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1. INTRODUCTION

There has been a substantial literature on evolutionary aspects of pre-
play communication in games, in particular on the possibility that commu-
nication and evolution together lead to socially efficient equilibria. Robson
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man, and Asher Wolinsky. Banerjee thanks the National Science Foundation and the Sloan
Foundation for support of this research.
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(1990), Wärneryd (1991, 1992, 1993), Sobel (1993), Schlag (1993, 1994),
Blume, et al. (1993), Kim and Sobel (1995), and Bhaskar (1998) show
how evolutionary criteria, in a variety of settings, have a tendency to se-
lect against socially inefficient equilibrium outcomes. Evolutionary solution
concepts which have been used in this context are evolutionary stability
and neutral stability. A strategy is evolutionarily stable (Maynard Smith and
Price, 1973) if it is a best reply to itself and a better reply to all other best
replies than these are to themselves. A strategy is neutrally stable (Maynard
Smith, 1982) if it is a best reply to itself and a weakly better reply to all
best replies than these are to themselves.

The present paper examines the weaker of these two concepts, neutral
stability, and compares its cutting power with that of stringent noncooper-
ative refinements. The setting is standard; there is a symmetric and finite
two-player “base game” to be played after a pre-play communication ses-
sion. Communication takes the form of costlessly and simultaneously sent
messages, one from each player. The sent messages are observed without
error by both players before they select a strategy in the base game. A pure
strategy in this “meta-game” is thus a message to send and a “decision rule”
that prescribes a pure base-game strategy for every message pair. Much of
the analysis is focused on the resulting payoff outcomes, rather than on the
strategies that generate these. An outcome will be called neutrally stable if
it is the payoff that results when a neutrally stable strategy meets itself.

We begin by characterizing the set of symmetric Nash equilibria in finite
and symmetric two-player cheap-talk games. It is necessary and sufficient
that each pair of used messages play a Nash equilibrium of the base game
against each other, and that no message, if hypothetically sent, earns more
than a used message. This implies, in particular, that adding cheap talk
does not take us out of the convex hull of the base-game Nash equilib-
rium payoffs, a point made in Wärneryd (1992). We go on to study how the
set of neutrally stable outcomes changes as the set of messages becomes
larger. We show that any neutrally stable outcome which exceeds the min-
max payoff of the base game remains neutrally stable when the message
set is enlarged. In other words, the set of neutrally stable and strictly in-
dividually rational outcomes is nondecreasing in the number of messages
available to the players.

We next turn to the special case of 2× 2 coordination games, which is the
setting in which cheap talk has been most closely studied. We first consider
the effect of refining the Nash equilibrium concept by way of “trembles”
in strategies, and show that any payoff value between the worst and best
base-game Nash equilibrium payoffs can be approximated by the outcome
of a strictly perfect Nash equilibrium in the cheap-talk game, granted that
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the message set is sufficiently large.2 A Nash equilibrium is strictly perfect
(Okada, 1981) if it is robust to all “trembles” in strategies (Okada, 1981).
Viewed as a singleton set, such an equilibrium is a strategically stable set
in the sense of Kohlberg and Mertens (1986). Hence, even these stringent
refinements have effectively no cutting power in this class of games.

The picture is quite different for neutral stability. In the case of 2 ×
2 coordination games, we exactly characterize the set of neutrally stable
cheap-talk outcomes: the set of neutrally stable outcomes is a certain finite
set that contains both strict Nash equilibrium payoffs, for any finite message
set. As the number of available messages increases toward infinity, the set of
neutrally stable outcomes converges to a countable limit set. If the payoffs
in the underlying coordination game are such that the “good” strict Nash
equilibrium payoff is 2, and that of the “bad” strict Nash equilibrium is 1,
this limit set consists of the number 2 and all numbers 2 − 1

n
for positive

integers n. The limit set of neutrally stable points thus contains the “bad”
and the “good” strict Nash equilibrium outcomes, and an infinite set of
isolated points between these extremes, with the “good” Nash equilibrium
outcome as the unique cluster point of the set. This result is independent of
the payoffs off the diagonal of the base-game payoff matrix. Neutral stability
thus offers a selection from the set of Nash equilibria which is distinct from
equilibrium selection criteria based on Pareto dominance, risk dominance,
perfection, and strategic stability.3

The strategies that support the neutrally stable outcomes between the
“good” and the “bad” strict Nash equilibrium outcomes have a particular
structure. They let a subset of messages form a “group.” All messages in
the group are sent with equal probability, and messages outside the group
are not sent. All pairs of distinct messages from such a “group” play the
“good” strict Nash equilibrium, and every message in the group plays the
“bad” equilibrium when matched against itself. To anticipate the vocabu-
lary we use later in the paper, the messages in such a group are “polite” to
each other. Messages outside the group, however, are “punished” by play
of some unfavorable base-game strategy, either the pure strategy associated
with the “bad” strict Nash equilibrium, or the minmax strategy. This type
of cheap-talk strategy is immune against a small “invasion” of any “mu-
tant” cheap-talk strategy: it is clearly not worthwhile for a mutant to send

2Wärneryd (1992) shows that any symmetric payoff outcome in the convex hull of the Nash
equilibrium payoffs of the underlying game (the set UNE below) can be approximated by a
symmetric Nash equilibrium outcome in a cheap-talk game with a sufficiently large message
set.

3By contrast, Kandori et al. (1993), Young (1993), and Kandori and Rob (1995) show that
certain stochastic dynamics, that can be interpreted as processes of social evolution, select the
risk-dominant equilibrium in 2 × 2 coordination games.
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a message that does not belong to the group of messages used by the in-
cumbent strategy, since this only results in the “punishment” payoff in the
base game. Thus mutants, if they are to be successful, should send mes-
sages that belong to the group. However, the best a mutant can do when
meeting a message in the group is to mimic the incumbents. So the most a
mutant can earn in the post-entry population is the payoff earned by the in-
cumbent strategy, and thus the incumbent strategy is invasion-proof in the
sense of neutral stability. It is, however, not evolutionarily stable, unless the
group comprises all messages. For if there exists an unused message, then
there are alternative best replies to the incumbent strategy that do just as
well against themselves as the incumbent does against them.

This result is formally established in the paper. Moreover, we estab-
lish that this is a complete characterization, in the sense that no other
cheap-talk strategy is neutrally stable. These results generalize a result by
Schlag (1993, Theorem 5.1). He establishes that the cheap-talk strategy that
engages all messages in a “polite group” as described above (and hence
uses no base-game punishment) constitutes the only evolutionarily stable
strategy.

The results reported above hold for any finite set of messages, while
in any natural language the set of messages is countably infinite. It is not
clear that the two cases should have the same qualitative properties. It is
well known that the set of equilibrium outcomes in a repeated game may
“explode” as one moves from a finite but arbitrarily distant time horizon to
an infinite time horizon. Indeed, there may be a whole plethora of infinite-
horizon outcomes that have no counterpart in the finite-horizon case—the
Folk theorems establish just this. An important question thus is whether
also the set of neutrally stable outcomes in cheap-talk games may “explode
at infinity,” i.e., as one moves from finite but arbitrarily large message sets
to an infinite message set. We show that this does not happen in 2 × 2
coordination games: The set of neutrally stable outcomes for countably
infinite message sets coincides with the limit set for finite message sets.

The model developed here admits alternative, more biological or soci-
ological interpretations. Instead of thinking of individuals who send mes-
sages, one could think of individuals who are endowed with physical traits or
attributes—such as feathers or clothes—along with the ability to distinguish
between these.4 Randomization across messages, as in a mixed strategy, can
then be interpreted as a statistical population distribution of these traits.5

4An earlier version of this paper, Banerjee and Weibull (1993), was explicitly written in this
vein.

5If all individuals play pure “cheap-talk” strategies, then each neutrally stable outcome
corresponds to a dynamically (Lyapunov) stable population state in the replicator dynamics;
see Thomas (1985) or Bomze and Weibull (1995).
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The implication of our results, if we were to interpret the model in this way,
is that variety in observable traits allows for conditioned behaviors, which
expands the set of possible evolutionary outcomes, but only in a very spe-
cific way. The neutrally stable strategies in the associated “cheap signalling”
2× 2 coordination games represent “group behaviors” of exactly three pos-
sible types. The first type yields to the highest payoff, the “good” strict
Nash equilibrium outcome. In this case, all traits present in the population
play the “good” strict Nash equilibrium with each other, and “punish” all
traits that are absent from the incumbent population, for example by play-
ing the “bad” strict Nash equilibrium strategy against them. The second
type of group behavior results in the “bad” strict Nash equilibrium. This
behavior is neutrally stable if this payoff exceeds the minmax payoff in the
base game. Here all individuals play the “bad” strict Nash equilibrium with
each other, and punish all traits that are absent from the incumbent pop-
ulation by playing the minmax base-game strategy against them. The third
type of group behavior that is compatible with neutral stability is based on
“group politeness” between the traits present in the population: individuals
with differing traits within the group play the “good” strict Nash equilib-
rium when they meet, while individuals with the same trait play the “bad”
strict Nash equilibrium. If an individual appears with a trait that is absent
from the incumbent population, then this individual is again “punished” by
the incumbents. It also follows from our analysis that the more traits are
present in the population (the more messages are sent in equilibrium), the
higher is the average payoff (fitness) in the population. In this sense, the
analysis suggests that diversity in traits or attributes in a population leads
to high population fitness—in interactions that can be modelled as 2 × 2
coordination games.

To the best of our knowledge, we are the first to characterize the set of
neutrally stable outcomes in finite symmetric cheap-talk 2× 2 coordination
games. While cheap-talk games in evolutionary settings have been widely
studied, the emphasis has been on finding settings where the long-run out-
come is Pareto efficient. As was first observed by Robson (1990), one way
to get this is to assume that an unused message will become available at
some point, a message which can be used as a “secret handshake” between
mutants—to allow them to play the efficient equilibrium when they meet
and therefore to do better than the rest of the population. Wärneryd (1991)
analyzes cheap talk in 2 × 2 coordination games in this vein. He restricts
the analysis to pure strategies, with the implication that at least one mes-
sage is unused in equilibrium (granted at least two messages are available)
and that “mutants” cannot be sufficiently severely “punished” (minmaxing
in the base game requires randomization). Kim and Sobel (1995) make a
similar argument for long-run efficiency, but in their model it is the stochas-
tic drift in the population distribution of strategies which eventually leads
to the existence of an unused message.
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Instead of studying this kind of process, which inevitably converges to the
efficient outcome, we focus on neutral stability. Under neutral stability, the
presence of unused messages does not per se undermine the equilibrium,
because of the possibility of punishing anyone who sends a new message.6

Punishing absent messages does not cost anything in equilibrium. However,
there are also no benefits to punishing individuals who send such messages.
Therefore, there is nothing to stop the population from drifting in the direc-
tion of those who do not punish new messages but are all in other respects
identical to the incumbents. Eventually, when there are enough incumbents
who do not punish such “entrants,” new messages may enter. Neutral sta-
bility ignores this possibility as being something that can happen in the
very long run but is unlikely in the medium run. Evolutionary stability, by
contrast, takes the long-run consequences of such drift very seriously, and
therefore rejects equilibria with unsent messages.

The role of drift in eliminating unused messages also explains the differ-
ence between our results and those of Schlag (1993). He analyzes evolu-
tionary stable outcomes in a setting very similar to ours. He does not make
assumptions that guarantee him unsent messages. Therefore, the long-run
outcomes in his model are not necessarily fully efficient. He does, how-
ever, obtain almost full efficiency when the number of messages is large.
These results rest entirely on the fact that evolutionary stability rules out
outcomes with unused messages.

Finally, Bhaskar (1998) analyzes neutrally stable outcomes in a setting
which is similar to ours, except in that (a) he allows individuals to condition
their strategies on their assigned role in the game, and (b) he assumes that
communication is noisy in the sense that all messages have some risk of
being misinterpreted. The latter assumption rules out unused messages,
while the former is shown to rule out mixed-strategy equilibria of the base
game, leaving only the efficient outcome. We see this as an alternative and
interesting setting but do not feel that it makes our results, for the more
standard setting, any less useful.

The material is organized as follows. Notation and definitions are intro-
duced in Section 2. Section 3 provides some preliminaries concerning sym-
metric two-player cheap-talk games, including a characterization of sym-
metric Nash equilibria, and a monotonicity result for neutrally stable out-
comes, in such games. Section 4 contains our main result for 2 × 2 coor-
dination games. Section 5 extends the result in Section 4 from finite to
countably infinite message sets. Section 6 concludes.

6Indeed, many of the outcomes we study here do have unsent messages.
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2. DEFINITIONS

2.1. Symmetric Two-Player Games

This study is focused on finite and symmetric two-player games in normal
form. Let S = �1; 2; : : : ; n� be the set of pure strategies, the same for both
player positions. Accordingly, a mixed strategy is a point σ on the �n− 1�-
dimensional unit simplex 1�S� = �σ ∈ �n

+:
∑
i σi = 1� in �n. The support

of a mixed strategy σ ∈ 1�S� is the subset C�σ� = �i ∈ S: σi > 0� of
pure strategies which are assigned positive probabilities. The set of strategy
profiles will be denoted 2�S� = 1�S� × 1�S�. Let aij be the payoff to pure
strategy i when played against pure strategy j, and let A be the associated
n× n payoff matrix. Accordingly, the (expected) payoff of a mixed strategy
σ when played against a mixed strategy µ is u�σ;µ� = σ ·Aµ =∑ij σiaijµj .
The payoff function u: �n ×�n→ � so defined is bi-linear, and the payoff
to a pure strategy i when played against a mixed strategy µ is u�ei; µ�,
where ei ∈ 1�S� is the ith unit vector in �n. A finite and symmetric two-
player normal-form game will be summarized as a pair G = �S; u�.

For each µ ∈ 1�S�, let β�µ� ⊂ 1�S� be its set of (mixed) best replies,
and let 2NE�S� denote the set of Nash equilibria. A Nash equilibrium is
strict if each strategy is the unique best reply to the other. A Nash equi-
librium is strictly perfect if it is robust to all small “trembles” in strategies
(Okada, 1981).7 A strictly perfect equilibrium, viewed as a singleton set, is
strategically stable in the sense of Kohlberg and Mertens (1986). A Nash
equilibrium �σ;µ� is symmetric if σ = µ. By Kakutani’s Fixed Point The-
orem, every finite and symmetric game has at least one symmetric Nash
equilibrium. Let

1NE�S� = {σ ∈ 1�S�: σ ∈ β�σ�}:8 (1)

Likewise, let the subset of strict symmetric Nash equilibrium strategies be
written 1NE+�S�, i.e., σ ∈ 1NE+�S� if and only if β�σ� = �σ�.

A strategy σ is evolutionarily stable if σ ∈ 1NE�S� and, moreover,
u�σ;µ� > u�µ;µ� for all alternative best replies µ to σ . Likewise, a
strategy σ is neutrally stable if σ ∈ 1NE�S� and u�σ;µ� ≥ u�µ;µ� for all

7Formally, for any positive perturbation vector δ = �δ1
i ; δ

2
i �i∈S such that Mk�δ� = {

σk ∈
1�S�: σk�i� ≥ δki for all i ∈ S} is nonempty for k = 1; 2, let G�δ� be the two-player
game with strategy sets M1�δ� and M2�δ�, and payoff functions u1�σ1; σ2� = u�σ1; σ2� and
u2�σ1; σ2� = u�σ2; σ1�. A strategy profile �σ1; σ2� ∈ 2�S� is strictly perfect if for every se-
quence of perturbations δt → 0, there exists some accompanying sequence of strategy profiles
�σ1

t ; σ
2
t � → �σ1; σ2� that are Nash equilibria in the corresponding perturbed games G�δt�.

8Though the set of Nash equilibria depends not only on the strategy set, but also on payoffs,
we suppress payoffs in our notation, since the payoffs will be fixed throughout our analysis,
while the strategy set will vary.
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best replies µ to σ . Let the subset of evolutionarily and neutrally stable
strategies be denoted 1ESS�S� and 1NSS�S�, respectively. We have9

1NE+�S� ⊂ 1ESS�S� ⊂ 1NSS�S� ⊂ 1NE�S�: (2)

2.2. Cheap Talk

Costless pre-play communication—“cheap talk”—is modelled in the
usual fashion. A finite and symmetric two-player game G = �S; u� is to be
played. Before this, each player sends a message to the other player. This is
done simultaneously and without cost or error. Again costlessly and with-
out error, the two players then observe each other’s messages, and they
simultaneously choose a strategy in G. The set M of possible messages is
taken to be the same for both players, and, in the following two sections,
this set is finite. The resulting interaction, including the pre-play commu-
nication stage, thus constitutes a finite and symmetric two-player game G.
Its pure-strategy set H and payoff function v will both be specified below.
We will refer to G = �S; u� as the base game, M as the message set, and
call G = �H; v� the meta-game associated with G and M .

A pure strategy in G, a pure meta-strategy, is a message to send and a
decision rule specifying what pure strategy in G to play after each pair
�m;m′� ∈ M2 of sent messages. Such a decision rule can be formally rep-
resented as a function f : M2 → S that to each message pair �m;m′� ∈M ,
where m is the own message and m′ the opponent’s message, assigns a pure
strategy i = f �m;m′� in G. Let F be the set of all such functions. A pure
meta-strategy thus is a pair h = �m; f � ∈M × F = H.

Since pre-play communication by assumption is costless, the payoff to
any pure meta-strategy h = �m; f � ∈ H, when played against some pure
meta-strategy k = �m′; g� ∈ H, is aij where i = f �m;m′� and j = g�m′;m�.
The payoff matrix of the meta-game G may thus be represented by the
�H� × �H� matrix A with entries αhk = aij in each row h ∈ H and column
k ∈ H, where h = �m; f �, k = �m′; g�, i = f �m;m′�, and j = g�m′;m�.
The set of mixed meta-strategies is the ��H� − 1�-dimensional unit simplex
1�H� in ��H�. For any pair of mixed strategies p; q ∈ 1�H�, the payoff to
meta-strategy p, when used against meta-strategy q, is

v�p; q� = p · A q = ∑
h; k∈H

phαhkqk: (3)

This defines the meta-game payoff function v: 2�H� → � , where 2�H� =
1�H� ×1�H�. The set of (mixed) best replies to any meta-strategy q ∈ 1�H�
will be denoted βH�q� ⊂ 1�H�.

9Here and elsewhere in the paper, we use the sign ⊂ to denote weak inclusion.
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3. PRELIMINARIES

3.1. Characterization of Symmetric Cheap-Talk Nash Equilibria

It turns out to be analytically convenient to group the meta-strategies
according to message sent. For any meta-strategy p ∈ 1�H� and message
m ∈ M , let p�m� ∈ �0; 1� denote the probability that message m is sent in
p.10 We say that message m is used in p if p�m� > 0. Write M�p� ⊂ M
for the subset of messages used in p. For any message m used in p, let
pm�m′� ∈ 1�S� be the mixed base-game strategy “played” by message m
against any message m′ ∈ M . More precisely, given p ∈ 1�H�, m ∈ M�p�,
and m′ ∈M , pmi �m′� is the conditional probability that p assigns to the pure
base-game strategy i ∈ S against message m′, given that it sent message m.11

In particular, for any meta-strategy pair �p; q� ∈ 2�H� in which m is used
in p and m′ is used in q, the pair �pm�m′�; qm′ �m�� ∈ 2�S� constitutes the
base-game strategy profile that messages m and m′ play against each other.
Using this notation, one may decompose the payoff v�p; q� to meta-strategy
p when played against meta-strategy q as follows:

v�p; q� = ∑
m∈M�p�

∑
m′∈M�q�

p�m�q�m′�u
[
pm�m′�; qm′ �m�

]
: (4)

Using this decomposition, it is not difficult to show that a meta-strategy p
is in Nash equilibrium with itself, p ∈ 1NE�H�, if and only if (i) all used
messages play some base-game Nash equilibrium against each other, and
(ii) no message (if hypothetically sent) earns more than v�p;p�.

Lemma 1. p ∈ 1NE�H� if and only if (i)-(ii) hold.

(i)
(
pm�m′�; pm′ �m�) ∈ 2NE�S�, ∀m;m′ ∈M�p�.

(ii)
∑
m′∈M�p� p�m′�u

[
pm�m′�; pm′ �m�] ≤ v�p;p�, ∀m ∈M .

Proof. First, let p ∈ 1�H�, and suppose (i) does not hold, i.e., pm̄�m̄′� /∈
β
[
pm̄

′ �m̄�] for some m̄; m̄′ ∈ M�p�. Then some pure strategy i ∈ S in the
support of pm̄�m̄′� ∈ 1�S� earns a suboptimal payoff. Let q ∈ 1�H� be like
p, except that qm̄�m̄′� ∈ β[pm̄′ �m̄�]. Then

u
[
qm�m′�; pm′ �m�

]
= u

[
pm�m′�; pm′ �m�

]
for all m 6= m̄ and all m′, as well as for m = m̄ and all m′ 6= m̄′, and

u
[
qm̄�m̄′�; pm̄′ �m̄�

]
> u

[
pm̄�m̄′�; pm̄′ �m̄�

]
:

10More precisely, p�m� is the sum of all pure-strategy probabilities ph, where h = �m; f �
for some f ∈ F .

11Formally, pmi �m′� =
∑

f∈A�i;m;m′ � p�m; f �/p�m�, where A�i;m;m′� = �f ∈ F : f �m;m′� = i�.
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Since p�m̄� > 0, this implies v�q;p� > v�p;p� by Eq. (4), so p /∈ 1NE�H�.
Hence, p ∈ 1NE�H� ⇒ (i).

Second, let p ∈ 1�H�, and suppose (ii) does not hold, i.e.,∑
m′∈M�p�

p�m′�u
[
pm�m′�; pm′ �m�

]
> v�p;p�

for some m ∈ M . Let q ∈ 1�H� be like p, except that q�m� = 1 (and
thus q�m′� = 0 for all m′ 6= m). Then v�q;p� > v�p;p� by Eq. (4), so
p /∈ 1NE�H�. Hence, p ∈ 1NE�H� ⇒ (ii).

Third, assume (i) and (ii), and let q ∈ 1�H�. By Eq. (4), and using first
(i), then (ii):

v�q;p� = ∑
m∈M�q�

q�m� ∑
m′∈M�p�

p�m′�u
[
qm�m′�; pm′ �m�

]
≤ ∑

m∈M�q�
q�m� ∑

m′∈M�p�
p�m′�u

[
pm�m′�; pm′ �m�

]
≤ ∑

m∈M�q�
q�m�v�p;p� = v�p;p�:

Hence, p ∈ βH�p�, so (i)–(ii) ⇒ p ∈ 1NE�H�.
Remark 1. By decomposition (4), the inequality in (ii) is an equality

for all messages that are used in a symmetric Nash equilibrium: if p ∈
1NE�H� and m ∈M�p�, then∑

m′∈M�p�
p�m′�u

[
pm�m′�; pm′ �m�

]
= v�p;p�: (5)

3.2. A Relevant Set of Cheap-Talk Nash Equilibrium Outcomes

A base-game equilibrium payoff vector is a pair �x; y� ∈ �2 such that
�x; y� = �u�σ;µ�; u�µ;σ�� for some �σ;µ� ∈ 2NE�S�. Let PNE�S� ⊂ �2

denote the convex hull of this set, and let

UNE =
{
x ∈ �: �x; x� ∈ PNE�S�

}
: (6)

This set turns out to be relevant for the subsequent analysis. It is nonempty
and convex by definition, and compact since in a finite game the set of
Nash equilibria is compact and payoff functions are continuous. Hence,
UNE = [x; x] for some x ≤ x. The set UNE clearly contains all payoffs that
a player can receive in symmetric base-game Nash equilibrium.12 In some

12Formally, the set of payoffs that a player can receive in symmetric base-game Nash equi-
librium is �x ∈ �: x = u�σ;σ� for some σ ∈ 1NE�S��.
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games it also contains other payoffs. An example of this possibility is the
2 × 2 game with payoff matrix

A =
(

0 a
a 0

)
(7)

for some a > 0. Its unique symmetric Nash equilibrium is �σ∗; σ∗�, where
σ∗ = �1/2; 1/2�. Hence, the only payoff that a player can receive in sym-
metric base-game Nash equilibrium is a/2. However, the game also has two
asymmetric Nash equilibria, namely, �e1; e2� and �e2; e1�, both giving payoff
a to each player. Thus, UNE is the whole interval �a/2; a�.

3.3. Evolutionarily and Neutrally Stable Cheap-Talk Outcomes

Let V NE�M� denote the set of payoff outcomes in symmetric meta-game
Nash equilibria when the message set is M ,

V NE�M� =
{
x ∈ �: x = v�p;p� for some p ∈ 1NE�H�

}
: (8)

Likewise, let V NSS�M� be the set of neutrally stable meta-game payoff out-
comes when the message set is M ,

V NSS�M� =
{
x ∈ �: x = v�p;p� for some p ∈ 1NSS�H�

}
; (9)

and likewise for V ESS�M�. By Eq. (2) and Lemma 1,

V ESS�M� ⊂ V NSS�M� ⊂ V NE�M� ⊂ UNE: (10)

It is easily shown that there exists no evolutionarily stable strategy when
the message set contains more than one message.

Proposition 1. V ESS�M� = ∅ if |M| > 1.

Proof. Suppose p ∈ 1NE�H� and ph > 0 for h = �m; f �. Let g ∈ F
agree with f whenever the own message is m, but differ from f when the
own message is some other message mo. Formally, g�m;m′� = f �m;m′�
for all m′ ∈M , but g�mo;m′� 6= f �mo;m′� for some mo 6= m and m′ ∈M .
Let q ∈ 1�H� differ from p only with respect to the two pure strategies
h = �m; f � and k = �m;g�, in such a way that qh = 0 and qk = ph + pk.
Then q 6= p, and v�q;p� = v�p;p� = v�p; q�, so p /∈ 1ESS�H�.

Remark 2. It was mentioned in the Introduction that Schlag (1993)
identified a certain cheap-talk strategy as being evolutionarily stable. The
above proposition may appear to be at variance with that result. The reason
for this difference is that our analysis and that of Schlag take place in differ-
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ent normal-form representations of the cheap-talk game. He analyzes the
“reduced” normal form that arises when players can condition their base-
game strategy choice only on their opponent’s message, and not, as here,
on both messages. Therefore, the normal-form game in his analysis con-
tains fewer pure strategies. The “spurious copies” of pure meta-strategies
that differ only when the own message differs from the “intended” own
message have been taken away—and his holds for that normal form. More-
over, his main results concern evolutionarily stable sets (Thomas, 1985),
and strategy sets that are asymptotically stable in the replicator dynamics
(Taylor and Jonker, 1978), and those results are insensitive to the presence
of “spurious” duplicates of pure strategies. The present study is focused on
the outcomes associated with the solution concepts of Nash equilibrium,
neutral stability, strictly perfect equilibrium, and strategic stability. Also for
such analyses, it is immaterial whether one uses the full or the reduced
normal form. The reason is that the decision rule f in a pure strategy
h = �m; f � is then only applied to message pairs �m̃;m′� where the own
message m̃ is m. Without loss of generality, one may thus let f respond in
the same way to any pair �m̃;m′�, where m̃ ∈M , as it responds to �m;m′�.
This reduction of the set of pure strategies is not appropriate, however, in
analyses of (point-wise) evolutionary stability, since that solution concept
is sensitive to multiplicity of best replies, even if these result in the same
outcome.13

We are interested in how the set V NSS�M� varies with the message set
M . In particular, one may ask if this set increases as �M� increases. It turns
out that this is not always the case.

An example of this possibility is the game with payoff matrix (7). It is
well known (since this is equivalent to a “Hawk-Dove” game), and easily
verified, that its unique mixed Nash equilibrium strategy σ∗ is evolutionarily
stable. Hence, V ESS�M� = V NSS�M� = �a/2� when �M� = 1. However,
a/2 /∈ V NSS�M� whenever �M� > 1. To see this, consider the case of two
messages. In order to obtain payoff a/2 in such a meta-game, it is necessary,
by Lemma 1, that all four message pairs play �σ∗; σ∗�. But such a meta-
strategy p is vulnerable to invasion by the mutant strategy q that sends both
messages with equal probability, lets each message play σ∗ against itself,
one message play pure strategy 1 against the other, and the other message
play pure strategy 2 against the first. This meta-strategy is certainly a best
reply to q. However, v�q; q� = 3a/4 > v�p; q� = a/2. Hence, p /∈ 1NSS�H�.

The reason why, in this example, V NSS�M� is not nondecreasing in �M� is
that the base-game strategy σ∗ happens to be a minmax strategy. For any

13We thank an anonymous referee for urging us to clarify these distinctions.
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finite and symmetric two-player game, let xo ∈ � be its minmax value, i.e.,

xo = min
µ∈1�S�

max
σ∈1�S�

u�σ;µ�: (11)

Lemma 2. For any base game G and message sets M and M+ with �M� ≤
�M+�:

(a) If x ∈ V NSS�M� and x > xo, then x ∈ V NSS�M+�.
(b) If xo /∈ V NSS�M�, then xo /∈ V NSS�M+�.

Proof. For (a), assume x ∈ V NSS�M� and x > xo. Let p ∈ 1NSS�H�
have v�p;p� = x. It is sufficient to consider the case M = �1; : : : ; k�
and M+ = �1; : : : ; k; k + 1�. Let σo be a minmax strategy in G. Thus,
u�σ;σo� ≤ xo for all σ ∈ 1�H�. Let H+ be the set of pure strategies in
the meta-game G+ associated with message set M+. Let q ∈ 1�H+� agree
with p on H, have message k+ 1 unused, and play σo against it. Formally,
for all m ≤ k, let q�m� = p�m� (thus q�k+ 1� = 0). For all m;m′ ≤ k, let
qm�m′� = pm�m′�. For all m ≤ k, let qm�k+ 1� = σo, and for all m′ ∈M+,
let qk+1�m′� = σo. It follows from this construction that, in meta-strategy
q, all used message pairs play the same base-game Nash equilibria as in
p, that every used message earns payoff v+�q; q� = v�p;p�, and no mes-
sage in M+ earns more. By Lemma 1, q ∈ 1NE�H+�. Since p ∈ 1NSS�H�:
v�p′; p′� ≤ v�p;p′� for all p′ ∈ βH�p�. Now suppose q′ ∈ βH+�q�. Then
the support of q′ is a subset of H, since message k + 1 is minmaxed in
q. Let p′ ∈ 1�H� be the restriction of q′ to H. Then p′ ∈ βH�p� and so
v�p′; p′� ≤ v�p;p′�. But v�q′; q′� = v�p′; p′� and v�q; q′� = v�p;p′�, which
shows that q ∈ 1NSS�H+�.

For (b), assume xo /∈ V NSS�M� and xo ∈ V NSS�M+�, where M =
�1; : : : ; k� and M+ = M ∪ �k+ 1�. Let p ∈ 1NSS�H+� have v�p;p� = xo.
By Lemma 1, all messages used in p play some base-game minmax Nash
equilibrium against all used messages. Suppose some message is unused in
p. Without loss of generality, let m = k + 1 be such. Then the restriction
of p to H belongs to 1NSS�H�, a contradiction. Suppose instead that all
messages are used in p. Then all message pairs play some base-game min-
max Nash equilibrium. Let p′ ∈ 1�H+� be like p, except that p′�1� = 1
(p′ only uses message m = 1). Then q ∈ βH+�p� ⇒ q ∈ βH+�p′�, and
thus v�q; q� ≤ v�p; q� = v�p′; q�, so p′ ∈ 1NSS�H+�. But the restriction of
p′ to H belongs to 1NSS�H�, a contradiction.

It follows immediately that if xo /∈ UNE, which is indeed the case in
many games, then the set V NSS�M� is in fact nondecreasing in �M�: For any
base game G such that xo /∈ UNE, and any message sets M and M+ with
�M� ≤ �M+�, V NSS�M� ⊂ V NSS�M+�.
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4. CHEAP TALK IN 2 × 2 COORDINATION GAMES

We here focus on the special case where the base game is a symmetric
2 × 2 game with payoff matrix

A =
(
a b
c d

)
(12)

for some a > c, d > b. We will call such games coordination games. It
is well known that their evolutionarily stable strategies are the two pure
strategies, and that their unique mixed Nash equilibrium strategy is not
even neutrally stable: 1NSS�S� = 1ESS�S� = �e1; e2�. The payoff to each
player in the unique mixed-strategy Nash equilibrium, which is symmetric,
is e = �ad − bc�/�a− c + d − b�.

Consider any game G with payoff matrix as in Eq. (12), where a < d, i.e.,
a is the “bad” and d the “good” strict Nash equilibrium payoff. Let this be
the base game in a cheap-talk game G with finite message set M . Here x is
the “good” strict Nash equilibrium payoff d, and x is the minmax (and also
Nash equilibrium) payoff min�a; e�. It is easily verified that x = e if and
only if a ≥ b. By Eq. (10), all neutrally and evolutionarily stable meta-game
payoff outcomes, along with all symmetric meta-game Nash equilibrium
outcomes, belong to the interval UNE = �x; x�.

4.1. Strictly Perfect Cheap-Talk Outcomes

In analogy with the notation for neutrally and evolutionarily stable out-
comes, let V SP�M� be the set of strictly perfect meta-game payoff values
when the message set is M: Formally, x ∈ V SP�M� if and only if there
exists a strictly perfect meta-game Nash equilibrium �p;p� with payoff
v�p;p� = x. Evidently, the set V SP�M� is a subset of UNE = �x; x�, for
any message set M .

We proceed to show that any payoff in the interval UNE can be approx-
imated by a strictly perfect payoff when the number �M� of messages is
large. To state this formally, let lim sup�M�→∞ V

SP�M� be the smallest set
containing all sets V SP�M� for �M� large, i.e.,

lim sup
�M�→∞

V SP�M� = ⋂
n∈�

⋃
�M�≥n

V NSS�M�; (13)

where � denotes the set of positive integers.

Proposition 2. lim sup
�M�→∞

V SP�M� is dense in UNE.

Proof. Let n ∈ �, x ∈ UNE, and ε > 0. There exists a positive integer
n′ ≥ n and a nonnegative even integer k ≤ n′, such that y = λx+ �1− λ�x,
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for λ = k/n′, is within distance ε from x. Let �M� = n′, and let p ∈ 1�H�
have p�m� = 1/n′ for all m ∈ M . Order all messages in a ring, and let
each message play the base-game Nash equilibrium strategy σ that results
in payoff x to its k/2 nearest neighbors on each side, and let it play e2 to all
other messages, and to itself. More exactly, let the strategy σ be the unique
mixed Nash equilibrium base-game strategy σ∗ if a ≥ b; otherwise, let it be
the “bad” pure base-game strategy e1. Then all messages play base-game
Nash equilibria with each other, and all messages earn the same payoff

v�p;p� = �kx+ �n− k�x�/n′ = λx+ �1− λ�x:
It follows from Lemma 1 that p ∈ 1NE�H�.

To see that �p;p� ∈ 2�H� is strictly perfect, let δ = �δ1
h; δ

2
h�h∈H be such

that Pi�δ� = �p ∈ 1�H�: ph ≥ δih for all h ∈ H� is nonempty for i =
1; 2. Let G�δ� be the associated (possibly asymmetric) two-player perturbed
meta-game with strategy sets P1�δ� and P2�δ�. For δ sufficiently small,
this game has a Nash equilibrium �p′; p′� arbitrarily close to �p;p�. Let
p′�m� = p�m� = 1/n′ for all m ∈ M . If σ = σ∗, let each message play
σ∗ to its k/2 nearest neighbors on each side, and let it place maximal
probability on the pure base-game strategy e2 against all other messages
and against itself. If σ = e1, let each message place maximal probability
on the base-game strategy e1 against its k/2 nearest neighbors on each
side, and let it place maximal probability on the pure base-game strategy
e2 against all other messages and against itself. Since e1; e2 ∈ 1NE+�S�, and
σ∗ is completely mixed in the base game, p′ is a best reply to itself in the
perturbed meta-game G�δ�, granted the vector δ > 0 is sufficiently small.

The same construction as for strategy p above works for any multiple of
the pair �n′; k�. Hence, the payoff value, λx+ �1− λ�x, approximating the
given payoff x ∈ UNE, belongs to V SP�M� for �M� = n′, 2n′, 3n′; : : : , and
so on. Thus, λx+ �1− λ�x ∈ lim sup�M�→∞ V

SP�M�.
In sum: strict perfection, one of the most stringent noncooperative re-

finements of the Nash equilibrium concept, has virtually no cutting power
on the outcomes in the studied class of games. Since a strictly perfect equi-
librium, viewed as a singleton set, is strategically stable in the sense of
Kohlberg and Mertens (1986), strategic stability has virtually no cutting
power either.

4.2. Neutrally Stable Outcomes

We now turn to the main result of this study, a characterization of the
set of neutrally stable meta-game outcomes. As a first step towards this
goal, we show that neutral stability in the meta-game requires that all used
messages play pure strategies against each other. We will say that a message
m ∈M�p� is nice in p ∈ 1�H� to a message m′ ∈M if m plays the “good”
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strict Nash equilibrium against m′, i.e., if pm�m′� = e2. We establish that if
some used message is nice to itself, then every used message is nice to all
used messages. Consequently, the payoff is then maximal.

Lemma 3. Suppose p ∈ 1NSS�H�.
(i) If m;m′ ∈M�p�, then pm�m′� = pm′ �m� ∈ �e1; e2�.

(ii) If pm�m� = e2 for some m ∈M�p�, then v�p;p� = d.

Proof. (i) By Lemma 1, it suffices to show that m and m′ do not play the
mixed base-game Nash equilibrium with each other. Suppose they would.
Then let q ∈ 1�H� be like p, except for qm�m′� = qm

′ �m� = e2. Then
q ∈ βH�p�, and v�q; q� = d > v�p;p�, so p /∈ 1NSS�H�.

(ii) Suppose m ∈ M�p�, pm�m� = e2, and v�p;p� < d. Let q ∈ 1�H�
be such that q�m� = 1 and qm�m′′� = pm�m′′� for all m′′ ∈ M . Then q ∈
βH�p�, and v�q; q� = d. However, v�p; q� = p�m�d, where p�m� < 1 since
v�p;p� < d. Thus, v�q; q� > v�p; q�, and hence p /∈ 1NSS�H�.

For any meta-strategy p and message m, let N�m;p� ⊂M be the subset
of messages that are nice to m in p:

N�m;p� = {m′ ∈M: m′ nice to m in p
}
: (14)

We call a subset M ′ ⊂M�p� polite in p ∈ 1�H� if every message in M ′ plays
the “good” strict Nash equilibrium strategy e2 against all other messages in
M ′ and the “bad” strict Nash equilibrium strategy e1 against itself. A meta-
strategy p ∈ 1�H� is said to be in politeness class n if some nonempty subset
of messages M ′ ⊂ M�p� with �M ′� = n is polite in p, and no larger subset
of M�p� is polite in p. The next result establishes a lower bound on the
neutrally stable meta-game outcomes in terms of politeness classes. The
higher is the politeness class, the higher is this lower bound.

Lemma 4. Suppose p ∈ 1NSS�H� is of politeness class n. Then v�p;p� ≥
1
n
a+ �1− 1

n
�d.

Proof. Let ∅ 6=M ′ ⊂M�p� be polite in p ∈ 1NE�H�, with �M ′� = n. Let
q ∈ 1�H� be such that q�m� = 1

n
for all m ∈M ′, and qm�m′� = pm�m′� for

all m;m′ ∈M ′. Then

v�q;p� = 1
n

∑
m∈M ′

∑
m′′∈M�p�

p�m′′�u
[
pm�m′′�; pm′′ �m�

]
= 1
n

∑
m∈M ′

v�p;p� = v�p;p�;
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so q ∈ βH�p�. Moreover, v�q; q� = 1
n
a + (1 − 1

n

)
d, and v�p; q� = v�p;p�.

Hence, p /∈ 1NSS�H� if v�p;p� < 1
n
a + (1 − 1

n

)
d. To see that v�p; q� =

v�p;p�, first note that

v�p; q� = ∑
m∈M�p�

p�m� ∑
m′∈M ′

1
n
u
[
pm�m′�; pm′ �m�

]
= ∑

m∈M ′
p�m� ∑

m′∈M ′

1
n
u
[
pm�m′�; pm′ �m�

]
+ ∑
m/∈M ′

p�m� ∑
m′∈M ′

1
n
u
[
pm�m′�; pm′ �m�

]
= ∑

m∈M ′
p�m� 1

n

[
a+ �n− 1�d

]
+ ∑
m/∈M ′

p�m� ∑
m′∈M ′

1
n
u
[
pm

′ �m�; pm�m′�
]
:

In the last equality, we have used the fact that q mimics p on M ′ ⊂M�p�
(for the first term) and the fact that p there lets all message pairs play
symmetric base game strategy profiles (for the second term). Reversing the
order of summation in the second term, and using Remark 1, we obtain

v�p; q� = ∑
m∈M ′

p�m�v�q; q�

+ 1
n

∑
m′∈M ′

∑
m/∈M ′

p�m�u
[
pm

′ �m�; pm�m′�
]

= ∑
m∈M ′

p�m�v�q; q�

+ 1
n

∑
m′∈M ′

(
v�p;p� − ∑

m∈M ′
p�m�u

[
pm

′ �m�; pm�m′�
])

= v�p;p� + ∑
m∈M ′

p�m�v�q; q�

− 1
n

∑
m′∈M ′

(
p�m′�a+ [1− p�m′�]d)

= v�p;p� + v�q; q� − v�q; q�
= v�p;p�:

For any nonempty subset M ′ ⊂ M of messages and meta-strategy p ∈
1�H�, let Pr�M ′ � p� be the probability that a message from M ′ is sent
in p.
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Lemma 5. For any ∅ 6=M ′ ⊂M and p ∈ 1�H�,

Pr

[ ⋂
m∈M ′

N�m;p� � p
]
≥ 1− ∣∣M ′∣∣+ ∑

m∈M ′
Pr�N�m;p� � p�: (15)

Proof. For any probability measure µ on a set X with k ≥ 1 µ-
measurable subsets Bi, µ �∼ ∩iBi� ≤

∑
i µ �∼ Bi�. Equivalently, µ �∩iBi� ≥

1−∑i µ �∼ Bi� = 1− k+∑i µ �Bi�.
Lemma 6. Suppose v�p;p� < d and p ∈ 1NE�H� is of politeness class n.

Then v�p;p� ≤ 1
n
a+ (1− 1

n

)
d.

Proof. Let M ′ ⊂ M�p� be polite in p, with
∣∣M ′∣∣ = n. Since no M ′′ ⊂

M�p� with
∣∣M ′′∣∣ > n is polite in p, no m′′ /∈ M ′ is nice to all m′ ∈ M ′.

Since v�p;p� < d, no m′ ∈ M ′ is nice to itself, by Lemma 3. Hence,⋂
m′∈M ′ N�m′; p� = ∅. Moreover, by Lemma 1, each m ∈ M�p� earns pay-

off a + Pr�N�m;p��p��d − a� = v�p;p�. Since M ′ ⊂ M�p�, this equation
holds for all m′ ∈ M ′. An application of Lemma 5 to the set M ′ gives
0 ≥ 1− n+ n�v�p;p� − a�/�d − a�, which is equivalent to the claimed in-
equality.

Lemma 7.

V NSS�M� ⊂
{
a;
a+ d

2
;
a+ 2d

3
; : : : ;

a+ ��M� − 1�d
�M� ; d

}
: (16)

Proof. Every p ∈ 1NSS�H� is either of politeness class n for some pos-
itive integer n ≤ �M� or else v�p;p� = d. Lemmas 4 and 6 give Eq. (16).

The following proposition establishes that the inclusion in Lemma 7 in
fact is an equality, thus characterizing the set of neutrally stable outcomes
in every finite cheap-talk extension of every 2 × 2 coordination game.

Proposition 3.

V NSS�M� =
{
a;
a+ d

2
;
a+ 2d

3
; : : : ;

a+ ��M� − 1�d
�M� ; d

}
: (17)

Proof. Let n = �M�. The minmax payoff is x = min�a; e� < a+d
2 . To see

that a; d ∈ V NSS�M�, it suffices to note that if all messages are used and
all messages play e1 (e2) against all messages, then the payoff a (d) results,
and the associated meta-strategy p is neutrally stable. Hence, by Lemmas 2
and 7, it is sufficient to show a+�n−1�d

n
∈ V NSS�M�. For this purpose, let

p�m� = 1
n

and pm�m� = e1 for each m ∈ M , and pm�m′� = pm′ �m� = e2

for all m;m′ ∈M with m′ 6= m. Then v�p;p� = 1
n
a+ �1− 1

n
�d. To see that

p ∈ 1NSS�H�, first note that q ∈ βH�p� ⇒ qm�m′� = pm′ �m� = pm�m′� for
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all m ∈ M�q� and m′ ∈ M�p� = M . Since q and p let all message pairs
play symmetric and pure base-game strategy profiles against each other,
the off-diagonal elements b and c in the payoff matrix A are never used.
Consequently, for any q ∈ βH�p�, we have v�p; q� = v�q;p� = v�p;p�. It
thus suffices to show that v�q; q� ≤ v�p;p� for all q ∈ βH�p�. By Eq. (4),

v�q; q� = ∑
m∈M�q�

q�m�
[
a+ �d − a� ∑

m′∈M�q�\m
q�m′�

]
= a+ �d − a� ∑

m∈M�q�
q�m��1− q�m��

= d − �d − a� ∑
m∈M�q�

q2�m�:

Thus, v�q; q� is maximal when
∑
m∈M�q� q2�m� is minimal. This sum is

minimal precisely when M�q� is maximal and all q�m� are equally large,
i.e., when M�q� = M and q�m� = 1

n
= p�m� for all m ∈ M .14 In sum,

q ∈ βH�p� ⇒ v�q; q� ≤ v�p;p�. Hence, p ∈ 1NSS�H�.
Remark 3. The argument used in the proof of this proposition can be

used, mutatis mutandis, to establish that the meta-strategy pair �p;p� forms
a strictly perfect equilibrium.15

Remark 4. By the same argument as in the proof of Proposition 3, one
can establish that �a + �n − 1�d�/n is an evolutionarily stable outcome in
the “reduced” normal-form game where the choice of base-game strategy
is conditioned on the opponent’s message only. As mentioned in the In-
troduction, this finding conforms with Schlag’s (1993) result that this is the
only outcome that can arise from an evolutionarily stable strategy in the
reduced game.16

14First, fix M�q� = M ′. The program to minimize the sum
∑

m∈M′ q
2�m�, subject to the

constraint that all q�m�, for m ∈ M ′, are nonnegative and sum to 1, has the unique solution
q�m� = 1

k
for all m ∈M ′, where k = �M ′ �. Geometrically, this is equivalent to finding the point

in the unit simplex in �k that is closest to the origin. The minimum value, for M�q� = M ′
fixed, is thus 1

k
. Hence, k should be chosen as large as possible, i.e., M ′ =M .

15This observation may be compared with van Damme’s (1987) general result that if a mixed
strategy σ in a finite and symmetric two-player game is evolutionarily stable, then �σ;σ� is
a proper equilibrium. The somewhat stronger conclusion drawn here is due to the special
structure of coordination games.

16He also shows that the Pareto efficient outcome d is obtained in an evolutionarily stable
set. An evolutionarily stable set (Thomas, 1985) is a closed set of symmetric Nash equilibrium
strategies such that strategies in the set earn at least the same payoff against all nearby best
replies as these earn against themselves, with a strict inequality if the best reply is outside the
set.



20 banerjee and weibull

Remark 5. Suppose that, although the game is symmetric, all individ-
uals can distinguish the two player positions in the game and are allotted
one of these positions in each matching. Then individuals can condition
their cheap-talk strategy on the position that they happen to be assigned
in an interaction. It is well known that in such a setting, evolutionary sta-
bility is equivalent to strict Nash equilibrium (Selten, 1980). Hence, in any
cheap-talk 2 × 2 coordination game with more than one message, evolu-
tionarily stable outcomes cease to exist. It is easily verified that the set of
neutrally stable outcomes then is reduced to the set �a; d�.17 Other out-
comes are vulnerable to invasion of mutants who send one message in one
position of the game and another message in the other. Such mutants will
earn the same payoff as the incumbents when meeting these, and earn the
“good” base-game equilibrium payoff when meeting each other.

An immediate consequence of Proposition 3 is that the sequence of sets
V NSS�M�, for �M� = 1; 2; : : : ; is growing. Each time a new message is added
to a finite message set M , all neutrally stable outcomes remain neutrally
stable in the new cheap-talk game, and one more neutrally stable outcome
is added, viz., the payoff a+�M�d

�M�+1 . Thus, the limit set lim�M�→∞ V NSS�M� is
well-defined, and we have established18

lim
�M�→∞

V NSS�M� =
{
x ∈ �: x = 1

n
a+

(
1− 1

n

)
d for some n ∈ �

}
∪ �d�:

5. INFINITE MESSAGE SETS IN 2 × 2 COORDINATION GAMES

In any natural language, the set of possible statements is uncountably
infinite. Hence, the above assumption that the message set M be finite is
not innocuous. It is well known from the repeated-games literature that
the equilibrium correspondence may be discontinuous (lack lower hemi-
continuity) “at infinity.” More exactly, the limit set of finite-horizon equi-
librium outcomes, as the number of time periods goes to infinity, is always a
subset of the set of equilibrium outcomes when the number of time periods

17We thank an anonymous referee for pointing this out to us.
18The formal definition of this limit set is

lim
�M�→∞

V NSS�M� = ⋂
n∈�

⋃
�M�≥n

V NSS�M�

= ⋃
n∈�

⋂
�M�≥n

V NSS�M�;

granted the two sets coincide, which they do since the sequence �V NSS�M�: �M� ∈ �� is
increasing.
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is infinite, but there may also be lots of infinite-horizon outcomes that can-
not be approximated in the finite-horizon case. One may hence ask whether
the same is true in the present context: Do there exist neutrally stable out-
comes in the case of an infinite message set that cannot be approximated
by using a finite, but arbitrarily large, message set?

For the purpose of investigating this question, we now assume M = �,
and reexamine all results established above for finite message sets. We then
need to define payoffs and solution concepts when M , and hence also the
pure-strategy set H of the meta-game G, is infinite. Since the base-game G
is finite and thus has bounded payoffs, all methods easily generalize. First,
payoffs may still be defined as in Eq. (3) since the set of numbers αhk, for
h; k ∈ H, is bounded by ±maxi; j∈S �aij�. Consequently, the definitions of
Nash equilibrium, evolutionary and neutral stability, etc., may be accord-
ingly extended.19 Likewise, the decomposition formula (4) still holds, and
the proof of Lemma 1 applies to any countable set M . Inspection of the
proofs of Lemmas 3 through 6 reveals that these are valid for any count-
able set M , positive integer n, and finite subset M ′ ⊂ M . This fact can be
used to establish that the set of neutrally stable outcomes is “continuous at
infinity.”

Proposition 4. V NSS��� = lim�M�→∞ V NSS�M�.
Proof. It remains to show (a) V NSS��� ⊂ lim�M�→∞ V NSS�M�, (b) a; d ∈

V NSS���, and (c) �a+ �k− 1�d�/k ∈ V NSS��� for all k ∈ �, k > 1.

(a) In view of the fact that Lemmas 3–6 can be generalized as claimed
above, it is sufficient to show that if p ∈ V NSS��� is not of politeness class n,
for any n ∈ �, then v�p;p� = d. If p ∈ V NSS��� is not of politeness class n
for any positive integer n, then either (a1) no used message plays e1 against
itself, or (a2) there exist an infinite set M ′ ⊂ M�p� of used messages that
play e2 against each other and e1 against themselves.

In case (a1), all used messages play e2 against themselves, by Lemma 3.
If there is only one used message, then v�p;p� = d. If there is more than
one used message and v�p;p� < d, then some pair �m;m′� of used mes-
sages, m 6= m′, play e1 against each other. But then p /∈ V NSS��� since
an alternative best reply to p then is the meta-strategy q ∈ 1�H� that lets
all message pairs play like in p, but uses only, say, message m. Clearly,
v�q; q� = d > v�p; q� = v�q;p� = v�p;p�.

In case (a2), suppose v�p;p� < d. Then v�p;p� < a+�n−1�d
n

for some
n ∈ �. But then p /∈ V NSS���, since there exist alternative best replies to p,
that earn more against themselves than p earns against them. For instance,

19However, neutral stability no longer guarantees a uniform “invasion barrier”; see Bomze
and Pötscher (1989) for alternative evolutionary stability criteria for infinite games.
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let q ∈ 1�H� have all message pairs play against each other like they do in
p, but let q use only, say, n + 1 of the infinitely many messages in M�p�,
with equal probability for all. Formally, let M�q� ⊂ M�p�, �M�q�� = n+ 1
and q�m� = 1

n+1 for all m ∈ M�q�. Clearly, v�q; q� = a+nd
n+1 > a+�n−1�d

n
>

v�p;p� = v�q;p� = v�p; q�.
(b) To see that a; d ∈ V NSS�M�, it suffices to note that if all messages

are used (M�p� = �), and all messages play e1 (e2) against all messages,
then the payoff a (d) results, and the associated meta-strategy p is neutrally
stable.

(c) Let k ∈ �, for k > 1, and let p ∈ 1�H� be defined as fol-
lows. First, p�m� = 1

k
for all messages m ≤ k. Second, each of the first

k messages play e1 against itself, e2 against all other messages m ≤ k,
and e1 against all messages m > k. Third, each message m > k plays e1

against all messages. Then v�p;p� = 1
k
a+ �1− 1

k
�d, a number that exceeds

a = v�e1; e1�. All message pairs play base-game Nash equilibria in p, and
no message earns more than v�p;p�. Hence, p ∈ 1NE�H� by Lemma 1.20

In order to show that p ∈ 1NSS�H�, first note that q ∈ βH�p� implies
M�q� ⊂ M�p� and qm�m′� = pm

′ �m� = pm�m′� for all m ∈ M�q� and
m′ ≤ k. Since q and p have all message pairs play symmetric pure base-
game strategy profiles, the off-diagonal elements b and c in the payoff
matrix A are never used. As in the proof of Proposition 3, it thus suffices to
show that v�q; q� < v�p;p� for all q ∈ βH�p�. The same argument as used
there applies here too, implying that v�q; q� is maximized when q�m� = 1

k
for all m ≤ k. Hence, v�q; q� ≤ v�p;p� for all q ∈ βH�p�.21

It is not difficult to show that, just as in the case of finite message sets,
there does not exist any evolutionarily stable strategy when the message set
is infinite. Unlike in the case of finite message sets, though, this last claim
is valid even when players condition their base-game strategy on their op-
ponent’s message only. To see this, first note that evolutionary stability
requires that all messages be used, since otherwise deviations at unused
messages result in alternative best replies that do just as well against them-
selves as the incumbent strategy does against them. This is just as in the
finite case. In particular, no meta-strategy is of finite politeness class. Since
all messages necessarily earn the same payoff in equilibrium (Remark 1),
and not all messages can be used with the same probability in the infinite
case, no equilibrium meta-strategy can be of infinite politeness class either.

20We thank an anonymous referee for pointing out an error in our earlier proof of
claim (c).

21However, unlike in the case of a finite message set, v�q; q� = v�p;p� does not imply
q = p in the reduced normal form. For here q necessarily has unused messages and can thus
be altered at these without any payoff consequences.
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The only remaining possibility is that all messages play the “good” base-
game equilibrium against all messages. However, this does not constitute
an ESS even in the reduced normal form, since the probabilities with which
messages are sent can be altered without payoff consequences.

6. CONCLUDING COMMENTS

An alternative approach to formally study stability with respect to evolu-
tionary forces is to set up an explicitly dynamic model of some evolutionary
process and then look for outcomes that are stable in that dynamics. One
well-studied evolutionary dynamics is the replicator dynamics (Taylor and
Jonker, 1978). One then imagines a large population of pure strategists
who are randomly matched to play the game in question, here a cheap-talk
game. A mixed strategy represents a population state, with probabilities in-
terpreted as population shares of pure strategists. The payoff v�p;p� of a
meta-strategy p when playing against itself then is the average payoff in
population state p.

It has been shown that, in the replicator dynamics, evolutionary stability
implies (local) asymptotic stability (Taylor and Jonker, 1978), and that neu-
tral stability implies Lyapunov stability (Thomas, 1985; Bomze and Weibull,
1995). Hence, the above analysis of finite cheap-talk 2 × 2 coordination
games implies that each payoff in the finite set V NSS�M� is the average
payoff in some Lyapunov stable population state in the replicator dynam-
ics, as applied to a cheap-talk coordination game with message set M . Con-
sequently, if the population state happens to be such a state, then no small
shock can bring it to move far away. Indeed, the payoff may remain un-
changed under a wide range of small and moderate shocks. In the very long
run, however, one should expect that the population state, if subject to an
infinite sequence of small random shocks, will end up in some asymptoti-
cally stable set of population states. However, for many economics appli-
cations, the “medium term” may be more relevant for predictive purposes
than the “very long run”; see Binmore and Samuelson (1994, 1997) who
argue for this view. A challenge for future research is to identify the “rela-
tive stability,” or “relative size of basins of attraction,” of the different Nash
equilibrium components that correspond to each of the neutrally stable out-
comes, a challenge that may require a fair amount of numerical computer
simulations.
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