the context of the specified economic
environments of the models of this paper, any criterion used to select from
among various schemes is ad hoc and thus unsatisfactory. What is needed is
theory in which the choice of social arrangements or games is endogenous.
That is, the environment of the model should be sufficiently rich that certain
games or constraints are either technically infeasible or too costly (if not
impossible) to enforce. Models with moral hazard and asymmetric information
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may be needed, as was suggested at the outset (compare Harris and Townsend
1978, 1979 or Townsend 1979). It would seem to be particularly important in
monetary economics to make the choice of joint arrangements endogenous,
that is, to solve Shubik’s start-up problem (in his paper in this volume). As
Bryant (1979) has emphasized, the seigniorage associated with the issue of
money must be allocated.

Appendix

Al. Proof of Proposition 2

First, let p* = Bpi,, all = 1. Next, for agent type 4 let cf* = A, (M{§*/p§) =
A, and M4* = 0 so that agent type A spends all of her or his initial money
balances on consumption. Subsequently, tax as needed to maintain the con-
sumption sequence ¢/* = A\ with money balances returning to 0 in every other
period:

yE=1, cf* =\, z#* =0, M{f =pFrl-N) t=1,todd

=0, c¢f* =\, zf* =pr [1;‘ - x] =0, Mi#, =0
t=2,teven.
Similarly, for agent type B let M§* = 0 and
yE=1, cP*=1~-\, 28 =0, MB¥, = p¥\ t=0,teven

yE=0, cF*=1—-\, 2P*=p§¥ [%—(1—)\)]20, ME¥ =0
t=1,todd.

By construction, the market-clearing condition is satisfied, so it remains to
verify that the above specification constitutes a solution to the maximization
problem confronting each agent type i given M {p# Y=o, {Z* Yi=0. This will
be done explicitly for agent type B; the argument for agent type A follows
immediately.

Consider first any consumption sequence {¢f ;= and associated money
balance sequence {MP};., which are supposed to solve the maximization
problem of agent type B. With p*yf — z8* < 0, all t = 1, ¢ odd, it follows that
M8 > 0fort =1, todd. Hence (7) must hold as an equality at such times, that
s,

1A *
(A1) Vet _pit o Lo fodd,
guU'(eP)  pF B
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It follows that
(A2) CEhi=¢f t=1, todd.

Next, convert the problem of agent type B into real terms. In particular, let
wf = (p¥yf —zF*)Ip# so that

~&
I

w 1 t=0,teven

wfz_{%-(l—x)] t=1,todd.

Also let mf = MB/p#* denote real money balances held by agent type B at the
beginning of period ¢. From the budget constraint (5) as an equality and
utilizing the fact that p* = Bpi,, all ¢ = 1, it follows that

(A3) cf +BmB =wk + mf allr = 0.

Then, from (A2), setting ¢f = ¢f., for ¢t = 0, ¢ even, and solving for mf,, one
obtains

(A4) (1+B)ymb, =wP —wh, + mf + Bmf., t=0,teven

(AS5) (1+8) cf = (1+B) cky = wf + Bwhy + mP — BPmP,,
t=0,teven.

Following the methods of Lucas and Prescott (1971) it can be established that
there exists a bounded continuous function V(-) satisfying the functional
equation

V(md) = max {LU(cE) + BU(cBY] + B2V (mE)}

mé
subject to
0smf s(whP-wh—-mf)IB
c8 and cf satisfy (AS)atr=0
given m§ = 0. (Here the upper bound on m# follows from (A4) at ¢t = 0 and the
constraint mf = 0. Note that the constraint set on m# is compact and the
objective function, in brackets above, as an indirect function of 2§, is bounded

and continuous.) Here, then, the solution m§ = W(m§) is the stationary policy
Sfunction which solves

max 3 BLU(F)+BU(ch]
{mPY=, 1=0
teven

subject to
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0 =mby < (WP ~wf-mf)/B
cf and cf,, satisfy (A5)

given m§ = 0. Thus there does exist at least one solution to the problem
confronting agent type B.
Clearly, the proposed solution

cE=1—-\ mPr=0 t=2,teven

m;i*:}‘_ t=1,todd

satisfies (7) with equality in every period. By construction the budget con-
straint (5) is aiso satisfied as an equality in every period. Now suppose there
exist a consumption sequence {éf J;-, and its associated real money balance
sequence {if };-; which do better than the proposed solution, and consider the
first-period 7 at which #2 # (1—\). [Note from (A2) that 7 must be even.]
Clearly, é > (1—\) is not feasible, for with 2, > (1—\) also, one obtains /%,
< 0. Nor is &8 < (1—\) possible. For in this case é2.; < (1-1\), so #&;, > 0.
Thus (7) would hold as an equality at # = 7 + 2, so that é8,, < (1—2X) also, and so
on. That is, the consumption path would be maintained below the proposed
solution for all ¢+ = 7, and this cannot improve matters. Hence the proposed
solution is indeed maximizing.

A virtually identical argument establishes that given c4* = A, m§* = X, and
mf* = 0, the sequences {cf*};-, and {m#*};_, solve the problem of agent type 4
from ¢ = 1 onward. In particular, by the principle of optimality, at z = 2 given

mé‘*=glg—l\), wi = —[(—1%—)\], mg* + wi =\

the sequences {cf*},—., {m#*¥;_; solve the problem of agent type 4. But given
mé* = ) this implies that {c#* -, and {mf*};-, solve the problem of agent type
A, as desired.

A2. Proof of Proposition 4
By construction, the market-clearing condition of an equilibrium is satisfied,
S0 it remains to verify that the specification of the proposition is consistent
with maximization. This will be done explicitly for agent type 4.

Consider first any consumption sequence {c# ;- and its associated money
balance sequence {M,};—, which satisfy the budget constraint (5) as an equal-
ity, that is,

(A6) M = p*ct + M., t=0,teven
(A7) p¥yh + Mi, = prol + Miy t=0,reven.

Solving (A6) for M4, , and substituting into (A7) yields

(A8) p¥*ct + p*cti = pFytey + MY — My, t=0,reven.
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From (A6) also, with M{,; = 0,
(A9) p*cd < M# t=0,reven.

Again following the methods of Lucas and Prescott (1971), it can be estab-
lished that there exists a continuous bounded function ¥ (-) which satisfies the
functional equation

M3 +p*yt — Mg —p*cq
p*

V(M) = max {U(cé)-&-BU[

|+avimsn)
2, Ci
subject to

0<p*ct <= M¢

0 < M4 < p*yf + M§ — p*ct

given M¢ = 0. Here, then, the solution (M4, cf) = ¢(M}{) is the stationary
policy function which solves

max I B‘[U(c{‘)+BU (
{ct}, {Mt} =0
teven

Mt f*'P*J’f+1*qu+2"P*CE’)]
p*

subject to
Osp*ct < M#
0 < Mk, <p*yh, + M} — p*ct

given M{ = 0. Thus there does exist a solution to the problem of agent 4.
Clearly, the proposed solution satisfies (7) as an equality for ¢t = 0, t even,
and as an inequality for ¢ = 1, ¢ odd, that is,

U'et) _ U™ _ 1,

(A10)
BU'(ct*)  BU'(c*) p?

t=1,todd.

Also, the budget constraint is satisfied as an equality in every period. Now fix
¢4 = cf* M4 = M#* and suppose there exist a consumption sequence
{& ¥i-; and an associated money balance sequence {M ¥=2 which do better
than the proposed solution from ¢ = 1 onward. Consider the first-period 7 for
which é4 # c4* Since (7) will be satisfied as an equality for ¢ = 2, t even, it
follows that 7 = 1 and is odd. Clearly, ¢4 > ¢#* is not feasible, for with é4,, >
&4¥, also, one obtains M4,, < 0. Nor is & < ¢* possible. For in this case 4,
< c#%, also, and M4,, > 0. Thus (7) must hold as an equality at # = 7 + 2, so from
(A10), é4,2 < c#¥,, and so on. This cannot be an improvement. Thus {cf*¥_,,
{M#* ¥ ., is indeed maximal for agent A from ¢ = 1 onward and so, by the
principle of optimality, is optimal from ¢ = 2 onward with ¢{* and M#* given.
But this implies {c¢f*}1=,, { M{*},-, is maximal foragent 4 at ¢ = 0, as claimed. A
virtually identical argument (without the last step) establishes that the
specified solution is maximal for agent type B as well.
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Finally, note that for agent 4, for example, from (A 16) and (6), 64* > 0 for ¢
= 1, todd. Similarly, 6f* > 0for¢ = 0, teven.

That the equilibrium allocation is nonoptimal is obvious from the fact that
the consumption sequences are not constant. That it is Pareto superior to
autarky is also obvious, but it is instructive to note that for agent 4, for
example, ¢** dominates 0 in period 0, and the consumption pair (c*c**)
dominates the endowment pair (1,0) in periods (z,£+1), t = 1, ¢ odd.

A3. Proof of Proposition 6

It is first established that the above specification is maximizing for the agent
born at time ¢t = 0. Consider first any consumption sequence {¢;(#) ;=0 and
associated money balance sequence {M;( 1) }j-, which satisfy the budget con-
straints (26) as equalities, j = 0, jeven. Substitution for M;, (¢) yields

(AlD) M;(t) + pEE y; — M;a(8) = pifei(8) + pbEicin(8).

Defining real money balances m;(1) = M;(¢) /ps, i —J j + 2, and recalling the
specified relationship

Pt = pla = (B Plss
(A1l) then yields

my(1) + y; = () + (1) + Bmys(8)  j=0,jeven.
Now holding m;(t) and m;.(?) fixed, define real disposable income d;(¢) by
(A12) di(t) = m(0) + y; — Bim;p0(8) j=0,jeven

and consider in isolation the following problem:

{Ula(D1+BULc; (01}

ol = g?zcimt H=0
subject to

c;j(2) + ¢ (1) = di(2).
Solving for the maximizing c;(¢) and ¢;.(#) as continuous functions of dj(z),

substitution into the objective function then yields the bounded, continuous
indirect utility function, denoted here by W[d;(#)]. Thus Problem 4 reduces to

max X BIW[d(1)]
{m(t)}; j=0

Jjeven
subject to (A12) and
m;(1) =0 Jj=2,jeven, given my(f) = 0.

Again the functional equation approach yields a stationary policy which solves
this problem.
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It is clear from the discussion preceding the theorem that the specified
solution to Problem 4 satisfies the necessary first-order conditions (28) as
equalities. (The budget constraints also hold as equalities.) Now suppose
there exist a consumption sequence {&(f)};-, and an associated money
balance sequence {#4;(?) };=;, Which do better than the proposed solution, and
consider the first age g for which &,(7) # c#(#). A now familiar argument leads
to a contradiction.

It follows from the principle of optimality that for any 4 = 1 the sequences
{c(0) ¥ran, {mF(1) ¥i=n+1 are maximal for agent ¢ given mj(¢). But then by
symmetry the sequences {c#(—h) ¥ en, {m¥(—Hh)}5=n+ are maximal for the agent
born at each period —#4, given mj#(—~h), as we needed to show.
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