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Naïve Learning with Uninformed Agents†

By Abhijit Banerjee, Emily Breza, 
Arun G. Chandrasekhar, and Markus Mobius*

The DeGroot model has emerged as a credible alternative to the 
standard Bayesian model for studying learning on networks, offer-
ing a natural way to model naïve learning in a complex setting. One 
unattractive aspect of this model is the assumption that the process 
starts with every node in the network having a signal. We study a nat-
ural extension of the DeGroot model that can deal with sparse initial 
signals. We show that an agent’s social influence in this generalized 
DeGroot model is essentially proportional to the degree-weighted 
share of uninformed nodes who will hear about an event for the first 
time via this agent. This characterization result then allows us to 
relate network geometry to information aggregation. We show infor-
mation aggregation preserves “wisdom” in the sense that initial 
signals are weighed approximately equally in a model of network 
formation that captures the sparsity, clustering, and small-world 
properties of real-world networks. We also identify an example of a 
network structure where essentially only the signal of a single agent 
is aggregated, which helps us pinpoint a condition on the network 
structure necessary for almost full aggregation. Simulating the mod-
eled learning process on a set of real-world networks, we find that 
there is on average 22.4 percent information loss in these networks. 
We also explore how correlation in the location of seeds can exac-
erbate aggregation failure. Simulations with real-world network 
data show that with clustered seeding, information loss climbs to 
34.4 percent. (JEL D83, D85, Z13)

… [A]s we know, there are known knowns; there are things we know we 
know. We also know there are known unknowns; that is to say we know 
there are some things we do not know. But there are also unknown 
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unknowns – the ones we don’t know we don’t know … [I]t is the latter 
category that tend to be the difficult ones.

—Donald Henry Rumsfeld, US Secretary of Defense (2002)

Learning from friends and neighbors is one of the most common ways in which 
new ideas and opinions about new products get disseminated. There are really two 
distinct pieces to most real-world processes of social learning. One part of it is the 
exchange of views between two (or more) people who each have an opinion on the 
issue (“Lyft is better than Uber” or the other way around). The other piece is the 
spread of new information from an (at least partially) informed person to an unin-
formed person (“there is now an alternative to Uber called Lyft which is actually bet-
ter”). Information aggregation models (Bala and Goyal 1998; DeMarzo, Vayanos, 
and Zwiebel 2003; Eyster and Rabin 2014) emphasize the first while models of 
diffusion (Calvó-Armengol and Jackson 2004; Jackson and Yariv 2007; Banerjee et 
al. 2013) emphasize the second.

In reality both processes occur at the same time. For example, in the lead-up 
to the financial crisis of 2007–2008, if popular accounts are to be believed, most 
investors were not tracking news on subprime lending, despite its central role in 
what ultimately happened. After all, ex ante there is a whole host of other factors 
that are potentially important to keep an eye on—this was also a period when world 
commodity prices were changing rapidly, and China seemed poised to take over the 
world economy. For most individual investors, information about the sheer volume 
and nature of subprime lending was new information, an unknown unknown when 
they heard about it from someone. After that of course many of them started tracking 
the state of the subprime market and started to form and share their own opinions 
about where it was going.

Microcredit programs provide another example. Most microfinance borrowers 
did not know that the product existed before a branch opened in their neighbor-
hood.1 Indeed we know from Banerjee et al. (2013) that the MFI studied in that 
paper has an explicit strategy of making its case to the opinion leaders in the village 
and then assuming that the information will flow from them to the rest of the village. 
However, once people hear about the product, they may seek out the opinions of 
others before deciding whether to take the plunge.

In this paper, we develop a generalization of the DeGroot model (DeGroot 1974; 
DeMarzo, Vayanos, and Zwiebel 2003) that accommodates both these aspects of 
social learning. We feel that this is important because the DeGroot model has a num-
ber of attractive properties that has made it perhaps the canonical model of boundedly 
rational information aggregation in network settings. First, the rule itself is simple 
and intuitive, whereas the correct Bayesian information aggregation rule in network 
settings can be so complex that it is hard to believe that anyone would actually use it. 
Indeed the experimental evidence supports the view that most people’s information 
aggregation rules are better approximated by the DeGroot (or DeGroot-like) model 
than the Bayesian alternative (Corazzini et al. 2012; Mueller-Frank and Neri 2013; 

1 Marketing materials of microfinance institutions (MFIs) often feature quotes from their beneficiaries to the 
effect that they never imagined that they could ever be clients of a formal financial institution.
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Mengel and Grimm 2015; Chandrasekhar, Larreguy, and Xandri 2020).2 Second, 
the model has the attractive long-run property that under some relatively weak 
assumptions beliefs in a large population converge to the belief that would result 
from full aggregation of everyone’s signal. This is the “wisdom of crowds” result 
(Golub and Jackson 2010). Finally, Molavi, Tahbaz-Salehi, and Jadbabaie (2017) 
provide axiomatic foundations of DeGroot social learning for a setting where agents 
have imperfect recall.

However, the DeGroot model makes the somewhat unrealistic assumption that 
everyone is informed about the issue at hand to start with (Golub and  Jackson 
2010)—no one needs to be told that Lyft or microcredit or widespread subprime 
lending exists. The current paper relaxes that assumption and allows the initial sig-
nals to be sparse relative to the number of eventual participants in the information 
exchange. In other words, we allow for the possibility that many or even most net-
work members may start by having absolutely no views on a particular issue, and 
only start having an opinion after someone else shares their opinion with them. 
While in the standard DeGroot model, agents average the opinions of their neigh-
bors (including themselves) in every period, under our generalized DeGroot (GDG) 
updating rule, agents only average the opinion of their informed neighbors while 
ignoring uninformed neighbors. (This make sense, for example, if those who have 
no signal are silent.) Hence, an agent who has a seed signal and is surrounded by 
uninformed neighbors will stick to her initial opinion and only will start averaging 
once her neighbors become informed. An uninformed agent who has an informed 
neighbor will adopt that opinion. Our model reduces to the standard DeGroot model 
when all agents are initially informed and a standard diffusion model if informed 
agents all start with the same seed. Just like the standard DeGroot rule, the GDG rule 
can also be thought as a form of naïve static Bayesian updating where uninformed 
agents have diffuse signals that are ignored in the aggregation while the stronger sig-
nals of informed agents are averaged. It turns out that the social learning dynamics 
under these assumptions can be thought of as the result of two separate processes: 
Signals first diffuse through the social network such that uninformed direct and indi-
rect neighbors of the initially informed agents adopt the opinion of the socially 
closest informed agent. But second, as soon as there is at least one pair of informed 
neighbors, they start exchanging opinions and engage in DeGroot averaging. This 
roughly corresponds to the two stages of social learning that we highlighted in our 
examples; what is an unknown unknown for some people at a point of time is a 
known unknown for others.3 We show that what determines the long-run outcomes is 
the partition of the set of nodes into those that got their initial opinion from the same 
seed—the so-called Voronoi tessellation of the social network induced by the set of 
initially informed agents. The Voronoi tessellation therefore describes the seeded 
agents’ social influence in our model, unlike in the standard DeGroot model where 
social influence is proportional to an agent’s popularity (in the symmetric DeGroot 

2 In particular, Corazzini et  al. (2012) conduct a lab experiment that closely mimics the standard DeGroot 
setting—individuals pass on real-numbers (as needed)—and find that for the most part results are consistent with 
DeGroot learning.

3 Of course, in reality it is likely that both these processes of pure opinion aggregation intersect with another 
process of acquiring information by direct observation (for example by taking a Lyft), but this of course was also 
true in the original DeGroot model.
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version). Being popular isn’t enough to be influential in our generalized model: 
agents might have to surround themselves with other popular but uninformed neigh-
bors in order to enlarge their Voronoi set and make their opinion heard. Each ele-
ment of this partition effectively plays the role of a single node in the standard 
DeGroot process; the (common) signal associated with all the nodes in that element 
gets averaged with the signals associated with the other elements of the partition 
over and over again, exactly as in the standard DeGroot model. The one difference is 
that the weight given to a particular signal is (essentially) the degree-weighted share 
of the nodes in the element of the partition associated with that signal. The topology 
of the social network embodied in the structure of the Voronoi partition therefore 
interacts with the ability of the DeGroot process to aggregate the signals of informed 
agents to generate the ultimate outcome.

An important consequence of this insight is that networks that would generate 
asymptotic full aggregation of all available signals in the standard DeGroot case 
(the “wisdom of crowds” effect analyzed by Golub and Jackson 2010), may not do 
so in the Generalized DeGroot case.4 In other words, the long-run outcome may 
reflect only a fraction of the initially available signals. To demonstrate a worst-case 
version of this, we construct a class of networks that, for most initial sparse seed 
sets, “aggregates” only the signal of a single agent in the GDG case; this is what we 
call a belief dictatorship. With the same set of networks, there would be no dictator-
ships in the standard DeGroot case where all agents receive signals initially, since 
no agent in these networks has a particularly high degree.

However, we can also characterize large classes of networks that model real-world 
structure—the resultant graphs are sparse, clustered, and have small worlds (Watts 
and Strogatz 1998, Newman 2003, Jackson 2008, Newman 2010)—and demon-
strate that they do not suffer from belief dictatorships. On the contrary, they aggre-
gate signals almost perfectly.

The quality of the signal aggregation is therefore a function of the structure of the 
network. To get some empirical insight into whether the average real-world network 
is closer to the belief dictatorship case or to the full aggregation case, we simulate 
the GDG process on a set of 75 village networks where we had previously collected 
complete network data (Banerjee et al. 2019) by injecting signals at a number of 
randomly chosen nodes. The variance of the long-run outcome of our simulated pro-
cess across multiple rounds of injections gives us a measure of information loss. In 
our simulations we find that the average amount of information loss is 22.4 percent. 
We also find that there is heterogeneity in how much information is lost/preserved.

Our model also has direct implications for how network structure impacts the 
quality of aggregation. For a given realization of the location of the seeds, asym-
metry in the degree-weighted Voronoi shares drives information loss in the model. 
Using the same data we show by simulations that the expectation of the Herfindahl 
index of the interior degree-weighted Voronoi shares is predictive of information 
loss across different networks. Moreover, we also show that other graph statistics 

4 Importantly here we are not asking whether the GDG process leads to the same long-run outcome as the stan-
dard DeGroot process; because there are potentially many more initial signals in the standard DeGroot case, that 
would be an unfair comparison. The claim here is about the extent to which the long-run opinion reflects all the 
available signals, taking into account the fact that there are more signals in the standard DeGroot case.
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relevant for the standard DeGroot model have no predictive power in the same sim-
ulations. This suggests that the Voronoi Herfindahl index has relevant empirical con-
tent beyond other widely used network measures, under the model.

In much of the paper, we analyze cases where the initial signals are distributed 
uniformly at random in the network. However, there are many real-world situations 
that might lead to information being clustered in a small number of subcommunities. 
We next show that for a class of networks, such clustered seeding can dramatically 
exacerbate information loss. Finally, we simulate the model using a clustered seed-
ing protocol in the 75 Indian village networks and show that on average, correlation 
in the location of signals does indeed lead to a higher variance in limit beliefs, hold-
ing the number of signals fixed. We find that under clustered seeding, the average 
information loss climbs to 34.4 percent.

The remainder of the paper is organized as follows. Section I sets up the formal 
model. Section II shows how the limit belief can be thought of as a Voronoi-weighted 
average of the initial signals. In Section III describe how the network’s geometry 
affects information loss. We explore how correlation in the location of initial signals 
can influence information loss in Section IV. Both in the theoretical illustration and 
in our data, such correlation exacerbates information loss. Section V concludes and 
introduces some questions for future research, inspired by our model.

I.  A Model of DeGroot Learning with Uninformed Agents

A. Setup

Our model builds on the standard DeGroot model as introduced by DeMarzo, 
Vayanos, and Zwiebel (2003) but adds uninformed agents. We consider a finite set 
of agents who each may observe a signal about the state of the world ​θ  ∈  ℝ​.

There are a finite number ​n​ of agents who are embedded in a fully connected, 
undirected, unweighted graph ​g​ such that ​​(i, j)​  ∈  g​ implies ​​(  j, i)​  ∈  g​ for any two 
agents ​i​ and ​j​. Denote the set of agents/nodes in the network by ​N​. All agents to 
whom a node is linked are called neighbors: this will be the group of people an agent 
listens to. We also assume that ​g​ includes self-loops ​​(i, i)​​ implying that an agent also 
listens to herself. We denote the degree of a node in the graph with ​​d​i​​​ (including the 
self-loop). Our results also hold for undirected weighted graphs and we will indicate 
this when presenting our results.

At any point in time ​t​ an agent is either informed or uninformed. An informed 
agent at time ​t​ holds belief ​​x​ i​ t​  ∈  ℝ​. An uninformed agent holds the empty belief ​​
x​ i​ t​  =  ∅​. Following DeMarzo, Vayanos, and Zwiebel (2003) we assume that the ini-
tial opinions of informed agents are an unbiased signal with finite variance about the 
true state drawn from the same absolutely continuous distribution ​F​ (e.g., a normal 
distribution):

(1)	​ ​x​ i​ 0​  =  θ + ​ϵ​i​​,      where ​ ϵ​i​​  ∼  F​(0, ​σ​​ 2​)​.​

At time ​t  =  0​ a set ​S​ of size ​k  = ​ | S |​​ nodes are initially seeded with signals ​​x​ i​ 0​​. 
The remaining ​n − k​ nodes receive no signal at period 0. Note that if ​k  =  n​, this is 
the standard DeGroot case, where signals are dense rather than sparse.
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B. Learning

Agents observe their neighbors’ opinions in every period and update their own 
beliefs. We denote the set of informed neighbors of agent ​i​ at time ​t​ with ​​J​ i​ t​​ and 
note that this set can include the agent herself. We then specify the GDG updating 
process as follows:5

	​ ​x​ i​ t+1​  = ​​
{

​​​
∅
​ 

if  ​J​ i​ t​  =  ∅
​  

​ 
​∑ j∈​J​ i​ t​​ 

  ​​​ x​ j​ t​ ____ |​J​ i​ t​|
 ​

​ 
if  ​J​ i​ t​  ≠  ∅.

​​​

Our updating rule implies that uninformed agents remain uninformed as long as 
all their neighbors are uninformed. If just one of her neighbors becomes informed, 
the uninformed agent will adopt the opinion of that neighbor. If there is disagree-
ment, the agent will use simple averaging of all its neighbors to derive a new 
opinion.6 Note, that our updating rule reduces to the standard DeGroot model 
once every agent is informed. Section V spells out a potential foundation for this 
rule: it can be seen as a naïve dynamic extension of the static optimum Bayesian 
learning rule.

To gain intuition about the learning dynamics, consider the belief dynamic for 
the social network shown in Figure 1. At time ​t  =  0​ only two agents are informed 
and have distinct signals. During the next two periods the seeds’ information dif-
fuses and the direct neighbors and the neighbors of neighbors adopt the opinion of 
the seed closest to them. In period ​3​, an agent first encounters two distinct opinions 
and averaging starts and continues until all agents have converged to limit belief  
​17/9​. This example illustrates that the belief dynamics can be broadly described as a 
diffusion process followed by an averaging phase—while it is generally not possible 
to cleanly separate these two phases in time, they are helpful for characterizing the 
long-run behavior of our updating process. The diffusion part determines just how 
many nodes in the averaging process share the information from a single seed. In the 
(standard DeGroot) averaging process, which ensues after they have been informed, 
these shared signals are treated no differently from the case where they are the orig-
inal signals these nodes started with, which, from the familiar logic of DeGroot 
aggregation, means that a seed that feeds more nodes to start with will tend to have 
greater influence on the long-run outcome.

5 In the case of a weighted graph we have 

	​ ​x​ i​ 
t+1​  =  ​​

{
​​​
∅
​ 

if  ​J​ i​ 
t​  =  ∅

​  
 ​ 
​∑ j∈​J​​ t​​ 

   ​​​x​ j​ 
t​​g​ij​​ ______ 

​∑ j∈​J​​ t​​ 
   ​​​g​ij​​ 

 ​
​ 

if  ​J​ i​ 
t​  ≠  ∅,

​​​

where ​​g​ij​​  >  0​ are the edge weights. For the unweighted graph the weights are simply ​​g​ij​​  =  1​.
6 In the case of weighted graphs the agent will use a weighted average of her neighbors.
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II.  How Network Geometry Affects Limit Beliefs

A. Different Types of Limit Beliefs

We next characterize limit beliefs in our model starting from the initial seed set ​
S  = ​ {​i​1​​, …, ​i​k​​}​​ of ​k  >  0​ informed agents. Note, that beliefs in our model always 
converge to some uniform limit belief ​​x​​ ∞​​ because all agents will become eventually 
informed and our model then reduces to the standard DeGroot model.7

PROPOSITION 1: The limit belief ​​x​​ ∞​​ is a weighted average ​​∑ i∈S​ 
  ​​​ w​i​​​(S)​ ​x​ i​ 0​​ of the 

initial signals of the seeds, where the weight given to the signal of seed ​i​, ​​w​i​​​(S)​​, only 
depends on the position of the seeds in the network and ​∑ ​w​i​​​(S)​  =  1​.

The key intuition for this result is that we apply a linear operator to each agent’s 
beliefs at each time. Proposition 1 also implies that the limit belief—for a fixed seed 
set ​S​—is an unbiased estimator of the state of the world, where we take the expecta-
tion over the possible realizations of the initial signals.

We will call a seed’s weight ​​w​i​​​(S)​​ in the limit opinion the seed’s social influence. 
It will be convenient to assume from now on that the weights ​​w​i​​​(S)​​ are monotonic in 
the index ​i​—this can always be accomplished by relabeling the seeds, and therefore 
this assumption can be made without loss of generality.

7 This applies immediately by the same proof to the undirected, weighted case since it only requires the irreduc-
ibility and aperiodicity of the stochastic weighting matrix.

Figure 1. Evolving Beliefs in a Sample Social Network
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Clearly the most efficient estimator attaches equal weight to each seed’s signal 
since they are equally precise. We are particularly interested in the variability of the 
limiting social opinion ​​x​​ ∞​​:

(2)	​ var​(​x​​ ∞​)​  = ​ ∑ 
i∈S

​ 
 
 ​​ ​ w​i​​ ​​(S)​​​ 2​ ​σ​​ 2​.​

We can bound this variance above and below:

(3)	​ ​ ​σ​​ 2​ _ 
k
 ​  ≤  var​(​x​​ ∞​)​  ≤ ​ σ​​ 2​.​

Notice that the upper bound is the variance of a single signal, and this says that 
society effectively pays attention to one node’s initial piece of information and has 
“forgotten” the ​k − 1​ other pieces of information. The lower bound is just the vari-
ance of the sample mean of ​k​ independent draws, which corresponds to the most 
efficient estimator.

Loosely speaking, we say that the GDG process exhibits “wisdom” if the vari-
ance of the limit belief is close to the lower bound, which is precisely achieved by 
the optimal estimator. On the contrary, if the variance in the limit belief is close 
to the upper bound we say the process exhibits “dictatorship” because it only puts 
weight on the signal of one single agent.

B. What Affects the Precision of Long-Term Beliefs?

In order to understand the conditions under which wisdom or dictatorship arises 
we have to understand the weights ​​w​i​​​(S)​​. To study these weights we define the 
Voronoi tessellation of the social network induced by seed set ​S​ as a partition of the 
nodes of the social network into ​k​ almost disjoint sets. Each Voronoi set ​​V​i​​​ is associ-
ated with a seed ​i​ and contains all the nodes that are weakly closer to seed ​i​ than any 
other seed in terms of network distance.

In the case of a weighted graph, we consider paths comprised of outward links 
and simply calculate network distance using whether a link exists or not (that is, ​​
g​ij​​  =  0​ or ​​g​ij​​  >  0​). In other words, the way we calculate network distance does 
not depend on the actual positive weight itself. That is to say, we define Voronoi sets 
as if there were no weighting on the link, but we calculate membership of ​j​ to the 
Voronoi set of seed ​i​ if its distance calculated by the minimal outward path from ​i​ to ​
j​ is shorter than the minimal such paths to all other seeds.

These sets do not quite form a partition since nodes can be equidistant from two 
(or more) seeds in which case the nodes are assigned to multiple Voronoi sets. Panel 
A of Figure 2 provides an example of such a Voronoi tessellation on a line network 
with seven agents where agents 1 and 7 are informed. Note, that agent ​4​ belongs to 
both Voronoi sets ​​V​1​​​ and ​​V​7​​​.

For each Voronoi set ​​V​i​​​ define the boundary of the set to be ​∂ ​V​i​​​ which is the set 
of nodes that are not in ​​V​i​​​ but are directly connected to an element of ​​V​i​​​ (i.e., at 
distance 1). Panel B of Figure 2 illustrates this boundary for ​​V​7​​​. Next, for each node  
​i​′ define the closest seed as ​​c​i′​​​ and the set of associated seeds ​A​(i′, S)​​ as those 
seeds whose shortest distance to ​i′​ differs from ​​c​i′​​​ by at most two. The set of asso-
ciated seeds always includes at least the closest seed itself. We then define the 
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boundary region ​H​(S)​​ of seed set ​S​ as the set of nodes ​i′​ whose set of associated 
seeds has at least size two​​. The boundary region includes equidistant nodes that are 
shared between two Voronoi sets but also nodes immediately next to the bound-
ary between Voronoi sets. For each seed ​i​ we also define the minimal Voronoi set  
​​V​ i​ min​  = ​ V​i​​\H​(S)​​ and the maximal Voronoi set ​​V​ i​ max​  = ​ V​i​​  ∪  ∂ ​V​i​​​.

Nodes within the minimal Voronoi sets will start averaging conflicting opinions 
only after all their neighbors have become informed. Intuitively, information aggre-
gation will therefore occur exactly like in the standard DeGroot model. However, 
nodes in the boundary region ​H​(S)​​ might enter the averaging phase while their set 
of informed neighbors is still evolving: based on the rules of GDG, updating their 
initial opinion (once becoming informed) can therefore vary between the lowest and 
highest signal among their associated seeds. In order to bound these two extremes, 
we construct the lower Voronoi sets ​​​ V 

¯
 ​​i​​​ and the upper Voronoi sets ​​​V 

–
​​i​​​ for a particular 

signal realization ​​x​ i​ 0​​ on the seeds as follows.
Let us start with the lower Voronoi sets ​​​ V 

¯
 ​​i​​​ first. All nodes in the minimal set ​​V​ i​ min​​ 

are assigned to ​​​ V 
¯

 ​​i​​​. Moreover, any node ​i′  ∈  H​(S)​​ is assigned to the associated seed 
with the lowest signal realization. Note that the lower Voronoi sets form a partition. 
We define the upper Voronoi sets ​​​V 

–
​​i​​​ analogously by assigning nodes in the boundary 

region to the highest associated seed. We can bound the sets in this lower and upper 
partition as follows:

(4)	​ ​V​ i​ min​  ⊆ ​​  V 
¯

 ​​i​​  ⊆ ​ V​ i​ max​​,

	​ ​V​ i​ min​  ⊆ ​​ V 
–
​​i​​  ⊆ ​ V​ i​ max​​.

Figure 2

Notes: Nodes 1 and 7 are seeds, with signals 0.1 and 0.3, respectively. The panels describe the Voronoi sets as well 
as the upper and lower Voronoi sets.

1 2 3 4 5 6 7

1 2 3 4 5 6 7

0.1 0.1 0.1 0.1 0.1 0.3 0.3

0.1 0.1 0.3 0.3 0.3 0.3 0.3

Panel A. Nodes 1 and 7 are seeds. V1 = {1, 2, 3, 4} and V7 = {7, 6, 5, 4}.

Panel B. ∂V7 = {3} and H(S) = {3, 4, 5}.

Panel C. V1 = {1, 2, 3, 4, 5} and V7 = {6, 7}.

Panel D. V1 = {1, 2} and V7 = {3, 4, 5, 6, 7}.
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Panels C and D in Figure 2 illustrate this construction of lower and upper Voronoi 
sets.

We can now bound the limit belief ​​x​​ ∞​​ only based on the lower and upper Voronoi 
partition. To state the result we denote the share of nodes in a network that is part of 
the lower Voronoi set ​​​ V 

¯
 ​​i​​​ with ​​​ v 

¯
 ​​i​​  =  |​​ V 

¯
 ​​i​​|/n​ and define the link-weighted share:

(5)	​ ​​ v 
¯
 ​​ i​ ∗​  = ​ 

​∑ i∈​​ V 
¯

 ​​i​​​ 
  ​​​ d​i​​ ______ 

​∑ i=1​ n  ​​​d​i​​
 ​.​

Analogously, we define the link-weighted share of agents in the upper Voronoi set  
​​​V 
–
​​i​​​. Note, that for regular graphs such as the circle we have ​​​ v 

¯
 ​​i​​  = ​​  v 

¯
 ​​ i​ ∗​​.

Our first theorem (proved in the Appendix) then says the following.

THEOREM 1: Assume a social network with seed set ​S​. The limit belief is bounded 
below and above as follows:8

(6)	​​ ∑ 
i
​ 
 
 ​​​​  v 
¯
 ​​ i​ ∗​ ​x​ i​ 0​  ≤ ​ x​​ ∞​  = ​ ∑ 

i∈S
​ 

 
 ​​​ w​i​​​(S)​ ​x​ i​ 0​  ≤ ​ ∑ 

i
​ 
 
 ​​​​ v –​​ i​ ∗​ ​x​ i​ 0​.​

The proof of Theorem 1 proceeds by induction: we show that we can sandwich the 
link-weighted opinion of all informed agents in each time period ​t  =  0, 1, …​ by 
the link-weighted average seed opinions that are assigned to these agents by the 
respective lower and upper Voronoi partition. This is easy to show at time ​t  =  0​. 
The inductive argument exploits the fact that the standard DeGroot averaging rule 
preserves the link-weighted average opinion of agents between time ​t​ and ​t + 1​ 
(proved in the Appendix). However, for agents in the boundary region, the set of 
informed neighbors with conflicting opinion tends to increase: the lower and upper 
Voronoi sets provide the appropriate bounds to bound the evolution of these agents’ 
beliefs until all their neighbors are informed.

Theorem 1 allows us to characterize the limit belief by studying a static problem 
and relates the geometry of the social network to an agent’s social influence ​​w​i​​​(S)​​. 
We define the link-weighted share of the minimal Voronoi set as

(7)	 ​​v​ i​ ∗,min​  = ​ 
​∑ i∈​V​ i​ min​​   ​​​ d​i​​ _______ 
​∑ i=1​ n  ​​​d​i​​

 ​ ​,

and, analogously, we define ​​v​ i​ ∗,max​​ as the link-weighted share of the maximal Voronoi 
set.

COROLLARY 1: The social influence ​​w​i​​​(S)​​ of seed ​i​ satisfies

	​ ​v​ i​ ⁎,min​  ≤ ​ w​i​​​(S)​  ≤ ​ v​ i​ ∗,max​.​

8 These bounds are tight if we focus on general networks. For specific classes of geometries we can improve 
the bounds.
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The proof of Corollary 1 follows immediately from inequality (4) and Theorem 1 by 
setting all signals except for seed ​i​ to zero​​.

Intuitively, an agent’s social influence is (approximately) proportional to the size 
of her Voronoi set which determines how many agents she manages to convince of 
her opinion before information aggregation commences.

It is instructive to note when the result of Theorem 1 collapses to an equality. We 
can clearly see this happens in the case of thin boundaries. Recall that the boundary 
region ​H​(S)​​ is comprised of the set of nodes with at least two associated seeds. This 
includes both nodes that are equidistant from multiple seeds but also nodes immedi-
ately next to these boundaries. Observe that if the boundary region is thin—​​| H​(S)​|​​ 
is small when compared to the total number of links per seed in the network—then 
Theorem 1 can be treated as an equality.

To get an intuition as to when this could happen, consider any sort of lattice such 
as a line, a planar lattice, or a lattice in three dimensions. In each of these cases, 
the volume of any ball about a seed is an order of magnitude larger than its perim-
eter (which corresponds to the dimension of the possible boundary). So one can 
easily calculate that the boundary will be thin and therefore ignorable in the limit. 
Thus, to the extent that real-world networks look lattice-like or exhibit neighbor-
hoods around any seed nodes that have small perimeters relative to their volumes, 
we can treat the limit opinion as behaving as in Theorem 1 but with an equality. This 
may be the case if real-world networks are well-approximated by geographic net-
works (Ambrus, Mobius, and Szeidl 2014) or latent-space networks (Hoff, Raftery, 
and Handcock 2002; Penrose 2003; McCormick and Zheng 2015; Chandrasekhar, 
Larreguy, and Xandri 2020).

III.  How Network Geometry Affects Wisdom

In this section we explore how the geometry of the network influences how much 
information gets aggregated into the final opinion. This is particularly important in 
the sparse case because, even with large ​n​ the actual number of signals, ​k​, can be a 
small number and therefore we cannot assume that there is a law of large numbers 
in operation.

We begin by studying a class of random network models that are designed to 
model the features of real-world social networks. In the models, nodes reside in a 
latent space, in our case a hypercube, and then closer nodes are more likely to be 
linked as described below. The resulting networks are sparse, clustered, and exhibit 
small worlds (Penrose 2003, Watts and Strogatz 1998, Newman 2003, Jackson 
2008). The models we study, where proximity modulates linking propensity, are 
both intuitive and related to those often used in statistics, sociology, and economet-
rics (Hoff, Raftery, and  Handcock 2002; Hoff 2008; Graham 2017; McCormick 
and Zheng 2015; Smith, Asta, and Calder 2019; Breza et al. 2020). We demonstrate 
that the Voronoi sets in these models tend to be of roughly equal size and, therefore, 
wisdom is preserved.

We then study a stylized example to contrast the logic of our setting with sparse 
signals with the widely studied setting where everyone gets a signal. The goal of 
this example is to demonstrate that the failure to learn with sparse signals does not 
have to come from the presence of hyperconnected individuals, unlike in the case 
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when everyone gets a signal (which we call the dense case).9 Failure can happen 
even when all the nodes have a small number of links but the network exhibits spe-
cific kinds of asymmetries that make seeds at certain location become much more 
influential than others.

Before we begin our study, it is instructive to start by comparing the case of sparse 
signals to the dense case. Golub and Jackson (2010) characterize when crowds will 
be wise in the dense case and show that, for a setting like ours, the degree distribu-
tion is a sufficient statistic for characterizing asymptotic learning. Other network 
statistics, such as average path length are irrelevant. Formally, Golub and Jackson 
(2010) show that a sequence of graphs ​​​(​g​j​​)​​j∈ℕ​​​ is wise only if

	​ ​ max​ 
1≤i≤​n​j​​

​​ ​ 
​d​i​​​(​g​j​​)​ ________ 

​∑ i′=1​  ​n​j​​ ​​​ d​​i ′ ​​​​(​g​n​​)​
 ​  →  0​,

where ​​d​i​​​(​g​j​​)​​ denotes the degree of node ​i​ in graph ​​g​j​​​ and the size of graph ​​g​j​​​ is equal 
to ​​n​j​​​.10

In the sparse case, however, the condition above no longer guarantees wisdom. In 
fact, we can construct a sequence of networks, all satisfying the Golub and Jackson 
(2010) condition, where one of the ​k​ signals comes to fully dominate everybody’s 
opinion. That is, the society’s converged opinion reflects just one signal and there-
fore is arbitrarily close to having the maximal possible variance. More generally, 
this suggests that networks with important asymmetries may destroy a considerable 
part of the available information in sparse learning environments.

From an empirical perspective, our analysis points to contexts in which networks 
exhibit such asymmetries are vulnerable to failures of wisdom.

A. Wisdom in “Realistic” Models of Social Networks

In this section we study classes of networks that capture many of the standard fea-
tures of real-world social networks and show that for a typical seeding, the Voronoi 
sets of the seeds are essentially all of the same order of magnitude. In this case, the 
wisdom of crowds result continues to hold in the sense that the final opinion almost 
always reflects equally weighted information from all ​k​ seeds.

For this exercise, we first look at random geometric graphs (RGG), which are 
simple spatial networks where nodes are randomly distributed over an ​m​-dimen-
sional metric space (Penrose 2003). For example, for ​m  =  1​ such a network looks 
similar to a line (but allows for local rewiring) and for ​m  =  2​ it resembles a plane. 
These graphs resemble social networks in the sense that they are typically char-
acterized by sparsity, community structure, and clustering which are fundamental 
properties of real-world social networks.

After showing that RGGs exhibit wisdom, we consider the possibility of add-
ing a small number of “shortcuts” to these graphs to capture the idea that while 
most of the links are between nearby nodes, there is some chance that distant nodes 

9 Golub and Jackson (2010) highlight the importance of hyperconnected individuals as a source of the failure of 
information aggregation in the dense case.

10 Recall that our definition of degree includes a self-loop.
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link as well. RGGs with shortcuts preserve the fundamental “small-world” prop-
erty of small average path length between any two nodes (see Watts and Strogatz 
1998) and describe real-world networks better. We show that making this change 
induces only small changes in the variance of limit beliefs and therefore preserves  
wisdom.

Random Geometric Graphs.—We consider an ​m​-dimensional hypercube ​​​[0, L)​​​ m​​ 
where ​L​ is a positive integer. The volume of this hypercube is therefore ​​L​​ m​​. For 
example, on a line this hypercube is simply the interval ​​[0, L]​​ and on a plane it is a 
square with side length ​L​. We then draw ​n​ nodes on this cube and define ​δ  =  n/​L​​ m​​ 
as the node density. Any two nodes are said to be neighbors if their Euclidean dis-
tance is at most one​​.

In a standard RGG these nodes are randomly placed on the hypercube with uni-
form probability. This poses a technical problem because any instance of such a 
RGG is not guaranteed to be connected: the node density has to be above a threshold 
to make sure that two random nodes belong to the same connected component with 
high probability even if the RGG is very large. While the exact thresholds are not 
known they can be bounded: for example, for the plane the node density has to be 
at least ​1.44​.11 In order to not have to deal with partially connected graphs and mul-
tiple components we assume that nodes inside the hypergraph whose coordinates 
are integers always belong to the RGG (we call these base nodes). Effectively, this 
implies that the density of the network always satisfies ​δ  ≥  1​ because base nodes 
alone contribute one​​ unit of density. The remaining density ​​(δ − 1)​ ​L​​ m​​ nodes are 
distributed uniformly and independently over the hypercube just like in the stan-
dard model (Penrose 2003). Thanks to these base nodes all our RGGs are fully 
connected.12

A second technical problem arises due to the fact that the maximum degree of 
our RGG increases linearly with ​n​ because there are network realizations where all 
nonbase nodes are selected within a small ball of radius one​​. These events are rare: 
the expected number of neighbors for any node as well the standard deviation in 
the degree is proportional to the node density (for example the expected number of 
neighbors is ​δπ​ on the plane). Random graphs with unbounded degree nevertheless 
pose a technical difficulty for us because the social influence of a seed is propor-
tional to the degree-weighted size of the associated Voronoi set. To simplify our 
analysis we impose a maximum degree ​​d​​ ∗​​ by pruning any regions of an instance 
of a random graph with excess degree as follows: (i) we take the union of all edges 
of agents with degree exceeding ​​d​​ ∗​​ except edges involving base nodes; (ii) we then 
randomly delete one of these excess edges; (iii) we repeat this algorithm until the 
degree of every node is at most ​​d​​ ∗​​. Since we do not delete base edges the graph 

11 The threshold is called the percolation threshold. If the node density is smaller then the probability that any 
two random nodes are connected through the same giant component converges to zero​​ as ​L​ grows. Otherwise, 
it remains bounded away from zero​​. For the plane the threshold node density on the plane lies in the interval ​​
[1.43, 1.44]​​(Balister, Bollobás, and Walters 2005): in other words, every unit cube has to contain at least ​1.44​ nodes 
on average for a giant component to emerge.

12 This excludes node densities below one​​. However, these densities are below the percolation threshold of 
standard RGGs and hence it would not make sense to study them for the purpose of this paper where we focus on 
connected graphs where all agents’ beliefs converge.
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remains connected. Moreover, by choosing the maximum degree ​​d​​ ∗​​ large enough 
we can minimize the need for pruning.

We define the resulting class of random geometric graphs as ​RGG​(L | m, δ, ​d​​ ∗​)​​. 
Such a network consists of ​n  =  δ ​L​​ m​​ nodes. For this class of RGGs the following 
“approximate wisdom” result holds.

THEOREM 2: Consider RGGs in the class ​RGG​(L | m, δ, ​d​​ ∗​)​​ with ​n  =  δ ​L​​ m​​ nodes 
and assume that ​k  ≤  n​ seeds are randomly chosen on the network. Then there is a 
constant ​C​(m, ​d​​ ∗​)​​, independent of ​n​, such that we can bound the expected variance 
in the limit opinion

(8)	​ ​E​S,RGG​(L|m,δ,​d​​ ∗​)​​​​[var​(​x​​ ∞​)​]​  ≤ ​  C ​σ​​ 2​ _ 
k
  ​,​

where on the left-hand side we take the expectation over all seed sets ​S​ of size ​k​ and 
all realizations of RGGs in the class ​RGG​(L | m, δ, ​d​​ ∗​)​​.

To understand the significance of this result recall the basic inequality (3) that 
bounds the variance of the limit belief:

	​ ​ ​σ​​ 2​ _ 
k
 ​  ≤  var​(​x​​ ∞​)​  ≤ ​ σ​​ 2​.​

The theorem shows that on average the variance in the limit belief is at most a 
constant factor larger than the first-best case where all signals are equally weighted. In 
particular, the variance of the limit belief scales inversely proportional with ​k​ just like 
the optimal bound. We can therefore view Theorem 2 as an approximate “wisdom of 
crowds” result similar to Golub and Jackson (2010) for this class of networks.

Adding Shortcuts to RGGs.—In addition to being sparse and clustered, real-world 
networks have low average path length. Watts and Strogatz (1998) note that this 
cannot be generated from spatial graphs by local rewiring only. Instead, we have to 
allow for limited long-range rewiring that creates shortcuts in the social network. 
Indeed, typical empirical models of network structure in the statistics, sociology, 
and econometrics literatures allow for such shortcuts.

Formally, we define a rewiring of the class ​RGG​(L | m, δ, ​d​​ ∗​)​​ of RGG graphs that 
we introduced in the previous section: we randomly pair all agents in the giant com-
ponent with a random partner and with probability ​η​ we add a link between these 
two nodes for each of the ​n/2​ pairs.13 By construction, the degree of every node 
increases by ​η​ in expectation. We denote the resulting class of “small-world” RGG 
networks as ​RGG​(L | m, δ, ​d​​ ∗​, η)​​.

THEOREM 3: Consider the class ​RGG​(L | m, δ, ​d​​ ∗​, η)​​ of “small-world” RGG net-
works with ​n  =  δ ​L​​ m​​ nodes and assume that ​k  =  o​(​√ _ n ​)​​ seeds are randomly 
chosen on the network. Then there is a constant ​C​(m, ​d​​ ∗​, η)​​, independent of ​n​, such 
that we can bound the expected variance in the limit opinion

13 If ​n​ is odd we leave out one randomly selected agent.
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(9)	 ​​E​S,RGG​(L|m,δ,​d​​ ∗​,η)​​​​[var​(​x​​ ∞​)​]​  ≤ ​  C ​σ​​ 2​ _ 
k
  ​,​

where on the left-hand side we take the expectation over all seed sets ​S​ of size ​k​ and 
all realizations of RGGs in the class ​RGG​(L | m, δ, ​d​​ ∗​, η)​​.

This result implies that typical small world RGG exhibits wisdom for sparse seed 
sets. The intuition behind this result is as follows. In “small-world” RGG networks 
an agent’s neighborhood at distance ​r​ increases at an exponential rather than at a 
polynomial rate as in standard RGGs. This has a dramatic on average path length (as 
shown in Watts and Strogatz 1998). However, it does not affect the relative ability of 
every seed to diffuse information. Therefore, it does not exacerbate the imbalance of 
the Voronoi set size distribution.

Sparse Erdős-Renyi Graphs.—The same intuition holds for the class of random 
Erdős-Renyi graphs ​R​(n | ​d​​ ∗​, p)​​ with ​n​ where every possible pairwise edge exists 
with probability ​p​ such that the expected number of edges ​np  >  0​. This ensures 
that the graph has a giant connected component. As for RGGs we again prune edges 
for nodes whose degree exceeds ​​d​​ ∗​​.

PROPOSITION 2: Consider the class ​R​(n | ​d​​ ∗​, p)​​ of random Erdős-Renyi graphs 
with ​np  >  1​ and assume that ​k  =  o​(​√ _ n ​)​​ seeds are randomly chosen on the net-
work. Then there is a constant ​C​(p)​​, independent of ​n​, such that we can bound the 
expected variance in the limit opinion

(10)	​ ​E​S,R​(n|​d​​ ∗​, p)​​​​[var​(​x​​ ∞​)​]​  ≤ ​  C ​σ​​ 2​ _ 
k
  ​,​

where on the left-hand side we take the expectation over all seed sets ​S​ of size ​k​ and 
all realizations of random graphs in the class ​R​(n | ​d​​ ∗​, p)​​.

B. Belief Dictators

To highlight the fact that wisdom is not guaranteed, we construct a class of net-
works such that the GDG process selects an opinion dictator with probability close 
to one​​ in the sparse case despite being wise in the dense case. In particular, we high-
light a case where despite the fact that no node has high degree, we typically end up 
with a single Voronoi set that envelops the entire network.

For each integer ​r​ we define a graph ​​G​T​​​(r)​​ that, intuitively, consists of a central 
tree graph surrounded by a “wheel.” We construct the tree by starting with a root 
agent who is connected to three neighbors. Each of these neighbors in turn is con-
nected to two neighbors, and we let this tree grow outward up to radius ​r​. We can 
calculate the number of agents in this tree network as

(11) ​ n  =  1 + 3 + 3 × 2 + 3 × ​2​​ 2​ + ⋯ + 3 × ​2​​ r−1​  =  1 + 3​(​2​​ r​ − 1)​.​

Agents at the perimeter of this tree have ​3 × ​2​​ r​​ unassigned links. We surround the 
tree by a circle of size ​​3​​ r+1​​ and connect the tree’s unassigned links like spokes on 
a wheel to this circle such that spokes connect to an equidistant set of nodes on the 
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circle. All agents in this network have degree two​​ or ​​three: agents who are connected 
to any agent in the central tree have degree three​​ and all other agents have degree 
two​​.

PROPOSITION 3: Consider the class ​​G​T​​​(r)​​ of social networks and assume that ​k​ 
seeds are randomly chosen on the network with ​k  =  o​(​​(c · 3/2)​​​ r​)​​ for ​0  <  c  <  1​.  
The expected value of the largest weight ​​E​S​​​(​w​k​​​(S)​)​​ (taken over all the seeds sets) 
converges to one​​ as ​r  →  ∞​ while the expectation of all lower-ranked weights con-
verge to zero​​.

In other words, one of the seeds becomes, with high probability, a belief dictator. 
The intuition is simple: the share of agents in the center is ​o​(​​(2/3)​​​ r​)​​ and therefore 
converges to zero​​ as ​r​ increases. Hence, for large enough ​r​ it becomes highly unlikely 
that any of the seeds are located in the center. Now consider the seed that happens 
to be closest to a spoke. It is easy to see that this distance is uniformly distributed 
since seeds are drawn randomly. Moreover, the distance between two spokes on the 
wheel is ​O​(​​(3/2)​​​ r​)​​. Therefore, the distance between the closest and second closest 
seed increases exponentially in ​r​. However, the closest seed needs only ​O​(r)​​ time 
periods to infect the central tree and spread out to the all the other spokes. Hence, the 
opinion of the closest seed will take over almost the entire network. Put differently, 
the Voronoi set of the closest seed encompasses almost the entire network.

Figure 3. Belief Dictators Example

3r+1 nodes on the periphery

3 × 2r spokes

r = 1
r = 2

r = ⋯
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Further, observe that the result holds even if the number of seeds grows in ​n​ 
provided that the growth is not too fast. This encompasses, for example, polyloga-
rithmic growth rates and any subexponential growth rate relative to the size of the 
network itself.

It is instructive to contrast this observation to the “wisdom of crowds” result in 
Golub and Jackson (2010). Each ​​G​T​​​(r)​​ network has bounded degree and therefore, 
based on the result in Golub and Jackson (2010), aggregates final opinions (almost) 
perfectly efficiently in the standard (dense) DeGroot model. However, since our 
process adds a diffusion stage to the social learning process, properties of the social 
network—such as expansiveness, which is the number of links outgoing from a 
given set of nodes relative to the number of links among member of that set—also 
matter for learning.

Discussion: Uniform at Random Seeding.—It is important to remember that our 
prior analysis all assumes uniform at random seeding. By studying both the RGG 
with shortcuts model and the tree and wheel graph under uniform at random seed-
ing, we observe stark results.

In the model of more realistic networks, RGG with shortcuts, the following hap-
pens. In the typical random seeding, because of the relative homogeneity of the 
network, the partition into Voronoi sets is somewhat balanced across the graph on 
the hypercube. As a consequence, wisdom prevails. Of course, this does depend on 
the distribution of seeding: one can consider an adversarial seeding process which 
precisely eliminates some of the seeds; we explore this in the case of clustered seed-
ing below.

Turning to our belief dictatorship example, the tree and wheel graph has the prop-
erty that for a typical seed configuration drawn under random seeding, one seed is 
uniquely situated to spread information, through the key central apparatus, to almost 
the entire network. That means that typically one Voronoi set will be of outsized 
importance due to this asymmetry.

We consider departures from uniform at random seeding, specifically the case of 
clustered seeding, in Section IV.

C. Simulations in Indian Village Networks

We have explored network geometries in cases where there is wisdom (i.e., all ​
k​ units of information are preserved) as well as cases where belief dictatorships 
arise (i.e., where ​k − 1​ units of information are destroyed). However, whether GDG 
dynamics in real-world networks tend more toward belief dictatorship or wisdom is 
ultimately an empirical question. To investigate this, we simulate our model using 
network data collected from 75 independent villages in India and analyze the result-
ing variance of each community’s beliefs across simulation draws. Next, following 
the logic suggested by our theoretical analysis, we empirically explore the extent 
to which asymmetries in the expected size in Voronoi sets predict heterogeneity in 
information loss.

Data Description.—For this exercise, we use the household network data col-
lected by Banerjee et al. (2019). The dataset captures twelve dimensions of inter-
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actions between almost all households in 75 villages located in the Indian state of 
Karnataka. Surveys were completed with household heads in 89.14 percent of the 
16,476 households across these villages. Thus the data represent a near-complete 
snapshot of each village’s network.

For simplicity, in this analysis we assume two households to be linked if in the 
surveys, either household indicated that they exchange information or advice with 
the other.14 Thus, our resulting empirical networks are undirected,15 which means 
that we effectively have link data on 98.8 percent of pairs of nodes.16 For this exer-
cise, we further restrict our analysis to only the giant connected component of each 
graph.

Table 1 contains descriptive statistics across all 75 of the empirical networks. The 
average village in the sample contains approximately 216 households, 96 percent of 
whom are typically contained in the village’s giant component. Restricting only to 
those nodes in the giant component, the average degree in the sample is 10.18, but 
exhibits a large amount of dispersion with an average variance of 33.41. Average 
path lengths in these networks are quite short, with a minimum distance of 2.81 
between two arbitrarily chosen households in the sample. Moreover, the average 
diameter (i.e., the longest shortest path) of the 75 villages in the sample is 5.93. 
We also observe that the average clustering coefficient in 0.26, which implies that 
any pair of common links for a household are themselves linked with 26 percent 
probability.

Signal Structure.—For our simulations, we take the world to be ​θ  =  1/2​. Further, 
we assume signals to be distributed ​ ​(θ, ​σ​​ 2​)​​ with ​​σ​​ 2​  =  1​. We conduct simulations 
for varying levels of sparsity: ​k  ∈ ​ {2, 4, 6, 8, 10, 14, 18, 22, 26, 30}​​. For each village, 
for each ​k​ and for each simulation run, we randomly seed ​k​ out of the ​n​ total nodes 
with a signal and calculate the limit opinion under GDG. We simulate the model 50 
times for each village, for each ​k​.

14 Specifically, the questions ask about which households come to the respondent seeking medical advice or 
help in making decisions. Symmetrically, the questions also ask to whom the respondent goes for medical advice 
or for help in making decisions.

15 See Banerjee et al. (2013) and Banerjee et al. (2019) for a detailed description of the data collection method-
ology and for a general discussion of the data.

16 This follows from ​1 − ​​(1 − 0.8914)​​​ 2​  =  0.988​.

Table 1—Summary Statistics

Mean
Standard 
deviation 

(1) (2)

Village size 216.37 70.65
Fraction in giant component 0.96 0.02
Average degree 10.18 2.50
Variance of degree distribution 33.41 20.17
Average clustering coefficient 0.26 0.05
Average path length 2.81 0.35
Village diameter (longest shortest path) 5.93 1.07
Maximal eigenvalue of adjacency matrix 13.79 3.47
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We are interested in measuring the variance of these limit opinions in the simu-
lations, which we denote as ​​σ​ ​x​​ ∞​​ 2  ​​. We can then compare this variance to the natural 
benchmark that would arise if each individual could observe all ​k​ signals simulta-
neously. In that case, the limit belief would simply be the sample mean over the 
realizations of each of the ​k​ signals. This sample mean has variance ​​σ​​ 2​/k  =  1/k​.

Given that some network geometries destroy information (belief dictatorships), 
while others preserve all ​k​ signals, we use the simulation exercise to quantify how 
much information is destroyed in the village networks. To do this, we define the 
effective number of signals as

	​ ​k​​ effective​  ≔ ​  ​σ​​ 2​ _ 
​σ​ ​x​​ ∞​​ 2  ​

 ​.​

Given that ​​σ​ ​x​​ ∞​​ 2  ​  ≤ ​ σ​​ 2​/k​, ​​k​​ effective​​ (which must be less than or equal to ​k​) measures 
the number of signals that would generate a variance equivalent to ​​σ​ ​x​​ ∞​​ 2  ​​ if all of those 
signals could be observed simultaneously by an individual. The extent of informa-
tion preservation is given by ​​k​​ effective​/k​.

Results.—In Figure 4, we plot the mean ​​k​​ effective​​ against the true ​k​, averaging 
across all 75 villages. We do find some evidence of information loss across the dif-
ferent values of ​k​; note that each point falls below the 45-degree line. On average, 
22.4 percent of signals are lost.

In addition, we find heterogeneity in the degree of information loss across the 
75 networks. We plot the interquartile range of average village outcomes for each ​
k​. That is, we calculate the twenty-fifth percentile and the seventy-fifth percentile 
in the distribution of ​​k​​ effective​​ across the 75 villages. For example, when ​k  =  4​, the 
twenty-fifth percentile village experiences 26.4 percent information loss, while the 
seventy-fifth percentile village experiences 16.5 percent information loss.

While the village networks are inconsistent with a stark belief dictatorship, it is 
difficult to assess whether the 22.4 percent average information loss is consistent 
with wisdom given the asymptotic nature of our theoretical results.17 However, we 
can use the model to better understand the heterogeneity across networks and to bet-
ter diagnose which network structures produce more information loss. Clearly under 
our model, the degree-weighted shares of the interior Voronoi cells and the signal 
variance are key determinants of the limiting variance. In our empirical simulations 
we therefore explore the extent to which the variance in the size of the interior 
Voronoi cells drives information loss in practice. To operationalize this, we calculate 
the degree-weighted share of nodes in the interior Voronoi cell associated with seed 
node ​i​, ​​​w ̃ ​​i​​​(S)​  = ​ ∑ j∈​V​ i​ min​​   ​​ ​ d​j​​/​∑ i=1​ k  ​​​∑ j∈​V​ i​ min​​   ​​ ​ d​j​​​. In our simulations, for each ​k​, in each 
village, we can calculate a Herfindahl index for these ​​​w ̃ ​​i​​​(S)​​ shares that captures the 
extent of inhomogeneity of influence across seeds.

Figure 5 plots effective ​k​ on the ​y​-axis, against this Herfindahl index on the  
​x​-axis, averaging across all random signal placement realizations within a village. 
Panel A considers the case when ​k  =  2​. A value of 0.5 indicates that averaging 
across all 50 simulated signal placements, the two Voronoi cells are of equal size, 

17 After all, the wisdom results impose bounds on the limit variance of the form ​C​σ​​ 2​/k​. In finite networks, the 
constants may be important.
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while values approaching one indicate that one Voronoi cell completely dominates 
the other in degree-weighted share. Panel B considers the case when ​k  =  4​. Here, a 
Herfindahl index of 0.25 would be consistent with equal shares. For both ​k  =  2​ and ​
k  =  4​, we indeed observe that information loss is greater when the degree-weighted 
Voronoi shares are more asymmetric in size. The results show that in a finite and 
real-world network, the core intuition from our result carries through—the imbal-
ance in cell sizes greatly affects the effective amount of information, highlighting 
the empirical content of our model and a direction for further empirical exploration.

Next, we ask whether other network-level statistics are predictive of information 
loss or if information loss is only well captured by our Voronoi Herfindahl. We con-
sider two network statistics related to the standard DeGroot model. To capture the 
potential for outsized influence by some nodes, for each network we calculate the 
ratio of the eightieth percentile to the twentieth percentile of the degree distribution. 
For completeness, we also include the second eigenvalue of the stochastic adjacency 
matrix.18 This value is related to the speed of convergence in the DeGroot model.19

Table 2 shows the strength of the relationship between each network-level mea-
sure and information loss in our simulations for ​k  =  2​. Each column reports the 
ordinary least squares (OLS) regression coefficient for one of the three statistics. 

18 Specifically, we divide each entry of the adjacency matrix with binary entries by the row sum and then calcu-
late the second largest eigenvalue.

19 Because our model discusses limit beliefs, which is reflected in our choice of ​T  =  20​ for the simulations, this 
measure is likely less relevant than the 80/20 degree ratio.

Figure 4

Notes: Simulations on 75 Indian village networks. The average is taken over all simulations and all networks. The 
bars represent the interquartile range across networks, for each ​k​.
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We observe that the relationship between the interior Voronoi Herfindahl index 
(also graphed in Figure 5, panel A) is statistically significant at the 1 percent level. 
However, we cannot reject that the relationship is zero for the other measures.

Moreover, the results have implications for the placement of seeds. To the extent 
possible, selecting seeds to minimize asymmetries in the Voronoi shares should 
limit information loss.20 A related targeting question is explored below.

Discussion.—In sum, real-world social networks do quite well at preserving 
information both in theory (as our “small worlds” results show) and in practice 
(using Indian village data). An interesting avenue to explore in future research is to 
look at which sorts of economic environments give rise to equilibrium networks that 
are more likely to generate wisdom.

IV.  Clustered Seeding

We have thus far focused our analysis on situations where the set of initially 
informed agents is drawn uniformly at random from the population. However, in 
many real-world settings, opinion-leaders tend to be clustered in a small number 
of locations. Firms often offer promotions to those they perceive as opinion leaders 
(e.g., on Twitter) and agricultural extension workers target new technology to those 
who they perceive to be “model farmers.” And these targeted people often tend to be 
clustered just because the same kind of people tend to be connected to each other. 

20 We note that selecting the seeds to exactly minimize the Voronoi Herfindahl is an NP-hard problem, compu-
tationally. However, an approximation may be quite useful.

Figure 5

Notes: Interior Voronoi share Herfindahl and village effective k. Simulations on 75 Indian village networks. The 
solid line represents the OLS regression line. The slope of the regression line can be rejected at the 1 percent level 
in panel A and the 10 percent level in panel B.
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Here, we explore the consequences of clustered seeding on the variance of the limit 
beliefs using an illustrative example.

A. An Illustrative Example

We consider a circle network of ​n​ nodes in which each individual has two friends, ​​
d​i​​  =  2​ for each ​i​, one friend to the right and one friend to the left. Assume that there 
are ​R​ intervals or “regions” that collectively contain all of the ​k​ opinion leaders in 
the network. These regions are distributed randomly over the circle and together 
comprise a small number of nodes relative to ​n​. In other words, if the ​r​th interval 
has ​​b​r​​​ nodes, ​b  = ​ ∑ r∈R​   ​​ ​ b​r​​  ≪  n​. To capture the idea that opinion leaders are often 
the first to learn about new technologies or opportunities, we assume that seeds 
are drawn randomly from these ​b​ nodes only. Note that we abstract away from any 
difference in network structure within and outside regions. (The network structure 
is the same.)

Given this structure, the variance of the limit beliefs is constrained by the number 
of regions and not just the number of seeds. If there are few regions then the limit 
opinion is less predictable even if there are many seeds.

To see this, we begin with a simplification of the setup above. Assume that the ​
R​ regions each have ​b/R​ nodes and the regions are equally spaced in the network 
of size ​n​. Let ​​z​n​​​ denote the distance between two adjacent regions in the circle 
measured by the closest members of each region, recognizing that this distance is 
the same for any pair of adjacent regions. Finally let ​k  =  b​, so every node in every 
region receives an initial signal ​​x​ i​ 0​​.

With this setup, notice that the Voronoi set for every seed node is either one (for 
all interior nodes within each region) or ​​z​n​​/2​ for each boundary node, of which 
there are ​2R​. Since the number of regions ​R​ and the number of nodes per region ​
b / R​ is held constant as ​n  →  ∞​, it follows from the arguments of Proposition 1 and 
Theorem 1,

	​ var​(​x​​ ∞​)​  = ​  ​σ​​ 2​ _ 
2R

 ​ + o​(1)​    as  n  →  ∞.​

The logic behind this is that ​k − 2R​ of the seed nodes all have a Voronoi set of size 
one which vanishes relative to the ​2R​ seed nodes that have growing Voronoi sets, all 
of equal size, ​​z​n​​/2​.

Table 2—Relationship between Information Loss and Graph-Level Statistics

Information loss: Voronoi Herfindahl 80/20 degree ratio Second eigenvalue

(1) (2) (3)
Graph-level statistic −2.234 −0.051 −0.317

(0.630) (0.059) (0.300)
[0.000] [0.382] [0.290]

Number of villages (networks) 75 75 75

Notes: In each column, average information loss from the simulations by village is the depen-
dent variable. Column names denote the graph-level statistic regressor. Robust standard errors 
in parentheses. p-values in brackets.
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This means that even though there are ​k  >  2R​ nodes that serve as initial seeds, 
because they are divided into ​R​ regions, the boundaries of these regions drive the 
limit opinion. Therefore the limit opinion under a clustered allocation of seeds might 
have far more variance than under a more dispersed allocation.

Returning to the more general setup, where now ​b​ can differ from ​k​, the regions 
can be distributed randomly over the network, and seeds are drawn randomly from 
the ​b  ≥  k  ≥  R​ nodes. In this case, the reader can check, there are constants ​​C​1​​​ and ​​
C​2​​​ that do not depend on ​R​, ​k​, ​n​, or ​b​ such that we can bound the variance in the 
limit opinion as follows:

	 ​​E​S​​​[var​(​x​​ ∞​)​]​  ≤ ​ (​ ​C​1​​ ​ b _ n ​ _ 
k
  ​ + ​ 

​C​2​​​(1 − ​ b _ n ​)​ _ 
min​(R, k)​ ​)​ ​σ​​ 2​.​

Note that the variance of the limiting belief is bounded above by a function that is 
decreasing in the number of regions ​R​. The intuition here is that the Voronoi sets are 
determined by the seeds that are closest to the boundary of each region. Any seeds 
that are sandwiched between boundary seeds essentially won’t matter because the 
combined size of their Voronoi sets is bounded by the sum of the ​R​ intervals, which 
is small by assumption. Thus clustered seeding can result in much more information 
loss than random seeding.

Figure 6 presents a simple illustration of the phenomenon. Here we have a circle 
with ​n  =  300​, ​k  =  8​, ​R  =  2​, and ​​b​r​​  =  6​ for each region. The large balls indicate 
the initial seeds. The darkly shaded nodes indicate members of the two regions.

The example plots the limit beliefs following a specific realization of the eight 
signals. The large, solid balls indicate a signal realization of one, while the empty 
balls indicate a signal realization of zero. Note that in both examples, the average 
signal is 0.375. However, the signal configurations and signal realizations have been 
chosen to show how the interior signals are basically ignored. In the left panel, both 
the leftmost and rightmost signals in each region are essentially preserved, resulting 
in a limit belief close to 0.75. In the right panel the regions are close together, and 
therefore the signals that are closest to each other in the different regions also do not 
influence the limit opinion by much. In this case, the limit belief, 0.97, is close to 1, 
which makes sense because it largely reflects only the outer two signals, that is the 
two signals with realization one.

B. Simulations in Indian Village Networks

We now repeat the exercise of Section IIIC, where we simulate the GDG process 
on our Indian village network data. In all of our simulations we fix ​k  =  20​ and we 
vary the number of regions seeds can come from, from three to ten. These regions 
are located randomly throughout the network.

Figure 7 shows the results, repeating 50 simulations per network for each of the 
75 networks.

We show that the effective number of signals ranges from 13 to 15, depending 
on the number of regions, which range from three to ten here. If there are only three 
regions, for instance, this corresponds to a loss of 34.4 percent of the information. 
When we compare this to the case where signals are distributed i.i.d., in Figure 7, 
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we see that this represents a 12 percentage point further decline in effective number 
of signals on top of the 22.4 percentage point loss just due to the GDG process. This 
shows that in empirical networks, when information is not distributed uniformly at 
random, the loss can be sizable.

These results again highlight a role for thoughtful seed selection. Clustered seed-
ing creates excess asymmetry in the Voronoi set size distribution and drives further 
information loss. However, if seed locations could be selected to instead reduce 
such asymmetries, even more information could be preserved, relative to the case of 
random seed selection.

These implications are related, more broadly, to the literature on how to select 
seeds when starting a social learning process.21 This literature has emphasized seed-
ing central nodes, for example. But this could lead to clustered seeding because 
central nodes, by construction, are homophilistic. Similarly, agricultural extension 
agents are likely to select model farmers with similar characteristics. Moreover, 
there is an operating intuition that is used in a variety of contexts—from model 
farmers to influencers—that if information is provided in a clustered setting, then 
it mixes early, and a collection of influential individuals may all obtain the right 
beliefs—before it diffuses. In our model, while such mixing between these central 
or clustered nodes may happen, at the same time, there is the simultaneous diffu-
sion process that begins from each of these seeds. However, the diffusion originat-
ing from each cluster is asymmetric—some signals start to spread to previously 
uninformed nodes right away, while some mix and become trapped. Rather than 
focusing on getting groups of nodes to buy into the right opinion by giving them 

21 See, for example, Katz and Lazarsfeld (1955); Kempe, Kleinberg, and Tardos (2003, 2005); Aral and Walker 
(2012); Banerjee et al. (2013); Beaman et al. (2018); Banerjee et al. (2019). Also related is the literature on model 
farmers in agricultural extension, such as Emerick and Dar (2020), BenYishay and Mobarak (2019).

Figure 6. Example: Clustered Seeding

N = 300, k = 8, R = 2

Limit belief: 0.74 Limit belief: 0.97
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a collection of signals, a policymaker could potentially reduce information loss by 
spreading the signals apart.

V.  Discussion and Conclusions

There is a continuum of possible naïve learning rules—for example, one can 
think of rules that aggregate signals in some nonlinear way or that incorporate 
the presence of uninformed neighbors (other than ignoring them as GDG does). 
In this concluding section, we argue that GDG has a number of desirable proper-
ties that make it a focal choice for naïve learning in the presence of uninformed  
agents.

A. GDG as One-Step Bayesian Updating

In the standard DeGroot model with Gaussian signals, the linear learning rule is 
the optimal Bayesian rule in period ​t  =  1​ which the agent then “naïvely” applies 
in all subsequent periods when it is no longer optimal (DeMarzo, Vayanos, and 
Zwiebel 2003). The following argument shows that the GDG rule is the obvious 
analogue to that rule in the presence of uninformed agents.

To see this, assume that the signals are drawn normally for informed agents:  
​F​(θ, ​σ​​ 2​)​  =    ​(θ, ​σ​​ 2​)​​. In order to perform Bayesian learning with uninformed agents 

Figure 7 

Notes: Plots of the mean ​​k​​ effective​​ against ​R​, where the average is taken over all simulations and all networks. The 
solid lines represent the fifth and ninety-fifth percentiles of ​​k​​ effective​​, bootstrapped across the simulation draws.
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we assume that an uninformed agent ​i​ has also a normally distributed but highly 
imprecise signal ​​​x ̃ ​​i​​​:

(12)	​ ​​x ̃ ​​ i​ 0​  =  θ + ​​ϵ ̃ ​​i​​    where ​​ ϵ ̃ ​​i​​  ∼   ​(0, ​​σ ̃ ​​​ 2​)​​.

We assume that the variance ​​​σ ̃ ​​​ 2​​ is very large and we will implicitly consider the limit 
case as ​​​σ ̃ ​​​ 2​  →  ∞​.

It is now easy to see that a Bayesian learner who has at least one informed neigh-
bor would exactly apply GDG as ​​​σ ̃ ​​​ 2​  →  ∞​. Moreover, a Bayesian learner who has 
no informed neighbors (including herself) would arrive at a low-precision posterior 
which we can interpret as “staying uninformed.” Hence, the GDG model can be 
interpreted as the naïve application of one-step Bayesian updating in every period: 
in both the original and our GDG model agents behave like “naïve Bayesians.”22

B. GDG and the Loss of Precision

While, as we show above, there are cases where the GDG model allows society 
to learn the average of all the seeds, it is worth commenting that they do not learn 
the number of seeds ​k​ that make up this average. In other words, they don’t learn 
the precision of what they have learned. In the standard DeGroot model there is no 
need to learn ​k​ because everyone starts informed and therefore if the population 
is large, the long-run outcome of the DeGroot process is almost always the exact 
truth—precision of the prediction is not an issue. In contrast, under GDG only a 
relatively small number of signals get aggregated even for large networks, at least in 
the interesting case. In such an environment even after many rounds of aggregation, 
participants in the learning process would want to know if the opinion aggregated ​3​ 
or ​30​ signals.

One way to modify the GDG process to solve this precision problem is to require 
everyone to keep track of the uninformed agents they encounter. For example, agents 
could keep track of two different numbers: (i) the share of informed agents (with 
the initial opinion equal to the share of informed neighbors at time ​t  =  0​) and (ii) 
the average opinion of informed agents (as in GDG). Agents then use the standard 
DeGroot rule for updating their estimate of the share of informed agents in the pop-
ulation and GDG for learning the average signals of informed agents. By learning 
the share of informed agents, the naïve learner can infer ​k​ (assuming she knows ​n​) 
while, as shown above, GDG allows her to learn the average of these ​k​ seed agents 
in many classes of social networks.

However, to learn ​k​, decision-makers need to keep track of the share of all the 
uninformed agents they encounter from the beginning of time in all states of the 
world. This may be a plausible assumption when the state of the world is a known 

22 Note that our results on belief dictatorships do not discontinuously rely on ignoring the uninformed. To see 
this formally, let ​​h​I​​  =  1/​σ​​ 2​​ and ​​h​U​​  =  1/​​σ ̃ ​​​ 2​​ be the respective precisions, which will be used in the weighting 
formula. Agents average over their informed and uninformed neighbors, weighting by precisions. It is easy to 
check that the belief dictatorship in ​​G​T​​​(r)​​ described in Section IIIB persists if ​​h​I​​​ is sufficiently large relative to ​​h​U.​​​ 
Formally, allowing the ratio ​​h​I​​ / ​h​U​​​ to depend on ​r​, the result follows if ​​​(3 / 2)​​​ r​  =  o​(​h​I​​ / ​h​U​​)​​ as ​r  →  ∞​. However, 
our modeling choice in having the informed not weigh the uninformed is intentional: those who have nothing to say 
about a topic do not contribute to the conversation and are purely consumers of the newly discovered information.
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unknown: for example, agents might have no information about the state of the 
economy right now but they are probably interested in this outcome from the begin-
ning and know that some people have received signals. Hence, they might keep track 
of the share of informed agents even before any signal reaches them. However when 
dealing with unknown unknowns (such as a new product or an unanticipated state 
of the world) it seems implausible that agents will start updating their information 
before they have talked to at least one informed neighbor.

It turns out however that there are ways to solve the problem of estimating pre-
cision without using uninformed agents: for example, agents could “tag” informed 
seeds and transmit these tags to their neighbors. What this means is that an agent 
could explicitly tell her neighbors the actual names of the seeds that she knows of, 
and her neighbors can do the same, thereby keeping track of exactly which indi-
viduals were original seeds (as well as possibly their seed values). If ​k​ is not too 
large then tagging is an excellent way to easily learn ​k​. However, tagging quickly 
becomes cognitively expensive for larger ​k​.

The examples suggest that learning precision (e.g., ​k​) might be difficult. At the 
same time, our results in this paper show that learning the average is inexpensive 
and can be achieved through GDG in many settings. We hope to address the topic of 
precision in social learning in future work.

C. Concluding Remarks

The DeGroot model is fast becoming a work-horse model for learning on social 
networks. We relax one key and potentially unrealistic assumption of the model 
and show that this can completely undermine the full information aggregation 
result associated with the standard DeGroot model. However, we also characterize 
a large class of networks where this does not happen. Our simulations using 75 
real-world social networks from Indian villages suggest that the outcome corre-
sponds to a 22.4 percent information loss on average. Moreover, the heterogeneity 
in average information loss across villages is related to network structure through 
asymmetries in the degree-weighted Voronoi shares, and not through conventional 
measures motivated by the analysis of the standard DeGroot model with dense 
seeding. Finally, we observe that the extent of information aggregation depends 
on the clustering of signals on the network. Under clustered seeding, the aver-
age information loss is 34.4 percent in our simulations using real-world social 
networks.

Appendix A. Proofs

A1. Proof of Proposition 1

The limit ​​x​​ ∞​​ exists since once all agents are informed, standard (dense) DeGroot 
commences and we have assumed ​g​ is such that the corresponding stochastic matrix 
is irreducible and aperiodic.

Consider ​​t​​ ∗​​(S)​​ as the period where the last uninformed agent becomes 
informed. Because the GDG learning process is a composition of linear opera-
tors, it must be the case that ​​x​ i​ ​t​​ 

∗​​​ for every ​i​ is a linear combination of ​​x​ j​ 0​​ for ​j  ∈  S​.  
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And beginning at ​​t​​ ∗​​(S)​​, we can treat the process as standard DeGroot since every-
one has a signal, so the limit is just a weighted average of the initial signals, and we 
denote the weights ​​w​j​​​(S)​​ for ​j  ∈  S​. Note that this does not depend on whether ​g​ is 
weighted as long as the corresponding stochastic matrix is irreducible and aperiodic 
the argument follows. ∎

A2. Proof of Theorem 1

We will make use of a simple auxiliary lemma that characterizes the evolution of 
beliefs under the standard DeGroot model. To gain some intuition consider a graph 
where every agent has opinion ​0​ except agent ​i​ who has opinion ​1​. Denote the set of 
neighbors of ​i​ with ​N​(i)​​ and assume that every agent ​j​ has degree ​​d​j​​​ where we use 
the convention that the degree is equal to ​|N​(j)​| + 1​. More generally in the case of 
weighted graph, ​​d​j​​​ will equal the sum of weights including the self-loop weight as 
well. Denote the opinion of each agent ​j​ at time ​t​ in the network with ​​x​ j​ t,i​​.

It is easy to see that the opinion of agent ​i​ at time ​t  =  1​ will equal ​​x​ i​ 1,i​  =  1/​d​i​​​ 
and the opinion of neighbor ​j  ∈  N​(i)​​ at time ​t​ with ​​x​ j​ 1,i​  =  1/​d​j​​​. Note that we have

(A1)	​​ ∑ 
j
​ 
 
 ​​​ d​j​​ ​x​ j​ 0,i​  = ​ ∑ 

j
​ 
 
 ​​​ d​j​​ ​x​ j​ 1,i​.​

In this example both sides of this equation are equal to ​​d​i​​​.
We can show that this holds more generally, at every ​t​ and for arbitrary initial 

signal vector ​​x​​ 0​​.

LEMMA 1: In the standard DeGroot model with undirected links the link-weighted 
sum of beliefs is preserved:

(A2)	​​ ∑ 
j
​ 
 
 ​​​ d​j​​ ​x​ j​ t−1​  = ​ ∑ 

j
​ 
 
 ​​​ d​j​​ ​x​ j​ t​.​

PROOF OF LEMMA 1:
Denote the (column) vector of opinions at time ​t + 1​ with ​​x​​ t+1​  = ​ (​x​ i​ t+1​)​​ and 

the vector of opinions at time ​t​ with ​​x​​ t​​. Also introduce the degree (row) vector  
​D  = ​ (​d​i​​)​​. Finally, denote the DeGroot transition matrix with ​M​. We then have

(A3)	​ ​x​​ t+1​  =  M​x​​ t​​.

Now left-multiply both sides with the row vector ​D​:

(A4)	​ D ​x​​ t+1​  =  D · M​x​​ t​​.

It is easy to see that ​D · M  =  D​. This proves the lemma. ∎

Note that Lemma 1 implies that ​​∑ j​ 
  ​​​d​j​​ ​x​ j​ 0​  = ​ x​​ ∞​ ​∑ j​   ​​​d​j​​​ for limit belief ​​x​​ ∞​​ which 

delivers the well-known limit belief of the DeGroot model with symmetric links.
We next prove Theorem 1.
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We assume that the process starts from a seed set ​S​ and initial opinions ​​x​i​​​ for ​
i  ∈  S​. We also denote the opinion of each agent at time ​t​ in the network with ​​​x ̃ ​​ i​ t​​ such 
that ​​​x ̃ ​​ i​ 0​  = ​ x​i​​​ for all ​i  ∈  S​ and ​​​x ̃ ​​ i​ 0​  =  ∅​ otherwise.

We denote the set of agents who become newly informed at time ​t  =  0, 1, 2, …​ 
with ​∂ ​S​​ t​​ and the agents who are already informed with ​​S​​ t​​. Hence the total set 
of informed agents after time ​t​ is ​​S​​ t​ ∪ ∂ ​S​​ t​​. We use the convention ​​S​​ 0​  =  ∅​ and  
​∂ ​S​​ 0​  =  S​ (initial seed set). Note that eventually every agent becomes informed such 
that ​∂ ​S​​ t​  =  ∅​ for ​t  ≥  T​ and some ​T​ that depends on the graph and the seed set.

We denote the opinion of agent ​i​ in the lower Voronoi configuration with ​​​ x ¯ ​​i​​​ and 
in the upper Voronoi configuration with ​​​x –​​i​​​. These opinions are defined for all agents 
in the network and are equal to the opinion of the closest seed (except in case of ties 
when the lower and upper configuration differ).

We want to prove the following claim.

CLAIM 1: The following inequality holds for all times:

	​​  ∑ 
j∈​S​​ t​

​ 
 
 ​​​ d​j​​ ​​ x ¯ ​​j​​  ≤ ​  ∑ 

j∈​S​​ t​
​ 

 
 ​​​ d​j​​ ​x​ j​ t​  ≤ ​  ∑ 

j∈​S​​ t​
​ 

 
 ​​​ d​j​​ ​​x –​​j​​​.

Note, that this claim implies as ​t  →  ∞​,

	​​  ∑ 
j=1

​ 
n

  ​​​d​j​​ ​​ x ¯ ​​j​​  ≤ ​  ∑ 
j=1

​ 
n

  ​​​d​j​​ ​x​​ ∞​  ≤ ​  ∑ 
j=1

​ 
n

  ​​​d​j​​ ​​x –​​j​​​,

which proves Theorem 1.
We prove the claim by induction on ​t  =  0, 1, …​. At time ​t  =  0​ the claim is 

trivially true because ​​S​​ 0​​ is an empty set. Now assume that the claim holds at time ​t​. 
We show that this implies that the claim holds for ​t + 1​ as well (which completes 
the inductive argument).

We can think of the evolution of beliefs from time ​t​ to ​t + 1​ as the result of two 
processes: (i) for all agents in the set ​​S​​ t​ ∪ ∂ ​S​​ t​​, the process evolves like a standard 
DeGroot process on the truncated network that only includes edges of the graph 
where both nodes are in ​​S​​ t​ ∪ ∂ ​S​​ t​​; (ii) agents in the set ​∂ ​S​​ t+1​​ become informed.

Let’s look at the DeGroot process on the truncated network first. We can use 
Lemma 1 to show

(A5)	​​   ∑ 
j∈​S​​ t​∪∂​S​​ t​

​ 
 
 ​​​​ d ˆ ​​j​​ ​x​ j​ t​  = ​   ∑ 

j∈​S​​ t​∪∂​S​​ t​
​ 

 
 ​​​​ d ˆ ​​j​​ ​x​ j​ t+1​​,

where ​​​d ˆ ​​j​​​ is the degree of agent ​j​ in the truncated network at time ​t​ that only involves 
agents in the set ​​S​​ t​ ∪ ∂ ​S​​ t​​. Next, we note that ​​​d ˆ ​​j​​  = ​ d​j​​​ for all ​j  ∈ ​ S​t​​​ and ​​​d ˆ ​​j​​  ≤ ​ d​j​​​ 
for ​j  ∈  ∂ ​S​​ t​​. Since we also have ​​S​​ t+1​  = ​ S​​ t​ ∪ ∂ ​S​​ t​​, we can rewrite equation (A5) as 
follows:

(A6)	​​  ∑ 
j∈​S​​ t​

​ 
 
 ​​​ d​j​​ ​x​ j​ t​ + ​ ∑ 

j∈∂​S​​ t​
​ 

 
 ​​​ [​​d ˆ ​​j​​ ​x​ j​ t​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​x​ j​ t+1​]​  = ​  ∑ 

j∈​S​​ t+1​
​ 

 
 ​​​ d​j​​ ​x​ j​ t+1​​.

Now we use the definition of the upper and lower Voronoi sets to derive the follow-
ing inequalities for ​j  ∈  ∂ ​S​​ t​​:

	​ ​​ x ¯ ​​j​​  ≤ ​ x​ j​ t​  ≤ ​​ x –​​j​​​,
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(A7)	​ ​​ x ¯ ​​j​​  ≤ ​ x​ j​ t+1​  ≤ ​​ x –​​j​​​.

Both follow because ​j​ lies either on the “fat” boundary between Voronoi sets or 
completely inside a Voronoi set. In the latter case both ​​x​ j​ t​​ and ​​x​ j​ t+1​​ equal the value 
of the closest seed and the inequalities are trivially true. Otherwise, by the way we 
define ​∂ ​S​​ t​​, the only seeds that can possibly affect the opinion of ​j​ at times ​t​ and ​t + 1​ 
are the ones that determine ​​​ x ¯ ​​j​​​ and ​​​ x ¯ ​​j​​​. Since the opinion of ​j​ is always a convex linear 
combination of these seeds, the inequalities have to hold.

From (A7) and ​​​d ˆ ​​j​​  ≤ ​ d​j​​​ we get

	 ​​​d ˆ ​​j​​ ​​ x ¯ ​​j​​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​​ x ¯ ​​j​​  ≤ ​​ d ˆ ​​j​​ ​x​ j​ t​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​x​ j​ t+1​  ≤ ​​ d ˆ ​​j​​ ​​x –​​j​​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​​x –​​j​​​,

(A8)	​ ​d​j​​ ​​ x ¯ ​​j​​  ≤ ​​ d ˆ ​​j​​ ​x​ j​ t​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​x​ j​ t+1​  ≤ ​ d​j​​ ​​x –​​j​​​.

We sum these inequalities over ​j  ∈  ∂ ​S​​ t​​ and add ​​∑ j∈​S​​ t​​ 
  ​​​ d​j​​ ​x​ j​ t​​:

 ​ ​ ∑ 
j∈​S​​ t​

​​​​d​j​​ ​x​ j​ t​ + ​ ∑ 
j∈∂​S​​ t​

​​​​d​j​​ ​​ x ¯ ​​j​​  ≤ ​  ∑ 
j∈​S​​ t​

​​​​d​j​​ ​x​ j​ t​ + ​ ∑ 
j∈∂​S​​ t​

​​​​[​​d ˆ ​​j​​ ​x​ j​ t​ + ​(​d​j​​ − ​​d ˆ ​​j​​)​ ​x​ j​ t+1​]​  ≤ ​  ∑ 
j∈​S​​ t​

​​​​d​j​​ ​x​ j​ t​ + ​ ∑ 
j∈∂​S​​ t​

​​​​d​j​​ ​​x –​​j​​​.

Now we use (A6) and obtain

(A9)	​​  ∑ 
j∈​S​​ t​

​ 
 
 ​​​ d​j​​ ​x​ j​ t​ + ​ ∑ 

j∈∂​S​​ t​
​ 

 
 ​​​ d​j​​ ​​ x ¯ ​​j​​  ≤ ​  ∑ 

j∈​S​​ t+1​
​ 

 
 ​​​ d​j​​ ​x​ j​ t+1​  ≤ ​  ∑ 

j∈​S​​ t​
​ 

 
 ​​​ d​j​​ ​x​ j​ t​ + ​ ∑ 

j∈∂​S​​ t​
​ 

 
 ​​​ d​j​​ ​​x –​​j​​​.

Since the inductive claim holds at time ​t​ we get

(A10)	​​  ∑ 
j∈​S​​ t+1​

​ 
 
 ​​​ d​j​​ ​​ x ¯ ​​j​​  ≤ ​  ∑ 

j∈​S​​ t+1​
​ 

 
 ​​​ d​j​​ ​x​ j​ t+1​  ≤ ​  ∑ 

j∈​S​​ t+1​
​ 

 
 ​​​ d​j​​ ​​x –​​j​​​.

This completes the inductive argument and hence the proof of Theorem 1. ∎

A3. Proof of Theorem 2

Our proof proceeds in two steps. Step 1 shows that we can reduce the problem 
of bounding the variance of the limit opinion by bounding the probability that two 
randomly drawn nodes are in the same minimal Voronoi set. Step 2 then uses a geo-
metric argument to find such a bound.

Step 1: For a particular realization ​G​ of a random graph in class ​RGG​(L | m, δ, ​d​​ ∗​)​​  
fix the seed set ​S​. We know from Corollary 1 that the social influence of a seed ​i​ 
is bounded above by ​​v​ i​ ∗,max​​, the link-weighted share of its maximal Voronoi set. 
Therefore, we can bound the variance of the limit belief as follows:

(A11)	​ var​(​x​​ ∞​)​  ≤ ​​ (​d​​ ∗​)​​​ 2​ ​σ​​ 2​ ​∑ 
i∈S

​ 
 
 ​​​​ (​v​ i​ max​)​​​ 2​​.

Here we use the simple size share ​​v​ i​ max​​ of ​i​’s maximal Voronoi set and note that the 
link-weighted share can be at most ​​​(​d​​ ∗​)​​​ 2​​ times as large.
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Next, note that the maximal Voronoi differs from the minimal Voronoi set only 
by the boundary ​H​(S)​​ which can be at most a three-node thick layer. Hence, we 
know that ​​v​ i​ max​  ≤ ​ (1 + ​d​​ ∗​ + ​​(​d​​ ∗​)​​​ 2​ + ​​(​d​​ ∗​)​​​ 3​)​​v​ i​ min​​. Therefore, the problem reduces 
to finding an upper bound on ​​∑ i∈S​ 

  ​​​​ (​v​ i​ min​)​​​ 2​​. This switch from maximal to minimal 
Voronoi sets is to ensure that there is no overlap between the Voronoi sets.

Now consider taking two random points on the graph ​G​. The probability that two 
of them lie in the same minimal Voronoi set for seed ​i​ is ​​​(​v​ i​ min​)​​​ 2​​. We define the ran-
dom indicator variable ​​I​zz′​​​ which equals one​​ if and only if ​z​ and ​z′​ are in the same 
minimal Voronoi set. Hence, ​E​(​I​zz′​​)​  = ​ ∑ i∈S​   ​​​​ (​v​ i​ min​)​​​ 2​​ and our problem reduced to 
finding an upper bound on ​E​(​I​zz′​​)​​, the probability that two random nodes on ​G​ lie 
within the same Voronoi set.

Step 2: We now bound ​E​(​I​zz′​​)​​ as follows. We can fix a point ​z​ on the hypercube 
and then draw a random ​z′​ at Euclidean distance ​r​ from ​z​. When will ​z​ and ​z​′ be in 
the same Voronoi set? To gain some intuition we look at Figure A1 which shows ​z​ 
and ​z′​ and the associated seed ​x​ on the left panel. It has to be the case that the two 
discs do not contain any more seeds. It is easy to see that the area of these discs is 
always at least as large as the two tangential, equal-sized discs on the right panel 
with radius ​r / 2​ each. We have to be careful because network distance in our graph 
is not necessarily the Euclidean distance: however, thanks to the presence of base 
nodes, the network distance between two points is at most the ​​L​1​​​ or Manhattan dis-
tance, which is at most ​​√ 

_
 2 ​​ larger than the Euclidean distance. We therefore consider 

discs around ​z​ and ​z′​ with Euclidean radius ​(r/2)​√ 
_
 2 ​​: the probability that ​z​ and ​z′​ are 

part of the same Voronoi set is bounded above by the probability that these two discs 
do not contain any seeds.23

The probability that a seed is contained in this disc equals ​2V​(r/(2 ​√ 
_
 2 ​))​/ ​L​​ m​​  

where ​V​(r)​​ is the Euclidean volume of the disc. (Since we are dealing with hyper-
cubes, a disc is ​m​-dimensional.) The probability that no seed lies inside this disc 
equals

(A12)	​ ​​(1 − ​ 
2V​(​  r _ 

2 ​√ 
_
 2 ​
 ​)​
 _ ​L​​ m​ ​ )​​​ 

k

​​.

Next, note that ​z′​ is randomly drawn. Consider the number of nodes that are in a ring 
of width ​dr​ around the surface of a disc with radius ​r​ centered at ​z​. The surface area 
equals ​A​(r)​​ and hence the number of nodes in this area equals ​δA​(r)​ dr​ (where ​δ​ is 
the node density). We can therefore draw ​z​′ randomly from these thin rings and thus 
draw from all potential ​z′​ in the hypercube (effectively, we are using polar coordi-
nates). The probability that any one of the ​n​ randomly drawn points lies in the same 
Voronoi set as ​z​ can therefore be expressed as an integral:

(A13)	​ ​E​S​​​(​I​zz′​​)​  ≤ ​ ∫ 
0
​ 
L
​​​​(1 − ​ 

2V​(​  r _ 
2 ​√ 

_
 2 ​
 ​)​
 _ ​L​​ m​ ​ )​​​ 

k

​ ​ 
δA​(r)​
 _ n  ​ dr​.

23 We are grateful to Bobby Kleinberg for this insight.
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We know that ​V​(r)​  =  α​r​​ m​​ and ​A​(r)​  =  β ​r​​ m−1​​ for some ​α​ and ​β​ (for example, for 
the plane we have ​α  =  π​ and ​β  =  2π​). Hence we can write

(A14)	 ​​E​S​​​(​I​zz′​​)​  ≤ ​ ∫ 
0
​ 
L
​​​​
(

1 − ​  2α _ 
​2​​ ​ 

3m _ 2 ​​ ​L​​ m​
 ​ ​r​​ m​

)
​​​ 
k
​ ​ δβ ​r​​ m−1​ _ n  ​ dr​.

We use a change in variable with ​x  = ​ r​​ m​​ and ​dx  =  m​r​​ m−1​ dr​ and get

(A15)   ​   ​E​S​​​(​I​zz′​​)​  ≤ ​ ∫ 
0
​ 
​L​​ m​

​​​​
(

1 − ​  2α _ 
​2​​ ​ 

3m _ 2 ​​ ​L​​ m​
 ​x
)

​​​ 
k
​ ​ δβ _ mn ​ dx 

	 = ​   1 _ 
k + 1 ​​[1 − ​​

(
1 − ​ 2α _ 

​2​​ ​ 
3m _ 2 ​​

 ​
)

​​​ 
k+1

​]​​ ​2​​ ​ 
3m _ 2 ​−1​ β _ mα  ​ 

	 ≤ ​   1 _ 
k + 1 ​ ​ ​2​​ ​ 

3m _ 2 ​−1​ β _ mα  ​​.

This completes the proof of Theorem 2. ∎

A4. Proof of Theorem 3 and Proposition 2

Our proof follows the same two steps as the proof of Theorem 2. Step 1 is iden-
tical: for small-world RGGs the maximal degree ​​d​​ ∗​​ increases by at most one​​ due 
to the random rewiring and for random graphs we use prune to bound the maximal 
degree. Hence, we can again reduce the problem to finding a bound for the probabil-
ity that two random nodes ​z​ and ​z′​ lie in the same Voronoi set.

We cannot use the geometric approach from the proof of Theorem 2 because a 
node’s neighborhood at distance ​r​ increases exponentially due to the random links. 
In fact we can show that there are constants ​​C​i​​  >  0​ such that the expected size of 
any node’s neighborhood ​B​(r)​​ at distance ​r​ satisfies

(A16)	​ ​C​1​​ exp​(​C​3​​ r)​  ≤  E |​B​r​​​(z)​|  ≤ ​ C​2​​ exp​(​C​3​​ r)​​,

Figure A1. Bounding ​​E​S​​​(​I​zz′​​)​​

z z′

x

Left panel

z′z

Right panel
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for ​r  ≤  ln​(n)​/​(2​C​3​​)​​. The proof follows readily from Rosenblat and Mobius (2004). 
The key intuition is that (i) the expanding neighborhood disc keeps spawning new 
remote seeds from which Euclidean discs can grow; (ii) as the neighborhood grows 
the overall growth rate of the neighborhood becomes deterministic; (iii) we focus on ​
r​ small enough so that the volume of the ​r​-neighborhood is less than ​​√ _ n ​​ and hence 
the extent to which newly formed discs overlap is small.

Now consider the following thought experiment: consider a seed ​x​ as well as one 
of the initial random nodes (say ​z​). Consider the ​r​-neighborhood around these two 
nodes and gradually increase ​r​: we now show that the probability that these two 
neighborhoods overlap becomes large exactly when they reach size ​O​(​√ _ n ​)​​ (which 
they do simultaneously because the two neighborhoods share the same growth rates).

Consider the single step from ​r​ to ​r + 1​: the number of new nodes around ​z​ that 
have potential connections to the ball around seed ​x​ equals ​​D​z​​ exp​(− ​C​3​​ r)​​ for some 
constant ​​C​1​​  ≤ ​ D​z​​  ≤ ​ C​3​​​. Each such node connects to the outer layer of the ball 
around ​x​ with probability ​η ​(​D​x​​ exp​(− ​C​3​​ r)​)​/n​ for some constant ​​C​1​​  ≤ ​ D​x​​  ≤ ​ C​3​​​. 
Hence, the probability that none of these new connections connects to the ​x​-ball is 
equal to

(A17)  ​  ​​(1 − η ​ 
​D​x​​ exp​(​C​3​​ r)​  _ n  ​)​​​ 

​D​z​​exp​(​C​3​​r)​

​  = ​​
(

1 − ​  η _ ​  n _ 
​D​x​​ exp​(​C​3​​ r)​

 ​ ​)
​​​ 
​  n _ 
​D​x​​exp​(​C​3​​r)​

 ​ ​ ​D​x​​​D​z​​exp​(2​C​3​​r)​  _ n  ​
​​.

Recall that ​​D​x​​ exp​(​C​3​​ r)​  ≤ ​ √ _ n ​​. We therefore express the probability of no new 
connections as

(A18)	​ exp​(− η ​ 
​D​x​​ ​D​z​​ exp​(2 ​C​3​​ r)​  ____________ n  ​)​​.

For ​r  =  ln​(n)​/(2​C​3​​)​ this probability is bounded below by ​exp​(− η ​C​ 2​ 2​)​​ and above by  
​exp​(− η ​C​ 1​ 2​)​​ and is therefore strictly between zero​​ and one​​.

At the same, since we considered a sparse seed set such that ​k  =  o​(​√ _ n ​)​​, we 
can ignore the possibility that the ​r​-neighborhood around ​z​ contains other seeds. 
Therefore, we can treat the connection time ​​r​​ ∗​  =  T​(z, x)​​ when the ​r​-discs around ​z​ 
and ​x​ start to overlap as independent random variables for different seeds. Since the 
probability of connecting to any of seeds is bounded away from zero,​​ the node is 
closest to any specific seed ​x​ with probability ​C / k​.

This argument holds for both ​z​ and ​z′​ independently and hence completes step 2. ∎

A5. Proof of Proposition 3

Observe that the share of agents in the center is ​o​(​​(2/3)​​​ r​)​  →  0​ as  
​r  →  ∞​. Therefore, with probability approaching one, all seeds are on the circle 
since ​k  =  o​(​​(c · 3/2)​​​ r​)​​.

Condition on an allocation of seeds that are not on the central tree. These are 
uniformly placed along the outer circle.

We need to compute the distance between the closest seed to a spoke and the sec-
ond closest seed to a spoke. In order to study this, we need the difference between 
the first and second order statistics from ​k​ draws on a line segment of length ​​​(3/2)​​​ r​​. 
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Note that for a uniform distribution on ​​[0, 1]​​, this order statistic difference is going 
to be on the order ​O​(​​(3/2)​​​ r​)​​.

Next, observe that it takes ​O​(2r)​​ steps for the nearest seed to go up the tree and 
down the other ends along all other spokes, since the height is ​r​.

This implies that of the ​3 × ​2​​ r−1​​ nodes at the bottom of the tree, all but ​o​(1)​​ are 
infected with the signal from the nearest seed to the tree as ​r  →  ∞​.  ∎
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