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1. Introduction

A significant understanding has emerged over the past few years that instrumental
variable (IV) estimation of the simultaneous equation model can lead to problems of
inference in the situation of “weak instruments,” which can arise when the instruments do
not have a high degree of explanatory power for the jointly endogenous variable(s) or
when the number of instruments becomes large. The situation of limited information
estimation of a single equation has been studied extensively in the presence of “weak
instruments.” These problems of inference in the weak instrument situation can arise
when conventional (first order) asymptotic inference techniques are used. In particular,
conventional first order asymptotics can lead to a lack of indication of a problem even
though significant (large sample) bias is present because estimated standard errors are not
very accurate.

A number of papers have recommended possible diagnostics for the presence of

the problem, e.g. Shea (1997). The usual form of the recommended diagnostics is to

examine the R” or the associated F statistic of the reduced form regression for the

included endogenous variable(s). A more refined recommendation is to consider the

partial R* (or its associated F statistic) after the predetermined variables have been
partialled out of the equation being estimated. Another approach has been to consider the
statistic originally put forward by Anderson and Rubin (1949). While both approaches
yield valuable information, the R approach lacks a distribution theory and the rank
condition test, in some sense, does not answer the question at issue of how well
conventional asymptotic theory does in forming statistics for inference.

In this paper, we take a new approach and use higher order asymptotic
distribution theory to determine if the conventional first order [V asymptotics are reliable
in a particular situation. We recommend a new specification test for the IV estimators,
and we concentrate initially on the 2SLS estimator since it is by far the most commonly
used estimator. Our new specification test takes the general approach as the specification
test approach of Hausman (1978) and estimates the same parameter(s) in two different
ways. In particular, we compare the difference of the forward (conventional) 2SLS
estimator of the coefficient of the right hand side endogenous variable with the reverse

2SLS estimator of the same unknown parameter when the normalization is changed.



Under the null hypothesis that conventional first order asymptotics provides a reliable
guide, the two estimates should be very similar. Indeed, they have unitary correlation
according to first order asymptotic distribution theory. However, when second order
asymptotic distribution theory is used, the two estimators will differ due to second order
bias terms. Our test subtracts off these bias terms and then sees whether the resulting
difference in the two estimates satisfies the results of second order asymptotic theory. If
it does and the second order bias term is small, we do not reject the use of first order
asymptotic theory. Furthermore, the second order asymptotic theory may provide a more
reliable basis for inference. An added attraction of our approach is that it permits the
econometrician to compare two estimates of a structural parameter, which will have a
straightforward economic interpretation in many situations. Thus, the econometrician
can use economic knowledge to determine if the two estimates are very different or are
close together in terms of the economic problem under study.

If the new specification test rejects we then consider estimation of the equation by
second-order unbiased estimators of the type first proposed by Nagar (1959). We again
consider forward and reverse estimation by the Nagar-type estimators to determine if the
estimates are significantly different according to the new specification test. If they are
not significantly different we recommend estimation by LIML, which we demonstrate is
the optimal linear combination of the Nagar-type estimators (to second order). If the
second specification test rejects or the two Nagar-type estimators differ substantially
based on economic considerations, we conclude that neither set of estimates, 2SLS or
LIML, may provide reliable results for inference in the particular situation.

Lastly, we investigate the performance of Nagar-type second order bias corrected
IV estimators. While these estimators and LIML can lead to improved performance, they
may also not perform well in the weak instrument situation. Thus, we demonstrate that
LIML need not be significantly better than 2SLS over a range of possible situations. In
particular, inferences based on LIML may not do well in the “weak instruments”
situation. While Rothenberg (1983) uses results of Pfanzagl and Wefelmeyer (1978,
1979) to demonstrate that, under certain conditions, LIML is second order efficient, our
specification test should help determine when reliable inference can be based on the use

of LIML. We also demonstrate the high degree of similarity for & -class estimators



between the approach of Bekker (1994) and the Edgeworth expansion approach of
Rothenberg (1983).

We analyze an empirical problem of a simultaneous equation specification of a
demand equation. This type of model formed the original model consider by Haavelmo,
who first demonstrated that least squares would lead to biased results. We find that the
2SLS estimate of the demand elasticity is about 2 times larger than the least squares
estimate. We then reverse the regression using price as the left hand side variable and
quantity as the right hand side endogenous variable. The estimated elasticity increases,
but the new specification test finds that the two estimates are close together enough so as
not to reject the first order asymptotic results. We then include many more instruments
by interacting the cost instruments with the indicator variables for each origin-destination
pair. The estimated price elasticity decreases significantly in magnitude, back toward the
least squares estimate. When we run the reverse 2SLS estimation, we find that the
estimate is about 6 times higher than then forward estimate. Here our specification test
easily rejects the use of the first order asymptotics. Also, LIML does not do well in this
latter situation.

The previous literature on the presence of weak instruments begins with Nelson
and Startz (1990 a and b) and Bound, Jaeger, and Baker (1995) who demonstrate the poor
performance of IV estimators in the weak instruments situation. Analysis of conditions
when the weak instruments problem may exist are given by Hall, Rudebusch, and Wilcox
(1996), Shea (1997), and Staiger and Stock (1997). Improved inferential techniques are
recommended by Startz, Nelson, and Zivot (1998), Wang and Zivot (1999), and Zivot,
Startz, and Nelson (1999). All of these approaches are essentially first order asymptotic
approximation approaches in terms of recognizing the weak instruments problem and
offering alternative approaches to inference. The second order asymptotic approach to
inference and to estimation that we use was initiated by Nagar (1959) and has been used
by a number of researchers. We follow the particular second order approximation of
Bekker (1994).

While many different conclusions can be drawn in the weak instruments situation,
we tend to recommend that the IV estimates, or even the “improved” IV estimates not be

used when the specification test rejects (unless the two estimates are close together). The



reason for this conclusion is that the IV estimators typically have significant bias in these
situations when the specification test rejects which recommends against their use. First
order asymptotics assumes that no bias exists, but the second order approach can find
significant bias depending on the underlying primitive conditions. When this bias is
present as demonstrated by the specification test, we believe that use of the IV estimates

may lead to misguided conclusions.

2. Model

We begin with the simplest model specification with one right hand side (RHS)
jointly endogenous variable so that the left hand side variable (LHS) depends only on the
single jointly endogenous RHS variable. In the class of models with only one RHS
jointly endogenous variable, which is by far the most common specification used in
econometrics, this model specification accounts for other RHS predetermined (or
exogenous) variables, which have been “partialled out” of the specification. Thus, we do
not lose any generality by not including predetermined variables in the initial
specification. We demonstrate below how RHS predetermined variables may be included
in the formulae and computations.

We will assume that

(2.1) =Py, +& =Bz, +v,

(2.2) Y, =Z, +V,,

where dim(r, )= K . Thus, the matrix z is the matrix of all predetermined variables, and
equation (2.2) is the reduced form equation for y, with coefficient vector z,. We also
assume homoscedastic normality:

V. ®w, O
(2.3) ( g J~ N(0,Q)~ N[O,[ ! ”D.
Vai @), Oy

We will consider the non-normal case later in the paper. We use the following notation:



y=| i} z=| 1| ol=Varle,) o, =Covle,,v,) o, =Covlg,,v,).

The simultaneous equation problem, which causes least squares to be biased, arises when

0, # 0. This situation is what specification tests of the type proposed by Hausman

(1978) and others test.

3. Motivation

A common finding in empirical research is that when 2SLS is used the coefficient
estimate increases in magnitude from the OLS estimate. However, in finite samples under
certain situations even when 2SLS is used on equation (2.1), bias remains because an
estimate of 7, from equation (2.2) is used, since the true parameters are unknown. We
now demonstrate how this result occurs.

Suppose that z7, is measured without error. Then, OLS of y, on zz, would be
unbiased. Instead, z, must be estimated, i.e., we have to rely on 2SLS. Let 7, denote

the first stage OLS estimator. We have

27:1 (Vli - ﬁzz, : (ﬁz -7, ))'2;7772
Z:l:l (Zi’j"—:Z )2

(3.1 bZSLS _ﬂ =

2

Observe that

ES" (v~ el —,)) 2, |= 37 Bl - 2(2) 2, - B E[(ﬂ 5 (ks -, )]

=W, Z; Z;(Z’Z)_l Z; — [))wzz ‘K
=Ko, .

Also note that Y " (z/%,)" =R} -Y" v,’, where R} isthe R* in the first stage

regression to obtain 77, . Therefore, we expect bias approximately equal to



Ko, 1
(3.2) 2

2 n 2
Rf Zi:l Yai

We acknowledge that the denominator of equation (3.2) is random so we have only an
approximation, but we justify the expression subsequently on the basis of the asymptotic
approximations that we carry out. We make some observations. Other things being equal,
* Bias is a monotonically increasing function ofo,, .

e Bias is a monotonically increasing function of K .

e Bias is a monotonically decreasing function of R; .

Note that conventional asymptotics, which lets n — o keeping DGP fixed, ignores the

3 2
influence of 0., K, R;.

3.2 Forward and Reverse Regressions

Let

DI

IR
(33) by, =22t and oy =S

~2 ~2
Yai i

denote forward and reverse 2SLS estimates, where y,, and y,, are the results of

orthogonal projections onto the subspace spanned by z . They are based on moment

restrictions

(3-4) E[Zi'(yil_ﬁ'yzi)]:()’ and E[Zi'[yzi_%yliﬂ:o-

It can easily be shown that, under conventional (first order) asymptotics,

(3.5 \/;'(bzsm _L): 0, (1)9
C



which implies that the forward and reverse estimates are perfectly correlated, i.e. the two
estimates are exactly the same in a given sample up to first order asymptotics.
Empirically, the authors have observed that the forward and reverse 2SLS estimates can
differ by large amounts numerically even with quite large samples, which by equation
(3.2) implies that in these situations conventional first order asymptotics may not provide
a particularly good guide to the actual sample situation in question. We use this
observation and implication of equation (3.2) to provide an approach that attempts to
determine when conventional first order asymptotics can be relied on, or when alternative

approaches need to be employed.

4. Bekker’s (1994) Asymptotics: Is It Sensible?

Since conventional first order asymptotics do not necessarily provide a reliable
guide, we need to use a different approach to the asymptotics. We explore the approach
of Bekker (1994) and see whether his approach to asymptotic expansion captures the
main features of the bias in the estimators that concern us. We assume as in Bekker
(1994) that

K 1 ’ 7
“41) —>«a and —m,zzm,=0.

n n
Below, we examine whether his asymptotics captures our motivation.

It can be shown that!

. o, — fo
42 limb, . = +o—2—"—22
4.2) p SLS ﬁ 0 +ow,

It can also be shown that’

(4.3) plileyzzl. =0+, and plimlzﬁi =0 +0w,, .

i=1 n o

! See Bekker (1994, p.663).
2 See Bekker (1994).



Using the fact that o, = ®,, — fw,, , we may rewrite equation (4.2) as

o Oy,

(4.4) plimb,,, = B+ - - ,
o plimn ™y y2 plimR;

which coincides with equation (3.2) and justifies our approximation result with the

addition of the parameter « .

5. A Specification Test based on Forward and Reverse 2SLS

We now turn to the main contribution of the paper. We attempt to provide an
answer to the question: When can you trust the conventional first order asymptotics given
the well-documented problems of the first order asymptotic approximation in certain
cases? As our derivations demonstrate above, the 2SLS bias depends on 3 factors: the
covariance of the stochastic terms in equations (2.1) and (2.2), the R* of the reduced
form equations, and the parameter ¢« which depends on both K and n. Thus, no simple
single statistic, e.g. the R* of the reduced form equation (or the associated F statistic),
seems likely to be sufficient to answer the question of how well the conventional
asymptotic approximation is doing in a particular situation.

Instead we turn to one of the basic ideas of the specification test approach of

Hausman (1978) and estimate the same parameter, 3 , in two different ways. If the

difference between the estimates is small, one will not reject the underlying assumption
of the model specification. If the difference is large, one will come to the opposite
conclusion. Here a possible approach is to use the forward and reverse 2SLS estimates
and see how far apart they are. Thus, the specification test will be used in model
specifications with overidentification, but this situation holds in most instances. An
“economic sense” of the difference of the two estimates can be gained because in many
cases the econometrician will know how big a change in the true coefficient 8 is
important, since the parameter will have a marginal interpretation.

To do a statistical test, we need to determine the variance of the difference of the

two estimates. Here first order asymptotics will not suffice, since because the forward



and reverse coefficient estimates have unit correlation, the variance of the difference of
the two estimates will be zero when a first order asymptotic approximation is used. Thus,
we turn to second order asymptotic approximations, which were pioneered by Nagar
(1959) and have been used since by Kadane (1973), Sargan (1976), Rothenberg (1983),
and numerous other authors.

Note that the probability limit of the difference between the two possible

estimators of f is equal to

00! +adet(Q)

O = aw, Xpo +am,)’

Bekker (1994, eq. (4.7)) shows that 2SLS is asymptotically normal. Therefore,
Jn (b,gs —1/c,s — B) is also asymptotically normal. Because we do not know B in

general, we would like to deal with an asymptotic result of the form

(52) ~n| by — L _3|sn0op)
Casis

where B is a \/; -consistent estimator of B.

In terms of a formal null hypothesis we test

(53) H,: plim\/;(bms L B]: 0

Cosrs

where we are taking the plim relative to the usual (higher order) asymptotic

approximation. If we reject H, we decide that the usual first order inference based on

the asymptotic normal approximation to the 2SLS estimator is not sufficiently accurate to
be used. Two primary reasons exist for a rejection. First, the orthogonality assumptions
of the instruments may be false. The traditional Sargan test of overidentifying
restrictions also tests this assumption, but it is well known to have poor size properties.
Our Monte Carlo results demonstrate that the new specification test has considerably

better size properties than the Sargan test. Alternatively, a rejection may occur because



the finite sample properties of the first order asymptotic approximation are not

sufficiently accurate (weak instruments) in the current situation to be used.
B will be a ~/n consistent estimator of the difference of the biases. Let P and

M _ denote the projection matrices onto the column space spanned by z and its
orthogonal complement. It can be shown that

(5.4) O+aw,, = plimly;PZyz, and fBO+aw, = pliml ViPy, .
n n

Further, it can be shown by using Lemma 1 in Appendix A.1 that

(5.5) plimE = ©0 + o det(Q),

a 1,
———, M.y,
—-on

where
I,

— oM .y,

n 1

A

I, 1, &
_Y2MZY2_2(_)’2PZJ’1_ -
n n 1-o

A A

1, a 1,
= —»Py - —— M.y, -
n l-an 1-o

[x]>

1, a 1, a 1,
+| =Py, - ——y, M.y, —— M.y,
n l1-an 1-an
A n . 2
oa 1, a 1 , a 1 ,
+ —— M.y, ——y,M.y, |- ——y,M_y,
1-an 1-an 1-an

and @ is any consistent estimator for o . We may therefore use

[1]>

(5.6) B=-

1 1,
WPy, —»,P.y
n n

By the delta method based on Lemma 1 in Appendix A.1, it can be shown that

2V A2
L 3)o a0 2 (ogz)(a 2
1—06(®+0m)22) (B®+aw12)

Cosrs

Theorem 5.1: \/;(bms -
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Thus, we compare the difference of the forward 2SLS estimator and the reverse 2SLS
estimator after subtracting off the bias term, which arises to the second order of
approximation. Thus, the specification test takes the form of an asymptotic ¢ statistic:

d

0.5 2

5.7 m=—
w
where d is the LHS of Theorem 5.1, and w is a consistent estimate of the variance in

Theorem 5.1. We discuss later how to estimate this variance term.

6. A Specification Test based on Nagar-Type Estimators

We also explore an alternative approach, which is closely related to comparing
the forward and reverse 2SLS estimators. Nagar (1959) calculated the second-order bias
of the 2SLS (and other & class) estimators. He demonstrated how to bias-adjust these
estimators to second order. Thus, we can estimate Nagar-type bias corrected IV
estimators and then again compare forward and reverse bias-corrected estimators. The
estimates should be very similar if the asymptotic approximations are sufficient for the
particular simultaneous equation model specification. Thus, we follow a similar strategy
as in the last section, but here we use bias-corrected forward and reverse regression
estimators.

We use the B2SLS estimator of Donald and Newey (1998) to estimate the
forward and reverse regressions. Note that this estimator is a £ class estimator and is a

member of the Nagar class of estimators. The forward IV estimator of f is:

6.1) b= y’zpzyl—ly%szl : where A=— N
J’2sz2_)~y2sz2 1_K—2

We can also estimate 8 by the reverse IV specification:

62) LoXPn-MM.y
c »Py _)‘)QMZ)’I

11



By the delta method based on Lemma 1 in Appendix A.1, we can show that

Theorem 6.1:
2 2.2 2 2 2
, 0! o 0.0, +0, o; N a 0.0, +0,0,
1 ’ 0O l-« ch O l-o ch
il (6.1 -8.8) |- o] | 2 2 ,pom
c o, N o 0,0, +0,0, o, N o 0,0, +0,
-« Boe° 0 l-a p‘e’

We will use Theorem 6.2 below to compare the forward and reverse bias adjusted
estimators of B to form a test of the model specification.
We may want to consider linear combinations of » and 1/c for improved

inference. It can easily be shown that the asymptotic variance, to second order, for the

optimal linear combination is given by

o] o det(Q)
(6.3) Var, (bLIML): E"‘g o ’

which coincides with the asymptotic variance of LIML as derived by Bekker (1994, eq.
(4.7)). Therefore, we may interpret LIML as an optimal linear combination of bias
corrected forward 2SLS and reverse 2SLS. LIML is also known to be median unbiased
for normal distributions of the stochastic disturbance of equation (2.1), as shown by
Anderson (1977), and, more generally, for symmetric distributions of the stochastic
disturbance of equation (2.1), by Rothenberg (1983). Thus, the optimality results of
Pfanzagl and Wefelmeyer (1978, 1979) are applicable to claim that the resulting LIML
estimator is admissible, while other & class estimators are inadmissible unless A in the
estimator definition above has a coefficient of unity.

We now calculate our second specification test by comparing the forward and
reverse B2SLS estimators. Note that no bias correction needs be made as in Theorem 5.1
and in the first specification test since our estimators here have no bias to second order.
The variance of the difference of the estimators thus has a very simple form. As a

consequence of Theorem 6.1, we obtain

12



2 \2
Theorem 6.2: \/n L Y 0, 20 (st )2
c l-a B°0

Proof: Follows from

2 2 2 2 2 2 2

o’ o 0.0, +0. o’ o 0.0, +0, o’ a4 0,0, +0,0,
£ + 2 2 + £ + 1 1 _2 £ + 12 2 1
0 l-a 0’ 0 l-a p’e’ 0 l-a pe*

:%ﬁj@z (Gf ‘(ﬁchz -2fo,, +afl )+ (ﬁzﬁﬁvz -2po,, 0, +G€2v1 ))
_a 1

_1—06 ﬂzgz
_ 20 (o))
C1-a pre’’

(02 02+ (o, ~5.,J)

Our second specification test has the form of an asymptotic ¢ statistic:

A

64) m, = fL
w

0.5
2

where the numerator is the difference of the two estimators multiplied by #"* and the
denominator is the square root of the variance term in Theorem 6.2. We subsequently
discuss how to consistently estimate the variance term.

We now compare the two specification tests, which are based on the 2SLS
estimator and the Nagar-type estimator. We find that the two tests have unitary

correlation asymptotically using Bekker asymptotics.
Theorem 6.3:
1 - 1
(ﬁ@ +om,, )(6 +owm,, )’ \/;(bzsm -——B ]_ ﬁgz * (b - _): Op (1)

Cosrs c

Proof: See Appendix A.2.

13



Having established the asymptotic equivalence of the two tests, we now examine the
robustness of our result to departures from normality under conditions adopted by Donald

and Newey (1998). We impose a symmetry assumption:

Condition (6.1): (1) Ely/»e"|=0for j+k apositive odd integer such that j+k <5;

(ii) Ehv2i|j le,, |k J< o for j and k any positive integers such that j+k <5.

It can be shown that:

Theorem 6.4: Suppose that equation (4.1) and Conditions (7.1) and (7.2) hold true. The

approximate variance of v/n (b—1/c) equals

+( | ) Zf_ldf_( o )ﬂE[e{t-]—-%(cﬁ)z

-« n -« J ge*

201 (0'2 )2

£

l-a B*6°

where d, for i =1,...,n denote diagonal elements of P, .

Proof: See Appendix A.3.

In typical applications, the second term of this expression is expected to be small®
compared to the first term unless the kurtosis of the distribution is extremely large. Thus,
the approximation should work well in the symmetric case, expect for extreme
departures, as our subsequent Monte Carlo experiments demonstrate where we use a ¢-

distribution to allow for the non-normal situation.

* Because Z d. = K , we can without loss of generality write 71 Z; d’ —o’ =Var(d,), where

- 2
Var(d ; ) =n 12 (d . —K / n) denotes the sample variance of d ; - Therefore, the magnitude of

noo42
L Y2 (e Y| . o« .
- relative to can be readily computed.
-« l-o l-o

n

14



7. Similarity of Bekker’s (1994) Asymptotics to the Edgeworth
Expansion for k-Class Estimators

In this section, we demonstrate that the relevance of Bekker’s (1994) asymptotic
approximation is not necessarily confined to the case where oc = K/n is large. Given that

Bekker’s alternative limiting distribution is driven by the assumption that the number of
instruments grows to infinity as a function of the sample size, his approximation may
seem of limited applicability when the number of instruments is ‘small.” We demonstrate
that Bekker’s approximation is in fact quite similar to the second order Edgeworth
expansion with symmetrically distributed errors. Unlike the Edgeworth expansion based
approximation, Bekker’s approximation produces limiting normal distributions, which
causes the resulting tests to be quite convenient. Normal approximations turn out to be
quite reasonable approximations as supported by our Monte Carlo simulation discussed
in Section 12.

Rothenberg (1983) computes higher order moments of k-class estimators. For

symmetrically distributed errors, it can be shown by Rothenberg (1983, Theorem 2) that

Jn(b, s — B) has an (approximate) mean

(k-2).,

7.1 —_—
(7.1) ol

which predicts that the mean of b, is approximately equal to

vaz
(7.2) Bra=g=.

Observe that equation (7.2) is similar to the probability limit (4.2) of 2SLS under

Bekker’s asymptotics except that equation (4.2) uses © +0w,, as the denominator of the

bias. As for LIML, using an Edgeworth expansion we find that +/n (b, 4, — B) has an

(approximate) mean

15



(73) % 1),

N

and (approximate) variance

2 c’c’ -0’ 2
(7.4) O K O:Pu 00 | 1)~ % +adet(fz),
® n C (C] C

which is similar to the Bekker-based result we derived for LIML in equation (6.1), except
the approximating factor o¢/(1— ) in equation (6.3) has changed to ¢ in equation (7.4).
As for the (forward) k-class estimator » considered by Donald and Newey (1998), using
an Edgeworth expansion it can be shown that Jn (b— B) has (approximate) mean 0, and

(approximate) variance

2 2.2 2 2 2 .2 2
ol KOO.+o0 o o0’ +0
(7.5) (98 JF_%JFOO)z @8 +a%
n

Notice that equation (7.5) again agrees with a Bekker-based asymptotic variance of the
Donald-Newey estimator in Theorem 5.1 except that, again, Rothenberg’s Edgeworth
correction terms are of order ¢ , whereas Bekker’s correction terms are of order
a/(1—-a). These results suggest that Bekker’s asymptotic approximation can be
interpreted as a convenient method of Edgeworth expansion with wider applicability than
might be thought considering Bekker-type asymptotics in isolation.

Bekker-type asymptotics or Edgeworth expansions do not always provide
reasonable approximation to finite sample distribution of IV estimators. First of all, it
should be noted that variance predicted by the Edgeworth expansion is not always

guaranteed to be positive. It can be shown that the (approximate) variance of

Jn (b2 as — B ) calculated by Rothenberg (1983, Theorem 2) is equal to

16



o} Koo, +70;, ¢} olo, +70,,

(7.6) ——— —_—.

O n ] ) ]

Observe that equation (7.6) is smaller than equations (7.4) or (7.5), which suggests that
the variance of 2SLS is smaller than that of a Nagar-type estimator or LIML.* We could
not tell whether Bekker’s asymptotics predicts the same pattern of variances. There is

good reason to believe that equation (7.6) may be overly optimistic about the variance of

2SLS in certain situations: It is not difficult to come up with a parameter combination

. . . . 2 .
such that equation (7.6) is negative, especially when the first stage R, and hence O, is
extremely small which can correspond to the “weak instrument” situation. Because
Bekker’s asymptotic variance of +/n (b,,¢ — B) is based on the delta method, it is

guaranteed to be nonnegative. Therefore, Bekker’s asymptotics may be interpreted as a
way to fix such undesirable predictions of Edgeworth expansions in extreme situations.’
However, a further caution should be recognized when using either Bekker’s asymptotics
or Edgeworth expansions for LIML or Nagar-type estimators. Neither LIML nor Nagar-
type estimators possess finite sample second moments.® Thus, the performance of the
asymptotic approximations may vary depending on sample size and whether a “weak
instruments” situation is present. We explore this possibility in Section 11 where we

perform Monte Carlo experiments.

* The bias of 2SLS is larger, which leads to the optimality results of Rothenberg (1983).

> The fact that Edgeworth expansion predicts a smaller variance for 2SLS suggests that if the bias of 2SLS
is negligible 2SLS may dominate both Nagar-type estimators and LIML under reasonable loss functions. In
Section 11, we investigate such a potential outcome by Monte Carlo simulation.

% See Mariano and Sawa (1972). As for the forward Nagar estimator, it does not even possess first moments
as established by Sawa (1972). It can be demonstrated that the Donald-Newey estimators that we consider
here have similar moment properties to the Nagar estimator.

17



8. Estimation of Asymptotic Variance Terms and Included
Predetermined Variables

In this section we consider some practical consideration for application of the new
specification test. For the first specification test, we need to estimate the asymptotic

variance

20 (c2)e?

8.1 = .
B v aw, ) (Bo+aw, )

We use consistent estimates for the unknown parameters and follow Bekker and use

d=(K-1)/(n-1). Using Lemma 1 in Appendix A.1, we can show that a consistent

estimator for asymptotic variance is given by

n , K-1, ’
K -1 (Zi:l(yi _BLIMLy2i)2)Z(J’2PZY2 - K szZyz)

n—

n—-K (V;PZY2)2()’;PZJ’1)2

(82) W =2

For the second specification test, we need to estimate the asymptotic variance

2
200 O,

8.3 =— .
83) w, 1-o B26?

By the same calculation, a consistent estimator is given by

84) W _2K_1 (Z:':l(yi_BuMLyzi)z)z
. , =

.
Bl (yQszz Al vy, )
n—K
In either of the variance estimates of equations (8.2) and (8.4), a different consistent
estimator other than LIML can be used, with no change in the distribution of the
estimated test statistic.
We have so far assumed that a single jointly endogenous RHS variable exhausts

the list of explanatory variables. The results we have derived are fully general with
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respect to the inclusion of predetermined variables in equation (2.1). We demonstrate that
our procedure would need to be modified if equations (2.1) and (2.2) are understood to be
equations where included exogenous variables are partialled out.

Suppose that the full model is

Yli :ﬂYZi +Z{1y+El

(3.5) , ,
Y2i =29+Z,m, +V,,

where Z,, is a k; dimensional vector of included predetermined variables in equation
(8.5) and Z,, is a K dimensional vector containing all other predetermined variables.
Let M, denote the projection operator partialling Z,; out of equation (8.5), and let
equations (2.1) and (2.2) be understood to be the resultant expression: Let ¥, denote a

column vector consisting of ¥, . Define Z,, Z,, E, and V, similarly. With

(8.6) n=M, v, »v=M,Y,, z=M,Z,, e=M,E, v,=M,V,,

we obtain equations (2.1) and (2.2) premultiplying equation (8.5) by M, .

As usual with partialling out with projection matrices a convenient computational
procedure follows where we

e Regress Y, and Y, on Z, Obtain residuals, and label them W, and W, .

e Regress Y, and Y, on Z, and Z, . Obtain residuals, and label them VIN/, and VIN/Z.
o Let p,=W,-W,and p, =W, —W,.

o Compute Y,P.y, = 3,0,, ¥oP.yi =591, YIP.y =331, ViM_y, = 3,7,

ViM_y, =¥, viM_y, =73y, and plug into equations (6.1), (8.2), and (8.4).
As for K in equations (6.6), (8.2), and (8.4), we may conservatively use

K =dim(Z,,)+dim(Z,,), although K = dim(z, )= dim(Z,, ) may also be a reasonable

choice. Note also that one may want to adjust the sample size in the above equations to
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n" =n—k, to take account of the loss of degrees of freedom from partialling out the Z,,

variables.

0. Additional RHS Jointly Endogenous Variables

To this point in the paper, we have only considered the situation of one RHS
jointly endogenous variable, which is by far the most common situation encountered in
empirical application of IV estimators (e.g. 2SLS). We now extend the model
specifications to allow for additional RHS jointly endogenous variables. We first derive
the second specification test for 2 RHS jointly endogenous, which demonstrates how to
generalize our results to 7, > 2 RHS jointly endogenous variables. We then consider the
first specification test in a similar situation.

We extend our original simultaneous model specification of equations (2.1) and

(2.2) to the situation of 2 RHS jointly endogenous variables:

0.1) Vi :ﬁzJ’2+ﬁ3J’3+£1

=z, +vVv
9.2) Y 2 2
y3 = Zﬂ:3 +V3

where we use the same matrix and vector notation as before. We consider estimation of

B, and B, in equation (9.1) by use of the Donald and Newey (1998) B2SLS estimator.
We will refer to the estimator as (b,,c, ). Changing the normalization we could also
estimate (1/8,,—B,/B,) or (1/B8,,-B,/B;). Thus, we would have three potential
estimators for (3,, 8,). The question would naturally arise of how to combine these

potential estimators to achieve the most powerful specification test of a given size.

However, as we demonstrate in Appendix B.2, it turns out that we cannot stack
the estimates to derive a more powerful test since the asymptotic variance matrix of the
three tests is singular. To be specific, the asymptotic variance matrix has rank equal to
one. Thus, all tests based on a single difference will have the same operating

characteristics, and a more powerful test cannot be derived using additional differences
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(contrasts). Thus, we will use the estimator b, —1/b, , where 1/b, is the estimator

derived from application of B2SLS (or another Nagar-type estimator) to the equation:

9.3) Y :ﬂizyl-i_(_ﬂﬁ; }/2"'82-

In Appendix B.2, we derive a consistent estimate of the asymptotic variance of the scaled

difference of the two estimators d, = n"* (b, —1/b, ) to be

9.4) 2

K-1 (Z; (yli = Boinn Yo = B Vs )2 )Z
K

2
’ K_l ’
VP y; — YoMy,
2 ’ K_l ’ I’Z—K
ﬁZ,LIML YP.y, — n_KJ’2sz2 -

’ K_l ’
(y3sz3 _y3sz3)
n—K

As before, other Nagar-type estimators may replace LIML estimators in the above

formula. The specification test will take the form:

(9.5) m, =——

where W, is the estimated variance in the above equation.

Having developed a specification test based on Nagar type estimators for the case
of additional RHS jointly endogenous variables, we develop another specification test

based on 2SLS estimators for additional RHS jointly endogenous variables. Let b, ,
and b, , denote the 2SLS versions of b, and b,. Again we need to subtract off a bias

term which is the /n -consistent estimate C of plim byg s, -plimb,g .. In Appendix

B.3, we demonstrate that

_—md, +n,d, + N,D, —N,D,
did,

(9.6) C=
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where
D, = Ay Ay — Ay — Ay Ay + AN ayyasy — A2 + 20450, — Aa’ss
2 2
D, = —Ay Ay, + AMya,, + Aays A,y — X assay, + Ay Ay — Adysay; — day Ay + Naya,s
d = A,A,—A’n

dy =—Ap A5 + 4345 and

2 2
N, = A, A4y — Adya,, — Aay A, + A aga,, — Ay Ay + Adysa,, + Aay Ay — X ayays
2 2 2 2
N, =—A4, Ay, + A4, a5, + Aa, Ay, — X ay a5, + A3 —224,a,, + A a™

n = ApAy — Ay Ay
n, =—A, A4y + 4’13
Here we use the notation A =6/(1-¢@),y Py, = A4, and y'M_y, =a, forjk=123.

Theorem 9.1:

20Var(e,. ) , 975(0,,0,, -0"»)’
l-« 0%0%

\/;(bzsm,l _bzsm,z - CAw) — N| 0,

where
0,=0,,0,, +00.,0,, +00,,0,, +0’®,,0,; —0°xn — 200 ,0,, — 0’ ®2x,

_ 2 2
Qz - _ﬁ2®22®33 —059330)12 _aﬁzwn@zz _O‘B3w33®23 —0 0,0 + ﬁze 23 +0‘®23w13

2
+0f,0,,0; + 0,00, +a 0,0,

Proof: See Appendix B.3.

Also, in Appendix B.3 we demonstrate that the two test statistics based on the Nagar
estimator and the 2SLS estimator have unitary correlation under Bekker asymptotics.
Thus, a similar result holds that all tests based on a single difference of the 2SLS
estimators will have the same operating characteristics. We also derive a consistent
estimate of the asymptotic variance for the test statistic derived in the theorem. Thus, we
have generalized the specification tests to additional RHS endogenous variables and find
the result that any single difference of the estimators provides a test that cannot be

improved upon.
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Inclusion of exogenous and predetermined variables in the specification as in
equation (8.5) in Section 8 raises no new complications. The partialling-out methodology
we used in Section 8 is directly applicable to the current situation with 2 (or more) RHS

jointly endogenous variables. The new jointly endogenous variable, Y, is partialled out
by regressing Y; on Z,. All other formulae follow as before, and the above variance

formula can be used on the partialled out variables to form the second form of our

specification test.

10.  An Empirical Example

We analyze an empirical example of a simultaneous equation specification of a
demand function. This type of specification is the original type of problem studied by
Haavelmo, who demonstrated that least squares lead to bias results. The left hand side
variable of the first specification represents movements of a homogenous bulk chemical
commodity measured in log of ton miles. Data were collected on approximately 50
origin-destination (OD) pairs over a 33 month period. Each data point is an individual
freight movement. As right hand side variables, we include the log of the price of the
movement which is a jointly endogenous variable, a measure of economic activity, and
OD indicator variables which change each year to allow for fixed effects for OD pairs.
We also used a trucking price index variable, which was assumed to be predetermined.
Altogether, we have 132 right hand side variables, one of which is jointly endogenous.
As instruments for the jointly endogenous variable we use the log of a short run marginal
cost variable for the appropriate movements of the bulk commodity, which is available
for each shipment.” The other instrumental variable that we use is the monthly price
index for diesel fuel.

In Table A in the first column we give the estimated price elasticity (and an

estimate of the first order asymptotic standard error) along with the estimated standard
error and the R*. Note that the price elasticity estimate is —1.36 (.147) and is estimated

quite precisely. The R’ is also quite high at .962. In column 2 we use the conventional

7 While these data are accounting data that unlikely to be true measures of marginal cost, potential errors in
variables in instruments do not create a problem in instrumental variable estimation under the usual
assumptions. See Hausman (1977).
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2SLS estimator. The estimated price elasticity increases in magnitude to —2.03 (.465)
which is the expected outcome given the expected direction of the simultaneous equation

bias of least squares. Again, we find a relatively small estimated standard error. When
we consider possible diagnostics, we find that the R* of the reduced form is 0.941 with

an F statistic of 154.5. The R* of the reduced form model after all of the predetermined

RHS variables of the structural equation have been partialled out is .093 with an

associated F statistic of 74.6. While the partialled out model has a lower R* and F
statistic, as expected, they do not indicate a problem according to rules of thumb
previously put forward in the literature.

We now interchange the jointly endogenous variable and put price on the LHS

and quantity on the RHS. The results are given in Column 3 of Table A. We use the

. . 1 .
same instruments and find our estimate of — to be -0.433 (.094) so the reverse estimate
c

of the price elasticity is —2.31 (.500) so that the difference between the forward and
reverse estimates of the price elasticity is 0.275. The question is whether these estimates,
which should be exactly the same under first order asymptotics, are different enough to
reject the conventional first order asymptotic approach.

Using the second order approximation of equation (6.6), we estimate the
difference in the bias of the two estimators to be -.0012, which is quite small. We then

use equation (8.1) to calculate the variance and estimate our specification test statistic to

be:

(10.1) m=

Thus, up to a second order asymptotic approximation we do not reject the first order
asymptotic approach or the associated estimators.

We now use the Nagar-type estimator of Donald and Newey in columns four and
five. Here we find the same estimates in the forward and reverse direction because the
degree of overidentification is 1. Using Theorem 2 to form the specification test, we find

it to be 1.82, which is very similar to our previous estimate. Lastly, we find the LIML
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estimate to be —2.05 (.469), which does lie between the forward and reverse estimates, as
expected, but note that it is quite close to the forward 2SLS estimate.

We now increase the number of instruments by 131 by interacting the cost
instrumental variable with the corresponding OD indicator variables. This new variable
allows for unobserved cost differences across the different OD pairs. The results are
given in Table B. The first column has the forward 2SLS estimate of —1.24 (.194) which

has decreased significantly in magnitude back towards the least squares estimate from
Table B of —1.36. A situation of weak instruments may well be present. The R* of the

reduced form is 0.972. The R’ of the reduced form for the partialled out model is .219
with an associated F statistic of 2.79, which gives little indication of a weak instruments
problem.

In the second column of Table B we present the reverse 2SLS estimate of —8.01
(.789), which is approximately 6.5 times higher than the forward 2SLS estimate. The

difference between the two estimates of —6.77 would likely be considered significant, on

economic terms, by most researchers. Here the R* of the reduced form of the partialled
out model is .038 with an associated [/ statistic of .280, which could indicate that a
“weak instruments” problem exists according to rules of thumb put forward in the past
literature. The difference in second order bias terms is estimated to be -.041, much
smaller than the actual difference in the forward and reverse estimates. The test statistic

1s estimated to be

A

d__2973 1401,

10.2 m=
(10.2) w174

Thus, the specification term rejects the conventional first order asymptotic approach, and
we would recommend that the estimates not be used.

In columns 3 and 4 of Table B we present the Nagar-type bias corrected forward
and reverse IV estimates recommended by Donald and Newey. The forward estimator is
now —1.21 (.194), while the reverse estimator is —4.64 (.293). While some improvement
has been made, the two estimates still differ by a large amount. The specification test is
estimated to be 5.78, which again rejects. Lastly, the LIML estimate is —1.18 (.211),

which, again, is quite close to the forward regression. Thus, we do not recommend the
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use of LIML in the weak instrument situation when the forward and reverse Nagar-type
estimators differ significantly because it often has a significant asymptotic bias, as
indicated in this example and in other empirical examples we have investigated.

We conclude that in a real world example that the IV estimators can perform
poorly in the weak instrument situation. Using the forward and reverse estimate seems to
give a convenient metric to analyze the performance of the estimators. The specification
tests we have proposed also work as we would expect. We now turn to some Monte-

Carlo results to explore further the performance of the tests.

11. Monte Carlo Experiments

We generated data from the model specification

’
Yiu = ﬂziﬂ:z +vy

yzi:Z;ﬂz +V2i i=l,...,n
such that
z,~N(0,1,.), r, =(,....0),
0= 1 o, 52 _ ﬂ;E[Zizf}tz _ K¢2
o, 1] / ﬂ;E[zizi'}tz +w, K¢>+1

Here, R ; denotes the theoretical R’ in the first stage regression. We use following

parameter combinations:

n =100, 250, 1000, 10000

0w, =—9, -5 59
R} =.001, 0L .1, 3
K =5, 10, 30

We examined performance of our tests by 5000 Monte Carlo replications. We

used a range of instruments from 5-30, sample sizes of 100-10,000, and a range of
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. . =2 .
covariances (correlations) where we vary the R, of the reduced form regression.”

Because of space limitations we only report some or the results here with other results
reported on a website.” Columns (a) and (b) report the actual size of the test based on
forward and reverse 2SLS with 10% and 5% nominal sizes. The actual sizes of the test

are generally quite close to the nominal sizes, with only a small falling off above the
nominal size when the number of instruments becomes large and the E? becomes quite
low (.001). Columns (c) and (d) report actual biases of forward and reverse 2SLS

estimators, and column (e) reports the expected value of B . The estimates of the
difference of second order bias terms are typically quite accurate, although when the
expected difference of biases becomes quite large, the estimates can vary by quite a lot.
However, in these situations, the test statistic should still work well because the presence
of a large expected bias (even if not measured totally accurately) will alert the

econometrician to the dangers of using 2SLS, or other IV estimators, in this situation.

Importantly, the estimates of the expected value of B appear to do a good job of
indicating the presence of “weak instruments,” e.g. column (e) in Table 3 with “weak
instruments” compared to column (e) of Table 4 where the instruments are better because
the R of the reduced form equation is much higher. Thus, the second order asymptotic
approach seems to provide a useful tool to indicate when the “weak instrument” problem
is present.

Columns (f) and (g) report the actual size of the traditional test of
overidentification (based on forward 2SLS) with nominal sizes equal to 10%, and 5%."°
The conventional test of overidentification, based on the forward 2SLS estimates, does
not perform well in a large variety of situations, as has been noted numerous times in the
previous literature. As shown in Tables 1 and 2 the conventional test of

overidentification often has actual size of above 0.3, when the nominal size is smaller

¥ We set the values of B such that Var(g)=1.
? http://web.mit.edu/jhausman/www/

'Weuse 1+ R” of the regression of the forward 2SLS residuals on instruments as the test statistic.
Because forward and reverse 2SLS should be perfectly correlated under conventional asymptotics, tests of
overidentification based on forward and reverse 2SLS should have the same operating characteristics if
conventional asymptotics provides reasonable approximations to sampling distributions of various IV
estimators.
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than 0.1. Note that when the E? of the reduced form becomes high, the test of

overidentification has approximately the correct size. When the number of instruments
begins to increase, the size performance of the test of overidentification falls off again.
When the number of instruments becomes quite large (30) in Tables 1 — 4, the actual size

of the conventional test of overidentification becomes abysmally large, sometimes
exceeding 0.5 in the low ﬁ? situation. Thus, we conclude that the second order

asymptotic approximations work considerably better than the conventional first order
asymptotic approximations when applied to the 2SLS estimator.

Columns (h) and (i) report results for cases where we consider the Nagar-type
bias corrected estimator. We find that the actual size of the new specification test based
on Donald and Newey’s estimator with 10% and 5% nominal sizes again approximates
the nominal size quite well with no tendency to be too large a size for the test. Columns
(m) and (n) report the actual size of the traditional test of overidentification (based on
Donald and Newey’s forward estimator) with nominal sizes equal to10% and 5%.""
While the use of the Nagar-type estimator improves the traditional test of

overidentification, the conventional test of overidentification sometimes has an actual
size of above 0.2, when the nominal size is smaller than 0.1. Note that when the 13? of

the reduced form becomes high, the test of overidentification has approximately the
correct size once again.

Also, note that in columns (j)-(I) where we report the means biases of the Nagar-
type and LIML estimators, the mean bias of the Donald-Newey (Nagar-type) estimators
and LIML estimators occasionally are found to be very large. This finding results from
the non-existence of finite sample moments of Nagar-type and LIML estimators that we
discussed in Section 7. These results should be a caution about using Nagar-type or
LIML estimates even with the second order asymptotic approximations without further
investigation or specification tests in a given empirical problem.

Table 5 report Monte Carlo results in some “extreme cases” where the number of

instruments is large, K = 30, and the R ﬁ of the reduced form is low. Instead of calibrating

"'We use 11+ R” of the regression of the residuals from Donald and Newey’s forward estimator on
instruments as the test statistic.
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0., keeping 6, =0, =1 and varying 8, we calibrated ®,, = Cov(v,,v,) as well as 3
keeping 0, =0, =1, thereby varying 0, = O'f1 - po, , =1-p o, toamuch greater
extent than in previous Tables 1 - 4. The actual sizes of the new specification test in
columns (a)-(b) and (h)-(1) are again close to the nominal sizes, although in a few cases
the test based on the Nagar-type estimator does have too large size. However, these
results should be compared to the traditional test of overidentification based on 2SLS in
columns (f) and (g) where the actual sizes always exceed 0.85, even though the nominal
size is 0.10! Similarly, the traditional tests of overidentification based on the Nagar-type
estimators in columns (m) and (n) do better, but they still exceed the nominal size by
factors of 2 to 5. These results, along with the second order bias estimates of column
(e), which are again successful in indicating the presence of “weak instruments,”
demonstrate that tests based on the second order asymptotic approximations do
considerably better than tests based on the conventional first order asymptotic
approximations in these extreme situations.

As we discussed in Section 7, Edgeworth expansions predict smaller variances for

2SLS than for LIML. In Table 6, we compare 2SLS and LIML when the bias of 2SLS is
negligible and R ; is small. In all cases, 2SLS dominates LIML under mean square error

loss. This result is not surprising because LIML does not possess second moments.
However, the dispersion of LIML around 8 measured in the interquartile range or

interdecile range is much larger than that of 2SLS."> We conclude that Bekker’s
asymptotics may be a poor approximation when ﬁ? is extremely small, which leads to

the suggestion of using the specification test to help determine the usefulness of second
order asymptotics in a given situation.

In Table 7 we repeat Table 1 for the non-normal case. We use a log normal
distribution for the RHS variable standardized with mean zero and variance one, and the
stochastic disturbance has a ¢ distribution with 12 degree of freedom, again standardized
to have mean zero and variance one. A comparison of Table 7 with Table 1 shows that

the new specification test continues to perform well with the actual sizes of the tests in

12 The fact that 2SLS does better than LIML suggests that 2SLS should be used for Hausman tests of
endogeneity of regressors.
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columns (a)-(b) and columns (h)-(i) quite close to the nominal sizes. The nR’ of the test
of overidentification in columns (f)-(g) performs more poorly than in Table 1 and we
again find some evidence of a “moments problem” for the Nagar type estimator. These
results carry over to the other Monte Carlo experiments for the non-normal situation, and

we report the results on the website.

12.  Conclusions

Using the forward and reverse 2SLS estimates to test for weak instruments to
form a specification test seems to be a helpful approach. We use a second order
asymptotic approximation to form a test statistic to see if the conventional first order
asymptotic approach is accurate enough to provide reliable inferences. The first order
asymptotics implies that the two estimates should be the same, while the second order
asymptotic approach allows for different biases in the two estimators. The
econometrician can also consider the estimates and see whether the difference in the
estimates is large in economic terns relative to what would be expected. The test statistic
is straightforward to compute using existing econometric software to calculate the 2SLS
estimators, Nagar-type estimators, and LIML as well as the partialled out models.

While giving guidance to inference is often subjective based on the
econometrician’s beliefs, we suggest the following approach. We suggest that the new

specification test of equation (5.7) based on forward and reverse 2SLS be done. If the

2SLS estimates are close and the estimate of the bias term B from equation (5.6) is
small, the conventional first order asymptotics may be used, and the 2SLS estimates
should be all right. If the test rejects or the estimated bias term is large, we then suggest
using Nagar-type estimates to perform the second specification test based on equation
(6.4). If the forward and reverse estimates are close and the specification test does not
reject, we suggest using LIML, which is the optimal combination of the two estimators."
If the test rejects, we do not suggest using these estimates as either a failure of the

orthogonality conditions or an extreme situation of “weak instruments” is likely to be

" If the LIML estimate differs markedly from the forward and reverse Nagar-type estimates, the LIML
estimate should not be used because the problem of the absence of finite sample moments may well be
present.
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present. If the Nagar-type forward and reverse estimates are not close but the
specification test does not reject, a decision cannot typically be made based on the new
specification test.

Our approach can be generalized when more than one jointly endogenous variable
is on the right hand side of the model specification. Two variables can be interchanged
as before to provide forward and reverse estimates. Second order asymptotic theory is
again used to form the associated distributions of the second order distributions for the
bias terms and for the specification tests. We derive the rather unexpected result that
only one set of differences provides the optimal specification test. We expect to extend

our results to 3 or more RHS jointly endogenous variables in the near future.
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Table A: Estimates with 1452 Observations, 134 Predetermined Variables and 136
Instruments. & =.002

Least 2SLS 2SLS Nagar Nagar

Squares Forward Reverse Forward Rev.
1. Price elasticity -1.36 -2.03 -2.31 -2.03 -2.31

(.147) (.465) (.500) (.465) (.502)
2. Standard Error 301 .303 .133 .303 .133
3. R? K10y — — — —

Reduced Form Regressions

4. Standard Error .053 308
5. R? 941 960
6. F statistic 154.5 234.1

Partialled Out Reduced Form Regression

7. Standard Error .016 .037
8. R? .093 012
9. F statistic 74.6 8.54
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Table B: Estimates with 1452 Observations, 134 Predetermined Variables and 266
Instruments & =.092

Least 2SLS 2SLS Nagar Nagar

Squares Forward Rev. Forward Rev.
1. Price elasticity -1.36 -1.24 -8.01 -1.21 -4.64

(.147) (.194) (.789) (.194) (.293)
2. Standard Error 301 301 .060 317 .080
3. R? K10y — — — —

Reduced Form Regressions

4. Standard Error .038 .295
5. R? 972 967
6. F statistic 154.2 130.5

Partialled Out Reduced Form Regression

7. Standard Error .016 .038
8. R? 219 027
9. F statistic 2.79 .280
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Appendix

A One Endogenous Regressor

A.1 A Technical Lemma

Lemma 1 Assume that £ — a + o (n‘l/z), and that Th2' 2wy /n is fized at ©. Let S = U'P,U and
S+ =U'M,U. We then have

n~1S1 0-F+a-wn
n=1819 O-0+a-wp

vn niigm - OFarwn :>/\/<0, Ao )
n~1S4 (1-a)- -wn 0 At
n~1S55 (1—-a) w
n~1S55 (1—a)- wa

where A and A+ denote symmetric 3 x 3 matrices such that

Kl’l = 4w106% + 2aw%1

A1 =2w1108 4 23°Owis + 20w w2

Ay 3 = 436w + 20w,

Ao o = w110 + B2Owas + 20w + awy1was + awly
Kg’g = 2w900 + 20w1s + 20iwoowio

K373 = 4wy9O + 20&(4)%2

and

Aiz =2(1 — a)wiiwia
Ais=2(1-a)wh

Aj‘g = (1 - a)wjwa + (1 —a)wiy
Aig =2(1 — a) waawio2
Azz=2(1-a)ws,

Proof. Let U = [ Y1 Y2 }, M = [8- zmwa, zma] = zm2 (B,1), and V = U — M. Note that the rows of

V are i.i.d. normal with zero mean and variance 2. Using Bekker (1994, Lemma 2), we obtain
E[U'P,Ud) = (3,1)' 742 Zny (8,1) a + KQa, E[U'M,Ua) = (n — K) Qa.

The conclusion follows by combining this observation with Bekker (1994, Lemma 1) along with the fact

S and S+ are independent of each other due to normality. m



A.2 Proof of Theorem 6.3: Asymptotic Equivalence of Two Tests

Because 19 = 12 + o, (%), and A = £=22/(1 - £=2) = -2 4 ) (\/Lﬁ), we may without loss

of generality assume that % = ) for the asymptotic argument. For simplicity, we will rewrite 4; =

Lyl Pyr, Ay = Ly Pys, A3 = 2y} Pys, ay = 2yi Myy, az = 2y, My, and a3 = Ly My,. Observe that
AsAz = (8O + awiz) (© + aws) + 0, (1), and  (Az — Aas) (As — Aaz) = BO? + 0, (1). (A.1)

We may then write

[

B=——=_
A - Ay’
where

E = (A1 — Aay) das — 2 (Ay — Aag) Aag + (A3 — Aas) Aay + (Aa1) (Aas) — (Aaz)?.

Therefore, we have

S=vn <b25LS - As Ay AsAj Az4s

1 AQ — )\&2 A1 — )\(11 (A2 — /\a2)2 — (A1 — /\(11) (A3 — )\(13)
T= —— = — =
\/ﬁ <b C) \/ﬁ (Ag — )\ag A2 — )\CLQ) \/ﬁ (Ag — )\ag) <A2 — )\ag)
The numerators on the far RHS in (A.2) and (A.3), i.e., AZ—A; A3+E and (s — Aaz)?— (A1 — Aa1) (A3 — Aas)
are identical. Call it F. Using Theorem 6.2 and (A.1), we can show that \/nf — N (O, 2:2-02 (03)2),

ie.,

C25LS

~ = 2 _ =
UL I BTER

(A.3)

VnF =0, (1). (A.4)
Combining (A.4) with (A.1), we obtain
o [ (BO + awrz) (O + awsy) 362
(BO + awq2) (O + awy) S — FO-T = ( A, T s = has) (g = Aa2)> VnF

=0p(1)-0p(1) =0, (1).

A.3 Proof of Theorem 6.4: Higher Order Approximation with Nonnormal

Error

We adopt the same structure of argument as in Donald and Newey (1998). Our proof is much simpler
due to explicit use of Bekker’s assumption that L —my2 2y is fixed at © and £ sa+o ( ﬁ) Consider
the normalized difference of the two Nagar type estimators

Jn (yz Y1 — Ay Meyn yi Py — Mgy zy1> - (yg 2y — ApMevr Yy Poyy — A M, v1>

Yo Poy2 — Ays Moy2  ya Poyn — Aya Moy Yo Poy2 — AsMyva  ya Poyr — Avg Moy
(A.5)

Because
Y1 Py = nfB%0 4 26 (2m2) v1 + v| Povy,
Yo Poyr = nBO + (2m2) v1 + B (27m2) va + v Povy,
Yo Poyo = nO + 2 (2m3) va + V4 Povo,



we have

Yo Poy1 — A M,vy %(zwz)lel + 111’2P e1 — T vh M. e,

Yo Poy2 — Ay M, vy T o+ L2 (2m5) o + Lvh Povs — A4 M0,
_ L(zmy) e1 4+ 2 (14 M) vhP.er — Lk (A6)
O+ 12 (zm2) vg + L1+ ) vyPvs — %/\fu’zw7 )
and
Y1 Poyr — Wi M,u . %/B(zm)/el + %fuﬂqu — %/\fuﬂMzel
Yo Py1 — Mh M v, e+ 1 (zm9) vy + ig (zms) va + LobPovr — Lah M
. %ﬁ <Z7T2)/€1 + %(1—"—)\) Ullp e1 — l)\v’lal (A 7)
8O + % (zms) vy + %ﬁ (zmg) vg 4+ L (1 + A) vhPv, — —Av2v1 ’
We first take care of (A.6). Let
i ]. ! 1 / 1 /
Hy =0, Hi=-—|=2(zm) va+— 1+ viPvs — =Avjvg |,
n n n
and
h (zm2)" € (1+N)vyPse ! — \uhe
1= \/— 71—2 1, \/— 2 1— \/’E 2¢1-
Recall that A = O (1) under Bekker’s asymptotics. Therefore, we may write
- 1
Hi=Hi 1+ Hi2+Hi3+0, (g) ;
where
~ 1 1
Hl,l = —gQ (2772)/1}2 = Op <ﬁ> s
~ 1 1
Hio=—=(14+)\) (vyPovy — Ko2) =0, | —= A8
2= =3 (140 (5P~ Ko2) = 0, (2 ). (A8
~ 1 1
Hyz= E/\ (”U/Q”UQ - ’IZO'?)?) =0, <%> . (A.9)

Derivation of the second equality in (A.8) uses Bekker (1994, Lemma 1), which implies
1 K d? 2
" var (vhPas — Ko%,) =25 (62,) + 2% (B og] —3(02)%).

and the fact that Lji < % = O (1).! Derivation of the second equality in (A.9) used the usual Central

Limit Theorem. Similarly, we have

- 1
hi=hig+hi24+0, <ﬁ> )

where

~ 1

hig=—= (14N (vyP.e1 — Koey,) = Oy (1), (A.10)
vn

~ A

hl’g = — (’U/Qé‘l — ’I”LO'EUz) = Op (1) . (All)

S

1This is because . d; = K and 0 < d; < 1.



The second equalities in (A.10) and in (A.10) are derived by the same argument as in the derivation of
those in (A.8) and (A.9). Using the expansion
1 1 1

—+

~ 1 ~
— = Hy+—Hi+--,
H - H, Hi  H !

Hy

we may write \/n times the far right side of (A.6) as

hi+hi  hi+hii+h hi+hig+his [~ . .
- AL LI SR LU LSS (H1,1 +H1,2+H1,3)
H, + H, H,y Hi
L hi +E171 +7L1,2
H}
Chithag+ b
==

_ _ N
(H1,1 +Hip+ H173) + 0, (1)

+o,(1). (A.12)

We now take care of (A.7). Using the same argument as before, we may write v/n times the far right
side of (A.7) as

ho+hy  ho+hoy+hao Y + hot + has

(ﬁz,l + ﬁz,z + ﬁz,z&)

H, +ﬁ[2 H, H22
ho+hot+hos (= = = \2
+ % (H2,1 + Hao + Hz,s) +0p (1)
2
ho + hoq + R
tetleathee ) (A.13)
Hy
where
~ 1 ’ 1 / 1 ’ 1.,
Hy = (0, Hy=—(zm) v1 + =0 (zm2) va + — (1 + \) va P,v1 — —Avgur,
n n n n
h —Lﬁ<2ﬂ')/€ h —L(l—i-)\)v’Pa —L)\v’a
2 — \/77 2 1, 2 — \/ﬁ 142¢1 \/77 1€1y
~ 1 1 1
H271 = E (Z’/TQ)/'Ul + E/B (Z’]TQ)/'UQ = Op (ﬁ) ,
~ 1 1
HQ’Q = E (1 -+ /\) (UIQPZ’Ul — KO’UIW) = Op (_TL> y
. 1., 1
Hys = —g)\(vzvl — NOyywy) = Op )
and

~ 1 ~ 1
h271 = — (1 + )\) (’U/lpzzfl — KUE’Ul) = Op (1) R h272 =——A (1}/151 — TL(J’svl) = Op (1) .

/n n

Combining (A.12) and (A.13), we obtain an approximation to (A.5):

hy +711,1 +E1,2 _ ho +E2,1 Jr%z,z

Hy H, +op (1)
ﬁ (1 + )\) (5/1Pz51 - KU?) — % (5/151 _ no.g)
- J6[C) +0p (1)
L, E/PZ€1—KO'2 —L)\ E/Mzgl_n—ng
Vv \"1 e I 1 2
- 61 +0p (1)



Using Bekker (1994, Lemma 1) and Condition (6.1), it can be shown that

Var (¢) P,e1 — Ko?) = 2K (0?) +Zd2 ( 1] —3 (o )2),
i—1

Var (M. — (n = K) o2) = 2(n - K) (02) + ( T Zd?) (Bl -3(02)7),

Cov (¢} Pey — Ko2,&y Moy — (n— K) & <K Zd2> ( 4] -3 (03)2) .
We therefore obtain
Var (% (61 P.ey — Ko?) — %)\ (e1M.e1 — (n — K) a§)>
=2 <5+A—2<n—K)) (02)°
< Zd2+— (n—2K+Zd2) — 92 ( Zd2)> ( [, —3(03)2)
2 ((1fa> (znd%’)(lgaf) (B[] -3 (0)7) +o(0).

from which we obtain the desired conclusion.

B Two Endogenous Regressors
It can be seen that (82, 83) can be estimated by Donald and Newey’s (1998) B2SLS applied to
Y1i = Payai + B3Ysi + €1i-

We will call such estimator (b1, c1). Similarly, ( 3 fg—z) and (é, f%) can be estimated by B2SLS

applied to

1 1 B
Y2i = Eyu + <%> Y3i + €24, and Y3i = Eyu + (é) Y2i + €3i-

We will call such estimators (bs, ¢2), and (b3, c3). Note that we have three estimators for (82, 83): (b1, 1),
(k) ().

B.1 A Technical Lemma

Utilizing Bekker (1994, Lemma 2) again, we can establish that

Lemma 2
y1 Py (33022 + 20233023 + F3O33) + w1
Vi Pyo (82022 + $3023) + awia
Jn 1 viPys | (B2023 + £3033) + awrs
n| ybPys O22 + awas
b Poys3 a3 + awas
Y3 Poys O33 + awss



and

1 M.
1/1sz2

Z/ZMZZ/2
yIQszS
yészS

( )
(1-a)
i 1 viMys | | I-a)ws
n ( )
( )
(1-a)

are independent of each other, and asymptotically normal with zero mean and variances equal to A and

A+, which are summarized below in Tables A.1 and A.2.

B.2 Nagar Based Specification Test

/
Applying the delta method, we can find that /n (b1 - é, ] — —%, b1 — f%;—, ] — %) is asymptotically
. . 2a Var(eq; 2.
normal with zero mean and variance equal to T times
O35> _ 923033 _ 9236033 922033
B22(022033—0232)2 B22(022033—0232)2 B2 (022033 —O232)? B233(022033—O232)?
_ ©23033 O35> O3> _ 922023
B22(022033—0232)? B822(©22033—0232)? B233(022033—O232)* B233(022033—O232)?
_ 9236033 252 S _ 922023
B25 (022033 —O2352)? B285 (022033 —60232)2 B32(022033—0232)° B32(022033—0232)?
922033 _ 922023 _ 922023 S
B285 (022033 —O232)? B205 (022033 —O232)? B32(022033—0232)2 B32(022033—0232)2

With some tedious algebra, it can be shown that the above asymptotic variance matrix is singular:

Postmultiplying the asymptotic variance by

623 >/ < 62622 >/ (/62623 >/
717070 ) - 707071 ) or 707170 )
<@33 B3033 B3O33

we obtain zero. Therefore, we cannot stack the estimates to derive a more efficient test since all tests

based on a single difference will have the same operating characteristics. This implies that the test can
!

be applied only to one component of (b1 — é, c1 — f%, by — f%’;‘, c1— %) , say by — é It is to be noted
N2
that the asymptotic variance of such a test is given by 2% Vlai(of“) L ——. Observe that Var (1)

B22 (@22 -
and (5 can be estimated consistently utilizing the consistency of LIML. Also note that

: Oz Oas . 1 A a 1 v,
plim | ~ ~ plim P, [y, ys3] — _ M, [y,
l 23 @33 n—2 yé [ZJQ yS] 1—an—2 yé [yQ Z/s]
©22 O3 ]

623 633

for any consistent estimator @ of &. We may therefore estimate the asymptotic variance consistently by

2
K—1 (Z?:l (y1i — BorimLy2i — 53LIMLZ/3¢)2)
n—K

2

2
’ K—1,_/ 2
2 ' Py — KL (e Peys =i vp Meys)
62LIML (yz 2Y2 — Y2 M2Y2 ViPya— KL yi M ys




Table A.1: A

4w (03922 + 20203023 + 3033) + 200,

11
o w11 (82022 + B3023) + w12 (ﬁg@zz + 20233023 + 59%@33)
Fwi1 (32022 + P3O23) + w1z (83022 + 20203023 + $36033) + o (wiiwi2 + wiiwiz)
- wi1 (82023 + 33033) + w13 (03022 + 26233023 + 33033)
5 w11 (62023 + £3033) + wi3 ( 5022 + 2023023 + ﬁgz,@sz’,) + o (wi1w13 + wiiwis)
Ay | Awis (82O + B3023) + 20w,
Ais | 2wi3 (2O22 + B3023) + 2wi2 (2023 + B3033) + 2awiowis
Ao | Awiz (82023 + B3033) + 20wy
T w11022 + waz (03022 + 26203023 + 336033)
+2w15 ($2O22 4 F3023) + a (wi1wan + wiy)
Ko w11023 + wag (63022 + 20233023 + F3033) + w12 (2023 + f3O33)
w13 (62022 + B3023) + a (Wi1waz + wiawis)
s wa2 (B2022 + 33023) + w12022 + w22 (52022 + F3023)
+w12022 + o (Waow12 + Waowi2)
Tos wa2 (2023 + 33033) + wW13O22 + w12023
+wa3 (82022 + $3023) + a (waowi3 + wWiawas3)
Az | 2wos (82023 + F3O33) + 2w13023 + 20wi3was
Aus w11033 + w3z (03O22 + 20203023 + F3633)
+2w13 (82023 + B3033) + o (wirwss + wis)
Asy | 2wo3 (82022 4 F3023) + 2w12023 + 20wiowas
Tas w33 (2022 + (3023) + w12033 + W13O023
w3 (62023 + $3033) + a (Waswi2 + wizwss)
Tus w33 (£2023 + B3033) + wW13O33 + w33z (52023 + F3033)
+w13033 + @ (w3zwi3 + wW3zw13)
Mgy | 4w2eBO9o + 2awdy
Aus | w22023 + w2302 + w22O23 + w23O22 + a (Waswas + waowas)
Ags | 4wn3Oa3 + 2003,
Ass w2033 + w33022 + 2wa3023 + (w22w33 + w%3)
Ase | w3023 + wr3O33 + w33O23 + wagOs3 + a (wsswas + wWaswas)
Ags | 4wszOs3 + 2wy




Table A.2: A+

A | 2(1—a)w? Agz | (1 — ) (wiiwss + wis)
Ay | (1— @) (wiwis + wiiwio) Ay | 2(1— @) wigwss
A1L3 (1 —a)(wnwis +wiwiz) Air, (1 — @) (waswiz + wizwas)
Af‘4 2( a) w12 A:J))‘G (1 — Oz) (w33w13 + W33w13)
A 2(1 — a)wiawis Ady 2(1—a)ws,
Af‘ﬁ 2 ( Oé) w13 AZJ,L_S (1 Oz) (u)gzu)gg -+ u)gzu)gg)
Asy (1—a) (wiiwaz +wiy) A | 2(1—a)ws,
Aé‘3 (1 — Oé) (wnwgg =+ w12w13) Ag‘5 (1 — (w22w33 =+ w23)
Aé‘4 (1 - Oé) (u}22u}12 -+ w22wlg) Ag—G (1 —Q ((.dggujgg + W33w23)
Ags | (1 — @) (wrwi3 + wiawss) Agg | 2(1—a)wdy
Aé‘ﬁ 2 (1 — Oé) W13w23
B.3 2SLS Based Specification Test
It can be shown that
by — 1 _ M N b ol e
"“"b Dy Dy 25LS basrsa Ay dy’
and
%) N1 NQ
dido | ————-C | =D1Dy| — — =
(d : ) (D D2)

Note that, by design, the two test statistics would have unitary (asymptotic) correlation. Furthermore, the
asymptotic variance of 2SLS based test would be equal to (plim 2Dy - plim D)/ (plim 2d; - plim d5)
times the asymptotic variance of the corresponding Nagar based test. Because plim %Dl = 052033 — O3,

lim LDy = —0333;095 + 32025, and because the asymptotic variance of the Nagar based test is equal
p n 23

to 2 Vai(s“)z L, we can conclude that the asymptotic variance of the 2SLS based test is
1o 522(922—%%)
equal to
2
20 Var (e1;)° 635 (922033 — 035)
I-a (plim %dl)z (plim %d2)27
where

1
. 2 2 2 2
plim Edl = 099033 + Opws3 + W2O33 + A wW33was — @23 — 2093093 — wi3,
1
. 2
plim Ed2 = —03332022 — O33aw12 — AW33 42022 — AW33 33023 — A w3zW12

+ B2035 + Oozawis + awa3 (2023 + Awa3B3033 + a’wazwis.

. . . . D2 D2
As for the estimator of the asymptotic variance, we can simply use —dngzz times a consistent estimator for

the asymptotic variance of the Nagar based test.
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